
Machine Learning, 41, 295–313, 2000
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Enlarging the Margins in Perceptron Decision Trees

KRISTIN P. BENNETT bennek@rpi.edu
Dept of Mathematical Sciences, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180, USA

NELLO CRISTIANINI∗ cristianini@dcs.rhbnc.ac.uk
JOHN SHAWE-TAYLOR jst@dcs.rhbnc.ac.uk
Dept of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK

DONGHUI WU wud2@rpi.edu
Dept of Mathematical Sciences, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180, USA

Editor: Robert Schapire

Abstract. Capacity control in perceptron decision trees is typically performed by controlling their size. We prove
that other quantities can be as relevant to reduce their flexibility and combat overfitting. In particular, we provide an
upper bound on the generalization error which depends both on the size of the tree and on the margin of the decision
nodes. So enlarging the margin in perceptron decision trees will reduce the upper bound on generalization error.
Based on this analysis, we introduce three new algorithms, which can induce large margin perceptron decision
trees. To assess the effect of the large margin bias, OC1 (Journal of Artificial Intelligence Research, 1994,2,
1–32.) of Murthy, Kasif, and Salzberg, a well-known system for inducing perceptron decision trees, is used as
the baseline algorithm. An extensive experimental study on real world data showed that all three new algorithms
perform better or at least not significantly worse than OC1 on almost every dataset with only one exception. OC1
performed worse than the best margin-based method on every dataset.

Keywords: capacity control, decision trees, perceptron, learning theory, learning algorithm

1. Introduction

Perceptron Decision Trees (PDT) have been introduced by a number of authors under
different names (Mangasarian et al., 1990; Bennett & Mangasarian, 1992, 1994a, 1994b;
Breiman et al., 1984; Broadley & Utgoff, 1995; Utgoff, 1989; Murthy, Kasif, & Salzberg,
1994). They are decision trees in which each internal node is associated with a hyperplane
in general position in the input space. They have been used in many real-world pattern
classification tasks with good results (Bennett & Mangasarian 1994a; Murthy, Kasif, &
Salzberg, 1994; Bennett, Wu, & Auslender, 1998). Given their high flexibility, a feature that
they share with more standard decision trees such as the ones produced by C4.5 (Quinlan,
1993), they tend to overfit the data if their complexity is not somehow kept under control. The
standard approach to controlling their complexity is to limit their size with early stopping
or pruning procedures.

In this paper we introduce a novel approach to complexity control in PDTs, based on the
concept of the margin (namely, the distance between the decision boundaries and the training

∗This work was performed while N. Cristianini was at the University of Bristol.



296 K.P. BENNETT ET AL.

points). The control of this quantity is the basis of the effectiveness of other systems, such
as Vapnik’s Support Vector Machines (Cortes & Vapnik, 1995), Adaboost (Schapire et al.,
1997), and some Bayesian Classifiers (Cristianini, Shawe-Taylor, & Sykacek, 1998). We
prove that this quantity can be as important as the tree size as a capacity control parameter.

The theoretical motivations behind this approach lie in the Data-Dependent Structural
Risk Minimization (Shawe-Taylor et al., 1996): the scale of the cover used in VC theory to
provide a bound on the generalization error depends on the margin and hence the hierarchy
of classes is chosen in response to the data. Of course the two complexity control criteria
can be used together, combining a pruning phase with the bias towards large margins, to
obtain better performance.

These results motivate a new class of PDT learning algorithms, aimed at producing large
margin trees. We propose three such algorithms: FAT, MOC1, and MOC2, and compare
their performance with that of OC1, one of the best known PDT learning systems. All three
large margin systems outperform OC1 on most of the real world data sets we have used,
indicating that overfitting in PDTs can be combatted efficiently by enlarging the margin of
the decision boundaries on the training data.

2. Perceptron decision trees

The most common decision trees, in which each node checks the value of a single attribute,
could be defined asaxis parallel, because the tests associated with each node are equivalent
to axis-parallel hyperplanes in the input space. Many variations of this simple model have
been proposed since the introduction of such systems in the early 1980s. Some of them
involve more complex tests at the decision nodes, usually testing more than one attribute.
Decision trees whose nodes test a linear combination of the attributes have been proposed
by different researchers under different names: Linear Combination Trees, multivariate DT
(Broadley & Utgoff, 1995), oblique DTs (Murthy, Kasif, & Salzberg, 1994), Perceptron
Decision Trees (Utgoff, 1989), etc. The first of such systems was proposed by Breiman,
who incorporated it into the package CART (Breiman et al., 1984). The tests associated
with each node are equivalent to hyperplanesin general position, and they partition the
input space into polyhedra as illustrated in figure 1. They obviously include as a special
case the more common decision trees output by systems like C4.5.

The extreme flexibility of such systems makes them particularly exposed to the risk of
overfitting. This is why efficient methods for controlling their expressive power (typically

Figure 1. A perceptron decision tree and the way it splits the input space.



MARGINS IN PERCEPTRON DECISION TREES 297

pruning techniques) always have to be used in combination with the standard TopDown
growth algorithms.

The class of functions computed by PDTs is formally defined as follows:

Definition 2.1Generalized Decision Trees (GDT). Given a spaceX and a set of Boolean
functionsF = { f : X→ {0, 1}}, the class GDT(F) of Generalized Decision Trees overF
is the set of functions that can be implemented using a binary tree where each internal node
is labeled with an element ofF , and each leaf is labeled with either 1 or 0.

To evaluate a particular treeT on inputx ∈ X, all the Boolean functions associated to the
nodes are assigned the same argumentx ∈ X, which is the argument ofT(x). The values
assumed by them determine a unique path from the root to a leaf: at each internal node
the left (respectively right) edge to a child is taken if the output of the function associated
with that internal node is 0 (respectively 1). This path is known as theevaluation path. The
value of the functionT(x) is the value associated with the leaf reached. We say that input
x reaches a node of the tree if that node is on the evaluation path forx.

In the following, thenodesare the internal nodes of the binary tree, and theleavesare its
external ones.

Examples.

• Given X = {0, 1}n, aBoolean Decision Tree(BDT) is a GDT over

FBDT = { fi : fi (x) = xi , i = 1, . . . ,n}

• Given X = Rn, aC4.5-like Decision Tree(CDT) is a GDT over

FCDT = { fi,θ : fi,θ (x) = 1⇔ xi > θ, θ ∈ R, i = 1, . . . ,n}

This kind of decision tree defined on a continuous space is the output of common algorithms
like C4.5 and CART, and we will refer to them as CDTs.

• Given X = Rn, aPerceptron Decision Tree(PDT) is a GDT over

FPDT = { fw : fw(x) = 1⇔ wTx > 0, w ∈ Rn+1},

where we have assumed that the inputs have been augmented with a coordinate of constant
value, hence implementing a thresholded perceptron.

PDTs are generally induced by means of a TopDown growth procedure, which starts
from the root node and greedily chooses a perceptron that maximizes some cost function,
normally a measure of the “impurity” of the subsamples implicitly defined by the split.
This maximization is usually hard to perform, and is sometimes replaced by randomized
(sub)optimization. The subsamples are then mapped to the two children nodes. The pro-
cedure is then recursively applied to the nodes, and the tree is grown until some stopping



298 K.P. BENNETT ET AL.

criterion is met. Such a tree is then used as a starting point for a BottomUp search, per-
forming a pruning of the tree. This implies eliminating the nodes which are redundant, or
which are unable to “pay for themselves” in terms of the cost function. Generally, pruning
an overfitting tree produces better classifiers than those obtained with early stopping, since
this makes it possible to check if promising directions were in fact worth exploring and if
locally good solutions were on the contrary dead ends. So, while the standard TopDown
algorithm is an extremely greedy procedure, with the introduction of pruning it can be
possible to look ahead; this allows for discovery of more hidden structure.

The capacity control in PDTs is hence completely achieved by controlling the size of
the tree, that is, the complexity of the overall classifier. We will propose an alternative
method, which on the contrary focuses on reducing the complexity of the node classifiers
independently of the tree size. This will be possible thanks to a theoretical analysis of
generalization performance of the function class defined by PDTs in the framework of VC
theory.

3. Theoretical analysis of generalization

The generalization performance of a learning machine can be studied by means of uniform
convergence bounds, using a technique introduced by Vapnik and Chervonenkis (1971).
The central concept in such an analysis is the “effective capacity” of the class of hypotheses
accessible by the machine: the richer such a class, the higher the risk of overfitting. This
feature of a learning machine is often referred to as its flexibility orcapacity. The issue of
preventing overfitting by allowing just the right amount of flexibility is therefore known as
capacity control.

The notion of effective cardinality of a function class is captured by its “growth function”
for Boolean classes or “covering numbers” for real valued functions. The size of the covering
numbers depends on the accuracy of the covering as well as on the function class itself. The
larger the margin the less accuracy is required in the covering.

In the following we will be concerned with estimating the capacity of the class of PDTs.
We will see that the margin does affect the flexibility of such a hypothesis class, as does the
tree size. This will motivate some alternative techniques for controlling overfitting which—
albeit conceptually similar to pruning—act on the complexity of the node classifiers rather
than on the complexity of the overall tree.

We begin with the definition of the fat shattering dimension, which was first introduced
in Kearns and Schapire (1990), and has been used for several problems in learning since
(Alon et al., 1997; Bartlett, Long, & Williamson, 1996; Anthony & Bartlett, 1994; Bartlett
& Long, 1995).

Definition 3.1. Let F be a set of real valued functions. We say that a set of pointsX is
γ -shattered byF relative tor = (rx)x∈X if there are real numbersrx indexed byx ∈ X such
that for all binary vectorsb indexed byX, there is a functionfb ∈ F satisfying

fb(x)

{
≥ rx + γ if bx = 1

≤ rx − γ otherwise.



MARGINS IN PERCEPTRON DECISION TREES 299

Thefat shattering dimension fatF of the setF is a function from the positive real numbers
to the integers which maps a valueγ to the size of the largestγ -shattered set, if this is finite,
or infinity otherwise.

As an example that will be relevant to the subsequent analysis consider the class:

Flin = {x→ 〈w, x〉 + θ : ‖w‖ = 1}.

We quote the following result from Bartlett and Shawe-Taylor (1998) (see also (Cortes &
Vapnik, 1995)).

Theorem 3.2(Bartlett & Shawe-Taylor, 1998). LetFlin be restricted to points in a ball
of n dimensions of radius R about the origin. Then

fatFlin (γ ) ≤ min{R2/γ 2, n+ 1}.

The following theorem bounds the generalization of a classifier in terms of the fat shattering
dimension rather than the usual Vapnik-Chervonenkis or Pseudo dimension.

Let Tθ denote the threshold function atθ : Tθ : R→ {0, 1}, Tθ (α) = 1 iff α > θ . For a
class of functionsF , Tθ (F) = {Tθ ( f ) : f ∈ F}.

Theorem 3.3(Shawe-Taylor et al., 1996). Consider a real valued function classF having
fat shattering function bounded above by the function afat: R→ N which is continuous from
the right. Fixθ ∈ R. If a learner correctly classifies m independently generated examplesz
with h = Tθ ( f ) ∈ Tθ (F) such that the train error is zero andγ = min | f (xi ) − θ |, then
with confidence1− δ the expected error of h is bounded from above by

ε(m, k, δ) = 2

m

(
k log

(
8em

k

)
log(32m)+ log

(
8m

δ

))
,

where k= afat(γ /8).

The importance of this theorem is that it can be used to explain how a classifier can give
better generalization than would be predicted by a classical analysis of its VC dimension.
Essentially, expanding the margin performs an automatic capacity control for function
classes with small fat shattering dimensions. The theorem shows that when a large margin
is achieved it is as if we were working in a lower VC class.

We should stress that in general the bounds obtained should be better for cases in which a
large margin is observed, but that a priori there is no guarantee that such a margin will occur.
Therefore a priori only the classical VC bound can be used. In view of corresponding lower
bounds on the generalization error in terms of the VC dimension, the a posteriori bounds
depend on a favorable probability distribution making the actual learning task easier. Hence,
the result will only be useful if the distribution is favorable or at least not adversarial. In this
sense the result is a distribution dependent result, despite not being distribution dependent
in the traditional sense that assumptions about the distribution have had to be made in its



300 K.P. BENNETT ET AL.

derivation. The benign behavior of the distribution is automatically estimated in the learning
process.

In order to perform a similar analysis for perceptron decision trees we will consider the
set of margins obtained at each of the nodes, bounding the generalization as a function of
these values.

It turns out that bounding the fat shattering dimension of PDT’s viewed as real function
classifiers is difficult. We will therefore do a direct generalization analysis mimicking the
proof of Theorem 3.3 but taking into account the margins at each of the decision nodes in
the tree.

Definition 3.4. Let (X, d) be a (pseudo-) metric space,A be a subset ofX andε > 0. A
setB ⊆ X is anε-cover forA if, for everya ∈ A, there existsb ∈ B such thatd(a, b) < ε.
Theε-covering number ofA, Nd(ε, A), is the minimal cardinality of anε-cover for A (if
there is no such finite cover then it is defined to be∞).

We writeN (ε,F, x) for the ε-covering number ofF with respect to thè∞ pseudo-
metric measuring the maximum discrepancy on the samplex, that is, with respect to the
distanced( f, g) = max1≤i≤m | f (xi ) − g(xi )|, for f, g ∈ F . These numbers are bounded
in the following Lemma, which we present for historical reasons, though in fact we will
require the slightly more general corollary.

Lemma 3.5 (Alon et al., 1997). Let F be a class of functions X→ [0, 1] and P a
distribution over X. Choose0< ε < 1 and let d= fatF (ε/4) ≤ em. Then

E(N (ε,F, x)) ≤ 2

(
4m

ε2

)d log(2em/(dε))

,

where the expectation E is taken w.r.t. a samplex ∈ Xm drawn according to Pm.

Corollary 3.6 (Shawe-Taylor et al., 1996). LetF be a class of functions X→ [a, b] and
P a distribution over X. Choose0< ε < 1 and let d= fatF (ε/4) ≤ em. Then

E(N (ε,F, x)) ≤ 2

(
4m(b− a)2

ε2

)d log(2em(b−a)/(dε))

,

where the expectation E is over samplesx ∈ Xm drawn according to Pm.

We are now in a position to tackle the main lemma which bounds the probability over
a double sample such that the first half has zero error and the second error greater than an
appropriateε. Here, error is interpreted as being differently classified at the output of the
tree. In order to simplify the notation in the following lemma we assume that the decision
tree hasK nodes and we denote fatFlin (γ ) by fat(γ ).

Lemma 3.7. Let T be a PDT with K decision nodes with marginsγ 1, γ 2, . . . , γ K at the
decision nodes satisfying ki = fat(γ i /8). If it has correctly classified m labeled examplesx
generated independently according to the unknown(but fixed) distribution P with support



MARGINS IN PERCEPTRON DECISION TREES 301

in a ball of radius R andy is a second m sample, then we can bound the following probability
to be less thanδ,

P2m{xy : ∃ a tree T : T correctly classifiesx,

fraction ofy misclassified>ε(m, K , δ)} < δ,

whereε(m, K , δ) = 1
m(D log(8m)+ log 2K

δ
). where D=∑K

i=1 ki log(4em/ki ).

Proof: Using the standard permutation argument (as in Vapnik and Chervonenkis (1971)),
we may fix a sequencexy and bound the probability under the uniform distribution on swap-
ping permutations that the sequence satisfies the condition stated. We consider generating
minimalγk/2-coversBk

xy for each value ofk, whereγk = min{γ ′ : fat(γ ′/8) ≤ k}. Suppose
that for nodei of the tree the marginγ i of the hyperplanewi satisfies fat(γ i /8) = ki . We
can therefore findfi ∈ Bki

xy whose output values are withinγ i /2 of wi . We now consider
the treeT ′ obtained by replacing the node perceptronswi of T with the corresponding
fi . This tree performs the same classification function on the first half of the sample, and
the margin at nodei remains larger thanγ i − γki /2 > γki /2. If a point in the second half
of the sample is incorrectly classified byT it will either still be incorrectly classified by
the adapted treeT ′ or will at one of the decision nodesi in T ′ be closer to the decision
boundary thanγki /2. The point is thus distinguishable from left hand side points which are
both correctly classified and have margin greater thanγki /2 at nodei . Hence, that point
must be kept on the right hand side in order for the condition to be satisfied. Hence, the
fraction of permutations that can be allowed for one choice of the functions from the covers
is 2−εm. We must take the union bound over all choices of the functions from the covers.
Using the techniques of Shawe-Taylor et al. (1996) the number of these choices is bounded
by Corollary 3.6 as follows

5K
i=12(8m)ki log(4em/ki ) = 2K (8m)D,

whereD =∑K
i=1 ki log(4em/ki ). The value ofε in the lemma statement therefore ensures

that the union bound is less thanδ. 2

Lemma 3.7 applies to a particular tree with a specified number of nodes, architecture, and
fat shattering dimensions for each node. In practice we will observe these quantities after
running the learning algorithm which generates the tree. Hence, to obtain a bound that can
be applied in practice we must bound the probabilities uniformly over all of the possible
architectures and dimensions that can arise. Before giving the theorem that will give this
bound we require two results. The first is due to Vapnik (1982, page 168) and is the key
to bounding error probabilities in terms of the probabilities of discrepancies on a double
sample.

Lemma 3.8. Let X be a set and S a system of sets on X, and P a probability measure on
X. For x ∈ Xm and A∈ S, defineνx(A) := |x ∩ A|/m. If m> 2/ε, then

Pm

{
x : sup

A∈S
|νx(A)− P(A)| > ε

}
≤ 2P2m

{
xy : sup

A∈S
|νx(A)− νy(A)| > ε/2

}
.



302 K.P. BENNETT ET AL.

The second result gives a bound on the number of different tree architectures that have a
given number of computational nodes.

Theorem 3.9(Quinlan & Rivest, 1989). The number Sk of k node Decision Tree skeletons
is

Sk = 1

k+ 1

(
2k

k

)
.

Combining these two results with Lemma 3.7 we obtain the following theorem:

Theorem 3.10. Suppose we are able to classify an m sample of labeled examples using a
perceptron decision tree and suppose that the tree obtained contains K decision nodes with
marginsγi at node i, then we can bound the generalization error with probability greater
than1− δ to be less than

130R2

m

(
D′ log(4em) log(4m)+ log

(4m)K+1
(2K

K

)
(K + 1)δ

)

where D′ = ∑K
i=1

1
γ 2

i
and R is the radius of a sphere containing the support of the distri-

bution P.

Proof: We must bound the probabilities over different architectures of trees and different
margins. We first use Lemma 3.8 to bound the probability of error in terms of the probability
of the discrepancy between the performance on two halves of a double sample. In order to
apply Lemma 3.7 we must consider all possible architectures that can occur and for each
architecture the different patterns ofki s over the decision nodes. For a fixed value ofK
Theorem 3.9 gives the number of decision tree skeletons. The largest allowed value ofki is
m and so for fixedK we can bound the number of possibilities by

1

K + 1

(
2K

K

)
2K+1mK ,

where 2K+1 counts the possible labelings of theK + 1 leaf nodes. Hence, there are this
number of applications of Lemma 3.7 for a fixedK . Since the largest value thatK can take
is m, we can letδK = δ/m, so that the sum

∑m
K=1 δk = δ. Choosing

ε

(
m, K ,

(K + 1)δK(2K
K

)
2K+2mK

)
= 65R2

m

(
D′ log(4em) log(4m)+ log

4(4m)K
(2K

K

)
(K + 1)δK

)



MARGINS IN PERCEPTRON DECISION TREES 303

in the applications of Lemma 3.7 ensures that the probability of any of the statements failing
to hold is less thanδ/2. Note that we have replaced the constant 82 = 64 by 65 in order to
ensure the continuity from the right required for the application of Theorem 3.3 and have
upperbounded log(4em/ki ) by log(4em). Hence, applying Lemma 3.8 in each case, the
probability that the statement of the theorem fails to hold is less thanδ. 2

4. Experimental results

From the theory presented in the previous section, it follows that large-margin PDTs are
more likely to generalize well. A bias toward large-margin trees can be implemented in a
number of different ways, e.g. as a post-processing phase of existing trees or as a brand new
impurity measure to determine splitting/stopping criteria in TopDown growth algorithms.
To facilitate comparisons, we have implemented three such algorithms as modifications of
one of the best-known PDT learning systems, OC1 of Murthy, Kasif, and Salzberg (1994),
which is freely available over the Internet. The effect of the large-margin bias can hence
be directly assessed by running the margin-arbitrary version of the same algorithm on the
same data. The first such algorithm, FAT, accepts as input a PDT constructed using OC1
and outputs a large margin version of the same tree. The other two, MOC1 and MOC2, have
different impurity measures which take into consideration the margins. All three algorithms
work for multi-class data.

The three systems have been compared with OC1 on ten benchmarking data sets. The
results confirm the predictions of the theoretical model, clearly indicating that the general-
ization is improved by enlarging the margin.

The data sets we have used for the study are 6 data sets used in the original OC1 paper
(Murthy, Kasif, & Salzberg, 1994) and 4 other data sets, which are publicly available in the
UCI data repository (University of California). The data sets studied in Murthy, Kasif, and
Salzberg (1994) areDim, Bright, Wisconsin Breast Cancer, Pima Indians Diabetes, Boston
Housing, and Iris. The four additional data sets areBupa, Sonar, Heart, andWisconsin
Breast Cancer Prognosis. The data sets differ greatly in subjects, sizes, and number of
attributes. The subjects of data sets range from medical to astronomical, the sizes from
150 to 4192, and the number of attributes from 4 to 60.1 For details of these data sets see
(Murthy, Kasif, & Salzberg, 1994; University of California). For each data set, a single run
of 10-fold cross-validation is carried out. The relevant quantity, in this experiment, is the
difference in the test accuracy between PDTs with arbitrary margins constructed by OC1
and the PDTs with large margins on the same data.

Comparing learning algorithms has drawn extensive attention recently (Kohavi, 1995;
Dietterich, 1998; Salzberg, 1997; Neal, 1998). A single run of 10-fold cross-validation on
a reasonable number of data sets is still a preferred practical approach. It is prone to detect
the difference of two algorithms. We basically followed the approach recommended in
Salzberg (1997). We used a pairedt-test to assess the significance of any differences found.
We report differences withp-values of up to 22% as significant. The value of 22% was
adopted because there was a notable gap in thep-values found beginning at 22% and
because OC1 exhibits high variance in the decision tree structure found even with small
changes in data or algorithms.



304 K.P. BENNETT ET AL.

In the rest of this section, we will briefly review the OC1 system, then present our three
large margin algorithms and compare their performances with that of OC1.

4.1. Review of OC1

OC1 (Murthy, Kasif, & Salzberg, 1994) is a randomized algorithm that performs a ran-
domized hill-climbing search for learning the perceptrons and builds the tree TopDown.
Starting from the root node, the system chooses the hyperplane that minimizes a predefined
“impurity” measure (e.g. information gain (Quinlan, 1993), or Gini index (Breiman et al.,
1984), or the Twoing Rule (Breiman et al., 1984; Murthy, Kasif, & Salzberg, 1994), etc.).
The system is greedy because at each stage it chooses the best split available and random-
ized because such a best split is not obtained by means of exhaustive search but with a
randomized hill-climbing process.

Throughout this study we use the twoing rule as the impurity measure for OC1, FAT, and
MOC1. MOC2 uses a modified twoing rule as impurity measure. Other impurity measures
can also be applied in FAT and MOC1 without change, while MOC2 would need minor
changes.

The twoing rule.

TwoingValue= |TL |
n
∗ |TR|

n
∗
(

k∑
i=1

∣∣∣∣ |Li |
|TL | −

|Ri |
|TR|

∣∣∣∣
)2

(1)

where

n = |TL | + |TR|—total number of instances at current node
k—number of classes; for two class problems,k = 2
|TL |—number of instances on the left of the split, i.e.wT x + b < 0
|TR|—number of instances on the right of the split i.e.wT x + b ≥ 0
|Li |—number of instances in categoryi on the the left of the split
|Ri |—number of instances in categoryi on the the right of the split

This is a goodness measure rather than an impurity one, and OC1 attempts to maximize it
at each split during the tree growth by minimizing 1/TwoingValue. Further details about
the randomization, the pruning, and the splitting criteria can be found in Murthy, Kasif, and
Salzberg (1994).

4.2. Results of FAT

Description of algorithm FAT. The algorithm FAT uses the tree produced by OC1 as
a starting point and maximizes its margins. This involves finding—for each node—the
hyperplane which performsthe samesplit as performed by the OC1 tree but with the
maximal margin. This can be done by considering the subsample reaching each node as



MARGINS IN PERCEPTRON DECISION TREES 305

perfectly divided into two parts, and feeding the data accordingly relabeled to an algorithm
which finds the optimal separating hyperplane—the separating hyperplane with maximal
margin in this now linearly separable data. The optimal separating hyperplanes are then
placed in the corresponding decision nodes and the new tree is tested on the same test data.
Note that the PDT produced by FAT will have the same tree structure and training accuracy
as the original PDT constructed by OC1. They will only differ on test accuracy. We use the
Support Vector Machine (SVM) algorithm (Vapnik, 1995) to find the optimal separating
hyperplane. To conform with the definition of a PDT, no kernel is used in the SVM and the
optimal separating hyperplane is constructed in the input space.

Algorithm for FAT.

1. Construct a decision tree using OC1; call it OC1-PDT.
2. Starting from the root of OC1-PDT, traverse through all the non-leaf nodes. At each

node:

• Relabel the points at this node withωT x + b ≥ 0 as classright, the other points at
this node as classleft.
• Find the perceptron (optimal separating hyperplane)f (x)=ω∗T x+ b∗, which sepa-

rates classright and classleft perfectly with maximal margin.
• replace the original perceptron with the new one.

3. Output the FAT-PDT.

Optimal separating hyperplane—SVM algorithm for the linearly separable case.The
following problems are solved at each node to find the optimal separating hyperplane for
linearly separable data (Vapnik, 1995).

min
w,b

1
2‖w‖2

subject to yi (w
T xi + b) ≥ 1, yi ∈ {1,−1}, i = 1, . . . , `

(2)

whereyi = 1 corresponds to classright andyi = −1 corresponds to class left and` is the
number of points reaching the decision node.

For computational reasons we usually solve the dual problem of (2):

min
α

W(α) = 1

2

∑̀
i=1

∑̀
j=1

αiα j yi , yj (xi · xj )−
∑̀
i=1

αi

subject to
∑`

i=1 αi yi = 0

αi ≥ 0, i = 1, . . . , `

(3)

FAT-PDT has a generalization error bounded by Theorem 3.10. We observed that FAT
completely relied on and was restricted by the perceptron decision tree induced by OC1. In
many cases, the margins in the splits found by OC1 are very small, so FAT has little scope
for optimization. This implies that the greedy algorithm OC1 is not a good tree inducer for



306 K.P. BENNETT ET AL.

Figure 2. Comparison of the 10-fold CV results of FAT versus OC1. If the point is above the line, it indicates
the 10-fold CV mean of FAT is higher than that of OC1, and vice versa. The figure shows that FAT outperforms
OC1 on nine out of ten data sets and is outperformed only on one data set.

FAT, in the sense that better large margins decisions may not be found. One major benefit
of FAT is that it provides a new approach to applying the Support Vector Machine for
multi-class classification tasks.

Comparison of FAT and OC1. For each dataset, 10-fold cross-validation is used to mea-
sure the learning ability of the algorithms FAT and OC1. A pairedt-test is used to test the
difference of the means of FAT and OC1.

From figure 2, we can see that FAT outperforms OC1 on nine out of the ten data sets, and
outperforms OC1 on all six data sets studied in Murthy, Kasif, and Salzberg (1994). The
10-fold cross-validation mean differences of FAT and OC1 on those nine data sets are all
significant when a pairedt-test is applied. On one data setPrognosis, OC1 outperforms FAT
and the difference is significant. We also observed that, except in one case (Prognosis), FAT
performs as good as or better than OC1 ineveryfold of 10-fold cross-validation. So when
FAT has a higher mean than OC1, it is significant at a smallα level for the pairedt-test even
though the difference is small. This is a strong indication that Perceptron Decision Trees
with large margins generalize better. The 10-fold cross-validation means andp values are
summarized in Table 1.

4.3. Results of MOC1

Description of MOC1. MOC1 (MarginOC1) is a variation of OC1 that modifies the
splitting criterion of OC1 to consider the size of the margin. No other changes are made
in the base OC1 algorithm. The same default pruning algorithm is used. The underlying
philosophy is to find a separating plane with a tradeoff between training accuracy and the size



MARGINS IN PERCEPTRON DECISION TREES 307

Table 1. 10-fold CV means of OC1, FAT, MOC1, and MOC2.

Dataset OC1̄x FAT x̄ (p value) MOC1x̄ (p value) MOC2x̄ (p value) Best classifier

Bright 98.46 98.62 (.05) 98.94(.10) 98.82 (.10) MOC1

Bupa 65.22 66.09 (.10) 68.41 (.20) 70.14(.04) MOC2

Cancer 95.89 96.48(.05) 95.60 95.89 FAT

Dim 94.82 94.92 (.20) 95.23 (.09) 94.90 MOC1

Heart 73.40 76.43 (.12) 75.76 (.21) 77.78(.10) MOC2

Housing 81.03 83.20(.05) 82.02 80.23 FAT

Iris 95.33 96.00 (.17) 95.33 96.00 FAT

Pima 71.09 71.48 (.04) 73.18(.08) 72.53 (.23) MOC1

Prognosis 78.91 74.15 78.23 79.59 MOC2

Sonar 67.79 74.04(.01) 72.12 (.19) 73.21 (.16) FAT

of margin at each node. This idea is motivated by the Support Vector Machine for the linearly
non-separable case, which minimizes the classification error and maximizes the margin at
the same time. SVM with soft margin minimizes the sum of misclassification errors and
the reciprocal of the soft margin. SVM tries to find a split with high classification accuracy
and large soft margin. Analagously, MOC1 minimizes the sum of the impurity measure and
the reciprocal of the hard margin. The MOC1 algorithm minimizes the following objective
function:

(1− λ) ∗ OC1 Objective+ C ∗ 1

current margin
(4)

where

– OC1 Objectiveis the impurity measure of OC1; in this study, the default twoing rule is
used as impurity measure.

– current margin is the sum of perpendicular distances to the hyperplane of two nearest
points on the different side of the current separating hyperplane, i.e.,current margin:=
mini,xT

i ≥b(x
T
i w − b)−maxi,xT

i <b (x
T
i w − b)

– λ is a scalar weight,λ ∈ [0, 1]
– C = λ ∗ log{10∗ (no of pointsat currentnode)}

The choice of the parametersC andλ determines how much the large margin is weighted in
selecting the split. We adapted heuristics based on our prior experience with decision trees
and support vector machines. Tuning these parameters could improve the performance.
When determining the weight on the margin, we take the log of the number of points at
the current node into consideration. The idea is that a constant weight on the margin for
all nodes is not good. The weight should be able to adapt to the position of the current
node and the size of training examples at the current node. Since we are not particularly
interested in finding the tree with highest possible accuracy, but rather demonstrating that



308 K.P. BENNETT ET AL.

Figure 3. Comparison of the 10-fold CV results of MOC1 versus OC1. If the point is above the line, it indicates
the 10-fold CV average of MOC1 is higher than that of OC1, and vice versa. The figure shows that MOC1
outperforms OC1 on six out of ten data sets and performs as good as OC1 on the other four data sets.

large margins can improve the generalization, we did not tune theλ for each data set to
achieve the highest possible accuracy. We setλ= .05 in all data sets. In other words, the
results of MOC1 presented below are not the best results possible. Better variants may exist.
For example, to make MOC1 relate more closely with the theoretical bounds, the square of
the current margin could be used withC = 1/M .

Comparison of MOC1 and OC1. As in the previous section, we use 10-fold cross-
validation to measure the learning ability of the algorithms MOC1 and OC1. To test the
difference between the means of MOC1 and OC1, here again a pairedt-test is used.

From figure 3 we can see that MOC1 has a higher 10-fold cross-validation mean than
does OC1 on eight of the ten data sets, and five of them are significantly higher. OC1 has
higher means on the other two data sets (Cancer, Prognosis), but the differences are tiny
and are not significant. Overall, MOC1 outperforms OC1 on six of the ten data sets and is
as good as OC1 on the other four. Of the six data sets studied in Murthy, Kasif, and Salzberg
(1994), MOC1 outperforms OC1 on five of them and performs as well as OC1 on the final
one (Cancer). See Table 1 for respective means andp values.

4.4. Results of MOC2

Description of MOC2. Like MOC1, MOC2 alters the impurity measure used by OC1.
MOC2 uses a modified twoing rule that directly incorporates the idea of large margins into
the impurity measure. Unlike MOC1, MOC2 uses a soft margin. It treats points falling
within the margin and outside of the margin differently. Only the impurity measure within
OC1 is changed. The rest of the algorithm including pruning is the same as in the standard
OC1 algorithm.



MARGINS IN PERCEPTRON DECISION TREES 309

The modified twoing rule.

TwoingValue= |MTL |
n
∗ |MTR|

n
∗

k∑
i=1

∣∣∣∣ |Li |
|TL | −

|Ri |
|TR|

∣∣∣∣ ∗ k∑
i=1

∣∣∣∣ |M Li |
|MTL | −

|M Ri |
|MTR|

∣∣∣∣
where

n = |TL | + |TR|—total number of instances at current node
k—number of classes; for two class problemsk = 2
|TL |—number of instances on the left of the split, i.e.wT x + b < 0
|TR|—number of instances on the right of the split i.e.wT x + b ≥ 0
|Li |—number of instances in categoryi on the left of the split
|Ri |—number of instances in categoryi on the right of the split
|MTL |—number of instances on the left of the split,wT x + b ≤ −1
|MTR|—number of instances on the right of the splitwT x + b ≥ 1
|M Li |—number of instances in categoryi with wT x + b ≤ −1
|M Ri |—number of instances in categoryi with wT x + b ≥ 1

In the modified twoing rule, our goal is, at each node, to find a split with fewer points falling
within the margin (in between−1< wT x+b < 1), with high accuracy outside the margin
and good overall accuracy. Here again, we try to achieve a balance of classification accuracy
and size of margin. In doing this, we want to push apart the two classes from the separating
hyperplane as far as possible while maintaining a reasonably good classification accuracy,
hence, improving the generalization of the induced decision tree. The advantage of MOC2
is that there are no free parameters to tune.

Comparison of MOC2 and OC1. As in the previous section, 10-fold cross-validation is
used to measure the learning ability of the algorithms MOC2 and OC1. Pairedt-tests are
used to test the difference of the means of MOC2 and OC1.

From figure 4 we can see that MOC2 has a higher mean on nine out of the ten data sets,
and has slightly lower mean on only one data set (Housing). Of the nine higher means, five
are significantly higher. The one lower mean is not significant. Overall, MOC2 outperforms
OC1 on five out of the ten data sets and performs as well as OC1 on the other five. Of the
six data sets studied in Murthy, Kasif, and Salzberg (1994), MOC2 outperformed OC1 on
three of them, and performed as well as OC1 on the other three. The respective means and
p values are summarized in Table 1.

The modified twoing rule opens a new way of measuring the goodness of a split that
directly incorporates the generalization factor into the measure. In our experiments, it has
been proven to be a useful measure.

4.5. Tree sizes

For FAT, the tree sizes are exactly the same as for OC1, since the FAT PDT has the same
tree structure as the OC1 PDT. FAT only replaces splits at nodes of the OC1 PDT with



310 K.P. BENNETT ET AL.

Figure 4. Comparison of the 10-fold CV results of MOC2 versus OC1. If the point is above the line, it indicates
the 10-fold CV mean of MOC2 is higher than that of OC1 on that data set, and vice versa. The figure shows that
MOC2 outperforms OC1 on five out of ten data sets, and performs as well as OC1 on the other five data sets.

large margin perceptrons which perform exactly the same splits. Of the ten data sets, MOC1
induced five smaller trees, one tree the same size, and four larger trees when compared with
OC1. MOC2 induced five smaller trees and five bigger trees compared with OC1. We did
not find a consistent pattern of tree sizes. Table 2 lists the tree sizes of OC1, FAT, MOC1,
and MOC2.

Table 2. 10-fold CV average tree size of OC1, FAT, MOC1, and MOC2.

OC1 & FAT MOC1 MOC2

Dataset Leaves Depth Leaves Depth Leaves Depth

Bright 5.40 2.80 6.20 3.20 5.70 2.90

Bupa 5.00 2.80 2.10 1.10 7.40 3.60

Cancer 2.50 1.30 4.00 2.50 2.90 1.50

Dim 23.9 5.90 17.40 6.50 22.40 6.40

Heart 6.10 2.10 3.30 2.00 2.10 1.10

Housing 10.00 4.20 7.10 3.80 6.40 3.00

Iris 3.20 2.10 3.20 2.10 3.00 2.00

Pima 8.30 4.20 18.50 5.70 11.40 5.00

Prognosis 3.60 2.00 2.30 1.20 2.20 1.10

Sonar 4.30 2.60 6.10 3.30 5.90 2.90



MARGINS IN PERCEPTRON DECISION TREES 311

4.6. Summary of experimental results

The theory states that maximizing the margins between the data points on each side of the
separating hyperplane in the perceptron decision tree will improve the error bounds; the
perceptron decision tree will be more likely to generalize better. But the theory does not
guarantee that any specific classifier has a low error rate. Our results support this theory.
From the 10-fold cross-validation results of the ten data sets, FAT has nine higher mean
testing-set accuracies than OC1 and they are all significantly higher; MOC1 has seven
higher mean accuracies, and six of them are significantly higher; MOC2 has eight higher
mean accuracies and five of them are significantly higher. Equal or lower mean accuracies
only happened on three data sets. ForCancer, MOC1 has a slightly smaller mean accuracy
than OC1 and MOC2 has the same mean accuracy as OC1. ForHousing, MOC2 is slightly
less accurate than OC1. ForPrognosis, both FAT and MOC1 are less accurate than OC1
but only FAT is significantly so. The evidence is clear that the large margin methods tended
to improve accuracy. But no one large margin approach was best. Of the classifiers with
highest mean accuracies, FAT produced four, MOC1 and MOC2 each produced three, and
OC1 produced none.

From the experiments, webelievethat PDTs with large margin are more likely to have
smaller variance of performance too. In our experiments, in most of the cases, FAT, MOC1,
and MOC2 produce classifiers with smaller variances, and many of them are significantly
smaller, though very occasionally they produce classifiers with significantly larger variance.
Partially this is due to the high variance within decision tree methods. However, we cannot
draw any confident conclusion about the variances. We therefore did not present our study
on variances here.

In short, the experimental results support that finding the separating hyperplane with large
margin at each node of a perceptron decision tree can improve the error bound, resulting
in a perceptron decision tree with greater average accuracy, i.e., one that generalizes better.
Furthermore, we believe that by improving error bounds through margin maximization,
the learning algorithm will perform more consistently and be more likely to have smaller
variance.

5. Conclusions

The experimental results presented in this paper clearly show that enlarging the margin
does improve the generalization and that this bias can be inserted into the growth algorithm
itself, providing trees which are specifically built to minimize the theoretical bound on
generalization error. Such trees do not lose any of their other desirable features, such as
readability, ease of maintenance and updating, flexibility, and speed.

Furthermore, the theoretical analysis of the algorithms shows that the dimension of the
input space does not affect the generalization performance; it is hence possible to conceive
of Perceptron Decision Trees in a high-dimensional feature space that take advantage of
kernels and margin-maximization such as Support Vector Machines.This would provide
as a side effect a very natural approach to multi-class classification with Support Vector



312 K.P. BENNETT ET AL.

Machines. Other theoretical results exist indicating that the tree size is not necessarily a
good measure of capacity. Our analysis also shows how to take advantage of this theoretical
observation and design learning algorithms that control hypothesis complexity by acting
on the complexity of the node-classifiers and hence that of the whole tree. All three of
the proposed approaches: the post-processing method FAT and the two with margin-based
splitting criteria MOC1 and MOC2, led to significant improvement over the baseline OC1
method. It is an open question which method is best, but maximizing margins should be a
consideration of every PDT algorithm.

Note

1. The number of (attributes, points) of each data set is as follows: Bright(14, 2462), Bupa(6, 345), Cancer(9, 682),
Dim(14, 4192), Heart(13, 297) Housing( 13, 506), Iris(4, 150), Pima(8, 768), Prognosis(32, 198), Sonar(60,
208).

References

Alon, N., Ben-David, S., Cesa-Bianchi, N., & Haussler, D. (1997). Scale-sensitive dimensions, uniform conver-
gence, and learnability.Journal of the ACM, 44(4), 615–631.

Anthony, M. & Bartlett, P. (1994). Function learning from interpolation. Technical Report (An extended abstract
appeared in Computational Learning Theory, Proceedings 2nd European Conference, EuroCOLT’95, edited by
Paul Vitanyi (Lecture Notes in Artificial Intelligence, vol. 904) Springer-Verlag, Berlin, 1995, pp. 211–221).

Bartlett, P. L. & Long, P. M. (1995). Prediction, learning, uniform convergence, and scale-sensitive dimensions.
Preprint, Department of Systems Engineering, Australian National University.

Bartlett, P., Long, P., & Williamson, R. (1996). Fat-shattering and the learnability of real-valued functions.Journal
of Computer and System Sciences, 52(3), 434–452.

Bartlett, P. & Shawe-Taylor, J. (1998). Generalization performance of support vector machines and other pattern
classifiers. In B. Sch¨olkopf, C. J. C. Burges, & A. J. Smola (Eds.),Advances in Kernel methods—support vector
learning(pp. 43–54). Cambridge, USA: MIT Press.

Bennett, K. & Mangasarian, O. (1992). Robust linear programming discrimination of two linearly inseparable
sets.Optimization Methods and Software, 1, 23–34.

Bennett, K. & Mangasarian, O. (1994a). Multicategory discrimination via linear programming.Optimization
Methods and Software, 3, 29–39.

Bennett, K. & Mangasarian, O. (1994b). Serial and parallel multicategory discrimination.SIAM Journal on
Optimization, 4(4), 722–734.

Bennett, K., Wu, D., & Auslender, L. (1998). On support vector decision trees for database marketing. R.P.I. Math
Report No. 98-100, Rensselaer Polytechnic Institute, Troy, NY.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984).Classification and regression trees. Belmont,
CA: Wadsworth International Group.

Broadley, C. E. & Utgoff, P. E. (1995). Multivariate decision trees.Machine Learning, 19, 45–77.
Cortes, C. & Vapnik, V. (1995). Support-vector networks.Machine Learning, 20, 273–297.
Cristianini, N., Shawe-Taylor, J., & Sykacek, P. (1998). Bayesian classifiers are large margin hyperplanes in a

Hilbert space. In J. Shavlik (Ed.),Machine Learning: Proceedings of the Fifteenth International Conference
(pp. 109–117). San Francisco, CA: Morgan Kaufmann Publishers.

Diettrich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms.
Neural Computation, 10(7), 1895–1924.

Kearns, M. & Schapire, R. (1990). Efficient distribution-free learning of probabilistic concepts. InProceedings of
the 31st Symposium on the Foundations of Computer Science(pp. 382–391). Los Alamitos, CA: IEEE Computer
Society Press.



MARGINS IN PERCEPTRON DECISION TREES 313

Kohavi, R. (1995). A study of cross-validation and bootstraping for accuracy estimation and model selection. In
International Joint Conference on Artifical Intelligence(pp. 1137–1143). San Mateo, CA: Morgan Kaufmann.

Mangasarian, O., Setiono, R., & Wolberg, W. (1990). Pattern recognition via linear programming: Theory and
application to medical diagnosis. In T. F. Coleman & Y. Li (Eds.),Proceedings on Workshop on Large-Scale
Numerical Optimization(pp. 22–31). Philadelphia, PA: SIAM.

Murthy, S. K., Kasif, S., & Salzberg, S. (1994). A system for induction of oblique decision trees.Journal of
Artificial Intelligence Research, 2, 1–32.

Neal, R. N. (1998). Assessing relevance determination methods using DELVE generalization. In C. M. Bishop
(Ed.),Neural networks and machine learning(pp. 97–129). Springer-Verlag.

Quinlan, J. R. (1993).C4.5: Programs for machine learning. Morgan Kaufmann.
Quinlan, J. R. & Rivest, R. (1989). Learning decision trees using the minimum description length principle.

Information and Computation 80, 227–248.
Salzberg, S. (1997). On comparing classifiers: Pitfalls to avoid and a recommended approach.Data Mining and

Knowledge Discovery 1(3), 317–327.
Sankar, A. & Mammone, R. J. (1993). Growing and pruning neural tree networks.IEEE Transactions on Computers,

42, 291–299.
Schapire, R., Freund, Y., Bartlett, P. L., & Sun Lee, W. (1997). Boosting the margin: A new explanation for the

effectiveness of voting methods. In D. H. Fisher, Jr. (Ed.),Proceedings of International Conference on Machine
Learning, ICML’97, (pp. 322–330). Nashville, Tennessee. Morgan Kaufmann Publishers.

Shawe-Taylor, J., Bartlett, P. L., Williamson, R. C., & Anthony, M. (1996). Structural risk minimization over
data-dependent hierarchies,IEEE Transactions on Information Theory, 44(5), 1926–1940.

Sirat, J. A. & Nadal, J.-P. (1990). Neural trees: A new tool for classification.Network, 1, 423–438.
University of California, Irvine—Machine Learning Repository,http://www.ics.uci.edu/∼mlearn/
MLRepository.html.

Utgoff, P. E. (1989). Perceptron trees: A case study in hybrid concept representations.Connection Science, 1,
377–391.

Vapnik, V. (1982).Estimation of dependences based on empirical data. New York: Springer-Verlag.
Vapnik, V. (1995).The nature of statistical learning theory. New York: Springer-Verlag.
Vapnik, V. & Chervonenkis, A. (1971). On the uniform convergence of relative frequencies of events to their

probabilities.Theory of Probability and Applications, 16, 264–280.

Received January 7, 1999
Revised June 25, 1999
Final manuscript February 2, 2000


