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Abstract. We consider the following classes of quantified boolean formulas. Fix a finite set of basic boolean
functions. Take conjunctions of these basic functions applied to variables and constants in arbitrary ways. Finally
quantify existentially or universally some of the variables. We prove the followingdichotomy theorem: For any
set of basic boolean functions, the resulting set of formulas is either polynomially learnable from equivalence
queries alone or else it is not PAC-predictable even with membership queries under cryptographic assumptions.
Furthermore, we identify precisely which sets of basic functions are in which of the two cases.
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1. Introduction

The problem of learning an unknown boolean formula under some determined protocol has
been widely studied. It is well known that, even restricted to propositional formulas, the
problem is hard (Angluin & Kharitonov, 1995; Kearns & Valiant, 1994) in the usual learning
models. Therefore, researchers have attempted to learn subclasses of propositional boolean
formulas, specially inside CNF and DNF. For example,k-DNF formulas,k-term DNF
formulas, monotone-DNF formulas, Horn formulas, and their dual counterparts (Angluin,
1988; Berggren, 1993; Angluin, Frazier, & Pitt, 1992) have all been shown exactly learnable
using membership and equivalence queries in Angluin’s model (Angluin, 1988) while the
question of whether DNF formulas are learnable is still open. The more powerful formalism
of predicate logics is used in several applications of learning in artificial intelligence and
knowledge representation but its study, from the computational learning theory point of
view, is recent. See Maass & Tur´an (1995) and the further references in that paper.

In this paper, we study the complexity of learning some subclasses of quantified boolean
formulas called quantified boolean formulas over a basisS. These formulas are still propo-
sitional formulas but augmented with the additional capability of quantification.

Let S = {R1, . . . , Rm} be a finite set of logical relations. Define an∃∀-Formula(S) to
be any boolean formula formed by quantified conjunctions of any number of clauses of the
form Ri (ξ1, . . . , ξk), whereξ1, . . . , ξk are variables or constants andk is the rank ofRi .

Example 1. Consider the problem of learning a boolean formula formed by a quantified
conjunction of clauses with three literals per clause. Every such formula can be expressed as
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a formula in∃∀-Formula(S) with the set of logical relationsS= {R0, R1, R2, R3}, defined
by:

R0(x, y, z) ≡ x ∨ y ∨ z,

R1(x, y, z) ≡ x̄ ∨ y ∨ z,

R2(x, y, z) ≡ x̄ ∨ ȳ ∨ z,

R3(x, y, z) ≡ x̄ ∨ ȳ ∨ z̄.

The main result of this paper characterizes the complexity of learning∃∀-Formula(S) for
every finite setS of logical relations. The most striking feature of this characterization is
that for anyS, ∃∀-Formula(S) is either polynomially learnable with equivalence queries
alone or, under some cryptographic assumptions, not polynomially predictable even with
membership queries. In fact, for the hardness result, it is enough to consider formulas with
existential quantifiers only or without constants. This dichotomy is somewhat surprising
since one might expect that any such large and diverse family of concept classes would
include some representatives of the many intermediate learning models such as exact learn-
ing with equivalence and membership queries, PAC learning with and without membership
queries and PAC-prediction without membership queries.

Furthermore, we give an interesting classification of the polynomially learnable classes.
We show that, in a sense that will be precised later,∃∀-Formula(S) is polynomially learnable
if and only if at least one of the following conditions holds:

(a) Every relation inS is definable by a CNF formula in which each clause has at most 2
literals.

(b) Every relation inS is definable by a CNF formula in which each clause has no negated
variables or has at most one negated variable and at most one affirmed variable.

(c) Every relation inS is definable by a CNF formula in which each clause has no affirmed
variables or has at most one affirmed variable and at most one negated variable.

(d) Every relation inS is the set of solutions of a system of linear equations over the
two-element field{0, 1}.

It is interesting to compare this classification with some previous known results about the
learnability of quantifier-free formulas. First, notice that whereask-CNF are polynomially
learnable with equivalence queries, the equivalent result for quantified formulas is only
valid for k ≤ 2. In fact, the gap beetween the learnability of quantifier-free and quanti-
fied formulas is even wider: whereas for every finite setS of logical relations, the class
of quantifier-free formulas in∃∀-Formula(S) is polynomially learnable with equivalence
queries, the full class of formulas contains only few learnable subclasses.

It is also interesting to point out that whereas some classes of quantifier-free formulas
over basis of infinite size are learnable, they turn out to be non-learnable in general if we
allow quantification even restricting the basis to some finite subset. Horn formulas are an
example of such feature. Notice that, whereas membership queries are of no help in the
learnability of quantified boolean formulas over a finite basis they turn out to be needed
to learn some classes of formulas obtained from infinite basis, such as monotone CNF or
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Horn CNF. This fact seems to suggest that membership queries make a difference exactly
when we are dealing with formulas built from basic relations of arbitrary arity.

A few but not many Dichotomy results in complexity theory are already known. The first
one is a dichotomy result for the generalized satisfiability decision problem by Schaefer
(1978). The others known to us concern the H-coloring of graphs (Hell & Ne˘setr̆il, 1990),
the subgraph homeomorphism (Fortune, Hopcroft, & Wyllie, 1980), the decomposition
of graphs (Dor & Tarsi, 1997), the inverse generalized satisfiability problem (Kavvadias &
Sidderi, 1996), the generalized satisfiability counting problem (Creignou & Hermann,
1996), and the approximability of minimization and maximization problems (Creignou,
1995; Khanna, Sudan, & Trevisan, 1997; Khanna, Sudan, & Williamson, 1997). It is
remarkable that most of the dichotomy results shown before are in the framework of gen-
eralized satisfiability problems proposed by Schaefer. Our result is inspired as well by the
framework and techniques of Schaefer which allow us to compare the complexity of dif-
ferent problems on generalized quantified boolean formulas. For example, from Schaefer’s
Dichotomy Theorem (Schaefer, 1978) and the Dichotomy Theorem of this paper can be
inferred that, in this framework, learnability is slightly harder than satisfiability.

The aim of this paper is to study the complexity of learning generalized quantified boolean
formulas, but some intermediate results are interesting in themselves. In particular, the
technique used in the semantic characterization of weakly antimonotone logical relations
could be useful in characterizing other logical relations defined as the conjunction of some
restricted kinds of clauses.

2. Definitions and notation

2.1. Learning models

Most of the terminology used in this section comes from Angluin & Kharitonov (1995).
Let X denote{0, 1}∗; binary strings will represent both examples and concept names. Let
x be a string,|x| denotes its length, and for every constantb∈ {0, 1}, |x|b denotes the
number of occurrences ofb in x. For any natural numbern, X[n] = {x ∈ X : |x| ≤ n}. A
representation of concepts(or representation class) C is any subset ofX× X. We interpret
an element〈u, x〉 of X× X as consisting of aconcept name uand anexample x. The
examplex is a member of the conceptu if and only if 〈u, x〉 ∈ C. Define theconcept
represented by uas

KC(u) = {x : 〈u, x〉 ∈ C}

Theset of concepts represented byC is

{KC(u) : u ∈ X}

In this paper we use two models of learning, both of which are fairly standard: Angluin’s
model of exact learning from equivalence queries (Angluin, 1988) and the model of PAC-
prediction with membership queries as defined by Angluin & Kharitonov (1995).
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LetH be a representation class. A learning algorithm with queries is an algorithmA that
takes as input a bounds on the size of the target concept representation and a boundn on
the length of the examples. It may make any number of queries or requests, the responses
to which are determined by the unknown target conceptc. A must eventually halt with an
output concept namev. The conceptKH(v) is interpreted asA’s guess of the target concept.
The most common kinds of queries are themembershipand theequivalencequeries. A
membership query takes a stringx ∈ X as input and returns 1 ifx ∈ c and 0 otherwise.
An equivalence query takes a concept nameh as input and returnsyesif c = KH(h) and a
counterexamplex ∈ c4 KH(h) otherwise.A runs in polynomial timeif its running time
(counting one step for oracle call) is bounded by a polynomial ins andn.

We say thatA successfullyexactly learnsa representation of conceptsC, if and only if
for all positive integerss, n, for all concept namesu∈ X[s] , whenA is run with inputss and
n, and oracles determined byc = KC(u), A outputs a concept namev such thatc = KH(v).
If C = H we say thatA learnsproperlyC, otherwise we say thatA learnsimproperlyC.
A representation of conceptsC is polynomially learnableif and only if there is a learning
with queries algorithmA that runs in polynomial time and successfully learns exactlyC.

A prediction with membership algorithm, or pwm-algorithm, is a possibly randomized
algorithmA that takes as input a bounds on the size of the target concept representation, a
boundn on the length of examples, and an accuracy boundε. It may make three different
kinds of oracle calls, the responses to which are determined by the unknown target concept
c and the unknown distributionD on X[n] , as follows:

• A membership query takes a stringx ∈ X as input and returns 1 ifx ∈ c and 0 otherwise.
• A request for a random classified example takes no input and returns a pair〈x, b〉, wherex

is a string chosen independently according toD andb = 1 if x ∈ c andb = 0 otherwise.
• A request for an element to predict takes no input and returns a stringx chosen indepen-

dently according toD.

A may make any number of membership queries or requests for random classified exam-
ples. However,A must eventually make one and only one request for an element to predict
and eventually halt with an output of 1 or 0 without making any further oracle calls. The
output is interpreted asA’s guess of how the target concept classifies the element returned
by the request for an element to predict.A runs in polynomial timeif its running time
(counting one step per oracle call) is bounded by a polynomial ins, n, and 1/ε.

We say thatA successfullypredictsa representation of conceptsC if and only if for
all positive integerss andn, for all positive rationalsε, for all concept namesu ∈ X[s] ,
whenA is run with inputss, n, andε, and oracles determined byc= KC(u) andD, A asks
membership queries that are inX and the probability is at mostε that the output ofA is
not equal to the correct classification ofx by KC(u), wherex is the string returned by the
(unique) request for an element to predict. We can say thatA predictsC in PAC sense, with
the additional help of membership queries. See Valiant (1984) for a formal definition of
the PAC model.

A representation of conceptsC is polynomially predictable with membership queries
if and only if there is apwm-algorithm A that runs in polynomial time and success-
fully predicts C. If a representation of concepts is learnable in polynomial time with
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membership and equivalence queries then it is polynomially predictable with membership
queries.

To compare the difficulty of learning problems in the prediction model we use the
prediction-preserving reducibility with membership queriesas defined by Angluin &
Kharitonov (1995). It is denoted by≤pwmand it extends Pitt & Warmuth’s (1990)prediction-
preserving reducibilityto the presence of membership queries.

Definition 2. Let C andC ′ be representations of concepts. Let⊥ and> be elements not
in X. ThenC is pwm-reducibleto C′, denotedC ≤pwm C ′, if and only if there exist three
mappingsg, f , andh with the following properties:

1. There is a nondecreasing polynomialq such that for all natural numberss andn and for
u ∈ X[s] , g(s, n, u) is a stringu′ of length at mostq(s, n, |u|).

2. For all natural numberss and n, for every stringu∈ X[s] , and for everyx ∈ X[n] ,
f (s, n, x) is a stringx′ and x ∈ KC(u) if and only if x′ ∈ KC′(g(s, n, u)). Moreover,
f is computable in time bounded by a polynomial ins, n, and|x|, hence there exists a
nondecreasing polynomialt such that|x′| ≤ t (s, n, |x|).

3. For all natural numberss and n, for every stringu∈ X[s] , and for everyx′ ∈ X,
h(s, n, x′) is either⊥,>, or a stringx ∈ X. If h(s, n, x′) = > thenx′ ∈ KC′(g(s, n, u)),
if h(s, n, x′) = ⊥ thenx′ 6∈ KC′(g(s, n, u)), and otherwisex′ ∈ KC ′(g(s, n, u)) if and
only if x ∈ KC(u). Moreover,h is computable in time bounded by a polynomial ins, n,
and|x′|.

In (2), and independently in (3), the expression “x ∈ KC(u)” can be replaced with
“x 6∈ KC(u)”, as discussed in Angluin & Kharitonov (1995).

The only properties of this reducibility that are needed in this paper were shown in
Angluin & Kharitonov (1995):

Lemma 3. The pwm-reduction is transitive, i.e., let C, C ′ andC ′′ be representations of
concepts, if C ≤pwm C ′ ≤pwm C ′′ thenC ≤pwm C ′′.

Lemma 4. Let C andC ′ be representations of concepts. IfC ≤pwm C ′ andC ′ is polyno-
mially predictable with membership queries, thenC is also polynomially predictable with
membership queries.

2.2. Logical preliminaries

Let V ={x1, x2, . . .} be an infinite set of boolean variables. A literal is a variable or
its negation. A clause is a disjunction of literals. An assignment is a vector inX. For
any assignmentt ∈ X and for any integerj , t [ j ] ∈ {0, 1} denotes thej th component oft .
Logical operators (∨, ∧, ¬) can also be applied to assignments meaning that they are
operated component-wise. Given two assignmentst1 and t2, t1t2 denotes the assignment
obtained concatenatingt1 andt2.
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A logic relation of rankk (k integer) is a subset of{0, 1}k. There exists an unique
assignment of length 0, we call itλ.

We use the termformula in a large sense, to mean any well-formed formula, formed
from variables, constants, logical connectives, parentheses, logical relation symbols, and
existential and universal quantifiers.

Let S= {R1, . . . , Rm} be any finite set where eachRi is a logical relation of rankki . Ri

denotes both the logical relation and its symbol. The set of formulas formed by conjunctions
of relations inS with constants is denoted Formula(S). Specifically, Formula(S) is the
smallest set of formulas such that:

• For allR ∈ Sof rankk, R(y1, . . . , yk)∈ Formula(S)whereyi ∈V ∪ {0, 1} for 1≤ i ≤ k.
• For all F,G ∈ Formula(S), F ∧ G ∈ Formula(S).

The set ofquantified boolean formulas over the basis S, denoted by∃∀-Formula(S), is
the smallest set of formulas such that:

• For all F ∈ Formula(S), F ∈ ∃∀-Formula(S).
• For all F ∈ ∃∀-Formula(S) and for allξ ∈ V , ∃ξF and∀ξF are in∃∀-Formula(S).

We call ∃-Formula(S) the subset of∃∀-Formula(S) that we obtain if we allow only
existential quantifiers.

Each formulaF defines a logical relation [F ] if we apply the usual semantics of first-
order logic and the variables are taken in lexicographical order. For every set of logical
relations S we define Relation(S)={[F ] : F ∈ Formula(S)}. Analogously, we define
∃∀-Relation(S) and∃-Relation(S) as the set of logical relations obtained from formulas
in ∃∀-Formula(S) and∃-Formula(S) respectively.

For any set of formulasF , we defineCF as the representation of concepts formed from
formulas inF . More precisely,CF contains all the tuples of the form〈 f, x〉 where f
represents a formula inF andx is a model satisfyingf .

Example 5. Consider the basis introduced in Example 1. LetF be following formula:

F = ∀x1∃x2∀x3 R1(x1, x2, x3)

∧ R1(x4, x3, x2)

∧ R2(x4, x5, 0)
∧ R3(1, x6, x2)

F is a formula in∃∀-Formula(S) over the free variablesx4, x5, andx6. [F ] contains
exactly all the assignments over these variables satisfyingF .

[F ] = { 〈0, 0, 0〉
〈0, 1, 0〉
〈1, 0, 0〉 }

F can also be regarded as a concept inC∃∀−Formula(S) [F ], being its set of examples.
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A clause isbijunctiveif it has at most 2 literals. A clause ishorn (resp.antihorn) if it has
at most one affirmed (resp. negated) variable. A clause isweakly monotone(resp.weakly
antimonotone) if it is (i) the disjunction of affirmed variables (resp. negated variables)
or (ii) the disjunction of at most two literals with at most one negated (resp. affirmed)
variable. That is, a weakly antimonotone clause is a horn clause where we only allow
rules like(y1 . . . yn → 0) and(yi → yj ) where everyyi is a variable or a constant. The
logical relationR of rankk is bijunctive (resp. horn, antihorn, weakly monotone, weakly
antimonotone) ifR(x1, . . . , xk) is logically equivalent to some CNF formula where each
clause is bijunctive (resp. horn, antihorn, weakly monotone, weakly antimonotone). The
logical relationR of rankk is affineif R(x1, . . . , xk) is logically equivalent to some system
of linear equations over the two-element field{0, 1}.

We can extend the definitions above to formulas and sets of relations: The formulaF
is bijunctive (resp. horn, antihorn, weakly monotone, weakly antimonotone, affine) if [F ]
is bijunctive (resp. horn, antihorn, weakly monotone, weakly antimonotone, affine). The
set S of logical relations is bijunctive (resp. horn, antihorn, weakly monotone, weakly
antimonotone, affine) if everyR ∈ S is bijunctive (resp. horn, antihorn, weakly monotone,
weakly antimonotone, affine).

Thedegreeof a logical relationR of rankk, is the minimum valued ≤ k such thatR can
be expressed as ad-CNF formula. Analogously, the degree of a formulaF is the degree of
the logical relation [F ]. Thedegreeof a finite set of logical relationsS is the maximum of
the degrees of all relations inS.

3. The dichotomy theorem

This section states and proves the main result of this paper:

Theorem 6 (Dichotomy Theorem for Learnability). Let S be a finite set of logical
relations. If S satisfies one of the conditions(a)–(d) below, thenC∃∀-Formula(S) is polyno-
mially exactly learnable with improper equivalence queries. Otherwise, C∃-Formula(S) is not
polynomially predictable with membership queries under the assumption that public key
encryption systems secure against chosen ciphertext attack exist.

(a) S is bijunctive.
(b) S is affine.
(c) S is weakly monotone.
(d) S is weakly antimonotone.

We refer the reader to Angluin & Kharitonov (1995) for definitions of the cryptographic
concepts.

Schaefer (1978) proves a similar dichotomy theorem for the satisfiability of∃∀-Formula
(S). He shows that this problem is polynomial-time solvable if and only ifS is bijunctive,
horn, antihorn or affine. Otherwise the problem is PSPACE-complete (NP-complete if we
take only∃-Formula(S)). We can note here that if a basisS does not fall in the classes in
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Schaefer’s theorem then the representation of concepts∃∀-Formula(S) is not polynomial-
time evaluable, i.e., given an example and a representation of a concept, it is not possible
to decide in polynomial time whether the example is a member of the concept, unless
P= PSPACE.

From the comparison of both theorems it follows that, in this framework, learning is
slightly harder than deciding satisfiability. More precisely, satisfiability whenS is horn is
polynomial-time decidable, but for polynomial time learnability we must guarantee thatS
falls in a more restricted class, namely the weakly antimonotone sets.

Observe that for the negative results only existential quantifiers are needed. In Dalmau
(1997) a proof of the negative result, in the case that constants are not allowed, can be found.
Therefore, the main theorem does not change at all if we are restricted to formulas without
universal quantifiers or without constants.

From now on, a set of logical relationsS will be called abasic setif S is bijunctive,
weakly monotone, weakly antimonotone, or affine and the representation of concepts∃∀-
Formula(S) formed from a basic setSwill be calledbasic representation of concepts.

Here is a bird’s eye view of the proof.

(a) The efficient learnability of basic classes follows from the following results

(i) the expressive power of formulas over basic sets is essentially the same with and
without using quantifiers, and

(ii) in consequence the learning problem can be reduced to quantifier-free formulas that
are contained in some already known learnable classes.

(b) For the non-learnability results, we show that

(i) the quantified formulas over any non-basic set can express a double implication
xy→ z or its dual.

(ii) Then we show that this implication is enough to simulate boolean circuits, which
are hard to learn under cryptographic assumptions.

The rest of the paper is structured as follows:
Section 3.1 contains exclusively results about relations and their expressivity power. No

learning notions are involved. This section is organizated as follows: Section 3.1.1 con-
tains item (a(i)). Section 3.1.2 contains some characterizations of some classes in semantic
terms, that is, in terms of what elements are in the relation, rather that in terms of defining
formulas as in the definitions. These alternative semantic definitions are easier to handle
in Section 3.1.3 wich contains item (b(i)). Finally, item (a(ii)) is shown in Section 3.2 and
Section 3.3 contains item (b(ii)).

3.1. Results in logic

3.1.1. Closure under quantification. In this section, we show that some sets of logic
relations are “closed” under quantification. More precisely, we prove that if a setSof logical
relations is bijunctive, weakly monotone, weakly montonone of affine, then quantifiers do
not help to obtain a more reduced representation. Later on, we will use this property to
show the learnability of quantified boolean formulas constructed using these families of
basis.
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Let us state the main result of this section:

Lemma 7. If S is a bijunctive(resp. weakly monotone of degree d, weakly antimonotone
of degree d, affine) set of logical relations then∃∀-Formula(S) is bijunctive(resp. weakly
monotone of degree d, weakly antimonotone of degree d, affine).

The proof of this result is rather simple. The underlying idea consists in that, by simple
substitutions, it is possible to eliminate the quantifiers from inside to outside without in-
creasing too much the size of the formula. The same analysis can handle bijunctive, weakly
monotone and weakly antimonotone relations, since they all have been defined as a CNF
using a particular set of clauses. Affine basis require some particular treatment instead.

We begin with some claims of easy proof:
Let F be a formula overV , letξ ∈ V be a variable andw a literal or a constant. We define

F [ ξ
w

] as the formula formed fromF by replacing each occurrence ofξ byw. If W ⊂ V is a
set of variables thenF [ W

w
] denotes the result of substitutingw for every occurrence of every

variable inW. Multiple substitutions are denoted by expressions such asF [ V
w
,

V ′
w′ ,

V ′′
w′′ ] with

obvious meaning.

Claim 8. Let x ∈ V be a variable. If F is a bijunctive(resp. weakly monotone of degree
d, weakly antimonotone of degree d, affine) formula then F[ x

0 ] and F[ x
1 ] are bijunctive

(resp. weakly monotone of degree d, weakly antimonotone of degree d, affine).

Let C = x ∨ C′ and D = x̄ ∨ D′ be two clauses, whereC′ is the rest of clauseC,
and similarly forD andD′. That is, the two clauses contain two opposite literals. Then the
clauseC′ ∨ D′, containing all literals of the two clauses except for the two opposite literals
is called theresolventof C andD with respect to the variablex, denoted byR(C, D, x).

Claim 9. Let x ∈ V be a variable. Let Cx and Cx̄ be a pair of clauses that contain the
literal x andx̄ respectively. If Cx and Cx̄ are bijunctive(resp. weakly monotone of degree d,
weakly antimonotone of degree d), thenR(Cx,Cx̄, x) is bijunctive(resp. weakly monotone
of degree d, weakly antimonotone of degree d).

We note here that in the case of general horn (resp. antihorn) clauses, although the
resolvent of two horn (resp. antihorn) clauses is a horn (resp. antihorn) clause, we cannot
guarantee that degree does not increase.

Claim 10. For every variable x∈ V and for every formula F, ∀x F ≡ F [ x
0 ] ∧ F [ x

1 ].

Claim 11. For every variable x∈V and for every CNF formula F such that F≡∧
C∈Gx∪Gx̄∪G C where Gx,Gx̄, and G are sets of clauses that contain the literal x, the literal

x̄, and none of them respectively, the following equivalence holds: ∃x F ≡ ∧Cx∈Gx,Cx̄∈Gx̄

R(Cx,Cx̄, x) ∧∧C∈G C.
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From Claims 8–11 we can derive the following lemma:

Lemma 12. Let F be a bijunctive(resp. weakly monotone of degree d, weakly anti-
monotone of degree d) formula. Then, for every variable x∈ V, ∀x F and∃x F are both
bijunctive(resp. weakly monotone of degree d,weakly antimonotone of degree d) formulas.

The analogous result for affine functions is proved differently.

Lemma 13. Let F be an affine formula. Then, for every variable x∈ V, ∀x F and∃x F
are both affine.

Proof: Let F be equivalent to a system of linear equations over the two element field
{0, 1}. To prove the case∀x F we only need to apply Claims 8 and 10 or, even easier, note
that∀x F ≡ 0 if x appears inF , and∀x F ≡ F otherwise. So we only need to consider the
case∃x F. We can take some equation that contains the variablex, separatex in one side
of the equation and substitute the other side in the rest of equations. This process gives us
a system of equations equivalent to∃x F. 2

We can eliminate systematically the quantifiers from inside to outside preserving the
bijunctivity (resp. weakly monotonicity of degreed, weakly antimonotonicity of degreed,
affinity) obtaining Lemma 7.

3.1.2. Semantic characterizations.In this section, we give semantic characterizations of
some sets of logical relations. Other semantic characterizations can be found in Schaefer
(1978). Semantic characterizations are more convenient to our purposes than the definitions
given in Section 2.2. This is because, as we will see in the next section, we are interested
in the logical relations generated by some relationR that doesnot belong to a particular
class. In these cases, using the semantic characterizations we can infer that there exist some
assignment inR not satisfying determined property and establish consequences from this
fact.

The following characterization of horn relations is well known (see Papadimitriou (1994),
for example).

Lemma 14 (Papadimitriou, 1994. Problem 4.4.7.). Let R be a logical relation. R is
horn (resp. antihorn) if and only if for all t, t ′ ∈ R, t ∧ t ′ ∈ R (resp. t∨ t ′ ∈ R).

At this point we show a characterization of the weakly antimonotone relations. We need
the following notation:

Let t ∈ {0, 1}k be an assignment of lengthk and letT = {i1, . . . , i j } be a set ofj indices
1≤ i1 < · · · < i j ≤ k. The projectiont | T is defined to be the assignment of arityj given
by t | T = 〈t [i1], . . . , t [i j ]〉. Analogously, for every relationR of rank k, the projection
R | T is defined to be the relation of arityj

R | T = {t | T : t ∈ R}
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That is, R | T = [∃xl1, . . . , ∃xlk− j R(x1, . . . , xk)] where{l1, . . . , lk− j } = {1, . . . , k} − T ,
and thereforeR | T ∈ ∃-Relation({R}).

We havet | ∅ = λ andR | ∅ is the relation 1 ifR 6= ∅ and 0 otherwise.
Let R be a logical relation of rankk and t ∈ {0, 1}k be an assignment. We say that

t is j -compatible1 with R, if for every subsetT ⊂{1, . . . , k} of size |T |< j we have
t | T ∈ R | T . Assignmentλ is always 0-compatible with the empty relation.

The notion of j -compatibility is the key to characterize weakly antimonotone logical
relations.

Lemma 15. Let R be a logical relation of rank k. The following conditions are equivalent:
(a) R is weakly antimonotone.
(b) For every T⊆{1, . . . , k} and every assignment t∈ {0, 1}|T | not in R| T and |T |-

compatible with R| T :
(i) |t |0 = 0, or

(ii) |t |0 = 1 and|t |1 ≤ 1.
(c) For every T⊆{1, . . . , k} and every assignment t∈ {0, 1}|T | not in R| T and |T |-

compatible with R| T :
(i) |t |0 ≤ 1, and

(ii) If |t |0 = 1 then|t |1 ≤ 1.

Proof: The equivalence between conditions (b) and (c) is immediate. We only need to
show the equivalence between conditions (a) and (b).

• [b⇒ a]. For everyT , set of positions 0≤ i1 < · · · < i j ≤ k and for every assignment
t ∈ {0, 1}|T | not in R | T and|T |-compatible withR | T we define

CT
t =

j∨
l=1

xt [l ]
i l

where

x j
i =

{
xi if j = 0

x̄i otherwise

If t satisfies (b(i)) thenCT
t is antimonotone and falls in type (i) of weakly antimonotone

clauses, otherwiset satisfies (b(ii)),CT
t has at most two literals with at most one affirmed

literal and falls in type (ii) of weakly antimonotone clauses. Therefore,CT
t is a weakly

antimonotone clause. From the construction ofCT
t and the assumptiont 6∈ R | T it is clear

that for all assignmentst ′ ∈ {0, 1}k that falsifyCT
t we havet ′ 6∈ R.

For every logical relationR of rank k we defineF as the conjunction of all clauses
CT

t whereT ⊆ {1, . . . , k} andt 6∈ R | T is a |T |-compatible withR | T assignment. We
show that [F ] = R:

— It is clear that ifF(t) = 0 thent falsifies some clauseCT
t ′ and thereforet 6∈ R.

— For the opposite fix an assignmentt 6∈ R. Then apply the following algorithm:
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Step 1. Assigni := 1, t1 := t , T1 := {1, . . . , k};
Step 2. If ti is |Ti |-compatible withR | Ti thenstop. Otherwise there exists some

subsetT ⊂ Ti such thatti | T 6∈ R | T . Then assignti+1 := ti | T , Ti+1 := T, i :=
i + 1; go to step 2.

Note that|Ti | decreases in each step of the algorithm. WhenTi = ∅, ti = λ is
0-compatible with the empty relation and therefore the stopping condition is always
reached and the algorithm always finds ati which is|Ti |-compatible withR | Ti . So,
F containsCTi

ti that is falsified byt .

• [a⇒ b]. If R is a weakly antimonotone logical relation then for everyT ⊆{1, . . . , k},
by Lemma 7,R | T is a weakly antimonotone logical relation. LetF = ∧s

j=1 Cj be a
CNF formula, where each clause is weakly antimonotone such that [F ] = R | T . Let
t 6∈ R | T be a|T |-compatible withR | T assignment. By the|T |-compatibility,t cannot
falsify any clause of less than|T | literals, and therefore must falsify a clause of exactly
|T | literalsCl . If Cl is of type (i) or (ii) in the definition of weakly antimonotone clauses
thent satisfies the conditions (b(i)) or (b(ii)) respectively. 2

There exists a obvious dual characterization of the weakly monotone logical relations.

3.1.3. Main result in logic. We are now ready to state the main result in logic that we need.
It says that every non-basic set of logical relations can express an implication [x̄ ∨ ȳ ∨ z]
or its dual logical relation [x ∨ y ∨ z̄].

Theorem 16. Let S be a finite non-basic set of logical relations, then{[x ∨ y ∨ z̄], [ x̄ ∨
ȳ ∨ z]} ∩ ∃-Relation(S) 6= ∅.

The remainder of this section is devoted to the proof of Theorem 16. The following
results are from Schaefer (1978).

Lemma 17 (Schaefer, 1978). Let R be a logical relation which is not horn, then
{[x 6≡ y], [x∨ y]} ∩ ∃-Relation({R}) 6= ∅.

Lemma 18 (Schaefer, 1978). Let R be a logical relation which is not antihorn, then
{[x 6≡ y], [ x̄ ∨ ȳ]} ∩ ∃-Relation({R}) 6= ∅.

Corollary 19 (Schaefer, 1978). Let S be a finite set of relations which is not horn and
not antihorn, then[x 6≡ y] ∈∃-Relation(S).

Lemma 20 (Schaefer, 1978). Let S be a finite set of logical relations which is not affine
and not bijunctive, then∃-Relation(S∪ {[x 6≡ y]}) is the set of all logical relations.

The following lemmas will apply when condition (c(i)) or (c(ii)) in Lemma 15 fails.

Lemma 21. Let R be a logical function of rank k≥ 2. Suppose that there is a k-compatible
with R assignment t6∈ R that contains at least two zeroes. Then{[x 6≡ y], [x ∨ y]} ∩
Relation({R}) 6= ∅.
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Proof: Let V ′ = {x1, . . . , xk} be a set ofk variables. Let 1≤ i < j ≤ k such thatt [i ]=
t [ j ]= 0. The assignment obtained by flipping either one of the bitsi, j in t belongs toR
by thek-compatibility oft . Then [R(x1, . . . , xk)[

xl∈V ′−{xi ,xj }
t [xl ]

]] ∈ {[x 6≡ y], [x ∨ y]}. 2

Lemma 22. Let R be a logical relation of rank k≥ 3. Suppose that there is a k-compatible
with R assignment t6∈ R that contains exactly one0. Then{[ x̄∨ ȳ∨ z], [x 6≡ y], [x∨ y]} ∩
∃-Relation({R}) 6= ∅.

Proof: For every integer 0< i ≤ k, for every assignmentu∈ {0, 1}k, and for every
constantb∈ {0, 1} we defineu j←b as the assignment obtained fromu replacing thej th
element byb.

Let V ′ = {x1, . . . , xk} be a set ofk variables. Letxi ∈V ′ be the variable such that
t [i ] = 0. By thek-compatibility oft we have 1k ∈ R andt j←0 ∈ R for all j 6= i .

For all t ′ ∈ {0, 1}k such thatt ′ 6= t andt ′[i ]= 0, t ′ can be expressed ast ′ = ∧ j 6= i,t ′[ j ]= 0
t j←0, so we can assumet ′ ∈ R, otherwise by Lemma 14R is not horn and by Lemma 17
{[x 6≡ y], [x ∨ y]} ∩ ∃-Relation({R}) 6= ∅.

At this point, we can show that a simple implication (i.e., [x→ y]) can be generated from
R. We study two cases: If there is not ′ ∈ Rsuch thatt ′ 6= 1k andt ′[i ]= 1 then let 1≤ j 6= i ≤ k
be any integer. Letxl be any variable inV −{xi , xj }, then(∃xl R(x1, . . . , xk)[

V ′−{xi ,xj }
xl

])≡
(x̄i ∨ xj ). Otherwise, lett ′ ∈ R be an assignment such thatt ′ 6= 1k andt ′[i ]= 1, letW ⊂ V ′

be the set of variablesxj 6= xi such thatt ′[ j ]= 1, and letxl ∈V − {xi } be any variable
different fromxi . Then(R(x1, . . . , xk)[

W
1,

V ′−W−{xi }
xl

]) ≡ (x̄l ∨ xi ).
The double implication (i.e., [x ∧ y → z]) follows immediately: Letxj ∈V ′ be a

variable not equal toxi and letxl , xm ∈ V − {xi , xj }. Then, we have(∃xi R(x1, . . . , xk) ∧
(x̄i ∨ xm)[

V ′−{xi ,xj }
xl

]) ≡ (x̄ j ∨ x̄l ∨ xm). 2

The following result follows from Lemmas 21 and 22.

Lemma 23. Let R be a logical relation of rank k that is not weakly antimonotone. Then
{[x 6≡ y], [ x̄ ∨ ȳ ∨ z], [x ∨ y]} ∩ ∃-Relation({R}) 6= ∅.
Proof: Let T ⊆ {1, . . . , k} and t 6∈ R | T be an|T |-compatible withR | T assignment
such that condition (c) in Lemma 15 is falsified. There are two cases according to what
condition is falsified. If condition (c(i)) is falsified thent contains at least two zeros and
by Lemma 21{[x 6≡ y], [x ∨ y]} ∩ ∃-Relation({R | T}) 6= ∅. If condition (c(ii)) is falsified
then by Lemma 22{[x 6≡ y], [ x̄ ∨ ȳ ∨ z], [x ∨ y]} ∩ ∃-Relation({R | T}) 6= ∅. 2

By duality, we have:

Lemma 24. Let R be a logical relation of rank k that is not weakly monotone. Then
{[x 6≡ y], [x ∨ y ∨ z̄], [ x̄ ∨ ȳ]} ∩ ∃-Relation({R}) 6= ∅.

Directly from Lemmas 23 and 24 we have:

Corollary 25. Let S be a finite set of logical relations that is not weakly monotone and
not weakly antimonotone, then{[x 6≡ y], [ x̄ ∨ ȳ ∨ z], [x ∨ y ∨ z̄]} ∩ ∃-Relation(S) 6= ∅.
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And now Theorem 16 follows from Corollary 25 and Lemma 20.

3.2. Basic classes are polynomially exactly learnable

In this section, we show efficient learnability results for the basic classes. We use the closure
under quantification shown in Section 3.1.1 to prove that in a certain sense each of these
classes is embedded in a known learnable class and therefore learnable using the algorithm
for the more general class. We start by a formal definition of embedding between classes
and a simple observation:

Definition 26. Let C, C ′ be representations of concepts. We say thatC is embeddedin C ′
if there exists a polynomialp such that for every concept nameu∈ X there exists some
concept nameu′ ∈ X such that|u′| ≤ p(|u|) andKC(u) = KC ′(u′).

Observation 27. Let C be a representation of concepts which is polynomially exactly
learnable with equivalence queries inH. For every representation of conceptsC ′ embedded
in C, C ′ is polynomially exactly learnable with equivalence queries inH.

Through the rest of this paper,n denotes the number of variables. We only need a list of
learnable classes and to prove that every basic class is embedded in any of them. The only
learnable classes that we need are:

Theorem 28 (Angluin, 1988; Valiant, 1984). For all integers k≥ 0 the classCk−CNF is
polynomially exactly learnable with O(nk) proper equivalence queries.

Theorem 29 (Chen & Homer, 1997). Let beCAf be the set of formulas formed by conjunc-
tions of equations over the two-element field{0, 1}. The classCAf is polynomially exactly
learnable with n+ 1 proper equivalence queries.

These two classes satisfy another nice property: all elements in these classes have size
polynomial inn. Specifically:

• For every concept nameu inCk−CNF, |u| ∈ O(nk logn). (The logn factor appears because
writing down a variable name requires logn bits).
• For every concept nameu in CAf , |u| ∈ O(n2 logn).

If all the concepts in a representation classC have size polynomial inn then we do not
need to worry about the length of the representation in order to show that any representation
class is embedded inC, since this condition is satisfied automatically. From this observation
and from Lemma 7 we can derive the following results:

Claim 30. Let S be a finite set of logical relations. The following conditions hold:
• If S is a bijunctive set of logical relations thenC∃∀-Formula(S) is embedded inC2−CNF.
• If S is a weakly monotone of degree k set of logical relations thenC∃∀-Formula(S) is embedded

in Ck−CNF.
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• If S is a weakly antimonotone of degree k set of logical relations thenC∃∀-Formula(S) is
embedded inCk−CNF.
• If S is an affine set of logical relations thenC∃∀-Formula(S) is embedded inCAf .

We are now ready for the positive learnability results. From the previous claim and
Observation 27 we can derive the following theorem:

Theorem 31. Let S be a finite set of logical relations. The following conditions hold:
• If S is a bijunctive set of logical relations thenC∃∀-Formula(S) is polynomially exactly

learnable with O(n2) equivalence queries inC2−CNF.
• If S is a weakly monotone of degree k set of logical relations thenC∃∀-Formula(S) is poly-

nomially exactly learnable with O(nk) equivalence queries inCk−CNF.
• If S is a weakly antimonotone of degree k set of logical relations thenC∃∀-Formula(S) is

polynomially exactly learnable with O(nk) equivalence queries inCk−CNF.
• If S is an affine set of logical relations thenC∃∀-Formula(S) is polynomially exactly learnable

with n+ 1 equivalence queries inCAf .

3.3. Boolean circuits are pwm-reducible to non-basic classes

In this section, we show that, in a sense made precise later, quantified boolean formulas from
non-basic sets of relations are not learnable. We showed in Section 3.1.3 that non-basic sets
can express the double implication [(x ∧ y) → z] or its dual counterpart. In this section,
we complete the proof by showing that sets of quantified formulas containing the double
implication can simulate boolean circuits which are known to be not learnable. Simulation
in the model of PAC-prediction with membership queries is characterizated by the notion
of pwm-reduction, as defined above.

First, let us introduce the class of boolean circuits and the non-learnability result that
we will use as the basis of our reasoning. LetCBC be the class of boolean circuits with
{∨,∧,¬} gates andCMBC the class of monotone boolean circuits, i.e., with no ‘¬’ gates.
Gates are denoted by natural numbers.

We consider the input variables as gates of fan-in 0. In Angluin & Kharitonov (1995), it
is shown that under some cryptographic assumptions boolean circuits are not polynomially
predictable with membership queries:

Theorem 32 (Angluin & Kharitonov, 1995). If there exist public key encryption systems
secure against chosen ciphertext attack, then CBC is not polynomially predictable with
membership queries.

The pwm-reduction from boolean circuits to quantified boolean formulas with non-
basic bases is divided in two stages. First, we prove that general boolean circuits are
pwm-reducible to monotone boolean circuits and then we show a pwm-reduction from
monotone boolean circuits to sets of quantified boolean formulas containing the implication.

Lemma 33. CBC ≤pwm CMBC.
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Proof: Let C be a boolean circuit of sizem with 1, . . . ,n as input gates. We can assume
that¬-gates have in-going edges only from input gates, otherwise by using De Morgan’s
law repeatedly, we can move¬-gates towards the input gates.

Consider the circuitC′ with 1, . . . ,n,m+ 1, . . . ,m+ n as input gates and containing
as main components subcircuitsC1 andC2, defined as follows:

SubcircuitC1 is obtained modifying slightly circuitC. Replace every¬-gate with ante-
cesori with the new input gatem+ i .

Circuit C2 receives as input 1, . . . ,n,m+ 1, . . . ,m+ n and the output gate 0 of circuit
C1. C2 evaluates the following function:

ϕ(v0, v1, . . . , vn, vm+1, . . . , vm+n) =


v0 if ∀i : 1≤ i ≤ n, vi 6= vm+i

0 if ∃i : 1≤ i ≤ n, vi = vm+i = 0

1 otherwise

wherevi denotes the value of gatei .
It is easy to construct a monotone boolean circuit evaluating functionϕ with size poly-

nomial inn.
For all natural numbersand for every concept representationu ∈ CBC such that|u| ≤ s, let

C be the boolean circuit withn input gates represented byu, letu′ be the representation of the
monotone boolean circuitC′ obtained fromC as described above. We defineg(s, n, u) = u′.
For every assignmentsx andy of lengthn we definef (s, n, x) = xx̄ and

h(s, n, xy) =


x if x = ȳ

⊥ if ∃i : 1≤ i ≤ n, xi = yi = 0

> otherwise

Clearly, f , g andh satisfy the conditions (1), (2) and (3) in Definition 2 and therefore define
a pwm-reduction.

Technical note: In the proof of this prediction with membership reduction and in the next
one, functionsf, g, h have been defined only partially to keep the proof clear. It is trivial
to extend the definition to obtain complete function preserving conditions (1), (2) and (3).

2

Lemma 34. CMBC ≤pwm ∃-Formula({x̄ ∨ ȳ ∨ z}).

Proof: Let C be a monotone boolean circuit wherem is its number of gates. We can
represent each gatej in C by a variablexj and construct the following formula:

F = ∃xi1 . . . ∃xir ϕ

[
xo

0

]
whereo is the output gate,{i j : 1≤ j ≤ r } is the set that contains exactly all the∧-gates and
∨-gates except the output gateo, andϕ is a conjunction that contains exactly the following
clauses:

• For each∧-gatei , ϕ contains the clausexj ∨ xk ∨ xi , where j andk are the ancestors
of i .
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• For each∨-gatei , ϕ contains the clausesxj ∨ xj ∨ xi andxk ∨ xk ∨ xi , where j andk
are the ancestors ofi .

It is easy to show thatC andF denote complementary boolean functions.
For all natural numbers and for every concept representationu∈ CMBC such that
|u| ≤ s, let C be the monotone boolean circuit withn input gates represented byu, let
u′ be the representation of the boolean formulaF formed fromC as shown before. We de-
fineg(s, n, u) = u′. For all assignmentx of lengthn we definef (s, n, x) = h(s, n, x) = x.
Clearly, f , g andh satisfy the conditions (1), (2) and (3) in the negated form of Definition
2 and therefore define a pwm-reduction. 2

This reduction is very similar to the reduction from the evaluation of monotone boolean
circuit problem to the horn satisfiability problem, used to showP-completeness of the latter
problem (see, for example, Greenlaw, Hoover, & Ruzzo, 1995).

By duality we have:

Lemma 35. CMBC ≤pwm C∃-Formula({x∨y∨z̄}).

We put the previous lemmas together with Theorems 16 and 32 and we obtain the
following result:

Corollary 36. Let S be a finite non-basic set of logical relations, then:
(a) The set∃-Formula(S) contains[x ∨ y ∨ z̄] or [ x̄ ∨ ȳ ∨ z].
(b) The classCMBC is pwm-reducible toC∃-Formula(S).
(c) The classCBC is pwm-reducible toC∃-Formula(S).
(d) The classC∃-Formula(S) is not polynomially predictable with membership queries under

the assumption that public key encryption systems secure against CC-attack exist.

Finally, Theorem 6 follows from Theorem 31 and Corollary 36.
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Note

1. The notion of compatibility used in this paper differs only slightly from the compatibility defined by Kavvadias
& Sidderi (1996). Precisely, thej -compatibility corresponds exactly to the( j − 1)-compatibility in the sense
of Kavvadias & Sidderi (1996).
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