Skip to main content
Log in

Strong Association of Unesterified [3H]Docosahexaenoic Acid and [3H-Docosahexaenoyl]Phosphatidate to Rhodopsin During In Vivo Labeling of Frog Retinal Rod Outer Segments

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Docosahexaenoic acid (DHA, 22:6n-3), the most prevalent fatty acid in phospholipids of rod outer segments (ROS), is essential for visual transduction and daily renewal of ROS membranes. We investigated the association of [3H]DHA-lipids to rhodopsin in ROS from frogs (Rana pipiens) after in vitro (4 hrs) and in vivo (1 day and 32 days) labeling. Lipids from lyophilized ROS were sequentially extracted with hexane (neutral lipids), chloroform:methanol (phospholipids) and acidified chloroform:methanol (acidic phospholipids). After in vitro labeling, free [3H]DHA was easily extracted with hexane (66% of total ROS free DHA), implying a weak association with proteins (rhodopsin). In contrast, after in vivo labeling free [3H]DHA was mainly recovered in the acidic solvent extract (89–99%). Of all phospholipids, [3H-DHA]phosphatidic acid (PA) displayed the highest binding to rhodopsin after both in vitro (43% in acidic extract) and in vivo (>70%) labeling suggesting a possible modulatory role of free DHA and DHA-PA in visual transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Papermaster, D. S. and Dreyer, W. J. 1974. Rhodopsin content in outer segment membranes of bovine and frog retinal rods. Biochemistry 13:2438-2444.

    Google Scholar 

  2. Aveldaño de Caldironi, M. I. and Bazan, N. G. 1980. Composition and biosynthesis of molecular species of retina phosphoglycerides. Neurochem. Int. 1:381-392.

    Google Scholar 

  3. Aveldaño, M. I. and Bazan, N. G. 1983. Molecular species of phosphatidylcholine,-ethanolamine,-serine, and-inositol in microsomal and photoreceptor membranes of bovine retina. J. Lipid Res. 24:627.

    Google Scholar 

  4. Fliesler, S. J. and Anderson, R. E. 1983. Chemistry and metabolism of lipids in the vertebrate retina. Prog. Lipid Res. 22:79-131.

    Google Scholar 

  5. Choe, H.-G. and Anderson, R. E. 1990. Unique molecular species composition of glycerolipids of frog outer segments. Exp. Eye Res. 51:2190-2204.

    Google Scholar 

  6. Bazan, N. G. 1990. Supply of n-3 polyunsaturated fatty acids and their significance in the central nervous system. pages 1-24, in Wurtman, R. J. and Wurtman, J. J., (eds), Nutrition and the Brain, Raven Press, New York.

    Google Scholar 

  7. Bazan, N. G., Rodriguez de Turco, E. B., and Gordon, W. C. 1993. Pathways for the uptake and conservation of docosahexaenoic acid in photoreceptors and synapses: Biochemical and autoradiographic studies. Can. J. Physiol. Pharmacol. 71: 690-698.

    Google Scholar 

  8. Scott, B. L. and Bazan, N. G. 1989. Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc. Nat. Acad. Sci. 86:2903-2907.

    Google Scholar 

  9. Li, J., Wetzel, M. G., and O'Brien, P. J. 1992. Transport of n-3 fatty acids from the intestine to the retina in rats. J. Lipid Res. 33:539-549.

    Google Scholar 

  10. Wang, N. and Anderson, R. E. 1993. Transport of 22:6n-3 in plasma and uptake into retinal pigment epithelium and retina. Exp. Eye Res. 57:225-233.

    Google Scholar 

  11. Martin, R. E., Rodriguez de Turco, E. B., and Bazan, N. G. 1994. Developmental maturation of hepatic n-3 polyunsaturated fatty acid metabolism: Supply of docosahexaenoic acid to retina and brain. J. Nutr. Biochem. 5:151-160.

    Google Scholar 

  12. Wang, N., Wiegand, R. D., and Anderson, R. E. 1992. Uptake of 22-carbon fatty acids into rat retina and brain. Exp. Eye Res. 54:933-939.

    Google Scholar 

  13. Gordon, W. C. and Bazan, N. G. 1993. Visualization of [3H]docosahexaenoic acid trafficking through photoreceptors and retinal pigment epithelium by electron microscope autoradiography. Invest. Ophthalmol. Vis. Res. 34:2402-2411.

    Google Scholar 

  14. Gordon, W. C., Rodriguez de Turco, E. B., and Bazan, N. G. 1992. Retinal pigment epithelial cells play a central role in the conservation of docosahexaenoic acid by photoreceptor cells after shedding and phagocytosis. Curr. Eye Res. 11:73-83.

    Google Scholar 

  15. Wiegand, R. D., Koutz, C. A., Stinson, A. M., and Anderson, R. E. 1991. Conservation of docosahexaenoic acid in rod outer segments of the rat retina during n-3 and n-6 fatty acid deficiency. J. Neurochem. 57:1690-1699.

    Google Scholar 

  16. Stinson, A. M., Wiegand, R. D., and Anderson, R. E. 1991. Recycling of docosahexaenoic acid in rat retinas during n-3 fatty acid deficiency. J. Lipid Res. 32:2009-2017.

    Google Scholar 

  17. Wheeler, M. G., Benolken, R. M., and Anderson, R. E. 1975. Visual membranes: specificity of fatty acid precursors for the electrical response to illumination. Science 188:1312-1314.

    Google Scholar 

  18. Neuringer, M., Conner, W. E., Lin, D. S., Anderson, G. J., and Barstad, L. 1986. Biochemical and functional effects of prenatal and post natal ϖ3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc. Nat. Acad. Sci. 83:4021-4025.

    Google Scholar 

  19. Watanabe, A., Saito, S., Tsuchida, T., Higuchi, K., and Okita, M. 1987. Low plasma levels of docosahexaenoic acid in patients with liver cirrhosis and its correction with a polyunsaturated fatty acid-enriched soft oil capsule. Nutrition 15:284-288.

    Google Scholar 

  20. Bourre, J. M., Francois, M., Youyou, A., Dumont, O., Piciotti, M., Pascal, G., and Durand, G. 1989. The effect of dietary α-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistane to poisons and performance of learning tasks in rats. J. Nutr. 119:1880-1892.

    Google Scholar 

  21. O'Brien, D. F., Costa, L. F., and Ott, R. A. 1977. Photochemical functionality of rhodopsin-phospholipid recombinant membranes. Biochemistry 16:1295-1303.

    Google Scholar 

  22. Wiedman, T. S., Pates, R. D., Beach, J. M., Salmon, A., and Brown, M. F. 1988. Lipid-protein interactions mediate the photochemical function of rhodopsin. Biochemistry 27:6469-6474.

    Google Scholar 

  23. Mitchell, D. C., Straume, M., and Litman, B. J. 1992. Role of sn-1-saturated, sn-2-polyunsaturated phospholipids in control of membrane receptor conformational equilibrium: Effects of cholesterol and acyl chain unsaturation on the Metarhodopsin I-Metarhodopsin II equilibrium. Biochemistry 31:662-670.

    Google Scholar 

  24. Bush, R. A., Malnoe, A., Reme, C. E., and Williams, T. P. 1994. Dietary deficiency of N-3 fatty acids alter rhodopsin content and function in the rat retina. Invest. Ophthalmol. Vis. Res. 35:91-100.

    Google Scholar 

  25. Gordon, W. C., Rodriguez de Turco, E. B., and Bazan, N. G. 1995. Rod photoreceptor renewal depends on docosahexaenoic acid supply. Suppl Invest. Ophthalmol. Vis. Sci. 36:S514.

    Google Scholar 

  26. Rotstein, N. P., Aveldaño, M. I., Barrantes, F. J., and Politi, L. E. 1996. Docosahexaenoic acid is required for the survival of rat retinal photoreceptors in vitro. J. Neurochem. 66:1851-1859.

    Google Scholar 

  27. Rotstein, N. P., Aveldaño, M. I., Barrantes, F. J., Roccamo, A. M., and Politi, L. E. 1997. Apoptosis of retinal photoreceptors during development in vitro: Protective effect of docosahexaenoic acid. J. Neurochem. 69:504-513.

    Google Scholar 

  28. Rotstein, N. P., Politi, L. E., and Aveldaño, M. I. 1998. Docosahexaenoic acid promotes differentiation of developing photoreceptors in culture. Invest. Ophthalmol. Vis. Sci. 39: 2750-2758.

    Google Scholar 

  29. Rodriguez de Turco, E. B., Gordon, W. C., and Bazan, N. G. 1994. Docosahexaenoic acid is taken up by the inner segment of frog photoreceptors leading to an active synthesis of docosahexaenoyl-inositol lipids: Similarities in metabolism in vivo and in vitro. Curr. Eye Res. 13:21-28.

    Google Scholar 

  30. Rodriguez de Turco, E. B., Gordon, W. C., and Bazan, N. G. 1991. Rapid and selective uptake metabolism and cellular distribution of docosahexaenoic acid among rod and cone photoreceptor cells in the frog retina. J. Neurosci. 11:3678.

    Google Scholar 

  31. Gordon, W. C. and Bazan, N. G. 1990. Docosahexaenoic acid utilization during rod photoreceptor cell renewal. J. Neurosci. 10:2190-2204.

    Google Scholar 

  32. Rodriguez de Turco, E. B., Deretic, D., Bazan, N. G., and Papermaster, D. S. 1997. Post-Golgi vesicles cotransport docosahexaenoyl-phospholipids and rhodopsin during frog photoreceptor membrane biogenesis. J. Biol. Chem. 272: 10491-10497.

    Google Scholar 

  33. Gordon, W. C. and Bazan, N. G. 1997. Retina. pages 144-275, in Harding, J., (ed), Biochemistry of the Eye, Chapman and Hall, London.

    Google Scholar 

  34. Marcheselli, V. L. and Bazan, N. G. 1990. Quantitative analysis of fatty acids in phospholipids, diacylglycerol, free fatty acids and other lipids. J. Nutr. Biochem. 1:388.

    Google Scholar 

  35. Chen, H. and Anderson, R. E. 1992. Lipids of frog retinal pigment epithelium: Comparison with rod outer segments, retina, plasma, and red blood cells. Curr. Eye Res. 2:800.

    Google Scholar 

  36. Bazan, N. G., Gordon, W. C., and Rodriguez de Turco, E. B. 1993. The uptake, metabolism and conservation of docosahexaenoic acid (22:6ϖ-3) in brain and retina: Alterations in liver and retinal 22:6 metabolism during inherited progressive retinal degeneration. Pages 107-115, in Sinclair, A. and Gibson, R. (eds.), Essential Fatty Acids and Eicosanoids: Invited Papers from the Third International Congress, American Oil Chemists’ Society, Champaign, Illinois.

    Google Scholar 

  37. Bazan, N. G. and Rodriguez de Turco, E. B. 1996. Alterations in plasma lipoproteins and DHA transport in progressive rodecone degeneration (prcd). Pages 89-97, in Kato, S., Osborne, N. N. and Tamai, M. (eds), Retinal Degeneration and Regeneration: Proceedings of an International Symposium, Kugler Publications, New York.

    Google Scholar 

  38. Bibb, C. and Young, R. W. 1974. Renewal of fatty acids in the membranes of visual cell outer segments. J. Cell Biol. 61: 327-343.

    Google Scholar 

  39. Young, R. W. 1976. Visual cells and the concept of renewal. Invest. Ophthalmol. Vis. Res. 15:700-725.

    Google Scholar 

  40. Bazan, N. G., Rodriguez de Turco, E. B., and Gordon, W. C. 1994. Docosahexaenoic acid supply to the retina and its conservation in photoreceptor cells by active retinal pigment epithelium-mediated recycling. Pages 120-123, in Galli, C., Simopoulos, A. P., and Tremoli, E., (eds), Fatty Acids and Lipids: Biological Aspects, Karger, Basel.

    Google Scholar 

  41. Giusto, N. M., Castagnet, P. I., Ilincheta, M. G., Roque, M. E., and Pasquare, S. J. 1997. Lipid metabolism in photoreceptor membranes: regulation and mechanisms. Neurochem. Res. 22:445-453.

    Google Scholar 

  42. Louie, K., Wiegand, R. D., and Anderson, R. E. 1988. Docosahexaenoate-containing molecular species of glycerophospholipids from frog retinal rod outer segments show different rates of biosynthesis and turnover. Am. Chem. Soc. 27:9014-9020.

    Google Scholar 

  43. Choe, H.-G., Ghalayini, A. J., and Anderson, R. E. 1990. Phosphoinositide metabolism in frog rod outer segments. Exp. Eye Res. 51:167-176.

    Google Scholar 

  44. Aveldaño, M. I. 1988. Phospholipid species ontaining long and very long polyenoic fatty acids remain with rhodopsin after hexane extraction of photoreceptor membranes. Biochemistry 27:1229-1239.

    Google Scholar 

  45. Aveldaño, M. I. 1987. A novel group of very long chain polyenoic fatty acids in dipolyunsaturated phosphatidylcholines from vertebrate retina. J. Biol. Chem. 262:1172-1179.

    Google Scholar 

  46. Besharse, J. C. 1986. Photosensitive membrane turnover: Differentiated membrane domains and cell-cell interaction. Pages 297-352, in Adler, R. and Farber, D., (eds), The Retina: A Model for Cell Biological Studies, Academic Press, Inc., New York.

    Google Scholar 

  47. Deretic, D. and Papermaster, D. S. 1995. The role of small G-proteins in the transport of newly synthesized rhodopsin. Pages 249-265, in Progress in Retinal and Eye Research, Elsevier Science, London.

    Google Scholar 

  48. Bazan, N. G., Fazio de Escalante, M. S., Careaga, M. M., and Bazan, H. E. P. 1982. High content of 22:6 (docosahexaenoate) and active [2-3H]glycerol metabolism of phosphatidic acid from photoreceptor membranes. Biochim. Biophys. Acta 712: 702-706.

    Google Scholar 

  49. Salvador, G. A. and Giusto, N. M. 1998. Characterization of phospholipase D activity in bovine photoreceptor membranes. Lipids 33:853-860.

    Google Scholar 

  50. Salem, N., Jr. and Niebylski, C. D. 1995. The nervous system has an absolute molecular species requirement for the proper function. Mol. Memb. Biol. 12:131-134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez de Turco, E.B., Jackson, F.R., Parkins, N. et al. Strong Association of Unesterified [3H]Docosahexaenoic Acid and [3H-Docosahexaenoyl]Phosphatidate to Rhodopsin During In Vivo Labeling of Frog Retinal Rod Outer Segments. Neurochem Res 25, 695–703 (2000). https://doi.org/10.1023/A:1007571305987

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007571305987

Navigation