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Abstract. This paper introduces a new statistical approach to automatically partitioning text into coherent
segments. The approach is based on a technique that incrementally builds an exponential model to extract features
that are correlated with the presence of boundaries in labeled training text. The models use two classes of features:
topicalityfeatures that use adaptive language models in a novel way to detect broad changes of topic, andcue-word
features that detect occurrences of specific words, which may be domain-specific, that tend to be used near segment
boundaries. Assessment of our approach on quantitative and qualitative grounds demonstrates its effectiveness
in two very different domains,Wall Street Journalnews articles and television broadcast news story transcripts.
Quantitative results on these domains are presented using a new probabilistically motivated error metric, which
combines precision and recall in a natural and flexible way. This metric is used to make a quantitative assessment of
the relative contributions of the different feature types, as well as a comparison with decision trees and previously
proposed text segmentation algorithms.
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1. Introduction

The task we address in this paper seems on the face of it rather elementary: construct a
system which, when given a stream of text, identifies locations where the topic changes.
This work was motivated by the observations that such a seemingly simple problem can
actually prove quite difficult to automate, and that a tool for partitioning undifferentiated
text, speech, or video into coherent regions would be of great benefit in a number of settings.

The task itself is ill-defined: what exactly is meant by a topic break? We adopt an
empirical definition. At our disposal is a collection of online data (including a corpus
of Wall Street Journal articles and a separate corpus of broadcast news transcripts, both
containing several million words) annotated with the boundaries between regions—articles
or news reports, respectively. Given this input, the task of constructing a text segmenter
may be cast as a problem in machine learning: learn how to place breaks in unannotated
text by observing a set of labeled examples.

Though we have equated topics with documents, real-world documents often consist of a
subtle progression of topics. Since our algorithm learns to identify boundaries by inspecting
the style and content of the surrounding text, it could be used to identify these finer divisions
within a document. However, this paper focuses exclusively on the task of detecting where
one document ends and another begins.
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A general-purpose tool for partitioning text or multimedia into coherent regions will have
a number of immediate practical uses. In fact, this research was inspired by a problem in
information retrieval: given a large unpartitioned collection of expository text (such as a
year’s worth of newspaper articles strung together) and a user’s query, return a collection
of coherent segments matching the query. Lacking a tool for detecting topic breaks, an IR
application may be able to locate positions in its database which are strong matches with the
user’s query, but be unable to determine how much of the surrounding data to provide to the
user. This can manifest itself in quite unfortunate ways. For example, a video-on-demand
application (such as the one described in Christel et al. (1995)) responding to a query about
a recent news event may provide the user with a news clip related to the event, followed or
preceded by part of an unrelated story or even a commercial.

We take a feature-based approach to the problem of detecting segment boundaries. The
field of machine learning offers a number of methods—such as decision trees and neu-
ral networks—to integrate a set of features into a decision procedure. We use statistical
techniques based on exponential models for selecting and combining features into a pre-
dictive model. The rest of the paper will focus on this technique and its application to the
segmentation problem.

In Section 2 we review some previous approaches to the text segmentation problem.
In Section 3 we describe the statistical framework that we use for model building. After
reviewing some language modeling basics in Section 4, we describe in Section 5 the can-
didate features that we make available to our feature selection algorithm. Section 6 shows
examples of the algorithm in action. Since the algorithm is computationally expensive, we
introduce in Section 7 some methods for speeding up the learning process. In Section 8
we introduce a new, probabilistically motivated metric for evaluating a segmenter. Finally,
in Section 9 we report on a series of experiments to compare different approaches to the
segmenting problem.

2. Some previous work

2.1. Approaches based on lexical cohesion

Several proposed approaches to the text segmentation problem rely on some measure of
the difference in word usage on the two sides of a potential boundary: a large difference
in word usage is a positive indicator for a boundary, and a small difference is a negative
indicator.

TheTextTilingalgorithm, introduced by Hearst (1994), is a simple, domain-independent
technique that assigns a score to each topic boundary candidate (inter-sentence position)
based on a cosine similarity measure between chunks of words appearing to the left and right
of the candidate. Topic boundaries are placed at the locations of valleys in this measure,
and are then adjusted to coincide with known paragraph boundaries.

TextTiling is straightforward to implement, and does not require extensive training on
labeled data. However, TextTiling is designed for a slightly different problem than the
one addressed in this study. Since it is designed to identify the subtopics within a single
text and not to find breaks between consecutive documents (Hearst, 1997), a comparison
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of TextTiling with the system we propose is difficult. Furthermore, TextTiling segments
at the paragraph level, while this work doesn’t assume the presence of explicit paragraph
boundaries. Applications such as video retrieval may use speech recognition transcripts or
closed captions that lack structural markup. However, since TextTiling is widely used and
implemented, we examine its behavior on our task in Section 9.

Another approach, introduced by Reynar (1994), is a graphically motivated segmentation
technique calleddotplotting. This technique depends exclusively on word repetition to find
tight regions of topic similarity.

Instead of focusing on strict lexical repetition, Kozima (1993) uses a semantic network
to track cohesiveness of a document in alexical cohesion profile. This system computes
the lexical cohesiveness between two words by “activating” the node for one word and ob-
serving the “activity value” at the other word after some number of iterations of “spreading
activation” between nodes. The network is trained automatically using a language-specific
knowledge source (a dictionary of definitions). Kozima generalizes lexical cohesiveness
to apply to a window of text, and plots the cohesiveness of successive text windows in a
document, identifying the valleys in the measure as segment boundaries.

2.2. Combining features with decision trees

Passoneau and Litman (1997) present an algorithm for identifying topic boundaries that uses
decision trees to combine multiple linguistic features extracted from corpora of spoken text.
These include prosodic features such as pause duration, lexical features such as the presence
of certain cue phrases near boundary candidates, and deeper semantic questions such as
whether two noun phrases on opposite sides of a boundary candidate corefer.

Passoneau and Litman’s approach, like ours, chooses from a space of candidate features,
some of which are similar to the cue-word features we employ. Their cue phrases are drawn
from an empirically selected list of words (Hirschberg & Litman, 1993), while our approach
allows all of the words in a fixed vocabulary to participate as candidate features.

2.3. TDT pilot study

The Topic Detection and Tracking (TDT) pilot study (Topic Detection and Tracking Work-
shop, 1997) carried out during 1997 was a DARPA-sponsored research program to assess
and advance the state of the art in technologies for managing large amounts of information
in the form of newswire, TV and radio broadcasts. The study was organized around three
specific tasks: segmenting sources into stories, detecting the occurrence of new events,
and tracking labeled events in the data stream. The participants in the pilot study in-
cluded research groups from Carnegie Mellon, the University of Massachusetts, and Dragon
Systems.

The TDT study led to the development of several new and complementary approaches
to the segmentation problem, and these approaches were quantitatively evaluated using the
metric described in Section 8. Yamron et al. (1998) developed an approach to segmentation
that treats a story as an instance of some underlying topic, and models an unbroken text
stream as an unlabeled sequence of topics using a hidden Markov model. In this approach,
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finding story boundaries is equivalent to finding topic transitions, and the stories are gener-
ated using unigram language models that depend on the hidden class of the segment. Ponte
and Croft (1997) developed an approach based on information retrieval methods such as
local context analysis (Xu & Croft, 1996), a technique that uses co-occurrence data to map
a query text into semantically related words and phrases. A comparison of these techniques
appears in Yamron (1998).

3. A feature-based approach using exponential models

Our approach to the segmentation problem is based on the statistical framework of feature
selection for random fields and exponential models (Berger, Della Pietra, & Della Pietra,
1996; Della Pietra, Della Pietra, & Lafferty, 1997). The idea is to construct a model that
assigns a probability to the end of every sentence—the probability that that there exists a
boundary between that sentence and the next. This probability distribution is chosen by
incrementally building a log-linear model that weighs different “features” of the surrounding
context. For simplicity, we assume that the features are binary questions.

To illustrate (and to show that our approach is in no way restricted to text), consider the
task of partitioning a stream of multimedia data containing audio, text and video. In this
setting, the features might include questions such as:

• Does the phraseCOMING UPappear in the last utterance of the decoded speech?
• Is there a scene change in the video stream in the last 20 frames?
• Is there a “match” between the current image and an image near the last segment bound-

ary?
• Are there blank video frames nearby?
• Is there a sharp change in the audio stream in the next utterance?

The idea of using features is a natural and common one in machine learning, and indeed
other recent work on segmentation adopts this approach (Litman & Passonneau, 1995).
Our approach differs in how we collect and incorporate the information provided by the
features, as described below.

3.1. Feature selection

We split the task of constructing a text segmenter into two subtasks:

(a) Build a modelq(b | X), whereb ∈ {YES,NO} is a random variable corresponding to the
presence (or absence) of a segment boundary in the contextX.

(b) Specify a decision procedure which, based on the valuesq(YES| X) generated by apply-
ing the model to an input corpus, produces a list of hypothesized locations of segment
boundaries within the corpus.

We take up the first of these tasks in this section, and defer a discussion of the decision
procedure to Section 9.
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By acontext X, we mean a word position in a text corpus together with the surrounding
K words on either side. Thus, the contextXi at positioni can be represented as a word
sequence

Xi = wi−K , wi−K+1, . . . , wi−1, wi , wi+1, . . . , wi+K−1, wi+K .

Of course, ifK is large, a given context is likely to appear only once in the corpus. In our
experiments,K is on the order of 500 words, so each context is almost surely unique.

If the corpus is annotated with segment boundaries, then we can think of the segments as
being given by an assignment of a labelbi ∈ {YES,NO} to each positioni , wherebi = YES

in case there is a segment boundary between wordswi−1 andwi , andbi = NO otherwise.
This annotation then defines anempirical distributionp̃(b | X) of labels over the contexts
that appear in the corpus:

p̃(YES| X) = #(YES, X)

#(YES, X)+ #(NO, X)

where #(YES, X) is the number of times that contextX is labeled with a boundary, and
#(NO, X) is the number of times that it is not. If each context is unique, thenp̃(YES| X) is
always either 0 or 1.

If there areN words in the corpus, then the empirical distribution of contextsX is given
by

p̃(X) = #(X)

N

where #(X) is the number of times that the context appears in the corpus. Again, for practical
purposes this can be thought of as simply1

N .
Our choice of domain determines the distributionp̃(X), and the labeling of the “true”

segment boundaries in that domain determines the distributionp̃(b | X). The modeling
problem is to construct a distributionq(b | X) that closely approximates the empirical
distribution p̃(b | X)whenX is drawn fromp̃(X). The training sample that we are given to
learn from can then be thought of as a number of examples(X1, b1), . . . , (XT , bT ) drawn
from the joint distributionp̃(X, b). The degree to whichq(b | X) approximatesp̃(b | X)
(in other words, the quality of the modelq) is judged in terms of the Kullback-Leibler
divergence

D( p̃‖q) =
∑

X

p̃(X)
∑

b∈{YES,NO}
p̃(b | X) log

p̃(b | X)
q(b | X) .

When we holdp̃ fixed and search for a modelq(b | X), we can express this divergence as

D( p̃‖q) = −
∑

X

∑
b

p̃(X, b) logq(b | X)+ constant( p̃)
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The first term on the righthand side above is− 1
N times the log-likelihoodL(q) of the model

q with respect to the empirical sample. Thus, by minimizing the divergence we are in fact
maximizing the likelihood that the model assigns to the data.

The challenge is to build a distribution that accounts for the training sample{(Xi , bi )}
without overfitting, by learning the salient features of the examples. Toward this end we
consider distributions in thelinear exponential familyQ( f ) given by

Q( f ) =
{

q(b | X) = 1

Zλ(X)
eλ· f (X,b)

}
whereλ · f (X, b) is a linear combination of binary featuresfi (X, b) ∈ {0, 1} with real-
valuedfeature parametersλi :

λ · f (X, b) = λ1 f1(X, b)+ λ2 f2(X, b)+ · · · + λn fn(X, b).

The normalization constants

Zλ(X) = eλ· f (X,YES) + eλ· f (X,NO)

insure that this is indeed a family of conditional probability distributions. In our experi-
ments, we limit the class of feature functions to those that depend only on the context:
f (X, b) = f (X), and combine them so that

q(YES| X) = 1

Zλ(X)
eλ· f (X)

with Zλ(X) = 1+eλ· f (X). Thus, our model is a form of additive logistic regression (Hastie
& Tibshirani, 1990).

It can be shown that the maximum likelihood solution

q? = arg min
q∈Q( f )

D(p‖q) = arg max
q∈Q( f )

L(q)

exists and is unique. There are a number of “iterative scaling” algorithms for findingq?, all
of which incrementally adjust the parametersλ1, . . . , λn until some convergence criterion
applies. In the iterative step, a parameterλi is updated toλ′i = λi +1λi , where

1λi = 1

M
log

( ∑
X,b p̃(X, b) fi (X, b)∑

X,b p̃(X)qλ(b | X) fi (X, b)

)

whereqλ is the model with parametersλ1, . . . , λn andM is a constant. This formula makes
clear that the algorithm is choosing the model so that the features’ expected values with res-
pect to the model are the same as their expected values with respect to the data. One can also
employ the “improved iterative scaling” algorithm (Della Pietra, Della Pietra, & Lafferty,
1997), which uses a slightly different update procedure, to achieve faster convergence.
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This explains how to construct a model from a set of featuresf1, . . . , fn, but how are
these features to be found? The procedure that we follow is a greedy algorithm akin to
growing a decision tree. Given a set of candidate featuresC and an initial exponential model
q, let qα,g denote the modelq modified by the single featureg ∈ C with weightα:

qα,g(b | X) = eαg(X,b)q(b | X)
eαg(X,YES)q(YES| X)+ eαg(X,NO)q(NO | X) .

Thegainof the candidate featureg relative toq is then defined to be

Gq(g) = sup
α

(D( p̃‖q)− D( p̃‖qα,g)).

The gainGq(g) is the largest possible improvement to the model, in terms of reduction in
divergence, that would result from adding the featureg and adjusting only its weight. After
calculating the gain of each candidate feature, that candidate yielding the largest gain is
added to the model, and all of the model’s parameters are then adjusted using iterative scal-
ing. Repeating this procedure yields an exponential model containing the most informative
features.

Algorithm 1 (Feature Selection for Exponential Models):

Input: Collection of candidate featuresC, training samples{Xi , bi }, and desired model
sizen

Output: Selected featuresf1, . . . , fn and their maximum-likelihood parametersλ1, . . . , λn.

1. Seti ← 1, and letq(0) be uniform.
2. For each candidate featureg ∈ C, compute the gainGq(i−1) (g).
3. Let fi = arg maxg∈CGq(i−1) (g) be the feature yielding the largest gain.
4. Computeq? = arg maxq∈Q( f )L(q) to obtain weightsλ1, λ2, . . . , λi , using improved

iterative scaling.
5. Setq(i )← q?.
6. If i = n then exit.
7. Seti ← i + 1 and go to step 2.

Constructing a model withn features requires, according to Algorithm 1,n iterative
scaling computations andn rankings of the candidate features. But does feature selection
necessarily require so much work? A reasonable shortcut might be to select several of the
top-ranked features in step 3. We will take up this matter of efficient construction in Section
7.1, where we provide some empirical results to illustrate the time-quality tradeoffs one can
make during feature selection.

3.2. Example: Flipping coins

A simple example of feature selection may help to explain some of the subtleties which
arise in the segmentation applications we present in the following sections.
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Suppose we flip a biased coin, whose probability of heads isp(H) = 2
3 and whose en-

tropy is thusH( 2
3) ≈ 0.918 bits. Depending on the outcome of this random variable, we

answer 50 questions in the following manner. For thei th question, with probability( 9
10)

i

the answer isYES (1) if the coin came up heads andNO (0) if the coin came up tails. With
probability 1− ( 9

10)
i the answer to the question is chosen uniformly at random. A sample

of such events is exhibited below.

H 11111110101010100001100110110110101101000000001111
T 00100100010000110001111111110001000111100110111100
H 11111011011000100110101100100101110010101111100101
H 11111111100000011110001010111100101001100000110010
T 00001000000000010001001100010001011111101101010000
H 11111111110110111100111111000111111111100000100111
H 11100111111111111100101010101010101101000111100100
T 00001000110011101010001000010001011101111010001111
H 11011010110111101000101000011111111101100010101101
T 00100010011010100010000101101001001000111000000101

To learn the posterior distributionp(b | X = X1 · · · X50) of the coin given the bitstrings,
we carried out feature selection on 100 synthetic events of this form. Figure 1 shows the
first six induced features. The table annotates each feature with the gain that resulted from
adding the feature, the cross entropy of the model after the feature was added, and the initial
and final values of the parameterβ = eλ.

Not surprisingly, the first feature chosen is the first bit, which by construction should be
the most informative bit for predicting the outcome of the coin. Out of the 100 events that
were generated, it happened that the first bit disagreed with the coin only four times, and
among these events only one of the coin tosses was a tail. Thus, the first feature constrains
the conditional probability of heads to bep(H | X, X1 = 1) = 0.99. After five iterations of
iterative scaling training, this model probability isp(H | X, X1 = 1) = 41.5

1+41.5 ≈ 0.98. After
the first feature then, the cross entropy of the model with respect to the true distribution is

Figure 1. Statistics on the first six features induced for the toy coin-flipping example. The gain is the reduction
in entropy after the feature is added. The rightmost column lists the value of the parameterβ = eλ after all six
features are added and iterative scaling is carried out.
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2
3 H(0.98) + 1

3 H(0.5) ≈ 0.427 bits, and the cross entropy with respect to the actual 100
events turns out to be 0.435 bits.

The second feature chosen queries the 32nd bit. The weightλ initially used for this feature
is λ = log(0.20) ≈ −1.61. As a consequence, the effect of this feature is to lower the
probability of heads when the 32nd bit is set. This a good idea since after the first feature
was added, roughly one third of the time the distribution is still uniform on heads and
tails. Since( 9

10)
32 ≈ 0.034, this bit is not well correlated with the coin, and reducing the

probability of heads when it is set improves the model. The third feature, which queries the
35th bit, similarly lowers the probability of heads. At this point the probability of heads
has been pushed too far down, due to the overlap of events where the first, 32nd, and 35th
bits are set. To compensate for this, the model chooses to query the second bit, and thereby
reestablish the proper distribution on heads.

Similar effects appear in the feature selection results for the segmentation problem in the
following sections. For the details on feature selection and examples of it in action, we refer
to the papers by Berger, Della Pietra, and Della Pietra (1996) and Della Pietra, Della Pietra,
and Lafferty (1997). The latter also explains how the feature selection algorithm generalizes
decision trees. While decision trees recursively partition the training data, the features in an
exponential model can be overlapping, so that the scheme is much less prone to overfitting.
This is an important distinction when drawing inferences from text, where the sparse data
problem is typically so severe. Our experiments with segmentation bear this out since good
results are obtained after only a handful of features are found, with no fussing over the
issues of stopping, pruning, or smoothing. While these issues are certainly relevant to our
approach using exponential models, they are not primary considerations in obtaining useful
models.

4. Language models

A language modelis a conditional distributionp(wi |w0w1, . . . , wi−1) on the identity of the
i th word in a sequence, given the identities of all previous words. Central to our approach
to segmenting are two different language models, ashort-rangeand along-rangemodel.
Monitoring the relative behavior of these two models goes a long way towards helping our
model sniff out natural breaks in the text, and so we devote this section to a brief review of
language modeling.

4.1. A short-range model of language

A trigram modelapproximates language as a second-order Markov process, making the
assumption thatp(wi |w0w1, . . . , wi−1) ≈ p(wi |wi−2wi−1). Typically, one computes the
parameters of a trigram model using a modified maximum-likelihood approach, such as
that described in Katz (1987). For the purposes of this study, we constructed two different
trigram models. The parameters of the first, especially suited for financial newswire text,
were tuned to approximately 38 million words of archived Wall Street Journal (henceforth
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WSJ) articles. See the appendix for a full description of the data we used in our study. The
second model was trained on a collection of broadcast news transcripts (BN) containing
about 150 million words. (Details on the text corpora employed in this study appear at
the end of the paper.) In either case, the corpus served to define a “known word” setW,
which contained the top several thousand most frequently occurring words in the corpus.
For the purposes of language modeling, all words outsideW were considered as a single
“unknown” word.

The assumption that English is well approximated by a second-order Markov process is
highly dubious. However, although words prior towi−2 certainly bear on the identity of
wi , higher order models are impractical: the number of parameters in ann-gram model is
O( |W | n), and finding the resources to compute and store all these parameters is a daunting
task forn > 3. Usually the lexical myopia of the trigram model is a hindrance; however,
we will see how we can actually exploit this shortsightedness for the segmentation task.

4.2. A long-range model of language

One of the fundamental characteristics of language, viewed as a stochastic process, is that
it is highly nonstationary. Throughout a written document and during the course of spoken
conversation, the topic evolves, affecting local statistics on word occurrences. A model
that can adapt to its recent context would seem to offer much over a stationary model such
as a trigram model. For example, an adaptive model might, for some period of time after
seeing the wordHOMERUN, boost the probabilities of the set of words{HOMERUN, PITCHER,
FIELDER, ERROR, BATTER, TRIPLE, OUT}. To illustrate the point, we provide an excerpt from
the Broadcast News (BN) corpus. Underlined words mark where a long-range language
model might reasonably be expected to outperform (i.e., assign higher probabilities than) a
short-range model:

SOME DOCTORS ARE MORE SKILLEDAT DOING THE PROCEDURETHAN OTHERS SO IT’S
RECOMMENDED THAT PATIENTS ASK DOCTORSABOUT THEIR TRACK RECORD. PEOPLE

AT HIGH RISK OF STROKEINCLUDE THOSE OVER AGE55 WITH A FAMILY HISTORY OF

HIGH BLOOD PRESSUREOR DIABETES, AND SMOKERS. WE URGE THEM TO BE EVALUATED

BY THEIR FAMILY PHYSICIANS AND THIS CAN BE DONE BY A VERY SIMPLE PROCEDURE

SIMPLY BY HAVING THEM TEST WITH A STETHOSCOPEFOR SYMPTOMSOF BLOCKAGE.

One means of injecting long-range awareness into a language model is by retaining a cache
of the most recently seenn-grams which is combined (typically by linear interpolation) with
the static model (Jelinek et al., 1991; Kuhn & de Mori, 1990). Another approach, using
maximum entropy methods, introduces parameters fortrigger pairsof mutually informative
words, so that occurrences of certain words in recent context boost the probabilities of the
words that they trigger (Lau, Rosenfeld, & Roukos, 1993).

The method we use here, described in Beeferman, Berger, and Lafferty (1997), starts with
a trigram model as aprior, or default distribution, and tacks onto the model a set of features
to account for the long-range lexical properties of language. The features are trigger pairs,
automatically discovered by analyzing a corpus of text using a mutual information heuristic
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Figure 2. A sample of the 59,936 word pairs from the BN domain. Roughly speaking, after seeing the words,
the empirical probability of witnessing the corresponding wordt in the nextN words iseλs,t more likely than
otherwise. In the experiments described herein,N = 500.

described in Rosenfeld (1996). Figure 2 contains a sample of the(s, t) trigger pairs used in
the Broadcast News (BN) long-range model. A five million word subset of the BN corpus
served to create the long-range component of the BN model; a one-million word subset of
the Wall Street Journal (WSJ) corpus was mined to create the WSJ long-range model.

To incorporate triggers into a trigram language model, we build a family of conditional
exponential models of the general form

pexp(w | X) = 1

Zλ(X)
eλ· f (w,X) ptri(w |w−2, w−1)

whereX ≡ w−N, w−N+1, . . . , w−1 is thehistory(i.e., theN words precedingw in the text),
andZλ(X) is the normalization constant

Zλ(X) =
∑
w∈W

eλ· f (w,X) ptri(w |w−2, w−1).

In the models that we built, a featurefi is an indicator function, testing for the occurrence
of a trigger pair(si , ti ):

fi (w, X) =
{

1 if si ∈ X andw = ti
0 otherwise.

To each trigger pair(s, t) there corresponds a real-valued parameterλs,t ; the probability
of t is boosted by a factor of approximatelyeλs,t for N words following the occurrence
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of s. The training algorithm we use for estimating these parameters is the same improved
iterative scaling algorithm used to train our exponential segmentation models, as described
in Section 3.

For a concrete example, ifsi =VLADIMIR andti =GENNADY, then fi = 1 if and only
if V LADIMIR appeared in the pastN words and the current wordw is GENNADY. Con-
sulting figure 2, we see that in the BN corpus, the presence of VLADIMIR will (roughly
speaking) boost the probability of GENNADY by a factor of 19.6 for the next 500
words.

Using the model—that is, calculatingpexp(w | X)—is a three-step process:

1. Start with the probabilityptri assigned by the trigram model;
2. Multiply this probability by the boosting factoreλs,t corresponding to each “active”

trigger pair: that is, each(s, t) for whichs appeared inX andt = w;
3. Divide by the normalizing termZλ(X).

One propitious manner of viewing this model is to imagine that, when assigning a
probability to a wordw following a history X, the model consults a cache containing
words which appeared inX and which are the left half of some(s, t) trigger pair. In
general, the cache consists of content wordss which promote the probability of their
mate t , and correspondingly demote the probability of other words. We say that a pair
(s, t) is a self trigger if s = t , and anon-self triggerotherwise. In Section 9 we inves-
tigate the contribution of each trigger pair type to the performance of our segmentation
model.

5. Features for segmenting

5.1. Topicality features

A long-range language model uses words from previous sentences to bias itself regard-
ing the identity of the next word. This is likely to make for a more accurate model if
all of the previous sentences are in the same document as the current word. In the case
of the trigger model described in Section 4.2, the cache will be filled with “relevant”
words.

On the other hand, if the present document has just recently begun, the long-range model
is wrongly conditioning its decision on information from a different—and presumably
unrelated—document. A soap commercial, for instance, doesn’t provide a helpful context
to a long-range model in assigning probabilities to the words in the news segment follow-
ing the commercial. In fact, a long-range model will likely be misled by such irrelevant
context.

So at the beginning of a document, the myopia of the trigram model actually gives it
an advantage over a long-range model. But sufficiently far into a document, the long-
range model will, by adapting itself to the growing context, outperform the trigram model.
By monitoring the long- and short-range models, one might be more inclined towards a
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Figure 3. The average ratio of the logarithm of the adaptive language model to the static trigram model, as a
function of relative position within a segment. The data was collected on Reuters stories from the TDT corpus
(Topic Detection and Tracking Workshop, 1997). In this plot the position labeled 0 on thex-axis corresponds
to a boundary and the position labeled 100 (−100) corresponds to 100 words after (before) the beginning of a
segment. It appears that the behavior of this simple ratio is highly correlated with the presence of boundaries.

boundary when the long-range model suddenly shows a dip in performance—a lower as-
signed probability to the observed words—compared to the short-range model. Conversely,
when the long-range model is consistently assigning higher probabilities to the observed
words, a boundary is less likely.

This motivates the measure oftopicality T(w, X), which we define as

T(w, X) ≡ log
pexp(w | X)

ptri(w |w−2, w−1)

When the exponential model outperforms the trigram model,T > 0.
Observing the behavior ofT as a function of the position of the word within a segment,

one discovers that on averageT slowly increases from below zero to well above zero.
Figure 3 gives a striking graphical illustration of this phenomenons. The figure plots the
average value ofT as a function of relative position in the segment, in words, with position
zero indicating the beginning of a segment. This plot shows that when a segment boundary
is crossed (where the horizontal axis is labeled 0), the predictions of the adaptive model
undergo a dramatic and sudden degradation, and then steadily become more accurate as
relevant content words for the new segment are encountered and added to the cache.

This observed behavior is consistent with our intuition: the cache of the long-range
model is unhelpful early in a document, when the new content words bear little in common
with the content words from the previous article. Gradually, as the cache fills with words



190 D. BEEFERMAN, A. BERGER AND J. LAFFERTY

drawn from the current article, the long-range model gains steam andT increases. While
figure 3 shows that this behavior is very pronounced when averaged over many trials, our
feature selection results indicate that topicality is also a very good predictor of boundaries
for individual events.

The working assumption for the experiments reported in this paper is that sentence
boundaries are provided, and so the system only concerns itself with the topicality score
assigned to entire sentences normalized by sentence length, i.e., a geometric mean of
language model ratios. To determine a set of candidate features, we fix a collection of
intervals [a, b] in advance and consider all candidate topicality features which ask whether
the ratioT lies in a given interval.

5.2. Cue-word features

In certain domains, selected words can often act as cues, indicating the presence of a nearby
boundary. In the BN domain, for example, we have observed that the wordJOINSis evidence
that a segment boundary has recently occurred. Many other “cue words” exist, not only in
the BN domain, but in WSJ and other domains as well—though the cue words are different
for different domains.

This motivates our inclusion of “cue-word features.” For each word in the language
model’s vocabulary, we pose several questions as candidate features:

• Does the word appear in the next few sentences?
• Does the word appear in the next few words?
• Does the word appear in the previous few sentences?
• Does the word appear in the previous few words?
• Does the word appear in the previous few sentences but not in the next few sentences?
• Does the word begin the preceding sentence?

In posing these questions, we need not restrict ourselves to a single definition offew.
To ensure that we ask the right question, we choose to ask more. Each question above is
parameterized by not only by a vocabulary word, but also by a distance that ranges between
one and ten in our experiments.

Having concluded our discussion of our overall approach, we present in figure 4 a
schematic view of the steps involved in building a segmenter using this approach.

6. Feature selection in action

This section provides a peek at the construction of segmenters for two different domains.
Inspecting the sequence of features selected by the selection algorithm reveals much about
feature selection in general, and how it applies to the segmenting task in particular. The
first segmenter was built on the WSJ corpus. The second was built on the CNN portion of
the Topic Detection and Tracking (TDT) Corpus.
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Figure 4. Data flow in training the segmentation model. Sentences from a large corpus of text serve to train
both a short-range and a long-range statistical language model. The feature selection process makes use of these
two models and of the training corpus itself to construct a set of the “best” features, which are combined into an
exponential model of segmentation.

6.1. WSJ features

For the WSJ experiments, a total of 300,000 candidate features were available to the se-
lection program. Figure 5 shows the first several selected features. The word or topicality
score for each feature is shown together with the value ofeλ for the feature after itera-
tive scaling is complete for the final model. The� - figures indicate features that
are active over a range of sentences. Thus, the symbol� MR

0.07
-+1

represents the
featureDoes the wordMR. appear in the next sentence? which, if true, contributes a
factor of eλ = 0.07 to the exponential model. The symbol� a < Ti < b

0.07
-+5

asks if the
topicality statistic is in the interval(a, b) over the next five sentences. Similarly, ther r figures represent features that are active over a range ofwords. For example,
the figure r HE

0.08
r+5
represents the questionDoes the wordHE appear in the next

five words? which is assigned a weight of 0.08. The symbol � said -� ¬ said
2.7

-+S5 5

stands for a feature which asksDoes the wordSAID appear in the previous five sen-
tences but not in the next five sentences? and contributes a factor of 2.7 if the asswer
is yes.

Most of the features in figure 5 make a good deal of sense. The first selected feature, for
instance, is a strong hint that an article may have just begun; articles in the WSJ corpus often
concern companies, and typically the full name of the company (ACME INCORPORATED, for
instance) only appears once at the beginning of the article, and subsequently in abbreviated
form (ACME). Thus the appearance of the wordINCORPORATEDis a strong indication that
a new article may have recently begun.
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Figure 5. First several features induced for the WSJ corpus, presented in order of selection, witheλ factors
underneath. The length of the bars indicate active range of the feature, in words or sentences, relative to the
current word.

The second feature uses the topicality statistic. If the trigger model performs poorly
relative to the trigram model in the following sentence, this feature boosts the probability
of a segment boundary at this location by a factor of 5.3, roughly speaking.

The fifth feature concerns presence of the word MR. In hindsight, we can explain this
feature by noting that in WSJ data the style is to introduce a person in the beginning of an
article by writing, for example, WILE E. COYOTE, PRESIDENT OFACME INCORPORATED...
and then later in the article using a shortened form of the name, e.g., MR. COYOTE CITED A

LACK OF EXPLOSIVES... Thus, the presence of MR. in the following sentencediscountsthe
probability of an article boundary by 0.07, or by a factor of roughly 14.
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The sixth feature—which boosts the probability of a segment if the previous sentence
contained the wordCLOSED—is another artifact of the WSJ domain, where articles often
end with a statement of a company’s performance on the stock market during the day of the
story of interest. Similarly, the end of an article often contains an invitation to visit a related
story; hence a sentence beginning withSEEboosts the probability of a segment boundary
by the large factor 94.8. Since a personal pronoun typically requires an antecedent, the
presence ofHE among the first words is a sign that the current position isnotnear an article
boundary, and this feature therefore has a discounting factor of 0.082.

6.2. Broadcast news features

For the CNN experiments, a larger vocabulary and roughly 800,000 candidate features were
available to the program.

Figure 6 reveals the first several features choses by the algorithm. The wordC. appears
in several of the first features. This is occurs because the data is tokenized for speech
processing (whenceC. N. N. rather thanCNN), and the network identification information
is often given at the end and beginning of news segments (e.g.,C. N. N.’S RICHARD BLYSTONE

IS HERE TO TELL US...). The first feature asks if the letterC. appears in the previous five
words; if so, the probability of a segment boundary is boosted by a factor of 9.0. The
personal pronounI appears as the second feature; if this word appears in the following three
sentences then the probability of a segment boundary is discounted.

The language model topicality statistic appears for the first time in the sixth feature. The
word J. appearing in the seventh and fifteenth features arises from the the large number of
news stories relating to O.J. Simpson. The nineteenth feature asks if the termFROMappears
among the previous five words, and if the answer is “yes” raises the probability of a segment
boundary by more than a factor of two. This feature makes sense in light of the sign-off
conventions that news reporters and anchors follow (THIS IS WOLF BLITZER REPORTING

LIVE FROM THE WHITE HOUSE). Many of the remaining features in figure 6 have equally
straightforward explanations.

7. Efficient learning

A shortcoming of the feature selection approach is that it requires patience—constructing
the models of Section 6 took over 24 hours to run on a 248 MHz Sun UltraSPARC II
workstation. We now describe two efficiency measures for speeding the process of model
construction.

7.1. Inducing features in batches

The feature selection summarized in Algorithm 1 grows the model by a single feature at
each iteration. It is natural to consider a modified algorithm which adds several features at
a time. That is, in step 3 of Algorithm 1, select theB > 1 features{g1, g2, . . . , gB} with
maximal gainGq.
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Figure 6. First several features induced for the CNN portion of the TDT corpus, presented in order of selection,
with eλ factors underneath.

The problem with this method is that the top-ranked features may be highly correlated
with one another. Another way of saying this is that while the top ranked features each
individually offer a significant gain over the current model, the gains are not necessarily
additive. To illustrate, figure 7 shows the 21 highest-gain features in the first iteration of
Algorithm 1 on a 200,000-word sample of BN text. Clearly, the list exhibits considerable
redundancy, and a model of boundaries in BN data needn’t include every feature on this
list.
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Figure 7. The 21 highest-gain features in a selected iteration of Algorithm 1 on a 200,000-word sample of BN
text. There exists a high degree of redundancy among these features. The first eight, for example, are essentially
synonymous: each encodes, in a slightly different manner, the fact that the words “C. N. N.” are a harbinger of an
imminent boundary.

We call a set of features with non-additive gainoverlapping. A model containing over-
lapping features is not only aesthetically unpleasant, but also undesirable in practice, since
it contains useless features which need to be evaluated in order to make predictions with
the model. In a worst-case scenario, addingB features at a time might lead to a model no
better (in a maximum-likelihood sense) than adding one feature at a time. The goal, then,
is to induce multiple, non-overlapping features at each iteration.

The approach we take, outlined in Algorithm 2, is to select a batch of multiple features,
sift a group of non-overlapping features from the batch, and then only add the smaller
group to the model. All that remains unspecified in Algorithm 2 is the specifics of the
sifting procedure: how to select a set of non-overlapping features from a batch ofB fea-
tures?

One can view each featuref (X, b) as a binary random variable which takes on the value
zero or one at any position in the training corpus. We denote thei th position in the training
corpus by(Xi , bi ). A standard statistical test for independence (or lack thereof) between
two random variables is thecorrelation coefficient,

ρ( fi , f j ) ≡ Var( fi , f j )√
Var( fi )Var( f j )
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Algorithm 2 (Efficient Feature Selection for Exponential Models):

Input: Collection of candidate featuresC, training samples{Xi , bi }, batch sizeB, and
desired model sizen.

Output: Selected featuresf1, . . . , fn and their maximum-likelihood parametersλ1, . . . , λn.

1. Seti ← 1 and letq(0) be uniform.
2. For each candidate featureg ∈ C, compute the gainGq(i−1) (g) of g.

3a. Select theB featuresg ≡ {g1, g2, . . . , gB} yielding the largest gain.
3b. Sift a set of non-overlapping featuresg′ ≡ {g′1, g′2, . . . , g′B′ } from g.
3c. Set fi ← g′1, fi+1← g′2, . . . , fi+B′−1← g′B′ .
4. Computeq? = arg maxq∈Q( f )L(q) to obtain weightsλ1, λ2, . . . , λi+B′−1, using im-

proved iterative scaling.
5. Setq(i+B′−1)← q?.
6. If i ≥ n then exit.
7. Seti ← i + B′ and go to step 2.

where Var(f ) is the variance of the bit vector{ f (X1, b1), f (X2, b2), . . . , f (XN, bN)} re-
presenting the evaluation of featuref on each of theN positions in the training corpus, and
Var( f , g) is the covariance of the bit vectors corresponding to featuresf andg.

Our implementation of Algorithm 2 visits the members of the selected batch of features
g ≡ {g1, g2, . . . , gB} in order, discardinggi if ρ(gi , gj ) > δ for some j < i . The valueδ
was set by trial and error at 0.2. Figure 8 lists the set of features which survived the sifting
process applied to the features in figure 7, and figure 9 summarizes the computation time

Figure 8. Of the 21 features listed in the previous figure, the sifting procedure eliminated all but these three
apparently uncorrelated features.

Figure 9. Increasing the size of the batches leads to a faster feature selection algorithm, with negligible change
in the error rate.Pk denotes the probabilistic error metric introduced in Section 8. These numbers reflect training
time (in minutes on a 248 MHz Sun UltraSPARC II) on a 200,000-word corpus until the model contained at least
100 features.



STATISTICAL MODELS FOR TEXT SEGMENTATION 197

(in minutes) required by Algorithm 2 with various settings ofB, stopping after the model
contained at least 100 features. The error metricPk will be introduced in Section 8 as a
measure of the quality of the model (smaller is better).

(Note from figure 9 thatB > 1 sometimes actually leads to abetter-performing model;
this paradoxical situation arises because when adding features in batches, the training
algorithm can’t stop after adding exactlys features, and might generate a model with more
features.)

7.2. Targeted events sampling

For the corpus used as training data in the experiments we report in Section 9, the marginal
probability of a topic break was roughly 1/30. (Equivalently, the average document length
was about 30 sentences.) Selecting events uniformly at random from the training corpus,
then, one would expect positive examples of topic breaks to comprise about 1/30 of the
training examples. For instance, a 200,000-word sample containing 11,303 training events
harbored only 322 positive examples.

The statistical technique ofimportance sampling(Gelman et al., 1995) typically used
in performing Monte Carlo estimation of an integral, suggests an optimization: bias our
event sampling to include more positive examples so that the feature selection algorithm
has a better chance to learn the features which suggest the presence of a topic boundary.
Since the complexity of the algorithm is linear in the total number of events, we might
hope to reduce the training time of the model without compromising the resulting model by
extracting fewer events overall but with the same number of positive examples. Figure 10

Figure 10. Performance of the 100-feature segmentation model on 1 million words of heldout CNN broadcast
news data, as a function of the negative event sampling rate. Each point represents the performance of a model
trained with a fixed number of total events (sentences)—only 5000—at a different ratio of negative to positive
events.



198 D. BEEFERMAN, A. BERGER AND J. LAFFERTY

shows the performance of models trained using a fixed number of total events, but varying
proportions of negative events.

8. A probabilistic error metric

Precision and recall statistics are a popular means of assessing the quality of classification
algorithms. For the segmentation task, recall measures the fraction of actual boundaries
which an automatic segmenter correctly identifies, and precision measures the fraction
of boundaries identified by an automatic segmenter which are actual boundaries. In this
section we point out some shortcomings of the precision/recall metrics and propose a new
approach to gauging the quality of an automatic boundary detector.

In almost any conceivable application, a segmenting tool that consistently comes close—
off by a sentence, say—is preferable to one that places boundaries willy-nilly. Yet an
algorithm that places a boundary a sentence away from the actual boundary every time
actually receiveslower precision and recall scores than an algorithm that hypothesizes a
boundary at every position. It is natural to expect that in a segmenter, close should count
for something. One suggestion (Reynar, 1994) is to redefine correct to mean “hypothesized
within some constant-sized window of units away from a reference boundary,” but this
approach seems too forgiving; after all, a “right on the nose” segmenter should outscore an
“always close” segmenter.

Precision and recall have a complementary nature in most applications. Hypothesizing
more boundaries raises recall at the expense of precision; an algorithm designer can tweak
parameters to trade between the two in a way that matches the demands of the application.
One compromise between precision and recall is theF-measure, a weighted combination
of the two, but this is difficult to interpret as a meaningful performance measure.

8.1. Co-occurrence agreement probability

The error metric introduced here formalizes the notion that one segmenter is better than
another if it is better able to identify when two sentences belong to the same document and
when they do not.

As we have defined the task, a segmenter identifies boundaries between successive sen-
tences in a corpus of text. A natural way to reason about developing a segmentation algorithm
is therefore to optimize the likelihood that two sentences are correctly labeled as being re-
lated or being unrelated. Consider the error metricPD that is simply the probability that
two sentences drawn randomly from the corpus are correctly identified (as belonging to the
same document or to different documents). More formally, given two segmentationsref
andhyp for a corpusn sentences long,

PD(ref, hyp) =
∑

1≤i≤ j≤n

D(i, j ) (δref(i, j ) ⊕ δhyp(i, j ))

Hereδref is an indicator function which evaluates to one if the two corpus indices specified
by its parameters belong in the same document, and zero otherwise. Similarly,δhyp is one
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if the two indices are hypothesized to belong in the same document, and zero otherwise.
The⊕ operator is theXNOR function (“both or neither”) on its two operands. The function
D is adistance probability distributionover the set of possible distances between sentences
choses randomly from the corpus, and will in general depend on certain parameters such
as the average spacing between documents.

There are several plausible distributions one could use forD. If D is uniform over the
length of the text, then the metric represents the probability that any two sentences drawn
from the corpus are correctly identified as being in the same document or not. In practice,
this yields a too-forgiving metric; for large corpora, most randomly drawn pairs of sentences
are very far apart and even the most naive segmenter is likely to identify them as belonging
to different documents. A more reasonable choice forD, which focuses the probability
mass on small distances, isD = Eµ, an exponential distribution with meanµ−1, fixed at
the mean document length for the domain.

Another, offered by Doddington (Topic Detection and Tracking Workshop, 1997), is to
let D = Dk have all its probability mass at a fixed distancek. The computation of the
metric can then be visualized as two probes, a fixed distance apart, sweeping across the
corpus (figure 11). It turns out empirically, and can be shown analytically (under strong
assumptions), that if the windowk is chosen to be half the average reference segment
length (in words), then all of the major “degenerate” algorithms—hypothesizing boundaries
everywhere, uniformly, randomly, and not at all—have nearly the same low score ofPk ≡
PDk ≈ 1

2 (figure 12). With this justification, we use the error metricPk in our quantitative
analysis.

This measure is a probability and therefore a real number between zero and one. An
algorithm scores one with respect to some text if and only if it exactly predicts the location
of the boundaries in the text. The metric captures the notion of nearness in a principled
way, gently penalizing algorithms that hypothesize boundaries that aren’t quite right, and
scaling down with the algorithm’s degradation. Furthermore, it is not possible to obtain a
high score by “cheating” with a degenerate model, such as theall or nonealgorithms. We
refer to Section 9 for sample results on how these trivial algorithms score.

The numberPk(ref, hyp) is the probability that a randomly chosen pair of words a
distance ofk words apart is inconsistently classified; that is, for one of the segmentations

Figure 11. Failure modes of a segmentation decision procedure. The lower vertical lines represent “true” seg-
ment breaks, and the upper vertical lines represent hypothesized breaks. A fixed-width window slid across the
corpus yields one of the following outcomes at each step:acceptable(a) and (d), in which a hypothesized break
and a true break are both present or both absent within the window;false negative(b), in which a true break is
present but not a hypothesized break; andfalse alarm(c), in which case a hypothesized break is present but not a
true break.
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Figure 12. Performance of some degenerate algorithms on the segmentation of CNN broadcast news data, shown
as functions of the “inter-probe distance” parameterk of the error metric. Therandomalgorithm places segment
boundaries uniformly at random, generating a number of documents equal to the number of reference segments
in the (test) corpus. Theall algorithm places a boundary after each sentence. Thenonealgorithm places no
boundaries. Theevenalgorithm places a boundary after everymth sentence, wherem is the average reference
segment length.

the pair lies in the same segment, while for the other the pair spans a segment boundary.
This probability can be decomposed into two conditional probabilities, called themissand
false alarm probabilities:

p(error| ref, hyp, k)

= p(miss| ref, hyp, differentref segments, k) p(differentref segments| ref, k)
+ p(false alarm| ref, hyp, sameref segment, k) p(sameref segment| ref, k)

The miss and false alarm probabilities give a more detailed look at the error, allowing an
assessment in terms of precision and recall.

9. Experimental results

This section presents the results of applying the feature selection algorithm discussed in the
earlier sections to segment CNN broadcast news data and Wall Street Journal text. (See the
end of the paper for a more detailed description of the data we used for training and testing
our models.) These results are compared to those obtained using decision tree methods,
and we evaluate the relative contributions made by the cue-word and topicality features. In
order to give the reader an intuitive feel for the performance of these algorithms, we also
present qualitative results by displaying graphs of the segmentations on test data.
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9.1. Quantitative results

In Section 3, we divided the segmentation task into a modeling problem—constructing a
modelq(b | X)—and a decision problem—using the model to assign segment boundaries
to a stream of data. The decision procedure we employ is straightforward: hypothesize a
segment boundary at each position for whichq(YES| X)>α and no higher scoring position
occurs within±ε positions, whereα andε are fixed constants. The minimum separation
ε was set to six sentences for CNN data, and two sentences for WSJ data. The error
probability Pk is evaluated by fixingk to be half of the average reference segment length.
The model thresholdα is then determined on heldout data by requiring that the probability
of a hypothesized boundary falling within a window ofk words is equal to the probability
of a reference boundary falling in the window. In other words, the threshold is set so that
the number of segments hypothesized is approximately equal to the number of segments
appearing in the reference set. The threshold isnot chosen to minimize the error ratePk.
Of course, a given application may require trading off recall for precision, or vice-versa,
which may motivate a different choice of thresholds.

Two sets of experiments are reported here on broadcast news data. The first set of
experiments was carried out in the context of the TDT pilot study, using the CNN portion
of the corpus specifically prepared for this study, and the second using CNN data in the
broadcast news corpus. One of the main differences between these corpora, for our purposes,
is that the average document length of the TDT broadcast news data is nearly 400 words
smaller than that in the broadcast news corpus, since long documents were excluded from
the TDT corpus when it was constructed.

9.1.1. Comparison to decision trees.In order to compare our use of exponential models
to a more common statistical learning algorithm, we grew a decision tree on each data set,
using a candidate feature set that was identical to that available to the exponential model. We
adopt the CART approach for inducing decision trees (Breiman et al., 1984), using entropy
as the impurity function to evaluate questions. The impurity of a treeI (T) is evaluated as

I (T) =
∑
t∈T

I (t) =
∑

t

p(t) φ(p(· | t))

where the sum is over all leaves of the tree, and the entropy impurity functionφ is taken to
be

φ(p(· | t)) = −p(YES| t) log p(YES| t)− p(NO | t) log p(NO | t)
The change in impurity resulting from asking a questionq at a nodet is calculated by
summing the impurities of the resulting childrentL andtR:

1I (q, t) = I (t)− I (tL)− I (tR)

In the usual decision tree terminology, our topicality features are ordered variables, and
our cue-word features are categorical variables. In the two-class case, various efficient
algorithms for optimal question selection of categorical variables are known, (Breiman et al.,
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1984, Section 4.2), however we do not make use of these, and only employ the most basic
decision tree methodology.

Using the entropy loss function as a splitting criterion, a decision tree with 609 nodes
was grown on two million words of CNN transcripts. This tree was then “smoothed,” rather
than pruned, in the following manner. The empirical distributionp(b | n) at noden was
used to estimate a smoothed distributionp̃(b | n) as

p̃(b | n) = λ(n) p(b | n)+ (1− λ(n)) p̃(b | parent(n))

whereparent(n) is the parent node ofn, and 0≤ λ(n) ≤ 1 is an interpolation weight. The
resulting model is naturally thought of as being comprised of a series of Hidden Markov
Models, one for each path from root to leaf, with shared parameters. These parameters are
trained using the EM algorithm on heldout data (Lafferty, 1993). Our experience has been
that this smoothing procedure compares favorably to CART pruning algorithms (Breiman
et al., 1984) that are used to reduce the size of the tree, and thereby improve the robustness
of the distributions at the leaves.

Comparisons between decision trees and exponential models are presented in each of the
following sets of experiments.

9.1.2. TDT experiments. The quantitative results for the TDT models are collected in
figure 13. These results are part of a much more extensive study carried out by several

Figure 13. Quantitative results for segmentation of the broadcast news portion of the TDT corpus. The TDT
models were trained on two million words of CNN transcripts furnished with segment boundaries, and tested on
one million words from the TDT corpus. A total of 100 features were induced. The performance of a decision tree
grown with exactly the same candidate feature set is also given. The tree had 609 nodes, and was smoothed using
the EM algorithm as indicated in the text. A simple linear interpolation (weight1

2) of the decision tree model with
the exponential model resulted in an error rate ofPk = 0.078, with window sizek = 289 words, equal to half
of the average segment size. The decision thresholds for the exponential and decision tree models were chosen so
that the probability of a hypothesized boundary falling within a window ofk = 289 words is roughly equal to the
probability of a reference boundary falling in the window. The thresholds were thusnot chosen to minimize the
error ratePk. The default segmentation models, described in the text, are also presented.
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Figure 14. Performance of the segmentation model on 1 million words of heldout CNN broadcast news data, as
a function of the number of features induced.

research groups in the course of the TDT project (Topic Detection and Tracking Workshop,
1997; Yamron, 1998; Ponte & Croft, 1997). The exponential model evaluated here was
the result of inducing 100 features on a training corpus of two million words of CNN
transcriptions, and evaluated on the CNN portion of the TDT corpus. No batch selection or
event discarding was used to speed up training. The error probability for the resulting model
on a test corpus of one million words wasPk = 9.5%, with a miss probability of 12.1% and
a false alarm probability of 6.8% (figure 13, row 1). The performance of the segmentation
model as a function of the number of features induced is presented in figure 14.

When evaluated on the one million word TDT test set, the decision tree model resulted in
an error probability ofPk = 11.3%, with a miss rate of 16% and a false alarm rate of 6.6%
(figure 13, row 2). To explore the possibility that the decision tree and exponential models
learned different aspects of the training set, we interpolated the two models together with
a fixed interpolation weight of12. After a threshold was set on heldout data, the resulting
mixture model segmented the test data with an error probability ofPk = 7.8%, which was
a drop of 1.7% over the performance of the exponential model (figure 13, row 3). Since the
miss rate drops from 12.1% for the exponential model and 16% for the decision tree alone
to 7.2% for the mixture, this result indicates that the two methods learned, at least in part,
complementary aspects of the segmented training data.

In figure 13 we also list the performance of Dragon’s HMM approach, which was run on
the identical test data set (Yamron, 1998) (figure 13, row 4). On this particular data set our
approach using exponential models performed better than the HMM, with accuracies 9.5
and 16.7% respectively, but the exponential model performed worse on the portion of the
TDT corpus comprised of Reuters newswire articles, where the accuracies were 15.5 and
12.3% (Yamron, 1998).

9.1.3. Additional broadcast news experiments.An additional set of models was built on
broadcast news (CNN) data in order to evaluate the relative contributions made by the
different types of features. We began with an exponential model that was constructed from
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Figure 15. Quantitative results for segmentation of CNN broadcast news. The models were trained on two million
words of CNN transcripts furnished with segment boundaries, and tested on one million words of previously unseen
text. A 100 feature exponential model combining cue-word and topicality features had an error rate ofPk = 0.132,
evaluated with a window size ofk = 498 words, equal to half of the average segment size. To investigate the
relative contributions of the cue-word and topicality features, four additional exponential models were trained. The
first allowed topicality features derived from an adaptive language model that only used self triggers. The second
allowed topicality features derived from an adaptive language model that only used non-self triggers. The third
used only cue-word features, and the fourth used only topicality features (self and non-self triggers). The error
rate of the TextTiling algorithm is presented for comparison, with the caveat that this approach is designed for
sub-topic rather than document segmentation. The parameters of this algorithm were optimized on the test set to
give the lowest possible error rate.

100 automatically induced cue-word and topicality features similar to the one constructed
for the TDT experiments. As a result of the longer documents in the test set and the
correspondingly larger window size ofk = 498 words, the exponential model had a higher
error rate ofPk = 0.132, with a miss rate of 16.0% and a false alarm rate of 10.9%
(figure 15, row 1). The performance of a decision tree grown with exactly the same candidate
features set was 15.2%, with a miss rate of 19.3% and a false alarm rate of 11.9% (figure
15, row 2). A simple linear interpolation (weight1

2) of the decision tree model with
the exponential model resulted in an error rate of 11.8% (figure 15, row 3). To investigate
the relative contributions of the cue-word and topicality features, four additional exponential
models were trained. The first allowed topicality features derived from an adaptive language
model that only used self triggers. The second allowed topicality features derived from an
adaptive language model that only used non-self triggers. The third used only cue-word
features, and the fourth used only topicality features (using both self and non-self triggers).
The error rates of these models were 13.4, 13.6, 18.3 and 37.3% respectively (figure 15,
rows 4–7). Thus, we see that while the cue-word features are more powerful in this domain,
they work in concert with the topicality features to make a more accurate model than either
of the feature types can achieve alone. The effect of the topicality features is essentially the
same when we use only self triggers or non-self triggers.

A comparison to the TextTiling approach was also made, using the “blocks” version of
TextTiling (Hearst, 1997) run with parameters (w, k, n, s) optimized on the test set data
(figure 15, row 8). Since paragraph boundaries are absent in the broadcast news data,
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Figure 16. Quantitative results for segmentation of Wall Street Journal text. The models were trained on one
million words of WSJ text furnished with segment boundaries, and tested on 325,000 words of unseen text. A 100
feature exponential model combining cue-word and topicality features had an error rate ofPk = 0.19, evaluated
with a window size ofk = 214 words, equal to half of the average segment size.

each inter-sentence gap in the data was a potential boundary candidate. Boundaries were
assigned to locations with depth scores exceeding a threshold that was optimized on the
test set. We emphasize that this direct comparison with TextTiling is not intended to imply
that the approaches are designed for or applicable to the same problems. Indeed, our use of
cue-word phrases is well-suited to the article and story segmentation that we are carrying
out in WSJ and broadcast news domains, while TextTiling may be better suited for detecting
more subtle sub-topic shifts in expository texts.

9.1.4. Wall Street Journal Experiments.A similar set of experiments was carried out for
the Wall Street Journal domain. For these experiments the models were trained on roughly
one million words of labeled WSJ data, and tested on 325,000 words of unseen text. A 100
feature exponential model combining cue-word and topicality features had an error rate of
Pk = 0.19, with a 24.0% miss rate and 15.75% false alarm rate, evaluated with a window
size ofk = 214 words, equal to half of the average segment size (figure 16, row 1). The
performance of a decision tree grown with exactly the same candidate feature set had an error
rate of 24.6%, with a miss rate of 32.7% and a false alarm rate of 19.4% (figure 16, row 2).
A simple linear interpolation (weight15) of the decision tree model with the exponential
model resulted in a small reduction of error rate, to 18.5% (figure 16, row 3). To again
investigate the relative contributions of the cue-word and topicality features, two additional
exponential models were trained. The first allowed only cue-word features, and second
used only topicality features (from language models using both self and non-self triggers).
The error rates of these models were 23.7 and 35.8%, respectively (figure 16, rows 4–5).
The error rates of the TextTiling algorithm applied to this domain wasPk = 0.29%, with
a 45.7% miss rate and 19.1% false alarm rate (figure 16, row 6). The parameters of this
algorithm were again optimized on the test set to give the lowest possible error rate.

9.2. Qualitative results

We now present graphical examples of the segmentation algorithm at work on heldout
data. Figure 17 shows the performance of the WSJ segmenter on a typical collection of
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Figure 17. Typical segmentations of WSJ test data. Thex-axis is labeled by the relative position in the test
corpus, in number of words. The lower vertical lines indicate reference segment boundaries (“truth”), and the
upper vertical lines indicate boundaries placed by the algorithm. The fluctuating curve is the probability of a
segment boundary according to an exponential model constructed by automatically inducing 100 topicality and
cue-word features. The error probability of the model wasPk = 0.19 with window sizek = 214 words.

data, in blocks of approximately 7,000 contiguous words. In these figures the reference
segmentation is shownbelowthe horizontal line as a vertical line at the position between
words where the article boundary actually occurred. The decision made by the automatic
segmenter is shown as a vertical lineabovethe horizontal line at the appropriate position.
The fluctuating curve is the probability assigned by the exponential model constructed using
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Figure 18. Examples of strong false positive in the WSJ test data. In the above figure, thex-axis is labeled by
the relative position in the test corpus, in number of words. The lower vertical lines indicate reference segment
boundaries (“truth”), and the upper vertical lines indicate boundaries placed by the algorithm. The fluctuating
curve is the probability of a segment boundary according to an exponential model. Several of the WSJ articles
are in fact a collection of brief summaries of unrelated news items. The two reference segments between word
positions 235,679 and 236,547 are such composites; an excerpt from this region is shown in the above text. The
segmentation algorithm “wrongly” hypothesizes several boundaries in this region.

feature selection. Notice that in this domain many of the segments are quite short, adding
special difficulties for the segmentation problem.

An examination of the errors shows that many of the false positives can be explained
by inconsistent labeling conventions. For example, several WSJ articles are collections of
very brief summaries of unrelated news items. In such cases, the topicality features signal
that a change of topic has occurred, and a boundary is hypothesized. Figure 18 shows a
specific example of this.

Figure 19 shows the typical performance of the CNN segmenter on four blocks of roughly
7,000 words each. As these examples indicate, the most significant problem with the broad-
cast news models is the presence of false negatives where there is very little “signal” in
the probability distribution, suggesting that a sufficiently rich candidate feature set is not
available to the selection scheme.

We hasten to add that these results were obtained with no smoothing or pruning of any
kind, and with no more than 100 features induced from the candidate set of several hundred
thousand. Unlike many other machine learning methods, feature selection for exponential
models is quite robust to overfitting since the features act in concert to assign probability
to events through linear constraints rather than by splitting the event space and assigning
probability using relative counts. We expect that significantly better results can be obtained
by using cross-validation stopping techniques, allowing a richer set of features, and by
incrementally building up compound features such as phrases.
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Figure 19. Typical segmentations of CNN test data. The exponential model used to segment the data was the
result of automatically inducing 100 topicality and cue-word features. The error probability of the model was
Pk = 0.132 with window sizek = 498 words.

10. Conclusions

We have presented and evaluated a new statistical approach to segmenting unpartitioned text
into coherent fragments. This approach uses feature selection to collect a set of informative
features into a model which can be used to predict where boundaries occur in text. In this
work we rely exclusively on simple lexical features, incluing a topicality measure and a
number of cue-word features, that are automatically selected from a large space of candidate
features.
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We have proposed a new probabilistically motivated error metric for the assessment of
segmentation algorithms. Qualitative assessment as well as the evaluation of our algorithm
with this new metric demonstrates its effectiveness in two very different domains, financial
newswire text and broadcast news transcripts.

Appendix

Three different text corpora served as training and testing data in the experiments reported
in this paper:

• The TDT corpus is a mixed collection of newswire articles (Reuters) and broadcast news
transcripts (CNN). It contains approximately 16,000 stories or 7.5 million words, with
about half taken from Reuters newswire and half from CNN broadcast news transcripts.
Documents in the corpus span the period from July 1, 1994 to June 30, 1995. The TDT
corpus was constructed as part of a DARPA-sponsored project to study methods for
detecting new topics or events and tracking their reappearance and evolution over time.
• The BN corpus contains about 150 million words—four and a half years worth—of

transcripts of various news broadcasts. The broadcasts include CNN news, political round-
tables, NPR broadcasts, and interviews, and has the same general news flavor as the TDT
corpus.
• The WSJ corpus is a 38-million word collection of Wall Street Journal articles from the

early 1990’s. The corpus has a strong tilt towards financial news. Both the WSJ and BN
corpora are available through the Linguistic Data Consortium.
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