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Abstract. Minimax lower bounds for concept learning state, for example, that for each sampiasidéearning

rule gn, there exists a distribution of the observat¥rand a concept to be learnt such that the expected error
of gy is at least a constant tim&4/n, whereV is thevc dimension of the concept class. However, these bounds
do not tell anything about the rate of decrease of the error fieddistribution-concept pair.

In this paper we investigate minimax lower bounds in such a (stronger) sense. We show that for several natural
k-parameter concept classes, including the class of linear halfspaces, the class of balls, the class of polyhedra wit
a certain number of faces, and a class of neural networks, fosemyencef learning rulegg,}, there exists a
fixed distribution ofX and a fixed concep® such that the expected error is larger than a constant tihefor
infinitely many n We also obtain such strong minimax lower bounds for the tail distribution of the probability of
error, which extend the corresponding minimax lower bounds.
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1. Introduction

Let X be a random variable on a domakhwith distributionu, that is, for each measurable
subsetA of X, u(A) = P{X € A}. LetC be a class of subsets &f. Members ofC are
called concepts, andlis a concept class. A fixed, but unknown concept (or tarGet) C

is to be learnt based on the data

Dn = (X1, Iixsecy), -+ (Xn, Iixaec))s

whereXy, ..., X, are independent, identically distributed copies<efandl 5 denotes the
indicator of an evenA. All random variables are defined on a common probability space
(22, A, P), andE denotes expectation with respectRo A learning rule—or classifier—
intends to decide, based on the dBtgand X, if X € C. Formally, itis a functiorg, : X' x

(X x {0, 1H" — {0, 1}, whose probability of error is the random variable

L(gn) = P{gh(X, Dn) # lixecy | Dn}.
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Thus,L (gy) is the probability that, trained on the data sequddggthe classifieg, makes
a mistake. Its value depends on the actual value of the data seqDgndehe expected
probability of error

EL(9n) = P{gn(X, Dn) # lixecy}

is the expected value tf(g,). The joint distribution of the paifX, I(x < c;) is determined
by the pair(u, C), which will be referred to as distribution-target pair

The minimax behavior of the expected probability of error has been thoroughly studied.
Here the question is the size of the minimax error

inf supEL(gn),
% (u.C)

where the infimum is taken over all (measurable) learning rules, while the supremum is
taken over all possible distribution-target pairs witke C. The minimax error expresses
the minimal achievable worst-case error for a given samplersiaad concept clags.

Itis a beautiful fact that for a given, the minimax expected error igfsup,, ¢, EL (gn)
is basically determined by, thevc dimension Vof the clas<, and it is insensitive to
other properties of. V is defined as the largest integer- 1 with s(k) = 2%, where the
kth shatter coefficient@) of the clas« is defined as the maximal number of different sets
in

{{X1, ..., %} NC; Cel},

where the maximum is taken over a, ..., x e X. If s(k) = 2 for all k, then, by
definition,V = co.

Haussler etal. (1994) showed that there exists a learning rule such that for all distribution-
target pairs,

EL(gn) =< 1)

3.| <

Minimax lower bounds show that, in a sense, this is the smallest possible distribution-free
upper bound obtainable for any learning function. For example, Vapnik & Chervonenkis
(1979) showed that for every> V — 1, and every classifia,, there exists a distribution-
target pair such that

EL(gn) = V‘l(l—i). @

2en n

(1) and (2) together essentially solve the minimax problem for the expected probability of
error, since they state that for each» V — 1, the minimax expected error is sandwiched
between constant multiples ¥f/n, that is,

V-1 1 \%
1——) <inf supEL < —.
2en ( n) ~ o (M,(g @) =5
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The expected probability of error is a useful quantity in describing the behavidiggj.
However, it is rather the tail probabilities

P{L(9n) = €}

(wheree € [0, 1]) that completely describe the distribution of the probability of error. The
minimax problem for the tail probabilities is thus a more interesting (and harder) problem.
Here one is interested in the quantity

inf supP{L(gn) > €},
% (1.0

if n, €, andC are given. Thesc dimension also features minimax upper and lower bounds
for the tail probabilities. For example, a classical result of Vapnik & Chervonenkis (1979)
(see also (Blumer et al., 1989)) states thajifs any classifier such that (X;) = I(x, cc)
foralli =1,...,n,and{x: gn(X) = 1} €C, then forn > V,

\Y
P{L(gn) > €} < 2(?) g nlg2/2, (3)

An improved version of this inequality can be found in (Shawe-Taylor et al., 1993). Corre-

sponding minimax lower bounds were first proved by Blumer et al. (1989), and Ehrenfeucht
et al. (1989). Devroye & Lugosi (1995) (see also (Devroye et al. 1996)) show that for any
classifiergy, there exists a distribution-target pair such that

1 2nec \V V2 Jde)
P{L > €} > e/ mRe) ] 4
{(gn)_e}_2e n(V—l)(V—1> e (4)

wheneveV > 2,n >V — 1 ande < 1/4.
The combination of (3) and (4) yield that for any concept ctaswgithV > 2,n >V,
ande < 1/4,

V—1)/2
1 < 2nee )( ! o—4ne/(1-4¢)
2e/7(V —D\V _1

one\ v
<inf supP{L(gn) > €} < 2(3) g Nelog2/2.
o (1.0 \Y

Note that in terms oh ande, there is an order-of-magnitude gap between the upper and
lower bounds: the pre-exponent of the upper bound is roughly of the ord¥r while that

of the lower bound igne)Y. The “interesting” values of are clearly around/In, therefore

the difference may be quite significant. (The improved version of (3) in (Shawe-Taylor
etal., 1993) also leaves the gap open.) For some concept classes—for example for the cla:
of unions ofV initial segments discussed below—it is possible to prove an upper bound
which, apart from constant factors, coincides with the lower bound (4). It is an interesting
open question if the lower bound is tight for all concept classes.



34 A. ANTOS AND G. LUGOSI

In some sense, lower bounds of the form of (2) and (4) are not satisfactory. They do
not tell us anything about the way the error decreases as the sample size is increased for
given classification problem. These bounds, for @g@ive information about the maximal
error within the class, but not about the behavior of the error for a single fixed distribution-
target pair as the sample sizéncreases. In other words, the “bad” distribution-target pair,
causing the largest error for a learning rule, may be different for ea&or example, the
lower bound (2) does not exclude the possibility that there exists a sequence of classifiers
{gn} such that foreveryu andC the expected errdEL (g,) decreases at an exponential
rate inn. Indeed, it is easy to see that such classes exist with arbitrarily large, and even
with infinite, vc dimension (see Propositions 1 and 2 below). Schuurmans (1995) studied
the question when such exponential decrease occurs, and characterized it among certa
“one-dimensional” problems. We are interested in “strong” minimax lower bounds that
describe the behavior of the error for a fixed distribution-target @aiC) as the sample
sizen grows. For example, the sequeneg} of positive numbers is atrong minimax
lower boundfor the expected error faf if

EL(gn)

inf suplim sup
{On} (u,c) nooo

217

where the infimum is taken over aéquencefy,} of classifiers and the supremum is taken
over all distribution-target pairs wit@ € C. A slightly different, but essentially equivalent,
definition requires that for all sequencgs,}, there exists a fixed paiii, C) such that
EL(gn) > &, for infinitely many n The notion of strong minimax lower bounds can be
defined similarly for tail probabilities by replaciriglL (gn) by P{L(gn) > €n}, where{e,}

is a fixed sequence of positive numbers.

The purpose of this paper is to establish minimax lower bounds in the described strong
sense. The main results extend the lower bounds of (2) and (4). Because of the reaso
mentioned above, this is clearly not possible fonallclasses. However, the extension is
possible for many important geometric concept classes, and the rolewaf thmension is
played by the number of parameters of the class, which, in all of our examples, is closely
related to thevc dimension of the class. Thus, the situation here significantly differs
from that of the usual minimax theory, where a single combinatorial parameternsethe
dimension—completely determines the behavior of the concept class.

We close this introduction by illustrating through a simple example why it is impossible
to give a “strong” extension of the lower bound of (2) foradl classes. (See Schuurmans
(1995) for much more on this.) It can be seen similarly that no strong extension of (4) can
be given for allvc classes either.

As the simplest example, 1€t be any class containing finitely many concepts. Then
consider a learning rule that selects a con€ptrom C which is consistent with the data
Dn, that is,gn(X) = l(xec,) for someC, €C, and

On(Xi) = ljx,ecy foralli=1,...,n,
whereC € C is the true concept. Then (3) implies that

2V log(2n) + 4

EL(gn) < nlog 2

9



STRONG MINIMAX LOWER BOUNDS FOR LEARNING 35

whereV is thevc dimension ofC. The beauty of this bound is that it is independent of the
distribution-target pair, and that it is essentially the best such bound (see (Haussler et al.
1994, Theorem 4.2)). However, fall distribution-target pairs, the error decreases at a
much faster rate. This can be seen from the simple facigthean only make an error if
there is at least one concepte C with £ (C'AC) > 0 such thatnoone of;, ..., X, falls

in the symmetric difference @’ andC. The probability of this event is at most

1-pEac) =l

(1—p(C'acyn,
CeC:u(C'AC)>0 0

max
eC:u(C'AC)>

which converges to zero exponentially rapidly. Since a finite concept class can have an
arbitraryvc dimension, this proves the following:

Proposition1. LetV be an arbitrary positive integer. There exists a clagsth vcdimen-
sion V and a corresponding sequence of learning rfgg$ such that for all distribution-
target pairs(u, C) with C € C and for all n,

EL(gn) <a-b",
where b< 1. The positive constants a and b depend on the distribution-target pair.

If a concept clas§ is finite, itsnth shatter coefficiers(n) is bounded above by | for
all n, that is, the shatter coefficients do not increase witbr largen. In such cases it is not
surprising that the error can decrease at an exponential rate for all distribution-target pairs
It is natural to ask if the growth of(n) determines the rate of convergence of the error.
This conjecture is false, and in fact, we may have an exponential rate of convergence for all
distribution-target pairs even for classes with infinitedimension (for whicks(n) = 2"
for all n):

Proposition 2. There exists a clas§ with V=00 and a corresponding sequence of
learning rules{gn}, such that for all distribution-target pairs and for all,n

EL(gn) <a-b",
where b< 1. The positive constants a and b depend on the distribution-target pair

Proof: LetX = R and letC contain all finite subsets ®. Letg,(x) = 1 if and only if
there exists aiX; such thax = X; andlx, ccy = 1. O

The rest of the paper is organized as follows. In Section 2 we introduce a general tool,
an application of the “probabilistic method”, for obtaining strong minimax lower bounds.
In Section 3 we provide strong minimax lower bounds for the expected probability of error
EL (gy) if the concept clas§ is the class of unions df initial segments. (This class was
introduced in (Haussler et al., 1994).) In particular, we show that for every sequence of
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learning ruleqgn}, there exist a distribution-target p&j, C) such that ifC is the “true”
concept, then

EL(gn) > (1-— e)z—kn for infinitely manyn,

wheree is an arbitrarily small fixed number; see Theorem 1 for the precise statement. Since
thevc dimension of this class i, this result states that there always exists a distribution-
target pair such that the error is essentially within a factor of two of the upper bound of (1)
infinitely many times. We extend this result to more general classes of concepts showing
that the above lower bound remains true for many other important classes of “dimeksion”
(Here by dimension we mean the number of parameters of the class, which, in most of our
cases, essentially coincides with the dimension of the class.) These examples include
the class of halfspaces, the classlafimensional intervals, the class of euclidean balls, the
class of all ellipsoids, certain classes of neural networks, etc.

Section 4 extends the results of Section 3 for the expemtadilativeerror.

Section 5 contains the main results of the paper. Here we present analogous lower bound
for the tail probabilitiesP{L (gn) > €}, which extend (4). Clearly, these bounds are much
more informative than bounds for the expected value(@f,), however, their proof is much
more technical. Parts of the proofs are given in Appendix 2.

2. The probabilistic method

In this technical section we present a simple lemma that equips us with a general tool for
proving strong minimax lower bounds. LB (z) be a sequence of nonnegative numbers
parametrized by an abstract parametieom a setZ. Assume that we wish to prove that for
some fixed, there exists ac Z suchthaR,(z) > a,, wherea,, > 0. Thenitsufficesto find
arandom variabl& on Z such thaP{R,(Z) > a,} > 0. This simple trick is the basic idea

of the powerful “probabilistic method”. Another, equally simple, way for obtaining a lower
bound by the probabilistic method is using the trivial fact that for any random vargble

SUPRy(2) = ERy(2). ®)

zeZ

For example, we may takig,(z) = EL (g,), where the parameter spagds obtained by a
suitable parametrization of the concept cldsand the parameteicorresponds to a concept
C eC. Thus, to show that there exists a concept such that theelr@g,) is greater than
an, one might use one of the ideas above. In fact (5) is at the heart of the proof of essentially
all minimax lower bounds we are aware of.

In this paper we wish to prove something of a stronger form: there exists afix&€dsuch
that R, (2) > a, for infinitely many nwhereay, ay, . . . is a sequence of positive numbers.
The first difficulty to overcome is that the randomizing distribution cannot depencag
longer. However, itis not sufficient to find a fixed random variabtich thaER,(Z) > a,
for all n. An additional stability property is needed to obtain a bound of the desired form.
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The following lemma provides a simple way of proving lower bounds of the desired
form. A somewhatweaker versionis implicitly used by Schuurmans (1995). A significantly
stronger form and more discussion is added in Appendix 1.

Lemmal. Let R,(2) be asequence of nonnegative numbers parametrized by an abstract
parameter z from a seX. If there exists a random variable Z taking its values fri8rauch
that

esssuiR,(2)

ER\(2) 4 00 asn— oo, (6)

then there exists a Z such that for ever) < ¢ < 1,
R.(2) > (1 —¢e)E{R,(2Z)} for infinitely many n
(Recall that for a random variable Xess supX = inf{x : P{X > x} = 0}.)

Proof: It suffices to prove that

P{ lim supEng:(ZZ)) > 1} > 0.

Condition (6) means that there exists a sequémgef indices along which the subsequence
esssulR, (Z2)/ERy, (Z) is bounded. Thus, Fatou’s lemma may be applied to the sequence
of random variableR, (Z)/ER, (Z),i =1, 2, ... to obtain

E{ limsup Rn(2) } > E{ limsup Ro (2) } > IimsupE{ Ro (2) } =1,
n—oo ERn(Z) i—o00 ERn.(Z) i—o00 ERn.(Z)

and the statement follows. O

Remark Lemma 1 states that minimax lower bounds obtained by using the simplest form
(5) of the probabilistic method can be extended to their strong form if the randomizZation
does not depend am and, in addition, the stability property

esssuiR,(2)

ERvz)

is verified. The following example demonstrates that this additional condition cannot
be dropped, and some kind of stability condition is necessary.CLet {{x} : xe X}

be the class of one-point concepts on the donfaiof positive integers. Letg,} be an
arbitrary sequence of learning rules, andferX’, defineR,(z) = P{gn(X, Dn(2)) # Y (2)},
WhereY(z) = I{X:Z}y and Dn(2) = ((Xq, I{X1:Z})v o (X, I{Xn:Z]))' Let P{X = i }=

c/(i log?i) for an appropriate normalizing constantand introduce the random variable

Z distributed asX, and independent of, X, ..., X,. Using a similar argument as in the
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proof of Theorem 1, one sees that for everyER,(Z) > const/(n + 2)%2. However,
similar to the proof of Proposition 2, one can show easily that there exists a sedgghce
such that for every, R,(2) converges to zero exponentially rapidly. This demonstrates the
fact that a lower bound fdE R,(Z) cannot necessarily be converted into a strong minimax
lower bound, even if the randomizatiahis independent ofi. An additional condition,
such as (6) needs to be satisfied.

Remark Finding a fixed random variablg such thatER,(Z) > a, for all n, is useful

in a different situation, even if the additional stability property (6) cannot be verified. It
allows us to derive lower bounds for the cumulative error. In particular, in such a case we
have, for evenyn, that

sup(Z R.(Z)) > Z ER(2). @)

zeZ

We discuss lower bounds for the cumulative error in Section 4.

3. Bounds for the expected probability of error

In this section we provide examples of concept classes for which the minimax lower bound
(2) for the expected probability of err&l (gn) = P{gn(X) # Ixcc}} can be extended to

its strong version. All examples shown here are based on lower bounds obtained for a very

simple concept class. The clagsof unions ofk initial segments is defined as follows: let
X =1[0,1]x{1,2,...,k},and

U([o zj] x {j}) : ze[0, 1] ¢. ®)

The clasg is therefore parametrized by a vectokglarametersz = (zy, . .., z) € [0, 1]%.
Clearly, thevc dimension ol is alsok. For this class, we have the following result:

Theorem 1. Letu be the uniform distribution o&’. For every sequence of learning rules
{gn}, there exist a G= Cx such that if C is thétrue” concept then forall0 < € < 1,

EL(gn) > (1— e)z—kn for infinitely many n

Remark Haussleretal. (1994, Theorem 3.2) showed for the das$unions ofk initial
segments that for every learning rule, and for evgrthere exists & < Cx such that

k -2
EL(Gn) = o~ — O(™).

Furthermore, in their proof of this lower bound, the randomiza#ois independent ofi.
To make the proof of Theorem 1 short, we use many elements of the proof of the above
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inequality. A different proof (for a slightly weaker version) of Theorem 1 may be found in
(Antos & Lugosi, 1996).

Remark Note that the lower bounkl/(2n) — O(n~?) for the minimax expected error is
better in the constant factor than the bound of (2). However, it is less general, since it does
not apply to anyc class.

Remark It is clear from the proof of the theorem that the uniform distribution may be
replaced by any nonatomic distribution éh

Proof: Letze|[0, 1] be the parameter that determir@g Cx. First we introduce some
notation. LetY (2) = lxccy, Yi(2) = lix;ec), andDn(2) = ((X1, Y1(2)), - . ., (Xn, Yn(2))).
DenoteX = (U, M) sothau is uniformly distributed on [01], M is uniformon{1, ..., k},
andU andM are independent. Introduce

I =max{uel0,1] :u<Uand(u, M) e {Xy,..., Xp} U (0, M)}
and
r=minfue[0,1]:u> U and(u, M) e {Xy,..., Xp} U (1, M)},

that is,| andr are the left and right neighbors bf among the data points falling on the
Mth segment. Finally, define the following (random) sets of parameters:

Ly ={ze[0,1]F:zw €[l,U)} and R,={ze[0,1]%:zw €[U,1)}.

Clearly,

EL(Gn) > Ra(2) £'P{gn(X, Dn(2)) # Y(2), € Lo U Ry).

We apply Lemma 1 folR,(z). (The reason why we do not defiig (z) as the expected
probability of errolEL (gy) itselfis that this is the only way we can ensure that the additional
stability property (6) required by Lemma 1 holds.) We will show that if the random vector
Z = (Z4, ..., Zy) is uniformly distributed on [01]¢ and independent ok, Xa, ..., Xy,

then

k k2 1\"+?
BR(D)Z 507D " 2n 1D+ 2 (1_<1_E) ) ©

and sup R, (2)/E{R\(2)} does not tend to infinity, from which the theorem follows.
First we prove the lower bound for the expected valu®gfZ). By the independence
of ZandX, Xq, ..., Xn,

Rn(Z2) = P{Gn(X, Dn(2)) # Y(2), ZeLa U Ry | Z}, (10)
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and
E{Ra(2)} = P{gn(X, Dn(2)) #Y(2), Z€ Ln U Ry}

= E{P{gh(X, Dn(2)) #Y(Z),Ze La U Ry | X, X4, ..., Xn}}

= E{P{gn(X, Dn(2)) #Y(2) | Z€ Ln, X, X1, ..., Xn}
xP{ZelLy| X, X1, ..., Xn}
+P{on(X, Dn(2)) #Y(Z2) | Z€ Ry, X, X1, ..., Xp}
XP{Ze Ry| X, Xq, ..., Xp}}

> Efmin(P{Z e Ln| X, X1,..., Xp}, P{Ze Ry | X, X1, ..., Xp}D)}

=E{minU —1,r —U)}

k k2 1\"?
T 2n+1) 2(n+1)(n+2)(1_ <1_ E) )

where the last equality follows from direct calculation, which is detailed in the proof of
Theorem 3.2 in (Haussler et al., 1994).
On the other hand, we observe that for each fizxed0, 1],

2k
Ra(2) < P{zeLaURy} < T (11)
This may be seen by conditioning on teet{X, Xy, ..., X5}, and observing that since

X, X1, ..., X, are i.i.d., the probability remains the same by permuting them. Of the
(n + 1)! permutations, there are at mo#tr2 such thatX is a neighbor of one of thg's.
Therefore,
sup, R\(2)
ER.(2)

so the condition of Lemma 1 is satisfied, and the proof of the theorem is completel

<4+0(1),

We may extend Theorem 1 to other important classes of geometric concepts by embed
ding. For example, we have the following straightforward corollary of Theorem 1.

Corollary 1. LetX = RY, and letC be a class of concepts defined &n If there exist
invertible measurable mappings, f. ., fi : [0, 1] — RY such that the sets; ({0, 1]) are
disjoint and for all z= (zi, .. ., z) €[0, 1] there exists a G C with

cn (fl([o’ 1]) U---u fk([o, l])) = fl([o’ Zl]) u..--u fk([oa Zk]),

then for any sequence of classifi¢gs}, there exists a distribution-target pafie, C) with
wn concentrated on ([0, 1]) U - - - U ([0, 1]) and C € C such thatfor all0 < ¢ < 1,

EL(gy > L= K

for infinitely many n
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The above corollary may be applied to many important geometric concept classes. Below
we give a short list of examples. The proofs are quite straightforward, most of them can be
found in (Haussler et al., 1994, p. 279).

1. If Cisthe class of subsets &fthat can be written as a unionmffintervals, therk = 2m.
2. k = d for the class ofi-dimensional octants:

[xeRY:x <a,i=1....d}, a,...,aqeR,

wherexy, ..., Xq are the components of the vectar
3. k = 2d for the class ofl-dimensional intervals:

[xeR:aq <x <b,i=1,...,d},

whereay, by, ..., a4, by € R.
4. k = dif Cis the class of halfspaces &, that is, sets of the form

d
{x:ZaxiJraon}, ap, ay, ..., a4 €R.
i=1

5 k=dif

d
C = “xeRd:n(xi —ai)zo}: al,...,adeR}.

i=1

6. k = d + 1 for the class of balls iR9:

d
{xeRd INES —a)zsr},

i=1

whereay, ...,aq,r € R,r > 0.
7. k = 2d for the class of all-dimensional ellipsoids:

d - _ a2
[XERdizwfl}v

i=1 I

whereay, by, ..., a4, bg € R.

. k = mdfor the class of convex polyhedra wffaces inR¢.

. k = mdfor the clas< of all neural network classifiers gRY with m hidden nodes in
their single hidden layer, that is, eaChe C is of the form

©

m
{x: aobmx" +¢)+ag> 0},
i=1
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whereag, ...,am, C1,....,Cm€R, by, ..., bmeRY, ando is the threshold sigmoid
a(X) = ljx~ - (X" denotes the transpose of a veotor

Remark Based on Corollary 1, we may define a new “dimensianfor a concept class
C as follows: letA be the largest integée such that there exi¥ invertible measurable
mappingsfa, ..., fc : [0, 1] — RY such that the set$ ([0, 1]) are disjoint and for all
z= (2, ..., 7) €[0, 1]* there exists & < C with

Cn(f2([0, 1D U--- U ([0, 1])) = f2([0, Zz) U - - - U ([0, zc]).

If no such mapping exists thex = 0, and if for eactk there aré&k mappings with the above
property, themA = oco.

Corollary 1 shows the relation af to strong minimax lower bounds for the expected
error. Lower bounds fon may be obtained in specific cases by construction. For upper
bounds, note that it is easy to see thak V, since a setxy, ..., Xa} is shattered by if
foreachi < A, x € fi([0, 1]). Further, it is easy to see that for eath

=2

(just put at leastn/A | of the n points on each imagé; ([0, 1]) of the segment [01],
i =1,..., A),whichmeansthatalsé < D, whereD is theAssouad densityf C, defined
as

D =inf {r >0: supsr(:) < oo},
n

see Assouad (1983). (Itis well-known tHat< V, D < oo if and only if V < oo, and that
for eachk there exists a clagdwith V = k andD = 0.) Thus, we have

A<D<V.

On the other hand, it follows from Proposition 2 and Corollary 1 that there exists aclass
such thatD =V = oo, butA = 0.

4. Cumulative error bounds

Let {gn} be a sequence of learning rules. Thenulative erroiis defined as

n
Z (g (X 12.00) # lixiy1ecth
i=0

that is, the number of errors committed by the sequence in thenfstps, if the first
labelled examples are always used to predict the label ofi thel)th example. Based on
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the results of the previous section, it is easy to obtain strong minimax lower bounds for the
expected value of the cumulative error.

It is a direct consequence of (1) that there exists a sequence of learning rules such tha
for all distribution-target pairs

n
E Hg (Xi12.00#1ix et ( = V 10G(N+1) 4 1.
i=0

(see (Haussler et al., 1994)).

Haussler et al. (1994) considered minimax lower bounds for the expected cumulative
error. The observation (7) is at the basis of the proof of their Corollary 3.1 where it is
proved for the clas<y introduced in Section 3 that for eveny and for every sequence of
learning rules, there exists a distribution-target pair such that the expected cumulative errol
satisfies

. k n+1
E{ > g (xi+1,Di)#|(xi+1eC)}} > §<|09 e 1)- (12)

i=0
We have the following “strong” extension of the above minimax lower bound:

Theorem 2. Let u be the uniform distribution of0, 1] x {1, 2, ..., k}. For every se-
quence of learning rulefy,}, there exist a Gz C¢ such that for all0 < € < 1,

n
k
E< Z lig (X.H,D.)#'exiﬂec;}} >(1- e)é logn for infinitely many n
i=0

Proof: We apply Lemma 1 with
def s
Ri(2 = ) P{gi(Xis1, Di(2) # Yi11(2), ze Li UR}.
i=0

(Recall the definition of; (2), D;(2), L; andR; from Section 3.) Clearly,

E{ Z lig (xiH,Di);euxMec,}} = P{gi (Xit1, Di(2) # Yi11(2} = Ra(2).
i—o

i=0

Then it follows from (9) that ifZ is uniform on [Q 1] x {1, 2, ..., k}, and independent of
X, X1, Xo..., then

k n+1
ER\(Z) > E(IogT — 1).
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(For the details see Haussler et al., 1994, p. 278.) On the other hand, (11) implies that for
eachz,

n

2k
Ri@ =)~ = 2kllogn+ 1) + D),

i=0

so condition (6) is satisfied, which completes the proof. O

5. Bounds for the tail probabilities

The purpose of this section is to give strong lower bounds of the following typet let
be a class of concepts, and let,} be a sequence of positive numbers. Then for any
sequence of learning rulég, }, there exists a distribution-target pgir, C) with C € C such
that

P{L(Qn) > €n} > a, for infinitely manyn.
Here we would like to have
a, ~ (Conen)kclefnencz

for some constantg), ¢;, ¢, wherek is the “dimension” ofC so that the result is indeed an
extension of (4). For some sequenceg ¥ (which we believe to be the most interesting
ones) we will be able to prove such result€ifs one of the geometric concept classes
discussed in Section 3.

Clearly, the most interesting valuesefare constant multiples of/h, since this is the
range where the probability of errtr(g,) of a good learning rulgy, is expected to be with
high probability. Our main result extends (4) to such values, of

Theorem 3. LetCk be the class of unions of k initial segments as defing8)inand let
wu be the uniform distribution o’ = [0, 1] x {1, ..., k}. Lety > 0 be fixed and define
€n = y/n. For any sequencg,} there exists a & Cy such that for eacld € (0, 1),

P{L(On) > en} = (1—0) Z (© y)l ~% for infinitely many n (13)

where c= log 256~ 5.545

Remark At the price of more complicated arguments, the value of the constaay be
improved to something slightly larger than 2. However, it is not our aim here to search for
the sharpest constants, so we stay with suboptimal constants and simpler arguments.
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Note that since

k—1 k—1
( ) 70 —C
Y e= () e

apart from constants, the lower bound of Theorem 3 has the same form as that of (4). By
the same embedding argument as the one used in Corollary 1, Theorem 3 can be extende
to the concept classes listed in Section 3. The intuitive idea behind the proof of Theorem 3
is that in each of th& initial segments, inside the interval between the rightmost data point
labelled by 1 and the leftmost data point labelled by 0, no learning rule can do better than
mere guessing. Thus, the sum of the lengths of these intervals determines the size of th
minimal probability of error. In the proof we exploit the fact that the length of these intervals
have approximately exponential distribution, and they are almost independent, therefore we
may approximate the minimax tail distributionlog,) by the tail of an appropriate gamma
distribution.

Proof of Theorem 3: First we introduce some notation:

U =maxuel0,1]:(u, j)e{X Y =11U(0, j)},

nj
Ut =minfue[0,1]: (u, j)e{X : ¥ = 0} U (L, })},

Ay = Uy

Step 1. We apply Lemma 1 foR,(2) = Ry, (2), where for eacls > 0,

def

Rne(2) = P{L(gh) > €} = {fx {Gn (%, Dn(2)2£Y (x,2)} AL (X) > €}~

(HereY (x, 2) = lixec,}, WhereC; is the concept associated with the parametef0, 11)
Just like in the proof of Theorem 1, I& = (Z3, ..., Zx) be uniformly distributed on
[0, 1]%, and independent ok, X, ..., X,. SinceR, ¢, (2) is always bounded above by 1,
and since the desired lower bound of (13) is independemtibBuffices to prove a suitable
lower bound folER, ((Z), as the stability property (6) is automatically satisfied. We will
show that for each ande,

ERne (Z)—zz(c.y.)e ‘%KZ(C.YI) ‘°y)k6‘”/k+ke “1‘7)} (14)

=0 i=0
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(wherey = ne), which proves the theorem, since the term inside the brackets converges to
zero rapidly as — oo.
Clearly, by the independence @fand X, X4, ..., X,

Rn(2) = P{/ I (gn (%, Dn(2)) £ Y(x,2)} AL (X) > € | Z}
X
> P{/ l{gox.Dn(2)) # Y(x.2)) A (X) > € | Z}-
An
Thus, we have

ER.\.(Z) =P / | gn(x.Dn(2)) £ Y(x.2)) A1 (X) > 6}

n

=E P{/ l{gn(x, Dn(2)) 2 Y(x,2)} At (X) > € | Dn(Z)}}
An

K
=E P{ Z/ lgn(x, Da(2)) £ Y (x,2)) At (X) > € | Dn(Z)”-
j=1Anj

Step 2. In this step we obtain a lower bound fBfL(g,) > €} in terms of the spacings
containing theZ;’s. Let&nj = U;Lj — Un‘j. For alln ande > 0,

1 [1&
ER.(2) = EP{E;&J > 46}.
Proof. Clearly,

1 1
/ lgn(x, Dn(2)) £ Y (x,2)} A1 (X) = E)»(Anj N(Bnj AC)) = EMBM A Cpj),

nj

wherel is the one-dimensional Lebesgue measure, and
Bnj = {X € Anj 1 On(X, Dn(2)) =1},

and
Chj = CNA,;.

Then it follows by Lemma 3 in Appendix 2 that

1
/ lgn(x. Dn(2)) # Y (x,2)) AL (X) > E'U”J + A(Bnj) — Zjl,

nj
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and therefore

k
Pi Z/ lgn(x, Da(2) Y (x, 2)) AL (X) > € | Dn(Z)}
j=1+ Anj
1 k
> P E;'Un_i + A(Bnj) — Zj| > € | Dn(2)

1
Z Sles ez aer

where the last inequality is proved in Lemma 4 (see Appendix 2). Taking expected values
of both sides, we obtain

1 [1&
ER\.(2) > EP{E ;sm > 4e}
as desired. O

Step 3. Obviously,

1 & 1K
P{E > & z4e} zP{E;gnj > 4e, VN,; >o},

i=1

whereN; denotes the number of ’s falling on thejth initial segment. IN; > 0, givenN;,
the conditional distribution o, is the same as the distribution of the sum of two spacings
defined byN; + 1i.i.d. uniform random variables on [@], that is, for alle € [0, 1],

P{&nj > €| N1, ..., Nk} = P{&nj > € [Nj} = 1 — &)V (1 + Nje)

(see, e.g., Reiss, 1989). A crucial step of the proof is approximating the conditional
distributions of thetn;'s by appropriate exponential distributions. Rdf > 0, define

Lj = Njlog4— 2log(1 + N;/2), and define the random variablgs, . . ., &, such that
given Ny, ..., N, they are conditionally independent, and the conditional distribution of
&n; Is exponential with parameter;, that is,

P{ér{” =€ | N1, ey Nk} = P{E[/” > € I Nj} — e—kje.

(If Nj = O for somej, then P{sr/”- > €| Ny, ..., Ny} is defined arbitrarily.) Then, by
Lemma 5 in Appendix 2, for aH,

1 1 I
. . / . ,,(1,7)
P{E;&,z%,VNJ>O}zP{E;fnjz%,VNJ>O — ke k :
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Step 4. To finish the proof of (14), it remains to show that
> 4e,¥N; > 0} > T o g ek
lesm_ P> Zi!e (1—ke k),
To do this, we may proceed as follows:

i Zén]>46VNJ>O}—E< (YN, >0) { Zén,z%INl,..., “

i=1 j=1
> {VN>0 { Zs >46|N1,...,Nk”
=1

(where thef; are defined exactly as ti§g; but with 4 replaced

by 1; = Nj log 4)
k /e
< N EV
> E{I{VNPOJP{Z‘%',&”' > 4e| Ny, ..., NkH
Zi:l)‘j

(by Lemma 6 in Appendix 2)

k
- E{|{VNJ>0}P:¢k >4 A | Np. ..., NkH

i=1
(where givenNy, ..., Nk, the random variablé\ has kth order gamma

distribution with parameter,1since givenN;, each) & has exponential
distribution with parameter 1).

= E{lyn;>0)P{®k > 4nelog 4| Ny, ..., N¢}} (sincezik:l)\/j =nlog 4)

= { vN,>0}Z(Cy) } Z(Cly) e P{VN; > 0}

i=0

v

k—1 i
> —(C.’:) e (1— ke,
i=0

since
l n
P{VN; >0}31—kP{N1=0}=1—k<1—E) > 1—ke "k,

and the proof of (14) is finished, so the proof of the theorem is complete. O

The reason why we can prove strong tail lower bounds only for certain sequenrgés of
is that the stability condition (6) is difficult to check in more general casesdhany /n
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for some fixedy. Itis possible, however, to generalize Theorem 3 for other sequences. The
proof of the following generalization is identical to that of Theorem 3:

Theorem 4. LetCy be the class of unions of k initial segmerdsad letu be the uniform

distribution onX = [0,1] x {1,...,k}. Letn; — oo (j = 1,2,...) be a sequence of
positive integersand lete; be nonnegative numbers such that= nje; does not tend

to oo as j — oco. Then for any sequende,} there exists a & Cx such that for each

§€(0,1),

(Cyj )l 7cy1

P{L(gn) = €j} = (1—8)= Z for infinitely many j

where c= log 256

Appendix 1: Sharpening and remarks to Section 2

The following is a significantly stronger form of Lemma 1.

Lemma?2. Let R,(2) be a sequence of nonnegative numbers parametrized by an abstract
parameter z from a sef, and let Z be a random variable taking its values frémIf for
some p> 1, E{R,(Z)P}/EP{R,(Z)} does not tend tec then either

{IlT supERl_\';:(ZZ)) 1} >0

or

limsup Rn(2)

=1 with probability one
ooPER2) P Y

Remark In any case,

P{ limsup Rn(2) > 1} > 0,

nsoo ERW(Z) ™

which implies that there existwas Z such that for every € (0, 1) R,(2) > (1—€)ERy(2)
for infinitely manyn.

Proof: LetS=Ilimsup,_ ER”( . Assume, on the contrary, th&t< 1 with probability
one andP{A} > 0, whereA={S< 1}. Foré > 0, define

X = max(s+1,O)IA+ (L+8)(1— lp).
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Since

S+1

EX = E{ max( ,o> ‘ A}P{A} + 1 +6)A—-P{A)

—1- <1- E{ max(s;r =3 o) ‘ A})P{A} +8(1— P{A}),

and(1 — E{max(%, 0) | AHP{A} > 0, we may choosé so small thaEX < 1. Also,
0 < X < 1+ 6 with probability one. Introduce the events, = {Z5'4- < X}, and
Bn = [m=n Am- SinceS < X with probability one,A, occurs with probability one for

sufficiently largen, that is,

1= P{ G N Am} = P< Ql Bn} = lim P{By}.

n=1m>n

Thus, for evenk we haveP{B,} > 1 — 1/k if n is sufficiently large. Sinc®, C A,, we
have

E{ R(2)

Bz’ | <EXiel

and therefore

Ra(Z)
E{ERn<Z)(1_ 'B”)}

E{ Rn<2)}_E{ R2) | }

~ T ER.(2) ER\(Z) ™
R(2)

L ey B

> 1—E{X} > 0.

Let1/q = 1—1/p, and apply kder's inequality for the random variablg®- (1 15,)
and(1—1g):

e (2 aore) | - 1a)) 2 e fo D a- 1))

Thus,

p p
SR (DY) (R g
EPR\(2) ERW(2) ERW(2)

Rn(2) 1 i
i - PR rr——— — Pl -1
=F {ERn(Z) (1 lB")} (1— P{B,})P1 > (1-E{X})Pk

for sufficiently largen. Therefore E{R,(Z)P}/EPR,(Z) tends to infinity, a contradiction.
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Remark Note that Lemma 2 is indeed stronger than Lemma 1, since condition (6) implies
thatE{R,(Z)P}/EP{R.(Z)} 4 oo, but not vice versa. However, the inequality

P{Iim supERl_\'::(ZZ)) > 1} >0

cannot be strengthened even if (6) is assumed in the sense that even under (6) we may hay

{Iim sup Rn(2)

MSUPERZ) ~ 1} C {Rn(2) > ER,(2) for infinitely manyn}

C {R\(Z) = ERy(2) for infinitely manyn}
=40.

To see this, leZ ~ Uniform[0, 1], and consideR,(Z) = nlizc©1n; + N — 2. Then
ER,(Z) =n—1, esssuiR,(Z) = 2n — 2, but

{R,(Z) = ERy(Z) for infinitely manyn}
= {nlize,1ymy + N — 2> n — 1 for infinitely manyn}
= {nl{zeo,1/my > 1 for infinitely manyn}

= {Z € (0, 1/n) for infinitely manyn} = ¢. 0

Appendix 2 : Lemmas for the proof of Theorem 3

The following lemmas are used in the proof of Theorem 3. We use the notation introduced
in the text.

Lemma 3. Let
Enj = Uy}, Upj + A(Bnp)) x {j}.

Foralln, je{l,...,k}, ze[0, 1], and data points X, ..., Xn,
A(Bnj A Cpj) = A(Enj A Cy).

Proof: Clearly,A(Enj) = A(Bnj). Assume, on the contrary, that
A(Enj A Cpj) > A(Bnj A Cyj).

Then

either A(Enj ﬂan) > A(Bnj N an) or )»(Enj NCpj) > )»(an N Cnj),
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whereA = [0, 1] x {j} — Ais the complement of a sét c [0, 1] x {j}. In the first case
Chj S Enj, so we have
A(Enj) = 2(Enj N Cnj) + A(Enj N Cpj) > A(Bnj N Cnj) + A(Cnj) = A(Bnj),
a contradiction. In the second caSg < Cy;. Then similarly to the first case,
A(Enj) = A(Enj N Cnj) 4 A(Enj N Cnj) > A(Cpj) + A(Bnj N Cnj) = A(Bn)),
again a contradiction. O
Lemma 4.
1 1
Piy .leuni +A4(Bn) = Zjl > €1 Da(D) | 2 Shiyt g ag
j=
Proof:  Since givenD, the Z;’s are independent and uniform on the safs,
l k
P!E _len-,- +(Bnj) = Zj| > €] Dn<2)}
j=
Me({z € @1 Ay 1 X1 1Ugj +4(Bnp) — 7| > €})
k ’
)‘k(®j =1 Anj)
wherex is the one-dimensional, and is thek-dimensional Lebesgue measure. Define

Mnj = 3(Upy; + U, and

k

def
To S @) (Mnj, U).
=1

Then
({ze @y Ayt E XK1 1Ug) + A(Bn)) — 2j] > €})

)‘k(®lj(=lA;1j)

w({ze @1 Ay X _112) — My| > €})
)‘k(®lj<:lA;1j)

2% ({ze Ta: £ 5 1z — Map) > €})
260k (Th)

w({zeTn: %Z'j‘:l(zj — Mpj) > %Z‘;zl%})

Ak (Tn)
M(Tan{z: Z‘j‘:l(z,- — (Mpj + %)) > 0})

3

Ac(Th)

v
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whenever% Z'}zlénj > 4e. Observe that the last expression equal®, kince the nu-
merator is the volume of the intersection of the rectafglevith a halfspace defined by a
hyperplane containing the center of the rectangle. The proof is complete. O

Lemmab. Letthe random variable,; andé;; be as defined in the proof of Theor@m
Then for alle,

{ Zgn, > €, VN,; >o} > P{ Zsm > €, VN; > 0} — ke #0-%),
j=1 i=1
Proof: Itis easy to see that for al; > 0,

P{&nj > € | Nj} > P{&; > € | Nj},
whenevek < 1/2, and we have equality fer= 1/2. Thus, if¥N; > 0,

{ ng >e|Np,...,N }

j=1

> P EanG

=
'M*

Il
-

1 1
mzixgnj < > Ny, ..., Nk} P{ma‘l(xgnj < > ‘ Nq, ..., Nk}

I= 1=

Y

T
~|
.M*

Il
=

"> e | maxgl <
Enj - jSk é:nj

1 L1
E,Nl,...,Nk}P{r}LakXé:nj < E‘Nl,...,Nk}

I
T
=

I Mz— ||'Mz—

1
"Er/u > ¢, r}Wg(XE,qj < §|N1,..., Nk}

Erq >6|N1""7Nk}

7s_ll—\

1
k.
1, o1
P E;‘snjszL...,Nk — Pimaxé = 5Ny, oo Ne
k
> { Z§n1>€|le..., } Z {%‘nj_z‘ }

j=1 j=1

k
Z £l > € maxsmz—|N1,... Nk}

v

Clearly, for eachj with N; > 0,

P{Eéj > % ' NJ} = e h/2 < g Niloo2tN;/2,
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Using the fact thaiN; is a binomial random variable with parameterand 1/k, we get,
by straightforward calculation, that

1 1
gERrAE R IR LU

< E {e—NJ (log 2—1/2)}

< e k0%,
Taking expected values, we get the desired inequality. O
Lemma6. Leté&,..., & beindependent exponential random variables with parameters
A1, ..., Ak > O, respectively. Then for each
§j
! Zsj >e} > P{ZJl B o el — ploy > ker),
j=1 Z] —1)L

whereix = % Z‘j‘z 1 Aj, and the random variablé, has kth order gamma distribution with
parameterl.

Proof: We prove the lemma by induction f&r We will use two simple facts:

Fact 1. Letn, &, &’ be real-valued random variables such thad independent of¢, £')
andP{¢ > x} > P{&’ > x} forall x e R. ThenP{¢ + n > x} > P{¢’ + n > x|} for all x.

Fact 2. Let&; andé;, be independent, exponential random variables with parameters
anda,, respectively. Assume @ A1 < X,, and lets§ = (Ao — 11)/2. Then for alle > 0,
the probabilityP{&1 + &, > €} is monotone increasing ih(while holdingi; + X fixed).

In particular,P{&1 + & > €} > P{®, > AMe} for A = (Ao + A1)/2.

Proof: Straightforward calculation shows that fr 0,

Plé1+ 82> €} = =e

)Lze_}‘lé _ )Lle—}»z6 e Y sinh(ée)
€
)\‘2 _ )\’1 S€

+ cosk(Sa)) ,
and fors = 0,
Ple1+ & > €} = P(®p > Ve} = (L+ Mee ™ .

Since sinlix)/x and coskix) are monotone increasing on, &), Fact 2 follows.
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Now we are ready to prove the lemma. The statement is trivially truk ferl, and by
Fact 2 fork = 2. Letk > 3, and assume that the statement is trueferl. There exist
two indicesj, j* < k such that; < A andj > A. Without loss of generality, we assume
thati; < A andi, > A. Let£; andé; be independent exponential random variables with
parameteh andx; + A, — A, also independent of &, Since

’

[A1 — 22| - )L_?»1+)»2
2 - 2

Fact 2 implies that
Plé1+ & > €} > P§; + & > ).
Also, by the inductive assumption,
k
Piéé—l— Zsj > e} > P{®y_1/A > €).
j=3

Using these and Fact 1 twice, we obtain

k k
P{Zéj >€] zp{éi—l-éé—i-Zéj >e]
i=1 =3

> P{&] + Pr—1/A > €}
= P{®y > A€}
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Note

1. Corollary 3.1 of (Haussler et al., 1994) states more than what is actually proved there. It states that for every
sequence of learning rules, there exists a distribution-target pair such tieatfym the expected cumulative
error is lower bounded as in (12). The proof of Corollary 3.1 of (Haussler et al., 1994) has the quantifiers
reversed, so it in fact does not show that there is a fi&estich that the lower bound holds for all
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