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Abstract. Minimax lower bounds for concept learning state, for example, that for each sample sizen and learning
rule gn, there exists a distribution of the observationX and a conceptC to be learnt such that the expected error
of gn is at least a constant timesV/n, whereV is theVC dimension of the concept class. However, these bounds
do not tell anything about the rate of decrease of the error for afixeddistribution-concept pair.

In this paper we investigate minimax lower bounds in such a (stronger) sense. We show that for several natural
k-parameter concept classes, including the class of linear halfspaces, the class of balls, the class of polyhedra with
a certain number of faces, and a class of neural networks, for anysequenceof learning rules{gn}, there exists a
fixed distribution ofX and a fixed conceptC such that the expected error is larger than a constant timesk/n for
infinitely many n. We also obtain such strong minimax lower bounds for the tail distribution of the probability of
error, which extend the corresponding minimax lower bounds.
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1. Introduction

Let X be a random variable on a domainX with distributionµ, that is, for each measurable
subsetA of X , µ(A) = P{X ∈ A}. Let C be a class of subsets ofX . Members ofC are
called concepts, andC is a concept class. A fixed, but unknown concept (or target)C ∈ C
is to be learnt based on the data

Dn = ((X1, I{X1 ∈C}), . . . , (Xn, I{Xn ∈C})),

whereX1, . . . , Xn are independent, identically distributed copies ofX, andI A denotes the
indicator of an eventA. All random variables are defined on a common probability space
(Ä,A,P), andE denotes expectation with respect toP. A learning rule—or classifier—
intends to decide, based on the dataDn andX, if X ∈C. Formally, it is a functiongn :X ×
(X × {0, 1})n→ {0, 1}, whose probability of error is the random variable

L(gn) = P{gn(X, Dn) 6= I{X ∈C} | Dn}.
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Thus,L(gn) is the probability that, trained on the data sequenceDn, the classifiergn makes
a mistake. Its value depends on the actual value of the data sequenceDn. Theexpected
probability of error

EL(gn) = P{gn(X, Dn) 6= I{X ∈C}}

is the expected value ofL(gn). The joint distribution of the pair(X, I{X ∈C}) is determined
by the pair(µ,C), which will be referred to as adistribution-target pair.

The minimax behavior of the expected probability of error has been thoroughly studied.
Here the question is the size of the minimax error

inf
gn

sup
(µ,C)

EL(gn),

where the infimum is taken over all (measurable) learning rules, while the supremum is
taken over all possible distribution-target pairs withC ∈ C. The minimax error expresses
the minimal achievable worst-case error for a given sample sizen, and concept classC.

It is a beautiful fact that for a givenn, the minimax expected error infgn sup(µ,C) EL(gn)

is basically determined byV , the VC dimension Vof the classC, and it is insensitive to
other properties ofC. V is defined as the largest integerk ≥ 1 with s(k) = 2k, where the
kth shatter coefficient s(k) of the classC is defined as the maximal number of different sets
in

{{x1, . . . , xk} ∩ C;C ∈ C},

where the maximum is taken over allx1, . . . , xk ∈X . If s(k) = 2k for all k, then, by
definition,V = ∞.

Haussler et al. (1994) showed that there exists a learning rule such that for all distribution-
target pairs,

EL(gn) ≤ V

n
. (1)

Minimax lower bounds show that, in a sense, this is the smallest possible distribution-free
upper bound obtainable for any learning function. For example, Vapnik & Chervonenkis
(1979) showed that for everyn ≥ V − 1, and every classifiergn, there exists a distribution-
target pair such that

EL(gn) ≥ V − 1

2en

(
1− 1

n

)
. (2)

(1) and (2) together essentially solve the minimax problem for the expected probability of
error, since they state that for eachn ≥ V − 1, the minimax expected error is sandwiched
between constant multiples ofV/n, that is,

V − 1

2en

(
1− 1

n

)
≤ inf

gn

sup
(µ,C)

EL(gn) ≤ V

n
.
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The expected probability of error is a useful quantity in describing the behavior ofL(gn).
However, it is rather the tail probabilities

P{L(gn) ≥ ε}

(whereε ∈ [0, 1]) that completely describe the distribution of the probability of error. The
minimax problem for the tail probabilities is thus a more interesting (and harder) problem.
Here one is interested in the quantity

inf
gn

sup
(µ,C)

P{L(gn) ≥ ε},

if n, ε, andC are given. TheVC dimension also features minimax upper and lower bounds
for the tail probabilities. For example, a classical result of Vapnik & Chervonenkis (1979)
(see also (Blumer et al., 1989)) states that ifgn is any classifier such thatgn(Xi ) = I{Xi ∈C}
for all i = 1, . . . ,n, and{x : gn(x) = 1} ∈ C, then forn ≥ V ,

P{L(gn) ≥ ε} ≤ 2

(
2ne

V

)V

e−nε log 2/2. (3)

An improved version of this inequality can be found in (Shawe-Taylor et al., 1993). Corre-
sponding minimax lower bounds were first proved by Blumer et al. (1989), and Ehrenfeucht
et al. (1989). Devroye & Lugosi (1995) (see also (Devroye et al. 1996)) show that for any
classifiergn, there exists a distribution-target pair such that

P{L(gn) ≥ ε} ≥ 1

2e
√
π(V − 1)

(
2neε

V − 1

)(V−1)/2

e−4nε/(1−4ε), (4)

wheneverV ≥ 2, n ≥ V − 1 andε < 1/4.
The combination of (3) and (4) yield that for any concept classC, with V ≥ 2, n ≥ V ,

andε < 1/4,

1

2e
√
π(V − 1)

(
2neε

V − 1

)(V−1)/2

e−4nε/(1−4ε)

≤ inf
gn

sup
(µ,C)

P{L(gn) ≥ ε} ≤ 2

(
2ne

V

)V

e−nε log 2/2.

Note that in terms ofn andε, there is an order-of-magnitude gap between the upper and
lower bounds: the pre-exponent of the upper bound is roughly of the order ofnV , while that
of the lower bound is(nε)V . The “interesting” values ofε are clearly around 1/n, therefore
the difference may be quite significant. (The improved version of (3) in (Shawe-Taylor
et al., 1993) also leaves the gap open.) For some concept classes—for example for the class
of unions ofV initial segments discussed below—it is possible to prove an upper bound
which, apart from constant factors, coincides with the lower bound (4). It is an interesting
open question if the lower bound is tight for all concept classes.
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In some sense, lower bounds of the form of (2) and (4) are not satisfactory. They do
not tell us anything about the way the error decreases as the sample size is increased for a
given classification problem. These bounds, for eachn, give information about the maximal
error within the class, but not about the behavior of the error for a single fixed distribution-
target pair as the sample sizen increases. In other words, the “bad” distribution-target pair,
causing the largest error for a learning rule, may be different for eachn. For example, the
lower bound (2) does not exclude the possibility that there exists a sequence of classifiers
{gn} such that foreveryµ andC the expected errorEL(gn) decreases at an exponential
rate inn. Indeed, it is easy to see that such classes exist with arbitrarily large, and even
with infinite, VC dimension (see Propositions 1 and 2 below). Schuurmans (1995) studied
the question when such exponential decrease occurs, and characterized it among certain
“one-dimensional” problems. We are interested in “strong” minimax lower bounds that
describe the behavior of the error for a fixed distribution-target pair(µ,C) as the sample
sizen grows. For example, the sequence{an} of positive numbers is astrong minimax
lower boundfor the expected error forC if

inf
{gn}

sup
(µ,C)

lim sup
n→∞

EL(gn)

an
≥ 1,

where the infimum is taken over allsequences{gn} of classifiers and the supremum is taken
over all distribution-target pairs withC ∈ C. A slightly different, but essentially equivalent,
definition requires that for all sequences{gn}, there exists a fixed pair(µ,C) such that
EL(gn) ≥ an for infinitely many n. The notion of strong minimax lower bounds can be
defined similarly for tail probabilities by replacingEL(gn) by P{L(gn) ≥ εn}, where{εn}
is a fixed sequence of positive numbers.

The purpose of this paper is to establish minimax lower bounds in the described strong
sense. The main results extend the lower bounds of (2) and (4). Because of the reason
mentioned above, this is clearly not possible for allVC classes. However, the extension is
possible for many important geometric concept classes, and the role of theVC dimension is
played by the number of parameters of the class, which, in all of our examples, is closely
related to theVC dimension of the class. Thus, the situation here significantly differs
from that of the usual minimax theory, where a single combinatorial parameter—theVC

dimension—completely determines the behavior of the concept class.
We close this introduction by illustrating through a simple example why it is impossible

to give a “strong” extension of the lower bound of (2) for allVC classes. (See Schuurmans
(1995) for much more on this.) It can be seen similarly that no strong extension of (4) can
be given for allVC classes either.

As the simplest example, letC be any class containing finitely many concepts. Then
consider a learning rule that selects a conceptCn from C which is consistent with the data
Dn, that is,gn(x) = I{x ∈Cn} for someCn ∈ C, and

gn(Xi ) = I{Xi ∈C} for all i = 1, . . . ,n,

whereC ∈ C is the true concept. Then (3) implies that

EL(gn) ≤ 2V log(2n)+ 4

n log 2
,
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whereV is theVC dimension ofC. The beauty of this bound is that it is independent of the
distribution-target pair, and that it is essentially the best such bound (see (Haussler et al.,
1994, Theorem 4.2)). However, forall distribution-target pairs, the error decreases at a
much faster rate. This can be seen from the simple fact thatgn can only make an error if
there is at least one conceptC′ ∈ C with µ(C′4C) > 0 such that no one ofX1, . . . , Xn falls
in the symmetric difference ofC′ andC. The probability of this event is at most∑

C′ ∈ C :µ(C′4C)>0

(1− µ(C′4C))n ≤ |C| max
C′ ∈ C :µ(C′4C)>0

(1− µ(C′4C))n,

which converges to zero exponentially rapidly. Since a finite concept class can have an
arbitraryVC dimension, this proves the following:

Proposition 1. Let V be an arbitrary positive integer. There exists a classCwithVCdimen-
sion V and a corresponding sequence of learning rules{gn} such that for all distribution-
target pairs(µ,C) with C∈ C and for all n,

EL(gn) ≤ a · bn,

where b< 1. The positive constants a and b depend on the distribution-target pair.

If a concept classC is finite, itsnth shatter coefficients(n) is bounded above by|C| for
all n, that is, the shatter coefficients do not increase withn for largen. In such cases it is not
surprising that the error can decrease at an exponential rate for all distribution-target pairs.
It is natural to ask if the growth ofs(n) determines the rate of convergence of the error.
This conjecture is false, and in fact, we may have an exponential rate of convergence for all
distribution-target pairs even for classes with infiniteVC dimension (for whichs(n) = 2n

for all n):

Proposition 2. There exists a classC with V=∞ and a corresponding sequence of
learning rules{gn}, such that for all distribution-target pairs and for all n,

EL(gn) ≤ a · bn,

where b< 1. The positive constants a and b depend on the distribution-target pair.

Proof: LetX = R and letC contain all finite subsets ofR. Let gn(x) = 1 if and only if
there exists anXi such thatx = Xi and I{Xi ∈C} = 1. 2

The rest of the paper is organized as follows. In Section 2 we introduce a general tool,
an application of the “probabilistic method”, for obtaining strong minimax lower bounds.
In Section 3 we provide strong minimax lower bounds for the expected probability of error
EL(gn) if the concept classCk is the class of unions ofk initial segments. (This class was
introduced in (Haussler et al., 1994).) In particular, we show that for every sequence of
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learning rules{gn}, there exist a distribution-target pair(µ,C) such that ifC is the “true”
concept, then

EL(gn) > (1− ε) k

2n
for infinitely manyn,

whereε is an arbitrarily small fixed number; see Theorem 1 for the precise statement. Since
theVC dimension of this class isk, this result states that there always exists a distribution-
target pair such that the error is essentially within a factor of two of the upper bound of (1)
infinitely many times. We extend this result to more general classes of concepts showing
that the above lower bound remains true for many other important classes of “dimension”k.
(Here by dimension we mean the number of parameters of the class, which, in most of our
cases, essentially coincides with theVC dimension of the class.) These examples include
the class of halfspaces, the class ofd-dimensional intervals, the class of euclidean balls, the
class of all ellipsoids, certain classes of neural networks, etc.

Section 4 extends the results of Section 3 for the expectedcumulativeerror.
Section 5 contains the main results of the paper. Here we present analogous lower bounds

for the tail probabilitiesP{L(gn) ≥ ε}, which extend (4). Clearly, these bounds are much
more informative than bounds for the expected value ofL(gn), however, their proof is much
more technical. Parts of the proofs are given in Appendix 2.

2. The probabilistic method

In this technical section we present a simple lemma that equips us with a general tool for
proving strong minimax lower bounds. LetRn(z) be a sequence of nonnegative numbers
parametrized by an abstract parameterz from a setZ. Assume that we wish to prove that for
some fixedn, there exists az∈Z such thatRn(z) ≥ an, wherean > 0. Then it suffices to find
a random variableZ onZ such thatP{Rn(Z) ≥ an}> 0. This simple trick is the basic idea
of the powerful “probabilistic method”. Another, equally simple, way for obtaining a lower
bound by the probabilistic method is using the trivial fact that for any random variableZ,

sup
z∈Z

Rn(z) ≥ ERn(Z). (5)

For example, we may takeRn(z)=EL(gn), where the parameter spaceZ is obtained by a
suitable parametrization of the concept classC, and the parameterzcorresponds to a concept
C ∈ C. Thus, to show that there exists a concept such that the errorEL(gn) is greater than
an, one might use one of the ideas above. In fact (5) is at the heart of the proof of essentially
all minimax lower bounds we are aware of.

In this paper we wish to prove something of a stronger form: there exists a fixedz∈Z such
that Rn(z) ≥ an for infinitely many n, wherea1,a2, . . . is a sequence of positive numbers.
The first difficulty to overcome is that the randomizing distribution cannot depend onn any
longer. However, it is not sufficient to find a fixed random variableZ such thatERn(Z) ≥ an

for all n. An additional stability property is needed to obtain a bound of the desired form.
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The following lemma provides a simple way of proving lower bounds of the desired
form. A somewhat weaker version is implicitly used by Schuurmans (1995). A significantly
stronger form and more discussion is added in Appendix 1.

Lemma 1. Let Rn(z) be a sequence of nonnegative numbers parametrized by an abstract
parameter z from a setZ. If there exists a random variable Z taking its values fromZ such
that

ess supRn(Z)

ERn(Z)
6→ ∞ as n→∞, (6)

then there exists a z∈Z such that for every0< ε < 1,

Rn(z) > (1− ε)E{Rn(Z)} for infinitely many n.

(Recall that for a random variable X, ess supX = inf{x : P{X > x} = 0}.)

Proof: It suffices to prove that

P
{

lim sup
n→∞

Rn(Z)

ERn(Z)
≥ 1

}
> 0.

Condition (6) means that there exists a sequence{ni }of indices along which the subsequence
ess supRni (Z)/ERni (Z) is bounded. Thus, Fatou’s lemma may be applied to the sequence
of random variablesRni (Z)/ERni (Z), i = 1, 2, . . . to obtain

E
{

lim sup
n→∞

Rn(Z)

ERn(Z)

}
≥ E

{
lim sup

i→∞

Rni (Z)

ERni (Z)

}
≥ lim sup

i→∞
E
{

Rni (Z)

ERni (Z)

}
= 1,

and the statement follows. 2

Remark. Lemma 1 states that minimax lower bounds obtained by using the simplest form
(5) of the probabilistic method can be extended to their strong form if the randomizationZ
does not depend onn, and, in addition, the stability property

ess supRn(Z)

ERn(Z)
6→ ∞

is verified. The following example demonstrates that this additional condition cannot
be dropped, and some kind of stability condition is necessary. LetC = {{x} : x ∈X }
be the class of one-point concepts on the domainX of positive integers. Let{gn} be an
arbitrary sequence of learning rules, and forz∈X , defineRn(z) = P{gn(X, Dn(z)) 6=Y(z)},
whereY(z) = I{X=z}, and Dn(z) = ((X1, I{X1= z}), . . . , (Xn, I{Xn= z})). Let P{X= i }=
c/(i log2 i ) for an appropriate normalizing constantc, and introduce the random variable
Z distributed asX, and independent ofX, X1, . . . , Xn. Using a similar argument as in the
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proof of Theorem 1, one sees that for everyn, ERn(Z) ≥ const./(n + 2)5/2. However,
similar to the proof of Proposition 2, one can show easily that there exists a sequence{gn}
such that for everyz, Rn(z) converges to zero exponentially rapidly. This demonstrates the
fact that a lower bound forERn(Z) cannot necessarily be converted into a strong minimax
lower bound, even if the randomizationZ is independent ofn. An additional condition,
such as (6) needs to be satisfied.

Remark. Finding a fixed random variableZ such thatERn(Z) ≥ an for all n, is useful
in a different situation, even if the additional stability property (6) cannot be verified. It
allows us to derive lower bounds for the cumulative error. In particular, in such a case we
have, for everyn, that

sup
z∈Z

(
n∑

i=0

Ri (z)

)
≥

n∑
i = 0

ERi (Z). (7)

We discuss lower bounds for the cumulative error in Section 4.

3. Bounds for the expected probability of error

In this section we provide examples of concept classes for which the minimax lower bound
(2) for the expected probability of errorEL(gn) = P{gn(X) 6= I{X ∈C}} can be extended to
its strong version. All examples shown here are based on lower bounds obtained for a very
simple concept class. The classCk of unions ofk initial segments is defined as follows: let
X = [0, 1]× {1, 2, . . . , k}, and

Ck =
{

k⋃
j=1

([0, zj ] × { j }) : z∈ [0, 1]k
}
. (8)

The classCk is therefore parametrized by a vector ofk parameters:z= (z1, . . . , zk)∈ [0, 1]k.
Clearly, theVC dimension ofCk is alsok. For this class, we have the following result:

Theorem 1. Letµ be the uniform distribution onX . For every sequence of learning rules
{gn}, there exist a C∈ Ck such that if C is the“ true” concept, then for all0< ε < 1,

EL(gn) > (1− ε) k

2n
for infinitely many n.

Remark. Haussler et al. (1994, Theorem 3.2) showed for the classCk of unions ofk initial
segments that for every learning rule, and for everyn, there exists aC ∈ Ck such that

EL(gn) ≥ k

2n
− O(n−2).

Furthermore, in their proof of this lower bound, the randomizationZ is independent ofn.
To make the proof of Theorem 1 short, we use many elements of the proof of the above
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inequality. A different proof (for a slightly weaker version) of Theorem 1 may be found in
(Antos & Lugosi, 1996).

Remark. Note that the lower boundk/(2n) − O(n−2) for the minimax expected error is
better in the constant factor than the bound of (2). However, it is less general, since it does
not apply to anyVC class.

Remark. It is clear from the proof of the theorem that the uniform distribution may be
replaced by any nonatomic distribution onX .

Proof: Let z∈ [0, 1]k be the parameter that determinesC ∈ Ck. First we introduce some
notation. LetY(z) = I{X ∈C},Yi (z) = I{Xi ∈C}, andDn(z) = ((X1,Y1(z)), . . . , (Xn,Yn(z))).
DenoteX = 〈U,M〉 so thatU is uniformly distributed on [0, 1], M is uniform on{1, . . . , k},
andU andM are independent. Introduce

l = max{u∈ [0, 1] : u ≤ U and〈u,M〉 ∈ {X1, . . . , Xn} ∪ 〈0,M〉}
and

r = min{u∈ [0, 1] : u ≥ U and〈u,M〉 ∈ {X1, . . . , Xn} ∪ 〈1,M〉},

that is,l andr are the left and right neighbors ofU among the data points falling on the
M th segment. Finally, define the following (random) sets of parameters:

Ln = {z∈ [0, 1]k : zM ∈ [l ,U )} and Rn = {z∈ [0, 1]k : zM ∈ [U, r )}.

Clearly,

EL(gn) ≥ Rn(z)
def= P{gn(X, Dn(z)) 6= Y(z), z∈ Ln ∪ Rn}.

We apply Lemma 1 forRn(z). (The reason why we do not defineRn(z) as the expected
probability of errorEL(gn) itself is that this is the only way we can ensure that the additional
stability property (6) required by Lemma 1 holds.) We will show that if the random vector
Z = (Z1, . . . , Zk) is uniformly distributed on [0, 1]k and independent ofX, X1, . . . , Xn,
then

E{Rn(Z)} ≥ k

2(n+ 1)
− k2

2(n+ 1)(n+ 2)

(
1−

(
1− 1

k

)n+2
)
, (9)

and supz Rn(z)/E{Rn(Z)} does not tend to infinity, from which the theorem follows.
First we prove the lower bound for the expected value ofRn(Z). By the independence

of Z andX, X1, . . . , Xn,

Rn(Z) = P{gn(X, Dn(Z)) 6= Y(Z), Z ∈ Ln ∪ Rn | Z}, (10)
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and

E{Rn(Z)} = P{gn(X, Dn(Z)) 6= Y(Z), Z ∈ Ln ∪ Rn}
= E{P{gn(X, Dn(Z)) 6= Y(Z), Z ∈ Ln ∪ Rn | X, X1, . . . , Xn}}
= E{P{gn(X, Dn(Z)) 6= Y(Z) | Z ∈ Ln, X, X1, . . . , Xn}
×P{Z ∈ Ln | X, X1, . . . , Xn}
+P{gn(X, Dn(Z)) 6= Y(Z) | Z ∈ Rn, X, X1, . . . , Xn}
×P{Z ∈ Rn | X, X1, . . . , Xn}}
≥ E{min(P{Z ∈ Ln | X, X1, . . . , Xn},P{Z ∈ Rn | X, X1, . . . , Xn})}
= E{min(U − l , r −U )}

= k

2(n+ 1)
− k2

2(n+ 1)(n+ 2)

(
1−

(
1− 1

k

)n+2
)
,

where the last equality follows from direct calculation, which is detailed in the proof of
Theorem 3.2 in (Haussler et al., 1994).

On the other hand, we observe that for each fixedz∈ [0, 1]k,

Rn(z) ≤ P{z∈ Ln ∪ Rn} ≤ 2k

n+ 1
. (11)

This may be seen by conditioning on theset {X, X1, . . . , Xn}, and observing that since
X, X1, . . . , Xn are i.i.d., the probability remains the same by permuting them. Of the
(n+ 1)! permutations, there are at most 2kn! such thatX is a neighbor of one of thezi ’s.
Therefore,

supz Rn(z)

ERn(Z)
≤ 4+ o(1),

so the condition of Lemma 1 is satisfied, and the proof of the theorem is complete.2

We may extend Theorem 1 to other important classes of geometric concepts by embed-
ding. For example, we have the following straightforward corollary of Theorem 1.

Corollary 1. LetX = Rd, and letC be a class of concepts defined onX . If there exist
invertible measurable mappings f1, . . . , fk : [0, 1]→ Rd such that the sets fi ([0, 1]) are
disjoint and for all z= (z1, . . . , zk)∈ [0, 1]k there exists a C∈ C with

C ∩ ( f1([0, 1]) ∪ · · · ∪ fk([0, 1])) = f1([0, z1]) ∪ · · · ∪ fk([0, zk]),

then for any sequence of classifiers{gn}, there exists a distribution-target pair(µ,C) with
µ concentrated on f1([0, 1]) ∪ · · · ∪ fk([0, 1]) and C∈ C such that for all0< ε < 1,

EL(gn) >
(1− ε)k

2n
for infinitely many n.
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The above corollary may be applied to many important geometric concept classes. Below
we give a short list of examples. The proofs are quite straightforward, most of them can be
found in (Haussler et al., 1994, p. 279).

1. If C is the class of subsets ofR that can be written as a union ofm intervals, thenk = 2m.
2. k = d for the class ofd-dimensional octants:{

x ∈Rd : xi ≤ ai , i = 1, . . . ,d
}
, a1, . . . ,ad ∈R,

wherex1, . . . , xd are the components of the vectorx.
3. k = 2d for the class ofd-dimensional intervals:{

x ∈Rd : ai ≤ xi ≤ bi , i = 1, . . . ,d
}
,

wherea1, b1, . . . ,ad, bd ∈R.
4. k = d if C is the class of halfspaces ofRd, that is, sets of the form{

x :
d∑

i=1

ai xi + a0 ≥ 0

}
, a0,a1, . . . ,ad ∈R.

5. k = d if

C =
{{

x ∈Rd :
d∏

i=1

(xi − ai ) ≥ 0

}
: a1, . . . ,ad ∈R

}
.

6. k = d + 1 for the class of balls inRd:{
x ∈Rd :

d∑
i=1

(xi − ai )
2 ≤ r

}
,

wherea1, . . . ,ad, r ∈R, r ≥ 0.
7. k = 2d for the class of alld-dimensional ellipsoids:{

x ∈Rd :
d∑

i=1

(xi − ai )
2

bi
≤ 1

}
,

wherea1, b1, . . . ,ad, bd ∈R.
8. k = md for the class of convex polyhedra ofm faces inRd.
9. k = md for the classC of all neural network classifiers onRd with m hidden nodes in

their single hidden layer, that is, eachC ∈ C is of the form{
x :

m∑
i=1

aiσ(bi x
T + ci )+ a0 ≥ 0

}
,
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wherea0, . . . ,am, c1, . . . , cm∈R, b1, . . . ,bm∈Rd, and σ is the threshold sigmoid
σ(x) = I{x> 0}. (xT denotes the transpose of a vectorx.)

Remark. Based on Corollary 1, we may define a new “dimension”1 for a concept class
C as follows: let1 be the largest integerk such that there existk invertible measurable
mappings f1, . . . , fk : [0, 1] → Rd such that the setsfi ([0, 1]) are disjoint and for all
z= (z1, . . . , zk)∈ [0, 1]k there exists aC ∈ C with

C ∩ ( f1([0, 1]) ∪ · · · ∪ fk([0, 1])) = f1([0, z1]) ∪ · · · ∪ fk([0, zk]).

If no such mapping exists then1 = 0, and if for eachk there arek mappings with the above
property, then1 = ∞.

Corollary 1 shows the relation of1 to strong minimax lower bounds for the expected
error. Lower bounds for1 may be obtained in specific cases by construction. For upper
bounds, note that it is easy to see that1 ≤ V , since a set{x1, . . . , x1} is shattered byC if
for eachi ≤ 1, xi ∈ fi ([0, 1]). Further, it is easy to see that for eachn,

s(n) ≥
⌊ n

1

⌋1
(just put at leastbn/1c of the n points on each imagefi ([0, 1]) of the segment [0, 1],
i = 1, . . . , 1), which means that also1 ≤ D, whereD is theAssouad densityof C, defined
as

D = inf

{
r > 0 : sup

n

s(n)

nr
<∞

}
,

see Assouad (1983). (It is well-known thatD ≤ V , D <∞ if and only if V <∞, and that
for eachk there exists a classC with V = k andD = 0.) Thus, we have

1 ≤ D ≤ V.

On the other hand, it follows from Proposition 2 and Corollary 1 that there exists a classC
such thatD = V = ∞, but1 = 0.

4. Cumulative error bounds

Let {gn} be a sequence of learning rules. Thecumulative erroris defined as

n∑
i=0

I{gi (Xi+1,Di ) 6= I{Xi+1 ∈C}},

that is, the number of errors committed by the sequence in the firstn steps, if the firsti
labelled examples are always used to predict the label of the(i + 1)th example. Based on
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the results of the previous section, it is easy to obtain strong minimax lower bounds for the
expected value of the cumulative error.

It is a direct consequence of (1) that there exists a sequence of learning rules such that
for all distribution-target pairs

E

{
n∑

i=0

I{gi (Xi+1,Di )6=I{Xi+1∈C}}

}
≤ V log(n+ 1)+ 1.

(see (Haussler et al., 1994)).
Haussler et al. (1994) considered minimax lower bounds for the expected cumulative

error. The observation (7) is at the basis of the proof of their Corollary 3.1 where it is
proved1 for the classCk introduced in Section 3 that for everyn, and for every sequence of
learning rules, there exists a distribution-target pair such that the expected cumulative error
satisfies

E

{
n∑

i=0

I{gi (Xi+1,Di )6=I{Xi+1∈C}}

}
≥ k

2

(
log

n+ 1

k
− 1

)
. (12)

We have the following “strong” extension of the above minimax lower bound:

Theorem 2. Let µ be the uniform distribution on[0, 1]×{1, 2, . . . , k}. For every se-
quence of learning rules{gn}, there exist a C∈ Ck such that for all0< ε < 1,

E

{
n∑

i=0

I{gi (Xi+1,Di ) 6= I{Xi+1 ∈C}}

}
> (1− ε)k

2
logn for infinitely many n.

Proof: We apply Lemma 1 with

Rn(z)
def=

n∑
i = 0

P{gi (Xi+1, Di (z)) 6= Yi+1(z), z∈ Li ∪ Ri }.

(Recall the definition ofYi (z), Di (z), Li andRi from Section 3.) Clearly,

E

{
n∑

i=0

I{gi (Xi+1,Di ) 6= I{Xi+1 ∈C}}

}
=

n∑
i=0

P{gi (Xi+1, Di (z)) 6= Yi+1(z)} ≥ Rn(z).

Then it follows from (9) that ifZ is uniform on [0, 1]× {1, 2, . . . , k}, and independent of
X, X1, X2 . . . , then

ERn(Z) ≥ k

2

(
log

n+ 1

k
− 1

)
.



P1: KCUP1: KCU

Machine Learning KL535-01-antos December 31, 1997 9:14

44 A. ANTOS AND G. LUGOSI

(For the details see Haussler et al., 1994, p. 278.) On the other hand, (11) implies that for
eachz,

Rn(z) ≤
n∑

i=0

2k

i + 1
≤ 2k(log(n+ 1)+ 1),

so condition (6) is satisfied, which completes the proof. 2

5. Bounds for the tail probabilities

The purpose of this section is to give strong lower bounds of the following type: letC
be a class of concepts, and let{εn} be a sequence of positive numbers. Then for any
sequence of learning rules{gn}, there exists a distribution-target pair(µ,C)with C ∈ C such
that

P{L(gn) ≥ εn} ≥ an for infinitely manyn.

Here we would like to have

an ≈ (c0nεn)
kc1e−nεnc2

for some constantsc0, c1, c2, wherek is the “dimension” ofC so that the result is indeed an
extension of (4). For some sequences ofεn’s (which we believe to be the most interesting
ones) we will be able to prove such results ifC is one of the geometric concept classes
discussed in Section 3.

Clearly, the most interesting values ofεn are constant multiples of 1/n, since this is the
range where the probability of errorL(gn) of a good learning rulegn is expected to be with
high probability. Our main result extends (4) to such values ofεn:

Theorem 3. Let Ck be the class of unions of k initial segments as defined in(8), and let
µ be the uniform distribution onX = [0, 1] × {1, . . . , k}. Letγ ≥ 0 be fixed, and define
εn = γ /n. For any sequence{gn} there exists a C∈ Ck such that for eachδ ∈ (0, 1),

P{L(gn) ≥ εn} ≥ (1− δ)1
2

k−1∑
i = 0

(cγ )i

i !
e−cγ for infinitely many n, (13)

where c= log 256≈ 5.545.

Remark. At the price of more complicated arguments, the value of the constantc may be
improved to something slightly larger than 2. However, it is not our aim here to search for
the sharpest constants, so we stay with suboptimal constants and simpler arguments.
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Note that since

k−1∑
i=0

(cγ )i

i !
e−cγ ≥

(
cγ

k− 1

)k−1

e−cγ ,

apart from constants, the lower bound of Theorem 3 has the same form as that of (4). By
the same embedding argument as the one used in Corollary 1, Theorem 3 can be extended
to the concept classes listed in Section 3. The intuitive idea behind the proof of Theorem 3
is that in each of thek initial segments, inside the interval between the rightmost data point
labelled by 1 and the leftmost data point labelled by 0, no learning rule can do better than
mere guessing. Thus, the sum of the lengths of these intervals determines the size of the
minimal probability of error. In the proof we exploit the fact that the length of these intervals
have approximately exponential distribution, and they are almost independent, therefore we
may approximate the minimax tail distribution ofL(gn) by the tail of an appropriate gamma
distribution.

Proof of Theorem 3: First we introduce some notation:

U−nj = max{u ∈ [0, 1] : 〈u, j 〉 ∈ {Xi : Yi = 1} ∪ 〈0, j 〉},

U+nj = min{u ∈ [0, 1] : 〈u, j 〉 ∈ {Xi : Yi = 0} ∪ 〈1, j 〉},

A′nj = (U−nj ,U
+
nj ),

Anj = A′nj × { j },

An =
k⋃

j = 1

Anj .

Step 1. We apply Lemma 1 forRn(z) = Rn,εn(z), where for eachε > 0,

Rn,ε(z)
def= P{L(gn) > ε}=P

{∫
X

I{gn(x,Dn(z)) 6=Y(x,z)} dµ(x) > ε

}
.

(HereY(x, z) = I{x ∈Cz}, whereCz is the concept associated with the parameterz∈ [0, 1]k.)
Just like in the proof of Theorem 1, letZ = (Z1, . . . , Zk) be uniformly distributed on
[0, 1]k, and independent ofX, X1, . . . , Xn. SinceRn,εn(z) is always bounded above by 1,
and since the desired lower bound of (13) is independent ofn, it suffices to prove a suitable
lower bound forERn,ε(Z), as the stability property (6) is automatically satisfied. We will
show that for eachn andε,

ERn,ε(Z) ≥ 1

2

k−1∑
i = 0

(cγ )i

i !
e−cγ − 1

2

[(
k−1∑
i = 0

(cγ )i

i !
e−cγ

)
ke−n/k + ke−

n
k (1−

√
e

2 )

]
(14)
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(whereγ = nε), which proves the theorem, since the term inside the brackets converges to
zero rapidly asn→∞.

Clearly, by the independence ofZ andX, X1, . . . , Xn,

Rn,ε(Z) = P
{∫
X

I{gn(x,Dn(Z)) 6=Y(x,Z)} dµ(x) > ε | Z

}
≥ P

{∫
An

I{gn(x,Dn(Z)) 6=Y(x,Z)} dµ(x) > ε | Z

}
.

Thus, we have

ERn,ε(Z) ≥ P
{∫

An

I{gn(x,Dn(Z)) 6=Y(x,Z)} dµ(x) > ε

}
= E

{
P
{∫

An

I{gn(x,Dn(Z)) 6=Y(x,Z)} dµ(x) > ε | Dn(Z)

}}

= E

{
P

{
k∑

j=1

∫
Anj

I{gn(x,Dn(Z)) 6=Y(x,Z)} dµ(x) > ε | Dn(Z)

}}
.

Step 2. In this step we obtain a lower bound forP{L(gn) > ε} in terms of the spacings
containing theZi ’s. Let ξnj = U+nj −U−nj . For alln andε > 0,

ERn,ε(Z) ≥ 1

2
P

{
1

k

k∑
j=1

ξnj ≥ 4ε

}
.

Proof: Clearly,∫
Anj

I{gn(x,Dn(Z)) 6=Y(x,Z)} dµ(x) = 1

k
λ(Anj ∩ (Bnj 4 C)) = 1

k
λ(Bnj 4 Cnj ),

whereλ is the one-dimensional Lebesgue measure, and

Bnj = {x ∈ Anj : gn(x, Dn(Z)) = 1},

and

Cnj = C ∩ Anj .

Then it follows by Lemma 3 in Appendix 2 that∫
Anj

I{gn(x,Dn(Z)) 6=Y(x,Z)} dµ(x) ≥ 1

k
|U−nj + λ(Bnj )− Z j |,
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and therefore

P

{
k∑

j=1

∫
Anj

I{gn(x,Dn(Z))6=Y(x,Z)} dµ(x) > ε | Dn(Z)

}

≥ P

{
1

k

k∑
j=1

|U−nj + λ(Bnj )− Z j | > ε | Dn(Z)

}

≥ 1

2
I{ 1

k

∑k
j=1 ξnj ≥ 4ε},

where the last inequality is proved in Lemma 4 (see Appendix 2). Taking expected values
of both sides, we obtain

ERn,ε(Z) ≥ 1

2
P

{
1

k

k∑
j=1

ξnj ≥ 4ε

}

as desired. 2

Step 3. Obviously,

P

{
1

k

k∑
j = 1

ξnj ≥ 4ε

}
≥ P

{
1

k

k∑
j=1

ξnj ≥ 4ε, ∀Nj > 0

}
,

whereNj denotes the number ofXi ’s falling on thej th initial segment. IfNj > 0, givenNj ,
the conditional distribution ofξnj is the same as the distribution of the sum of two spacings
defined byNj + 1 i.i.d. uniform random variables on [0, 1], that is, for allε ∈ [0, 1],

P{ξnj ≥ ε | N1, . . . , Nk} = P{ξnj ≥ ε | Nj } = (1− ε)Nj (1+ Nj ε)

(see, e.g., Reiss, 1989). A crucial step of the proof is approximating the conditional
distributions of theξnj ’s by appropriate exponential distributions. ForNj > 0, define
λ j = Nj log 4− 2 log(1+ Nj /2), and define the random variablesξ ′n1, . . . , ξ

′
nk such that

given N1, . . . , Nk, they are conditionally independent, and the conditional distribution of
ξ ′nj is exponential with parameterλ j , that is,

P{ξ ′nj ≥ ε | N1, . . . , Nk} = P{ξ ′nj ≥ ε | Nj } = e−λ j ε .

(If Nj = 0 for some j , thenP{ξ ′nj ≥ ε | N1, . . . , Nk} is defined arbitrarily.) Then, by
Lemma 5 in Appendix 2, for allε,

P

{
1

k

k∑
j = 1

ξnj ≥ 4ε, ∀Nj > 0

}
≥ P

{
1

k

k∑
j = 1

ξ ′nj ≥ 4ε, ∀Nj > 0

}
− ke−

n
k (1−

√
e

2 ).
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Step 4. To finish the proof of (14), it remains to show that

P

{
1

k

k∑
j = 1

ξ ′nj ≥ 4ε, ∀Nj > 0

}
≥

k−1∑
i=0

(cγ )i

i !
e−cγ (1− ke−n/k).

To do this, we may proceed as follows:

P

{
1

k

k∑
j = 1

ξ ′nj ≥ 4ε, ∀Nj > 0

}
= E

{
I{∀Nj>0}P

{
1

k

k∑
j = 1

ξ ′nj ≥ 4ε | N1, . . . , Nk

}}

≥ E

{
I{∀Nj>0}P

{
1

k

k∑
j = 1

ξ ′′nj ≥ 4ε | N1, . . . , Nk

}}
(where theξ ′′nj are defined exactly as theξ ′nj but withλ j replaced
by λ′j = Nj log 4)

≥ E
{

I{∀Nj>0}P
{∑k

j = 1 λ
′
j ξ
′′
nj∑k

i=1 λ
′
j

≥ 4ε | N1, . . . , Nk

}}
(by Lemma 6 in Appendix 2)

= E

{
I{∀Nj>0}P

{
8k ≥ 4ε

k∑
i=1

λ′j | N1, . . . , Nk

}}
(where givenN1, . . . , Nk, the random variable8k has kth order gamma
distribution with parameter 1, since givenNj , eachλ′j ξ

′′
nj has exponential

distribution with parameter 1).

= E{I{∀Nj>0}P{8k ≥ 4nε log 4| N1, . . . , Nk}}
(
since

∑k
i = 1 λ

′
j = n log 4

)
= E

{
I{∀Nj>0}

k−1∑
i = 0

(cγ )i

i !
e−cγ

}
=

k−1∑
i = 0

(cγ )i

i !
e−cγP{∀Nj > 0}

≥
k−1∑
i = 0

(cγ )i

i !
e−cγ (1− ke−n/k),

since

P{∀Nj > 0} ≥ 1− kP{N1 = 0} = 1− k

(
1− 1

k

)n

≥ 1− ke−n/k,

and the proof of (14) is finished, so the proof of the theorem is complete. 2

The reason why we can prove strong tail lower bounds only for certain sequences ofεn’s
is that the stability condition (6) is difficult to check in more general cases thanεn = γ /n
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for some fixedγ . It is possible, however, to generalize Theorem 3 for other sequences. The
proof of the following generalization is identical to that of Theorem 3:

Theorem 4. LetCk be the class of unions of k initial segments, and letµ be the uniform
distribution onX = [0, 1] × {1, . . . , k}. Let nj → ∞ ( j = 1, 2, . . .) be a sequence of
positive integers, and letε j be nonnegative numbers such thatγ j = nj ε j does not tend
to∞ as j → ∞. Then for any sequence{gn} there exists a C∈ Ck such that for each
δ ∈ (0, 1),

P{L(gnj ) ≥ ε j } ≥ (1− δ)1
2

k−1∑
i = 0

(cγ j )
i

i !
e−cγ j for infinitely many j,

where c= log 256.

Appendix 1: Sharpening and remarks to Section 2

The following is a significantly stronger form of Lemma 1.

Lemma 2. Let Rn(z) be a sequence of nonnegative numbers parametrized by an abstract
parameter z from a setZ, and let Z be a random variable taking its values fromZ. If for
some p> 1, E{Rn(Z)p}/Ep{Rn(Z)} does not tend to∞ then either

P
{

lim sup
n→∞

Rn(Z)

ERn(Z)
> 1

}
> 0

or

lim sup
n→∞

Rn(Z)

ERn(Z)
= 1 with probability one.

Remark. In any case,

P
{

lim sup
n→∞

Rn(Z)

ERn(Z)
≥ 1

}
> 0,

which implies that there exists az∈Z such that for everyε ∈ (0, 1) Rn(z) > (1−ε)ERn(Z)
for infinitely manyn.

Proof: Let S= lim supn→∞
Rn(Z)

ERn(Z)
. Assume, on the contrary, thatS≤ 1 with probability

one andP{A}> 0, whereA={S< 1}. Forδ > 0, define

X = max

(
S+ 1

2
, 0

)
I A + (1+ δ)(1− I A).
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Since

EX = E
{

max

(
S+ 1

2
, 0

) ∣∣∣∣ A

}
P{A} + (1+ δ)(1− P{A})

= 1−
(

1− E
{

max

(
S+ 1

2
, 0

) ∣∣∣∣ A

})
P{A} + δ(1− P{A}),

and(1− E{max( S+1
2 , 0) | A})P{A} > 0, we may chooseδ so small thatEX < 1. Also,

0 ≤ X ≤ 1 + δ with probability one. Introduce the eventsAn = { Rn(Z)
ERn(Z)

≤ X}, and
Bn =

⋂
m≥ n Am. SinceS< X with probability one,An occurs with probability one for

sufficiently largen, that is,

1= P

{ ∞⋃
n= 1

⋂
m≥n

Am

}
= P

{ ∞⋃
n= 1

Bn

}
= lim

n→∞P{Bn}.

Thus, for everyk we haveP{Bn} > 1− 1/k if n is sufficiently large. SinceBn ⊆ An, we
have

E
{

Rn(Z)

ERn(Z)
I Bn

}
≤ E

{
X IBn

}
,

and therefore

E
{

Rn(Z)

ERn(Z)

(
1− I Bn

)} = E
{

Rn(Z)

ERn(Z)

}
− E

{
Rn(Z)

ERn(Z)
I Bn

}
≥ E

{
Rn(Z)

ERn(Z)

}
− E

{
X IBn

}
≥ 1− E{X} > 0.

Let 1/q = 1−1/p, and apply H¨older’s inequality for the random variablesRn(Z)
ERn(Z)

(1− I Bn)

and(1− I Bn):

E1/p

{(
Rn(Z)

ERn(Z)

)p (
1− I Bn

)}
E1/q

{(
1− I Bn

)} ≥ E
{

Rn(Z)

ERn(Z)

(
1− I Bn

)}
.

Thus,

E{Rn(Z)p}
EpRn(Z)

= E
{(

Rn(Z)

ERn(Z)

)p}
≥ E

{(
Rn(Z)

ERn(Z)

)p (
1− I Bn

)}
≥ Ep

{
Rn(Z)

ERn(Z)

(
1− I Bn

)} 1

(1− P{Bn})p−1
> (1− E{X})pkp−1

for sufficiently largen. Therefore,E{Rn(Z)p}/EpRn(Z) tends to infinity, a contradiction.
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Remark. Note that Lemma 2 is indeed stronger than Lemma 1, since condition (6) implies
thatE{Rn(Z)p}/Ep{Rn(Z)} 6→ ∞, but not vice versa. However, the inequality

P
{

lim sup
n→∞

Rn(Z)

ERn(Z)
≥ 1

}
> 0

cannot be strengthened even if (6) is assumed in the sense that even under (6) we may have{
lim sup

n→∞
Rn(Z)

ERn(Z)
> 1

}
⊆ {Rn(Z) > ERn(Z) for infinitely manyn}

⊆ {Rn(Z) ≥ ERn(Z) for infinitely manyn}
= ∅.

To see this, letZ∼Uniform[0, 1], and considerRn(Z) = nI{Z ∈ (0,1/n)} + n − 2. Then
ERn(Z) = n− 1, ess supRn(Z) = 2n− 2, but

{Rn(Z) ≥ ERn(Z) for infinitely manyn}
= {nI{Z∈(0,1/n)} + n− 2≥ n− 1 for infinitely manyn}
= {nI{Z∈(0,1/n)} ≥ 1 for infinitely manyn}
= {Z ∈ (0, 1/n) for infinitely manyn} = ∅. 2

Appendix 2 : Lemmas for the proof of Theorem 3

The following lemmas are used in the proof of Theorem 3. We use the notation introduced
in the text.

Lemma 3. Let

Enj = (U−nj ,U
−
nj + λ(Bnj ))× { j }.

For all n, j ∈ {1, . . . , k}, z∈ [0, 1]k, and data points X1, . . . , Xn,

λ(Bnj 4 Cnj ) ≥ λ(Enj 4 Cnj ).

Proof: Clearly,λ(Enj ) = λ(Bnj ). Assume, on the contrary, that

λ(Enj 4 Cnj ) > λ(Bnj 4 Cnj ).

Then

either λ(Enj ∩ C̄nj ) > λ(Bnj ∩ C̄nj ) or λ(Ēnj ∩ Cnj ) > λ(B̄nj ∩ Cnj ),
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whereĀ = [0, 1]× { j } − A is the complement of a setA ⊂ [0, 1]× { j }. In the first case
Cnj ⊆ Enj , so we have

λ(Enj ) = λ(Enj ∩ C̄nj )+ λ(Enj ∩ Cnj ) > λ(Bnj ∩ C̄nj )+ λ(Cnj ) ≥ λ(Bnj ),

a contradiction. In the second caseEnj ⊆ Cnj . Then similarly to the first case,

λ(Ēnj ) = λ(Ēnj ∩ C̄nj )+ λ(Ēnj ∩ Cnj ) > λ(C̄nj )+ λ(B̄nj ∩ Cnj ) ≥ λ(B̄nj ),

again a contradiction. 2

Lemma 4.

P

{
1

k

k∑
j = 1

|U−nj + λ(Bnj )− Z j | > ε | Dn(Z)

}
≥ 1

2
I{ 1

k

∑k
j = 1 ξnj ≥ 4ε}.

Proof: Since givenDn, theZ j ’s are independent and uniform on the setsA′nj ,

P

{
1

k

k∑
j = 1

|U−nj + λ(Bnj )− Z j | > ε | Dn(Z)

}

= λk
({

z ∈⊗k
j = 1 A′nj : 1

k

∑k
j = 1 |U−nj + λ(Bnj )− zj | > ε

})
λk
(⊗k

j = 1 A′nj

)
whereλ is the one-dimensional, andλk is thek-dimensional Lebesgue measure. Define
Mnj = 1

2(U
−
nj +U+nj ), and

Tn
def=

k⊗
j = 1

(Mnj ,U
+
nj ).

Then

λk
({

z ∈⊗k
j = 1 A′nj : 1

k

∑k
j = 1 |U−nj + λ(Bnj )− zj | > ε

})
λk
(⊗k

j = 1 A′nj

)
≥ λk

({
z ∈⊗k

j = 1 A′nj : 1
k

∑k
j = 1 |zj − Mnj | > ε

})
λk
(⊗k

j = 1 A′nj

)
= 2kλk

({
z ∈ Tn : 1

k

∑k
j = 1(zj − Mnj ) > ε

})
2kλk(Tn)

≥ λk
({

z ∈ Tn : 1
k

∑k
j = 1(zj − Mnj ) >

1
k

∑k
j = 1

ξnj

4

})
λk(Tn)

= λk
(
Tn ∩

{
z :
∑k

j = 1

(
zj −

(
Mnj + ξnj

4

))
> 0

})
λk(Tn)

,
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whenever1
k

∑k
j = 1 ξnj ≥ 4ε. Observe that the last expression equals 1/2, since the nu-

merator is the volume of the intersection of the rectangleTn with a halfspace defined by a
hyperplane containing the center of the rectangle. The proof is complete. 2

Lemma 5. Let the random variablesξnj andξ ′nj be as defined in the proof of Theorem3.
Then for allε,

P

{
1

k

k∑
j = 1

ξnj ≥ ε, ∀Nj > 0

}
≥ P

{
1

k

k∑
j = 1

ξ ′nj ≥ ε, ∀Nj > 0

}
− ke−

n
k (1−

√
e

2 ).

Proof: It is easy to see that for allNj > 0,

P{ξnj ≥ ε | Nj } ≥ P{ξ ′nj ≥ ε | Nj },

wheneverε ≤ 1/2, and we have equality forε = 1/2. Thus, if∀Nj > 0,

P

{
1

k

k∑
j = 1

ξnj ≥ ε | N1, . . . , Nk

}

≥ P

{
1

k

k∑
j = 1

ξnj ≥ ε
∣∣∣∣ max

j≤k
ξnj <

1

2
, N1, . . . , Nk

}
P
{

max
j≤k

ξnj <
1

2

∣∣∣∣ N1, . . . , Nk

}

≥ P

{
1

k

k∑
j = 1

ξ ′nj ≥ ε
∣∣∣∣ max

j≤k
ξ ′nj <

1

2
, N1, . . . , Nk

}
P
{

max
j≤k

ξ ′nj <
1

2

∣∣∣∣ N1, . . . , Nk

}

= P

{
1

k

k∑
j = 1

ξ ′nj ≥ ε,max
j≤k

ξ ′nj <
1

2
| N1, . . . , Nk

}

= P

{
1

k

k∑
j = 1

ξ ′nj ≥ ε | N1, . . . , Nk

}

−P

{
1

k

k∑
j = 1

ξ ′nj ≥ ε,max
j≤k

ξ ′nj ≥
1

2
| N1, . . . , Nk

}

≥ P

{
1

k

k∑
j = 1

ξ ′nj ≥ ε | N1, . . . , Nk

}
− P

{
max
j≤k

ξ ′nj ≥
1

2

∣∣∣∣ N1, . . . , Nk

}

≥ P

{
1

k

k∑
j = 1

ξ ′nj ≥ ε | N1, . . . , Nk

}
−

k∑
j = 1

P
{
ξ ′nj ≥

1

2

∣∣∣∣ Nj

}
.

Clearly, for eachj with Nj > 0,

P
{
ξ ′nj ≥

1

2

∣∣∣∣ Nj

}
= e−λ j /2 ≤ e−Nj log 2+Nj /2.
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Using the fact thatNj is a binomial random variable with parametersn and 1/k, we get,
by straightforward calculation, that

P
{
ξ ′nj ≥

1

2
, Nj > 0

}
= E

{
I{Nj>0}P

{
ξ ′nj ≥

1

2

∣∣∣∣ Nj

}}
≤ E

{
e−Nj (log 2−1/2)

}
=
[
1− 1

k

(
1−
√

e

2

)]n

≤ e−
n
k (1−

√
e

2 ).

Taking expected values, we get the desired inequality. 2

Lemma 6. Let ξ1, . . . , ξk be independent exponential random variables with parameters
λ1, . . . , λk > 0, respectively. Then for eachε,

P

{
1

k

k∑
j = 1

ξ j > ε

}
≥ P

{∑k
j = 1 λ j ξ j∑k

j = 1 λ j

> ε

}
= P{8k > kελ},

whereλ = 1
k

∑k
j = 1 λ j , and the random variable8k has kth order gamma distribution with

parameter1.

Proof: We prove the lemma by induction fork. We will use two simple facts:

Fact 1. Let η, ξ, ξ ′ be real-valued random variables such thatη is independent of(ξ, ξ ′)
andP{ξ > x} ≥ P{ξ ′ > x} for all x ∈R. ThenP{ξ + η > x} ≥ P{ξ ′ + η > x} for all x.

Fact 2. Let ξ1 andξ2 be independent, exponential random variables with parametersλ1

andλ2, respectively. Assume 0< λ1 ≤ λ2, and letδ = (λ2 − λ1)/2. Then for allε > 0,
the probabilityP{ξ1 + ξ2 > ε} is monotone increasing inδ (while holdingλ1 + λ2 fixed).
In particular,P{ξ1+ ξ2 > ε} ≥ P{82 > λ′ε} for λ′ = (λ2+ λ1)/2.

Proof: Straightforward calculation shows that forδ > 0,

P{ξ1+ ξ2 > ε} = λ2e−λ1ε − λ1e−λ2ε

λ2− λ1
= e−λ

′ε
(
λ′ε

sinh(δε)

δε
+ cosh(δε)

)
,

and forδ = 0,

P{ξ1+ ξ2 > ε} = P{82 > λ′ε} = (1+ λ′ε)e−λ′ε .

Since sinh(x)/x and cosh(x) are monotone increasing on [0,∞), Fact 2 follows.
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Now we are ready to prove the lemma. The statement is trivially true fork = 1, and by
Fact 2 fork = 2. Let k ≥ 3, and assume that the statement is true fork − 1. There exist
two indices j, j ′ ≤ k such thatλ j ≤ λ andλ j ′ ≥ λ. Without loss of generality, we assume
thatλ1 ≤ λ andλ2 ≥ λ. Let ξ ′1 andξ ′2 be independent exponential random variables with
parameterλ andλ1+ λ2− λ, also independent of allξ j . Since

|λ1− λ2|
2

≥
∣∣∣∣λ− λ1+ λ2

2

∣∣∣∣ ,
Fact 2 implies that

P{ξ1+ ξ2 > ε} ≥ P{ξ ′1+ ξ ′2 > ε}.

Also, by the inductive assumption,

P

{
ξ ′2+

k∑
j=3

ξ j > ε

}
≥ P{8k−1/λ > ε}.

Using these and Fact 1 twice, we obtain

P

{
k∑

j = 1

ξ j > ε

}
≥ P

{
ξ ′1+ ξ ′2+

k∑
j=3

ξ j > ε

}
≥ P{ξ ′1+8k−1/λ > ε}
= P{8k > λε}.

2
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Note

1. Corollary 3.1 of (Haussler et al., 1994) states more than what is actually proved there. It states that for every
sequence of learning rules, there exists a distribution-target pair such that forevery n, the expected cumulative
error is lower bounded as in (12). The proof of Corollary 3.1 of (Haussler et al., 1994) has the quantifiers
reversed, so it in fact does not show that there is a fixedC such that the lower bound holds for alln.
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