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Abstract. How difficultisitto find the position of a known object using random samples? We study this question,
which is central to Computer Vision and Robotics, in a formal way. We compare the information complexity
of two types of tasks: the task afentificationof an unknown object from labeled examples input, and the task
of localizationin which the identity of the target is known and its location in some background scene has to be
determined.

We carry out the comparison of these tasks using two measuring rods for the complexity of classes of sets; Th
Vapnik-Chervonenkis dimension and thentropy of relevant classes. The VC-dimension analysis yields bounds
on the sample complexity of performing these tasks in the PAC-learning scenario whereastiapy parameter
reflects the complexity of the relevant learning tasks when the examples are generated by the uniform distributio
(over the background scene). Our analysis provides a mathematical ground to the intuitiosatizationis
indeed much easier thaskentification

Our upper-bounds on the hardnestocfilizationare established by applying a new, algebraic-geometry based,
general tool for the calculation of the VC-dimension of classes of algebraically defined objects. This technique
was independently discovered by Goldberg and Jerrum. We believe that our techniques will prove useful for
further VC-dimension estimation problems.

Keywords: learning theory, PAC, Vapnik-Chervonenkis dimension, localization, identification, recognition,
computer vision

1. Introduction

Object recognition, a fundamental task of computer vision, usually deals with the following
situation: one observes a scene, extracts some measurements out of it, and uses themto jus
whether certain objects are present in the scene, and what are their positions. In the bas
form of thistask, calletbcalization the identity of the objectis known, and one tries to guess
its position correctly. A different and more general taskdentification where the only
advance information about the object is its membership in some known library of objects.
Theidentificationtask is to discover both the shape and the position of the target object.

The aim of this work is to provide some rigorous mathematical analysis of the
information-complexity of these tasks. Our analysis yields a justification to the clear intu-
ition thatlocalizationis an easier task thadentification

Let aclass of imagebe a class of objects that are transformed instances of one particular
object. Such a class depends on the original object and on the type of transformation

*An extended abstract of this paper appeared in the Proceedings of the Sixth Annual ACM Conference or
Computational Learning Theory (Ben-David & Lindenbaum, 1993).
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allowed. One can vielocalizationas the task ofdentificationfrom a library that is a class
of images!

We wish to quantify the ‘complexity’ of classes of images, for different objects and
groups of transformations, and to compare it to the ‘complexity’ of some natural library
classes to which the objects belong. The measures of complexity of a class that we shs
investigate are two: The Vapnik-Chervonenkis dimension and the mefr&rtropy. These
measures are relevant to the learning difficulty of classes in the distribution-free PAC mode
and with respect to the fixed uniform distribution (respectively).

If no limitations are imposed on the shape of the object, classes of images may be
arbitrarily difficult to learn (see Claim 4 in Section 3 for an example). We shall therefore
limit our discussion to objects that are semi-algebraic se®"ini.e., can be defined by
boolean combinations of polynomial inequalities.

As for the families of allowed transformations, we shall consider affine transforma-
tions of R" as well as some subgroups such as isometries (or Euclidean transformations
which correspond to repositioning of rigid bodies, and Similarity transformations, which
allow also uniform scale change. These groups of transformations are commonly use
to model image acquisition distortions that arise when the input information is derived
from a (two-dimensional) picture taken by a camera whose position relative to the objec
is unknown.

In Section 2 we define our objects of research—the Semi-Algebraic sets. We then develo
some tools for proving lower bounds on the VC-dimension of classes of such sets. Section
investigates the VC-dimension of classes of transformed images of a semi-algebraic objec
We introduce a technique for bounding the VC-dimension of classes parameterized b
algebraically defined sets of real numbers. We believe that this technique, relying on ¢
classical result of Milnor, is a powerful tool that will be applicable far beyond the issues
discussed in this paper. Goldberg and Jerrum have, independently, discovered and analyz
a very similar technique (Goldberg, 1992; Goldberg & Jerrum, 1995).

Viewed from the distribution-free PAC learnability angle, these results imply, on one
hand, upper bounds on the number of examples needed féodakzationof an object
of some semi-algebraic degree, and on the other hand, much higher lower bounds on tt
number of examples needed for fdentificationof such an object from among all objects
of the same degree.

Section 4 carries these results over to the setting of learnability with respect to the (fixed
uniform distribution. This is done by analyzing theentropy of the relevant classes, and
showing that, for wide classes of semi-algebraic objects, the entropies, under the metri
induced by the uniform distributions, approach their maximum possible values (over all
probability distributions).

Finally, in Section 5, we discuss the relevance our results to object recognition.

2. The VC-dimension of semi-algebraic classes

We wish to show thalbcalizationis, in some sense, an easy task. This statement may fail
when the object one wishes to localize is very ‘wild’, an example of such a case is given
later (see Claim 4). We shall therefore focus on well behaved geometrical objects—Semi
Algebraic subsets dR".



LOCALIZATION VS. IDENTIFICATION 209

Definition 1 (Semi-algebraic and polynomial sets)

¢ A semi-algebraidopern) setof degree(k, m) in R" is a set that can be represented as a
boolean combination d sets of the forn{x € R" : f;(X) > 0} where the functiond;
are real polynomials of maximal degree

e Thesemi-algebraic clasef degree(k, m) overR" is the collection of alk, m)-semi-
algebraic subsets &", namely,

SAm def {ACR": A is asemi-algebraiopen set of degreg, m)}.

e A polynomial sets a semi-algebraic open set of degféem), for some finitem.

From the Computer Vision point of view, even polynomial objects of modest degrees
(e.g., 4) seem to enable the description of complicated objects, thereby providing sufficien
representation power (Keren, Cooper & Subrahmonia, 1992; Terzopoulos et al., 1987)
The class we consider here is even richer: besides polynomial objects it also contain
combinations of them which include, e.g., polygonal objects (whictk k&ing the number
of polygon sides, are semi-algebraic sets of degkeg)).

The VC-dimension of a concept class is defined as follows:

Definition 2 (Vapnik-Chervonenkis dimensionlet X be some set ank a collection of
its subsets (a concept class).

e We say thatC shattersa set of pointsA C X, if, for every B C A, there exists some
C e KsuchthaC N A= B.

e TheVapnik-Chervonenkis dimensi¢in short, VC-dimension) of is the maximum size
of a set shattered bi. (If K shatters sets of unbounded size, we sayWM@&dim(K) is

A finite concept class is always associated with a finite VC-dimension:

Example 1 LetK be a concept class containing a finite numib&rpf concepts. A finite
point set ofn points contains 2different subsets, but onliN subsets of any point se&t

may be represented as) A (for anyc € K). Therefore, no set larger thatog N | may be
shattered, and#Cdim(K) < |logN|.

Infinite concept classes, like the semi-algebraic classes specified above, may have fini
or infinite VC-dimension. The following theorem of Dudley is a key tool for their analysis.

Theorem 1 (Dudley, 1984). For a real-valued function f on some domain ¥t pog f)
denote{x € X : f(x) > 0}. If H is a real vector space of functions from X o
then the VC-dimension ¢pog f) : f € H} equals the lineafvector spacgdimension
of H. Furthermore for h being any real-valued function on, Xhe VC-dimension of
{pog f + h) : f € H} is also equal to this linear dimension.
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LetCC(n,m) = ("{™) denote the number of subsets of simef a set of sizen + n.
The following claim is a straightforward application of Dudley’s theorem:

Claim 1. The VC-dimension of %)—the class of all degree m polynomial subsets of
R"is CC(n, m).

(This claim also follows from results of Cover (1965).) We can now readily compute the
VC-dimension of the classes of regionsid that are bounded by graphs of polynomial
functions.

Corollary 1. LetB? gef {p: pis a polynomial of degree at most}, wherep def {(X,y)
€ R?:y < p(x)}. Then for every me N, the VC-dimension of the clasﬁ]lﬂs m+ 1.

The proof is immediate by noting that, for every polynonpalp equals{pos f) : f (X, y)

= p(x) — y} where the degree gf is at mostm andy plays the role of the fixed function,
h, from Dudley’s theorem. Another natural family of classes of semi-algebraic SR in
is the classes of convéxedge polygons. Such a class is a subclaﬁﬂ@fb.

Claim 2. The VC-dimension of the class of convex k-edge polygons is aPleast

This can be easily verified by considering a setlopints equally spaced on the boundary
of a circle and noting that, for every subset of it, there is a cokvg®n that contains this
subset and no other point of the set.

2.1. The VC-dimension of classes generated by classes of known dimension

We shall now present some tools for the evaluation of the VC-dimension of classes of
subsets oR" from the dimensions of their generating classes.

Definition 3 LetC be a class of subsets Bf',

e C, is shift invariantif, for everyc € C and for even € R", c + 1 gef (X+t:xec}is
alsoinC.

e C is scale invariantf, for every subset € C and for everyr € R, aC def {ax | X € c},
is also inC.

e Theelement-wise unioaf two classesCi U Cy, is{faUb|a € C, b € Col.

e Theelement-wise intersectiaf two classesC; N Cy,is{anbla e Cq, b e Cy}.

Lemmal. LetC;, Cs be classes of bounded subset®ihwhose VC-dimension is finite.

Then

1. If C; and G are shift invariant or scale invariant then so are U C, and G, N Co.

2. If C is scale invariantthen for every r > 0, bounding C to the ball around the origin
B(O,r) = {X € R": ||X|| < r}, does not affect its VC-dimensioire., VCdim(C) =
VCdim(C N {B(O, n}).

3. If C; and G are shift invariant then VCdin€C, U C,) > VCdim(C,) + VCdimCy).
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Proof: We leave the proof of the first two claims to the reader. For the third claim,
consider two sets of pointS;, $, of sizesVCdim(C,) andVCdimC,) respectively, each
shattered by the corresponding class. §€;, SG be subclasses @3, C,, that contain

the minimal number of subsets needed to shatter these sets. The shift invari@ac€of
and the boundedness of their members, imply thalSh&, sets can be chosen such that
the intersection between any membeSdf; and any member d8G; is null. Every union

of an element o5G, with an element oSG, is a member oSG, U SG,. It follows that

the classSG U SG, which is a subclass dE; U Cy, shattersS, U S, implying that its
VC-dimension is at leadfCdim(Cy) + VCdim(Cy). O

To see how tight this bound is, we compare it to the upper bound derived in (Dudley,
1984). There, Dudley considers the element-wise union (or intersection) of two classes,
andC,. He applies Sauer lemma (Sauer, 1972) to get:

VCdimCy) o\ VCdimCs)
1 . r
VCdm‘(ClgCZ)gsup{r eN; E <|> E <J) > 2 }

i=0 i=0

Now, lettingr* = VCdim(C; U C,), Dudley’s inequality becomes:

| VCdimCy) s\ VCHIMCy)
27 < ( )

%
( ) < (r *)VCdiﬂ(Cl) (r *)VCdifT’(Cz)
i=0 ! j=0

implying

VCdim(C; U Cy) _ |
log(VCdim(C, U Cy)) — VCdim(Cy) + VCdimCy).

2.2. Lower-bounding the VC-dimension of semi-algebraic classes

We use Lemma 1 to obtain a general lower bound on the VC-dimension of semi-algebrai
sets.

Claim 3. The VC-dimension of the class@% of semi-algebraic subsets®f of degree

(k, m), is at leasts (™).

Proof: Consider the clas®&n = B N C, whereB is the class of polynomial objects of
degreem, andC the class of balls (of finite radii). By Claim 1 there exists a set of size
CC(n, m) that is shattered by the claBs Since there exists some ball@that contains

it, the VC-dimension of the new clagsis at leastCC(n, m). Note thatA contains only
bounded sets, and is shift and scale invariant. Applying Lemma 1 we conclude that the
VC-dimension of the clas@i_l 2A is at Ieast%CC(n, m). The claim now follows by
noting that this latter class isfa"t:lYass of semi-algebraic sets of dégnee. O
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In fact, as we prove later in Claim 8, there is an upper bound on the VC-dimension of
classes of semi-algebraic objects which is not very different from this lower bound—it is
larger by only a logarithmic factor.

3. The VC-dimension of classes of images

In this section we wish to bound from above the VC-dimension of classes of images, i.e.
collections of images of a given object under a family of transformations. As the Claim 4
below demonstrates, such a bound depends on the object generating the class. We sh
consider objects that are semi-algebraic sets of a given degree. We will show that, for wid
classes of transformations, the dimension of the corresponding classes of images of ar
(k, m)-semi-algebraic set iR" is substantially below the dimension 8#} ,, —the class
of all sets of the same degree.

The families of transformations we consider include the families of translations, rotations,
scale changes, combinations of them, and the group of all affine transformations.

Definition 4

An object,V, is a subset aR".

A transformationt, is a mappingt (X) from R" to R". A class of transformations is
denotedT .

Foranyt € T, letV; denote theé-transformed image df, i.e.,V; = {t(X) : X € V}.

The class off -images ofV, denoted bYCt (V), is{V; :t € T}.

A translation is a transformation &" defined by an equation of the for(x) = X + V,
for some vectory € R". The class of all translations is denot&d

First, we show that even the most simple transformation class: one-dimensional transla
tion, may yield a class of images associated with infinite VC-dimension.

Claim 4. There exists a one-dimensional objeé¢t such that VCdinC+(V)) is infinite.

Proof: Considerthese8=1{1/2,1/3, 1/4,...}. Let{An}neny €numerate all its finite sub-
sets. (A possible enumeration of these subsets is, for example,?, A, = {1/2}, Az =
{1/3}, Ay = {1/2,1/3}, As = {1/4}, As = {1/2,1/4},....) Now define the object as
V* = Unen(An+1n). We claim that the class of its translatior®; (V*) = {V*+t :
t € R}, has an infinite VC-dimension. To see this, just note @atV) shatters any finite
subset ofS. |

The above claim makes it clear that simple transformations do not necessarily elicit
simple image classes. In the rest of the section we shall show that the complexity of classe
of images depends on the complexity of both the object being transformed and the family
of the transformations.
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3.1. A mapping between points and transformation subclasses

The main idea behind the following analysis is to translate the question of the combina-
torial complexity of a clas€+ (V) to some geometric question in the space of transforma-
tionsT. Once this translation is established, the mighty tools of algebraic geometry can be
called in to solve our combinatorial problem. We shall now describe a general framework
for such translations.

Given a family of transformations &", T, the first step we take is to note that any
object,V C R", induces a mapping of points &" to subsets o. Namely, every point
X € R" may be mapped into the subset of transformatikgfs= {t € T : X € 4}. Note
that this mapping is dual to the mapping from member$ &b subsets oR" defined by
mappingt to the setv;.

Consider now a set of pointS = {xy, X2, ..., Xy} in R". Fixing an objectyv C R",
every subseA C Scorresponds to the subset

WA, S EiteT: inS= A

of the family, T, of transformations. The following claim follows immediately from the
definitions:

Claim5. Forany AC Sandte T,

e Fort e W(S, A)andxe S, t € KY iffx € A.

e For any object VC R" and a family T of transformationshe class of image<r (V),
shatters a set & R" iff, all of the members qW(A, S) : A C S} are nonempty.

We have therefore reduced the calculation of the VC-dimension of classes of images t
counting the number of nonempW (A, S) sets of transformations. This reduction is the
basis for the subsequent derivations of this section.

3.2. Parameterizing the transformations

The next step we take is to repres@ntparametrically, with parameters forming some
parameter spadRP. For example, ifl is the family of translations dk", it can be naturally
parameterized by assigning the paramgterR" to the translation (0R") t(X) = X + .

As mentioned in Section 1, the transformations of most practical interest are Translations
Euclidean, Similarity and Affine transformations, a family that includes all the former
families. A linear affine transformation dR" is defined by a pair A, b), whereA is an
n x nmatrixandb € R". Such atransformatiod = (A, b) actsorR"by H(x) = Ax+b.

We shall restrict our attention to nonsingular transformations, i.e., transformations that are
one-to-one or, equivalently, their defining matéxis regular. For these transformations
the inverse transformation, denoted = (A, b’), always exists, and its parameters, the
components of A, ') € R will be used to represent the transformatibi(x) =

Ax+ b. Allowing a slight abuse of notation, we shall identify sets of transformations with
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the sets of their corresponding parameters. For exanifewill also denote the set of
parameters that correspond to all transformatidios which V; includes the poink.

The families of Euclidean transformations and of similarity transformatiori®"atan
always be representedm‘i‘2+n, but can also be represented in lower dimensional parameter
spaces. This will enable us to obtain, in some cases, better bounds on the VC-dimensic
of classes of images of an object under such transformations.

The following lemma demonstrates a useful property of Affine transformations, namely,
that simple objectsy, give rise to simple subsels! of the parameter space.

Lemma?2. IfV isasemi-algebraic subset &" of degregk, m) then for everyx € R",
the set of transformation parameters’Ks a semi-algebraic set of degrél, m) (in the

parameter space of affine transformaticm%z“).

Proof: A sufficient and necessary condition for a pointo be inside the transformed
object is that the result of applying the inverse transformation op & A’X + b’ will

be in the original (nontransformed) semi-algebraic\éefThe expression foy is a linear
function of the parameters, and inserting it into the polynoniiglsthat specifyV, induces
polynomial sets of equal degree in the parameter sfidcg (t, X) > 0}. The union and
intersection operations on the polynomial se®®®fransform into similar operations on the
polynomial sets of the parameter space, and therefore, the'sit also a semi-algebraic
set of degregk, m). O

LetC 4(V) denote the class of all objects obtained by transforming a semi-algebraic object
V via affine transformations. Our next step is to set upper bounds on the VC-dimensior
of classes of the forn€ 4(V).2 For this proof we shall employ (a small modification of)
the classical result of Milnor (1964), regarding the number of connected components o
polynomial sets.

Lemma 3 (A modification of Milnor (1964)). Suppose XC R" is specified by the
polynomial inequalities 1f{x) > 0, ..., fi(x) > 0, fia(x) >0, ..., f5(x) = Owith total
degree d=deg f + - - - +deg f,. Then¥ (X), the number of connected components of the
set X satisfies

Y (X) < %(2+ d)"

Proof: The original theorem of Milnor provides this relation when all inequalities that
specify X are weak (that is, all of them are of the typg(x) > 0). Consider now the
sequence of se{q}qen specified by the weak inequalitids(x) —1/q > 0, ..., fi(x) —
1/9 =0, fia(x) =0, ..., f(x) = 0. Clearly,X; C X, C --- C XandX = quN Xq-
Each of the setXq does satisfy Milnor’s condition; therefore, the number of connected
components cannot increase unboundedly gith

The next claim, a purely point-set-topological statement, suffices to conclude the proof
of the lemma. O
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Claim 6. Let X € Xy, € --- € Xq C --- be a sequence of sets in some topological
space and let X denote their uniop),y Xq. LetgA denote the number of connected
components of a set, Ahen

gX < supgXq
geN

Proof (of the claim): First, note that if two of pointsx, y, are in the same connected
component in someq, then they share the same connected componedt &s well.
Assume sup. 1Xq is some finite numbex] (otherwise there is nothing to prove). Let
X1, X2, ..., Xd+1 be points inX, and let§ be such that they are all membersX§. As
§Xg < d, there are somie# j such that; andx; share the same connected component of
Xg. It follows thatx; andx; are in one connected componenttf 0

3.3. The VC-dimension of affine transformed objects
Theorem 2. For every semi-algebraic set V of degrde m) in R",
VCdimC4(V)) = O(n?lognkm)

Proof: LetS = {Xq,..., Xn} be a subset aR" that is shattered by the class of images
C4(V). Let us focus on the parameter space of transformafidhs". The union of
boundariesBs = [ Ji=" aKy of the semi-algebraic open parameter ¢y} divides

the parameter space |nto connected components. We shall show that the number of su
components bounds the number of nonempty sets of the Wé¢i, S), and therefore, the
exponent of the size of the shattered SetWe shall then apply Lemma 3 to bound the
number of the connected components.

Claim 7. For any pair A A’ of distinct subsets of ,Sany connected component of
R”2+“\Bs that has a nonempty intersection with(W, S) necessarily has an empty in-
tersection with WA', S).

Proof (of the claim): Let x;, be a point inA\A’. By Claim 5, anyt € W(A, S) is a
member ofKV while for anyt e W(A', S), t ¢ KV . Consider the sets |(K ) and
|nt(R”2+”\KV ) They are disjoint open sets and they CORF* ™"\ Bg). It follows that

any subset oﬂRi” +”\Bs) that meets bothV(A, S) andW(A/, S) is partitioned by the sets
mt(KV) and in{R" +”\KV) into nonempty disjoint open subsets, and is therefore not
connected. O

To calculate the number of connected componen(ﬁbsz”\Bs), recall that each of the
parameter setK)‘(l’ is specified byk-many polynomial sets of the forit | f; (t, i) > 0}
and note that at least one of the functioigt) = f;(t, x;) vanishes on each point of the
boundary ofvy, .

ConS|der now the product functioB(f) = []; i fij (t). Any connected component
of R™ M Bs is a union of one or more connected component§f af G(f) > 0} or of
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{t : G(I) < 0}). G(f)is a(kmN)-degree polynomial im? + n real variables (wherél
stands for the cardinality of the shattered $®t,and, by Lemma 3, the total number of
connected components of its posmve set| G(t) > O} and its negative set (which is the
pos-set of—G) is not higher than 2 2(2 + km N+, Consequently, our assumption
that the setS is shattered byC 4 (V) implies that » < (2 + kmN)" 1 The theorem
now follows by taking the logarithm of the last inequality and noting that it fails whenever
N > 2(n? + n)log((n® + n)(2 + km), for sufficiently large values dk andm. (N <
alog(bN) implies that, fora > 2 andb > 1, N < 2alog(ab), as otherwisea > Iog(LbN) >
,092+|§§;ﬂﬁ)'glog(ab) > 22a|g>§§br;> > a, which is a contradiction. In fact, for sufficiently large

b, the conditionN < alog(bN) implies thatN < (14 y)alog(ab) for any positivey. This
enhanced bound is not needed for this proof but will be useful below, for the asymptotic
bounds.) O

In the Computer Vision and Robotics context, one is usually interested only in two-
or three-dimensional object spaces. For these cases, it is easy to see that subgroups
affine transformations, such as Translation, Euclidean and Similarity transformations cat
be represented in a parameter space smallerRAafT, implying that the corresponding
classes of imageS+(V), Cs(V), Cs(V), have lower VC-dimensions.

In the two-dimensional case, for example, the translation transformation may be rep-
resented only by the two components of the (inverse) translation viectdio represent
the Euclidean transformation we need also to specify the rotation n¥dtri¥o keep the
transformation linear in the parameters, which is essential for the derivation, we use a four
dimensional space = {t1 = aj;(= ay,),t» = ay(= —ay,),tz = b, ts = b} with a
constraint? + t2 = 1 kept in mind. For Similarity transformations, which also allow uni-
form scale change, five-dimensional parameter space is used, with four parameters identic
to the Euclidean transformation parameters, and the fifth induced by the weaker constrair
t? +t7 = t2. The most general affine transformation, is represented, as described above b
the (n? 4 2 = 6)-dimensional parameter space.

Now, let Br(V), B¢ (V), Bs(V), andB4(V) be upper bounds on the VC-dimension of
the corresponding classes of images when the complexity of the dbjeepresented by
the productkm, increases to infinity. Applying the parameterizations introduced above,
with the method presented in the proof of Theorem 2 will yield the required asymp-
totic bounds. The additional degree-2 polynomial constraint on the parameters, whict
occurs in some of the cases, is easily incorporated by expressing it as two weak inequalit
constraints.

Corollary 2.

Br (V) = 2log(km)
Bs (V) = 4log(km)
Bs(V) = 5log(km)
B4(V) = 6logtkm)
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3.4.  Anupper bound on the VC-dimension of semi-algebraic sets

Using the same technique, it is possible to prove the following upper bound on the class o
semi-algebraic subsets.

Claim8. The VC-dimension of the class of semi-algebraic subséts of degregk, m),
is at mosk(™ ™) log(k(k + 1)(™™)).

Proof (sketch): Assuming that a set o points is shattered, we look at the induced
partition of a parameter space. The dimension of this parameter space, representing tl
coefficients of thék polynomials of degreen is k( mn“:”). This space is partitioned here by

kN linear polynomials, implying that the inequalit}f 2< (2-+k N)X¢ ") must be satisfied,
which, in turn, implies the claim. O

Note that this upper bound differs only by a logarithmic factor from the lower bound
derived above.

4. Learnability of geometric objects under the uniform distribution

The Vapnik-Chervonenkis dimension of a class can be viewed as a measure of th
(information-theoretic) hardness of its distribution-free learnability. That is, its learnability
in a setting where the underlying distribution—the distribution according to which exam-
ples are provided and relative to which the accuracy of hypotheses is defined—is unknowi
to the student and, furthermore, his performance is analyzed in a worst-case setting. Col
sequently, the Vapnik-Chervonenkis dimension of a class may be readily used to providk
upper bounds on the difficulty of learning the class, in less demanding models of learn-
ability, e.g., when the underlying distribution is known to the student, or is chosen from a
limited family of candidate distributions.

The relevance of the VC-dimension to hardness (i.e., lower bound) results is notas clear e
its applicability to upper bounds. ‘Real-life’ settings are usually much more restricted than
what the distribution-free model may reflect. It may very well be the case that a class, whos:
distribution-free learnability is hard, is easily learnable once the underlying distribution is
chosen from among a family of ‘realistic’ or ‘relevant’ distributions.

In this section we wish to show that, in the realm of classes of geometric objects in a
Euclidean space, thisis notthe case. Thatis, the lower bounds on the difficulty of learnability
of such classes, as provided by the Vapnik-Chervonenkis dimension, hold even in the
restricted model of one fixed underlying distribution—the uniform probability measure.

4.1. Learning in metric spaces and covering numbers

The difficulty of learning a concept class under a fixed distribution is best analyzed in the
context of metric spaces. Let us begin our discussion by introducing some basic concept
from the theory of metric spaces.
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Definition 5

e A metric spacgE, d) is a setE associated with a distance functidi, -) between its
members, satisfying, for every y, z € E, three conditions:

1. d(x,x) =0,
2. d(x,y) =d(y,x) >0,
3. d(x,2) <d(x,y) +d(y, 2.

(We use a weaker definition of a metric space, which is often referred to also as “pseudo
metric”.)
e Let(E, d) be a metric space, |t be a subset of ande > 0.

1. B € E is ane-coverfor A if for everya € A there exists somb € B such that
d(@@ b) <e.

2. Ny(e, A) is the minimal cardinality of am-cover for A. (If there is no such finite
cover then it is defined to b®.) Ny(e, A) is sometimes referred to as the&overing
numberof A.

3. A C E ise-separatedf, for any distincta, b € A, d(a, b) > e.

4. Mqy(e, A) is the maximal size of aa-separated subset & My(e, A) is sometimes
referred to as the-capacityor thee-entropyof A.

Thee-covering numbers andcapacities are closely related. The following inequalities
can be verified (see, e.g., (Kolmogorov & Tichomirov, 1961)):

Claim 9. For every metric spacéE, d), AC E ande > 0
Mg(2¢e, A) < Ny(e, A) < My(e, A).

Given a probability spacéX, O, P), a natural pseudo-metridp, is induced over the set
of measurable sets: For evaayb € O, dp(a, b) = P(aAb).* We shall useVp (e, A) to
denoteNVy, (¢, A) (and similarly forM). Note thata andb are subsets in the spaebut
are points in the induced metric space. Similarly, a seX slubsets (e.g., a concept class)
is a subset of the induced metric space.

Benedek and Itai (1988) investigate learnability with respect to a fixed distributions. The
results of Section 4 there imply the following bounds:

Theorem 3 (Benedek & Itai (1988)). LetIE (e, §) denote the number of random examples
needed fore, §)—learning of a class C with respect to a probability distribution P. For
any probability spacéX, O, P), any concept class € O and any positive ands,

I (e, 8) > log(1— &) + log Mp(2¢, C),
1866, 8) < %‘(ln 1/p +InNo(p/2, C)),

wherep = min(e, §).
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The above result reduces the assessment of the information-complexity of the learnabilit
of a class, under a given distributid?, to finding its covering numbers relative to the
(pseudo-) metriddp. A fundamental result of Dudley now brings us back to the VC-
dimension.

Theorem 4 (Dudley (1984)). For any measurable spag&, O) and any class BC O,

inf{w : for any finite subset Al{b N A: b e B}|| = O(J|AI")}
= inf {w s supNp(e, B)} = O(e‘“’)},
P

wheresup, denotes the supremum over all probability distributions averQ).

The connection of Dudley’s theorem to the VC-dimension goes through Sauer’'s lemme
(Sauer, 1972). The lemma implies that, for every clBssf sets,||{bN A : b € B}| =
O(||A||VCdm®B)) — Furthermore, there exist classes for whi8dim(B) is the minimal
exponent satisfying this equation (for example, this is the case whsrinfinite andB is
the class of all subsets of of some fixed finite cardinalitgd). Consequently, the theorem
implies that, for a clasB having dimensionl, (1/¢)9 is an upper bound on itscovering
numbers relative to any distribution, and that there exist classes and distributions that giv
rise to covering numbers that are arbitrarily close to this function of

Wishing to establish lower bounds on the difficulty of learning under some fixed dis-
tribution, we shall have to show that for the classes we care about, the covering number
relative to this distribution approach the upper bound stated by the theorem.

4.2. The covering numbers may approach the VC-dimension limit
even for a uniform distribution

One should note that if a claghas a finite VC-dimensiod, then, there always exists a
probability distribution,P, such that fore = 1/d, Np(e, B) = 24 (which is of the same
order of magnitude as Dudley’s upper bound). To establish this claim just pick a set of size
d that is shattered b and letP be the uniform distribution over this set.

The interesting questions are to show that such ‘maximum capacity’ behavior can be
attained for arbitrarily smali’s and, maybe more important, to demonstrate such behavior
relative to natural distributions.

The first probability measure that comes to one’s mind, when considering a boundec
region of a Euclidean space, is the uniform distribution over that region. Clearly, many
classes in such a space may have much lower capacities than the bounds derived fro
their VC-dimension. For example, classes of finite (and co-finite) sets may have arbitrarily
large VC-dimension, yet theércapacity (with respect to the pseudo-metric induced by the
uniform distribution) is just 1, for any > 0. We wish to set forth the thesis that, as long as
the classes under consideration are natural classes of geometric objects, the bounds deri\
from the combinatorial considerations are indeed matched by-ttapacities under the
uniform distribution. Given the vagueness of the notion of a ‘natural class of geometric
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objects’ we settle for demonstrating the above claim through various examples of sucl
classes.

LetC(n,d) denotezidzo(?). Sauer’s lemma (Sauer, 1972) states that, for any &ass
having VC-dimensionl, C(n, d) is an upper bound on the cardinalityldg (A)(= {bN A:

b € B}) for setsA of cardinalityn, and is the minimal such upper bound. Note that
d = inf{w : C(n,d) = O(n*)}. It follows that Dudley’s bound is established once one
shows that, for any clad® having dimensiom and for any > 0, M (e, B) > C(1/¢, d).

To prove his theorem, Dudley picks, for evarya setA of cardinalityn for which this
bound is attained. He then constructs a probability distribuBidhat concentrates on these
sets and gives each member of such a set equal probability weight (of athap)1Under
such a distributionITg(A) is e-separated and, thereforaqp(1/|A|, B) = C(|A|, d),
meeting the upper bound of the theorem.

When one wishes to apply this idea to the uniform distribution, theAsetsst be chosen
more carefully. Having no control over the distribution, our tool for giving the needed
weights to members oA is to make sure that, with every poixtin such a set, there is an
attached neighborhoddy such that the members &f that participate in defininglg(A)
do not divide these neighborhoods (i.e., there ex#ts B such thatllg (A) = Ig(A)
and, for evenb € B’ andx € A, eitherUy C b orUyx Nb = ). The probabilities of these
neighborhood sets, under the uniform distribution, will now play the role Fia)—the
probability weight of a singletofix}—plays in Dudley’s construction d®.

Let us demonstrate the theme discussed above by applying it to a couple of exampl
classes of subsets of the unit square. U8tdenote [01] x [0, 1] and letU denote the
uniform distribution over it.

Claim 10. Forevery0 < e < 1, My(e, S ,) = C(/(4€),K).

Proof: For anys,t € Randp > 0, let B((s, 1), p) denote the circlé(x, y) : (X —s)?
+(y—t)2 < p?). ForeveryO< ¢ = % < 1, let B denotg B((i v’ — “—26— j€e — @),
Vey2)y tij e {1/€,2/€, ..., 1/J€}}. Bois a set of cardinalityt = £ of disjoint
circles, each having arege” = €. (See figure 1 (left).) Every union gfk of such circles
is a member oSAka), every pair of distinct such unions is at leasapart (in the metric
dy), and there ar€ (it /(4 €), k) such distinct unions. O

Repeating the proof of the previous claim, replacing the sets of ci&léy the sets of

rectangleR, Z' ({(x,y) i /e <X < (i +D/e: je<y < (j+DJe):i,j=0,1,
2,..., % — 1}, one readily gets:

Claim 11. Forevery0 < e < 1, My(e, SKy 1) = C(1/¢, k).
Using a somewhat more complicated construction this can be improved to:

Claim 12. Forevery0 < ¢ < 1, My(e, SA, ;) = C(1/2¢, k).
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Figure L  Constructing the metric space required for proving claims 10 and 12. In the left figure, a concept is a
union ofk circles (say the 4 darkened ones) and corresponds to a point in the metric space. Similarly, in the righ
figure a concept is a union &ftriangles.

Proof: Foranyk e Nand O< ¢ < 1, define a set of functions
w=1{0:{2ie:0<i <1/2} — {0, 1} : 0 assumes the value 1 at médimes.

For any such functioa, let py be the polygonal object obtained by successively connecting,
by linear segments, the point&i ¢, 6(2i¢)). Define a class

Pek dZEf{[A)g 10 e @i}

Recall thatp, denoteq(x,y) : Y < pg(X)}, i.e., any member dP x, is determined by a
polygonal objectp, that is obtained by assigning values 0 or 1 to reals that are multiples
of 1/2¢ and connecting the resulting points of the plan by linear segments. (See figure 1
(right).) Furthermore, all the, definingP. k) have at most many 1's. Note that, for every
€ andk there exisC(1/2¢, k)—many such function8 and each clasB. x, is e-separated.

O

So far, we have established lower bounds on the covering numbers of classes define
by combinations of linear segments or quadratic functions. Our next result pushes the
ideas employed above to obtain similar bounds for classes whose members are sets defir
by single polynomials. The idea is to replace the polygonal objpgtisy interpolating
polynomials.

Claim 13. For every integer m and evelyym < € < 1, My(e, Br%) > C(1/3¢, m).
(Note that as B, C SA; ,,. this bound applies also to 34, .)
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Proof (sketch): Given anym ande, we repeat the construction of the clas$gsny, but
replace the polygonal objects by their interpolations via polynomials of degnee O

4.3. Localization and identification under the uniform distribution

The significance of these results to our discussion stems from their comparison to the uppe
bounds of Section 3 on the VC-dimensions of corresponding classes of images. Consider
student who is trying to learn by viewing labeled examples drawn independently accordinc
to the uniform distribution on the unit square. We compare the information complexity (i.e.,
the number of labeled examples needed) of two types of tasks: the tagatfication in
which all the student knows are the paramet&rsn) of the semi-algebraic class to which
the target object belongs, and the taskoafilizationin which he knows that the target is a
transformed image of some given obj&tt

Combining the results of this section with the lower bound of Theorem 3, we get the
following lower bounds on the information complexity of the taskiadgntification For
C = SA, , or SK, ;, and, where > 1/k, also forC = SA, |,

Ig (¢, 8) > klog(1/e) + log(1 — 8).

Onthe other hand, for the tasklotalizationof any object < S&k.m) under the class of
all affine transformations, the basic distribution-free upper bound of Blumer et al. (1989),
combined with our results of Section 3 yields:

134 2
8

12 (e, 8) < max{ Iog(km)ﬁglog—, —log=}.
€ € €

5. The implications on the shape recognition problem

Consider a student who is trying to learn by viewing labeled examples drawn independently
according to some distribution on the unit square. We compare the information complexity
(i.e., the number of labeled examples needed) of two types of tasks: the idsktiffcation

in which all the student knows are the paramegkysn) of the semi-algebraic class to which

the target object belongs, and the taskemfognitionin which he knows that the target is a
transformed image of some given obj&tt

Combining the results of Section 2 with the lower bound of Blumer et al. (1989), implies
that for some ‘unfortunate’ sampling distribution the student will need a large, number of
samples, proportional tn?, to identify a semi-algebraic object of degréem) up to a
prediction error ok.

The results of the last section strengthen this conclusion and imply that this difficulty
is not due to some ‘peculiar’ distribution but exists also when the sampling distribution is
uniform. Our results, combined with Theorem 3, imply that the number of samples needec
for identificationis at least proportional th. We conjecture here that this bound is not tight
and thatidentificationof semi-algebraic sets under the uniform distribution is as hard as
identificationunder arbitrary distribution.
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On the other hand, for the tasklotalizationof any objectV e Sﬁfk,m) under the classes
of Affine, Euclidean and Similarity transformations, the basic distribution-free upper bound
of Blumer et al. (1989), combined with our results of Section 3 implies that, asymptoti-
cally, the number of samples needed is not more thig(km) wherea is 2, 4,5 or 6,
for Translation, Euclidean, Similarity and Affine transformation, respectively. This is, of
course, much smaller than the number of samples requiréddotification

Note, however, that the actual VC-dimension of such classes may be even lower than the:
logarithmic bounds. This is the case for, e.g., the class of translations of convex polygona
objects: Even though the number of sides may be arbitrarily large, the VC-dimension is
only three (Pach & Woeginger, 1990). We conjecture here that the true VC-dimension
of more general classes of images will be indeed logarithmic in the complexity of the
object.

The ability to make the good hypotheses that achieve a small prediction error may be
tied to the ability to localize the object within certain precision, by constructing the fol-
lowing mapping between thiecalizationimprecision and the maximal prediction error
associated with it: For any (known or bounded) sampling distribution, and any metric usec
to measure théocalization error, one may consider all pairs of object instances whose
localization error is above a certain threshally, and find a lower bound on the asso-
ciated distribution-weighted symmetric differences. A successful learning procedure tha
results in prediction error smaller than this bound implies that the error in the location of
the object is smaller thady. Such a procedure was suggested and used in (Lindenbaum,
1995) to set bounds on the probability of achieving several recognition tasks for specific
objects.
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Notes

1. In the field of computer vision, the term ‘recognition’, or ‘model-based recognition’ refddetdification
from alibrary that is generated by transforming a finite number of base objects.

2. Dudley (1984) defines a collection of s¢#s, Ao, ..., An} to beindependentif for every functioné :
{1,...,N} = {-1,1}, the intersection,)\; A’", is nonempty. With this notation the above claim says that
the class of image€r (V), shatters a s C R" iff {K)(i’ | X € S}is anindependent set.

3. Such bounds can be deduced also from the results obtained by the independent work of Goldberg and Jerru
(1995), which was first published together with our work (Ben-David & Lindenbaum, 1993) and was discovered
even before (Goldberg, 1992). Their work considers concept classes specified by logic formula or algorithm
and characterizes a wide set of concept classes, associated with polynomial VC-dimension. Their techniqu
is similar to ours except that they do not use the parameter space directly as we do and use more recent, a
sometimes tighter, bounds derived by Waren, instead of the bounds by Milnor we use.

4. a Abdenotes the symmetric difference between the two sulmetsgb, and is the seta N b) U (b N a).
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