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Abstract. The aim was to investigate a method of developing mobile robot controllers based on ideas about
how plastic neural systems adapt to their environment by extracting regularities from the amalgamated behavior
of inflexible (non-plastic) innate subsystems interacting with the world.Incremental bootstrappingof neural
network controllers was examined. The objective was twofold. First, to develop and evaluate the use of prewired
or innaterobot controllers to bootstrap backpropagation learning for Multi-Layer Perceptron (MLP) controllers.
Second, to develop and evaluate a new MLP controller trained on the back of another bootstrapped controller.
The experimental hypothesis was that MLPs would improve on the performance of controllers used to train
them. The performances of the innate and bootstrapped MLP controllers were compared in eight experiments
on the tasks of avoiding obstacles and finding goals. Four quantitative measures were employed: the number of
sensorimotor loops required to complete a task; the distance traveled; the mean distance from walls and obstacles;
the smoothness of travel. The overall pattern of results from statistical analyses of these quantities supported
the hypothesis; the MLP controllers completed the tasks faster, smoother, and steered further from obstacles and
walls than their innate teachers. In particular, a single MLP controller incrementally bootstrapped by a MLP
subsumption controller was superior to the others.

Keywords: neural network controllers, machine learning, innateness, biologically inspired robotics, quantification
in robotics

1. Introduction

Neural computing techniques are becoming increasingly popular for training controllers
for mobile robots (Bekey & Goldberg, 1993, Dorigo, 1996, Sharkey, 1997). Some of the
most used methods have been concerned with techniques such as reinforcement learning
(Krose, 1995) or evolutionary learning (Nolfi, 1997) that require littlea priori knowledge
of the task domain. Supervised learning, on the other hand, has been neglected because of
a belief that the designer must provide precise teaching vectors to train controllers, i.e., the
experimenter must understand the domain in enough detail to calculate exactly the correct
control signals for every move (Sharkey, 1997 (b)). However, an alternative approach to
supervised learning is presented here in which controllers are trained by the system in which
they are embedded.

This research began with an inspiration from biological systems that successful adap-
tion may involve the use of innate hardwired behaviors to bootstrap learning in plastic
neural nets. For example, simple observation shows that a number of quadrupeds, such
as giraffes and zebras, are “born on the run” with jerky behavior that quickly becomes
smoother as the animal adapts to its environment. In detailed experimental work, Johnson
(Johnson, 1992, Johnson & Bolhuis, 1991) found that newly hatched chicks show a limited
range of automatic behaviors or predispositions that are triggered by particular environ-
mental stimuli such as pecking at static objects with certain dimensions and contrast and
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running toward warmth. Considering a number of findings on the neural system of the
chick, Johnson (1992) proposed two comparatively independent processes; one concerned
with predispositions and the other with a learning system sub-served by the neural structure
IMHV. The general idea is that the first process ensures that the second learns.

The studies reported here assess the development of the use of prewired orinnatecon-
trollers tobootstraplearning in Multi-Layer Perceptrons (MLP) to navigate a mobile robot
to goals in an obstacle laden environment (c.f. Nolfi & Parisi, 1997). This task was chosen
because of its common use as a behavioral benchmark for controllers (Anderson & Donath,
1990, Donnart & Meyer, 1996, Meeden, 1996, Floreano & Mondada, 1996, Touzet, 1997,
Salomon, 1997, del Millan, 1996) and its employment in autonomous robotics for several
decades (Walter, 1950).

Given the previous work it seemed reasonable to assume that an already existing con-
troller could be used to train a neural network controller. However, there are two novel
questions here. First, could an improvement be gained over the performance of simple
innate hardwired reactive controllers by using them to bootstrap learning in neural network
controllers? Second, could further improvements be gained by training on the back of
previously trained neural network controllers? Such improvements may be possible if the
robot’s behavior exhibits an underlying systematic aspect when it interacts with the world.
It is this systematic aspect that would be extracted by the networks during training.

A MLP, trained with backpropagation, can be used to construct a predictive model of a
data generator. If this is a noisy generator then a MLP with an appropriate number of free
parameters may capture the regularities in the data and make novel predictions that are within
a small margin of error. In these terms, the innate controller may be thought of as a noisy
data generator in which behavior considered to be noise in one type of environment may be
considered to be appropriate in another. Thus, the systematic aspect of the behaviors of an
innate controller will depend on the particular environmental circumstances, e.g., swamp,
forest, desert, office building, etc. Seen this way, the problem of finding the systematic
aspect of the behavior is analogous to using polynomials to fit curves to noisy data. If
the order of the polynomial is too high, e.g., there are as many free parameters as there
are data points, then the data will be over-fitted and the approximation to the underlying
function (the generalization performance) will be poor. If, on the other hand, the order of
the polynomial is at an appropriate level, the curve will pass smoothly through the noisy
data and generalize well on novel inputs.

The general behavior of an innate controller may be represented by the functionei(x),
wherex can be external and/or internal stimuli. In a particular type of environment only
a subset of the behavior may be employed and this can be represented by another (sub)
functionew(x). Unlessew(x) is optimal, adaption consists of finding a functiona(x) that
is appropriate for the current environmental circumstance. In order to do this, the learning
method for a plastic neural net must find regularities in the behavior generated byew(x).
That is, the neural net must treatew(x) as as if it werea(x) embedded in behavioral noise.
In other words, adaption depends on the quality of the network’s approximation ofa(x).

Two “innate” modules were developed for the current research; one for avoiding obstacles
and walls and the other for finding goal locations. These were used individually as con-
trollers, as illustrated in Figure 1(a) or combined in a simplified subsumption architecture
control system (Brooks, 1986) as shown in Figure 1(b). The innate obstacle avoidance con-
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troller was essentially a localized (reactive) version of theartificial potential fieldmethod
developed by Khatib (Khatib, 1986). That is, obstacles were treated as repellent forces and
free space as an attractor, and see also (Kassim & Kumar, 1995). This innate controller was
used to bootstrap avoidance learning by having a MLP look over its shoulder whilst driving
the robot through a laboratory robot pen. The basic training method is illustrated in Figure
2. The first two experiments present an evaluation and comparison of both controllers.
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Figure 1. Two diagrams of the robot control structures. The surrounding black circles illustrate the robot body
and the closed outer semi-circles illustrate the sonar/infra-red sensors. Only the front 7 pairs of sensors were used
as shown by the wiring into the sensory array in the figures. (a) shows a neural network controller for obstacle
avoidance and goal-finding. The inputs to the network are the 7 sonar/infra-red pairs and the angle and distance
to the goal. The two outputs are for translation and rotational velocity. (b) shows a very simlified subsumption
architecture. Which module is in charge is determined by nearness to obstacles. These module could be either
hardwired or trained or a mixture.

For the innate goal finding module, apath integrationor dead reckoningmethod, com-
monly used by biological systems, was employed to continuously calculate the distance
and direction to the goal from the current position. There is substantial evidence that
hymenopterous insects such as ants (Wehner et al., 1996) and bees (Esch & Burns, 1996,
Srinivasan et al., 1996) and also many mammals (Etienne et al., 1996) use this method to
negotiate their environment. However, unlike the robot systems developed here, many of
the biological systems use external references such as landmarks and celestial cues and,
more controversially, cognitive maps (Gould, 1986, Gallistel, 1990). For example, it ap-
pears that hymenopterans use optic flow to measure distance traveled and a solar compass
to measure their heading (Wehner, 1992).

The system developed here did not use external references. Instead, its dead reckoning
relied exclusively on proprioception by using the movement of the wheels to keep track
of angles and distances. Similarly, night active rodents use self-generated information
from somatosensory feedback (Etienne et al., 1996). However, according to Etienne and
her colleagues (Etienne et al., 1996), when animals use path integration without external
reference, it is mainly for short scale navigation as a safeguarding strategy. This has es-
pecially high value for young inexperienced individuals or for individuals placed in an
unknown environment. Like our innate controller, it, “... seems to depend on a prewired
system of information processing that functions automatically whenever the subject lo-
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Figure 2. An illustration of the learning method for training a single neural network controller from a hand-coded
“innate” controller. The innate controller drives the robot and outputs the teaching signal for the network.

comotes.” [(Etienne et al., 1996) page 206]. Over longer range navigation, the absence
of external cues for re-calibration means that there can be considerable odometric drift
(Benhamou & Bovet, 1990). This is similar to what happens with the odometry of the No-
mad 200 robot used in the new research reported here. Owen and Nehmzow (1997) showed
that the Nomad 200 odometry drifts duringmiddle scalenavigation. They found that over
four circuits of a route, each approximately 270 feet long, the estimate of the angle could be
out by as much as90◦. However, in the current studies, the maximum distance of a return
journey using dead reckoning was 166.25 feet and most of the distances were much shorter.
Thus, the Nomad odometry was as reliable as needed for the current task.

At the start of each goal-finding experiment, the robot was presented with a number
of goal vectors each giving the direction and distance to the goal without regard to any
obstacles in the path and its task was to cycle through the goals and return home. Such a
goal vector is believed to be similar to the sort of goal information that is passed on by a
bee’s dance to let its hive mates know about the location of a single food source. Decades
of research (von Frisch, 1967) have shown that the angle between the sun’s azimuth and the
food source is indicated by the direction of the waggle run and the distance is represented by
the number of waggle runs in a unit of time (see also (Esch & Burns, 1996)). Interestingly,
it has been argued that, like our robot, the goal vector passed to bees in the dance gives
distance and angle information “as the crow flies”, i.e., irrespective of obstacles such as
mountains (Carthy, 1963)).

Although the robot can be given an individual goal vector via a keyboard rather than by
dancing in front of it, the method employed for the experimental work was to place up to 5
goals in the robot’s memory such that they were recalled in sequential order as each goal
position was reached. This is rather like hymenopterans whose goal-finding behavior is
believed to be dictated by internal instructions. As Collett (1996) points out, goal vectors
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may be sometimes, particularly on the first trips of the day, recalled from longer-term
memory storage.

Finally, it should be noted that no attempt was made here to model precise biological data
or to model specific species. Rather, the work grew out of general abstract intuitive notions
about animal intelligence and a belief that “nature knows best”. It is important, however,
to point out where the biological inspirations, analogies, and biological data helped to form
the ideas. By being explicit, the correctness or incorrectness of the relationship to natural
systems can be discussed and this may help us to move forward towards the longer term
goal of imitating natural intelligence.

2. Quantification of performance and statistical evaluation

One of the main problems addressed by the current research was how to evaluate the per-
formance of the MLP controllers. The purpose of training the MLPs was to improve on the
performance of their teachers, the innate controllers, and so they must not imitate their be-
havior too closely. Since the systematic aspect of the behavior of the innate controller is not
knowna priori, it is difficult to find an error measure with which to assess the generalization
performance of the nets. A MLP with limited resources will extract a pattern from the noise,
but it is not known in advance whether the extracted pattern will lead to improvement or
deterioration. That requires evaluation of the performance of the controllers. In standard
neural net research on supervised learning the quality of the generalization performance
is usually judged by how well a net can imitate “ideal” targets. However, for the tasks
employed here, the ideal targets were not known; the MLPs were trained on the less than
ideal targets generated by the innate controllers. The approach taken here was to develop
quantitative measures that could be used to assess the relative performance of the robot
controllers independently of their method of training.

The evaluation of avoidance and goal finding behaviors in modern robotics has most
frequently been concerned with the development and testing of a single control system.
Thus, often the only evaluation required is simply a demonstration that it finds goals and
avoids obstacles, i.e., it works. The demonstrations can take a number of forms such as
running the robot in the laboratory for a fixed period of time and counting the number
of bumps or remarking on their absence (Brooks, 1986). Another common method is
to provide a graphical representations of the robot’s trajectory through an obstacle laden
environment. In an early example of this method, Walter (1953) placed a candle on top
of the robot (turtle) and used a long exposure time in a darkened room to photograph the
trajectory of the light attracted obstacle avoidance behavior. More recently, the graphical
displays of robot simulators have been used to effectively illustrate behavior in combination
with verbal descriptions of how the robot coped with particular environmental features
(Anderson & Donath, 1990, Donnart & Meyer, 1996).

These methods of evaluation have been fruitful in demonstrating the properties of individ-
ual robot control systems, but now that there is an abundance of controllers that all appear
to do the job adequately, we need more precise methods for quantification and analysis
of behaviors. Some quantitative measures have already been used to assess or determine
the course of learning avoidance and goal-finding. In evolutionary learning, fitness has
been determined by parameters such as speed, straight direction, and obstacle avoidance
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(Floreano & Mondada, 1996) or speed and maximum sensor distance (Salomon, 1997). In
reinforcement learning, Meeden (1996) measured the amount of punishment received by
different controllers and used this to assess the progress of learning and the difference be-
tween two controllers. Touzet (1997) used two main measures to measure the performance
of the controllers: distance to objects over time and the proportion of moves executed by
the obstacle avoidance module that receive positive reinforcement. del Millan (1996) used
robot steps to measure the length of goal paths.

The purpose of the experiments reported here was to assess the relative performances
of three different avoidance and goal-finding controllers and two different avoidance con-
trollers. To evaluate and compare the behaviors, it was important to find dimensions that
would indicate the quality of the performance on pertinent aspects of the task and would
show up differences between controllers. As a first step, four dimensions were chosen:
(i) the speed of completing the task; (ii) how far the robot stays away from obstacles and
walls; (iii) the distance traveled in completing the task; and (iv) the smoothness of travel. In
order to compare the robot controllers on these dimensions, the following four quantitative
measures were employed.

• Sensorimotor Loop Values(SLV): The time taken for the robot behaviors is partly
dependent on the type of computer used and its load. To get around this, a measure
in robot time was used. Each time step of the robot may be characterized by a sense-
process-act step in which the incoming sensory stimuli are transformed into motor
output. This is called a sensorimotor loop. The sensorimotor loops were equated for
time for all of the controllers used (about 0.15 seconds on a machine free of other
processes). The number of sensorimotor loops was used to measure how long the robot
took, in robot time, to complete a task.

• Sensor Readings(SR): For each sensorimotor loop, the mean of the raw sensor (distance)
readings for the front seven pairs of IR/sonar sensors was recorded. This mean provides
a measure of the mass of obstacles to the front of the robot as opposed to a minimum
distance measurement which tells us only about one sensor reading. The mean of these
means over an experimental trial provides a measure of the overall distance that the
robot maintained from walls and obstacles and tells something about how much the
behavior is directly influenced by the environment. Using such means is a slightly
crude measure but it is suitable for the current purposes.

• Distance Traveled: The distance is measured by integrating the coordinates for each
sensorimotor loop. Since only movement through coordinate space for each sensori-
motor loop is counted, the distance measurement filters out movement attributable to
the robot rotating about its axis.

• Smoothness: Observation of the behavior of the controllers used here has shown that
a sensory input may result in a rotation of the robot rather than a movement through
coordinate space. Thus, the robot may rotate about its axis to a greater or lesser degree as
it travels in the presence of obstacles and, especially, when passing between obstacles.
Although the number of sensorimotor loops provides a measure (in robot time) of how
long the robot takes to complete a task, this could be attributable to either or both the
distance traveled or the amount of rotation (as mentioned above, thedistance traveled
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measure filters out the rotations). Dividing the distance traveled by the number of
sensorimotor loops provides a measure of how far the robot traveled, on average, for
each sensorimotor loop. Thus Smoothness = Distance/Sensorimotor loops. This is not
to be confused with the smoothness of trajectory. The higher the smoothness value the
lower the amount of rotation.

Data from the bumper sensors were also recorded and the total numbers are displayed in
the data tables for each experiment. These data were too sparse to enter into the statistical
analyses.

All of the experiments were conducted for several runs of the robot for each controller
(10 minimum). For each experiment, the data from the four measures described above
were subjected to statistical comparisons. Since all of the quantities were measured on an
interval scale, a parametric test, the Student’st statistic1 was appropriate. This gives the
probability of the null hypothesis that two sets of scores belong to the same distribution.
A criterion probability value of p< 0.05 is a fairly standard level for rejecting the null
hypothesis and saying that two sets of scores are significantly different. Correlatedt tests
were used for therepeated measurescomparisons in Experiments 1(a), 1(b), 2(a), 3(a) and
Independentt tests were used in Experiments 2(b), 2(c), 3(b), 3(c).

Figure 3. The four simulator worlds used in the three experimental studies. The black rectangles represent wall
and boundaries. The filled circles show the goal locations used in the experiments andH marks the home position.
Reading clockwise from the top left, the figures are, Lab1 world, a laboratory scale model, used in Experiment
1(a), Lab2 world, a laboratory scale model, used in Experiments 2(a) and 3(a), Sim1 world used in Experiments
1(b), 2(b), and 3(b); and Sim2 world used in experiments 2(c) and 3(c).

Three series of experiments in the four different worlds shown in Figure 3 were designed
to test the general hypothesis that MLP controllers can outperform their innate ‘teaching’
controllers. In Study 1, comparisons were made between a MLP obstacle avoidance control
module, see Figure 1(a) and an innate avoidance control module used to train it. In Study
2, a simple subsumption architecture was used to combine the goal and avoidance modules
into a single control structure as shown in Figure 1(b). The reported comparisons were
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between a controller consisting of two MLP modules and its teacher, a controller consisting
of the two innate control modules. In Study 3, the performances of the two subsumption
controllers, innate and MLP, were compared with a single MLP controller that was trained
on the combined task of avoiding obstacles whilst finding goals. Figure 6 shows a trace of
the trajectories of all three controllers performing in the Sim1 world. This was incremental
bootstrapping. The specific experimental hypothesis was that the single MLP controller
would extract the systematic aspect of both the robot’s interaction with the word and the
interaction of the two behavioral modules in the MLP subsumption controller used to train
it.

2.1. The robot hardware and sensors

The Nomad 200 mobile robot is 35 inches high, 18 inches wide and weighs 60 kg. Its
dimensions are suited to operation in human like environments such as rooms, hallways,
and offices. It is equipped with 16 ultra-sonic or sonar sensors for long range detection (6
to 255 inches), 16 infra-red (IR) proximity sensors (up to 30 inches), 20 tactile sensors, and
an odometer to keep track of its position. See Figure 4. All sensors are evenly spaced in
circles around the Nomad body. The sonar sensors are situated around the upper body of
the Nomad and the IR sensors and bumpers are situated around the lower body.

For all of the experiments described in this paper, only the front seven sonar and seven IR
sensors were used. These covered approximately157◦ around the front portion of the robot.
The output from each sensor pair,si, was preprocessed as the reciprocal of the distance
to the nearest obstacle. The sensors were read in IR/sonar pairs (one directly above the
other) such that if both members of a pair were “on”, then the minimum reading was taken,
otherwise a reading was taken from whichever of the pair was “on”. This greatly increased
the chances of detecting all obstacles in the vicinity of the Nomad regardless of their height.

Obstacles

Sonar
Sensors

Bump
Sensors

Radio
Link

Nomad 200

Ethernet

Sun

Radio
Link

IR Sensors

Figure 4. An illustration of the laboratory setup depicting the Nomad 200 robot and some obstacles. The
communication between host and robot is also illustrated.
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The Nomad 200 was controlled by a Sun workstation through a radio Ethernet link. During
operation, the control structure of the Nomad system performed asensorimotorloop that
mediated the incoming sensory stimuli and transformed them into motor output. Inputs to
the control structure were sensor readings, goal information (user specifiedxy coordinates),
position information (from the odometer) and bumper information. The Nomad robot and
its environment were also simulated on the Sun workstation. This simulator provided a
flexible way to test programs and record trajectories of the Nomad’s behavior. All training
reported here was carried out using the Nomad 200 in the “real” laboratory. However,
because of the large number of experimental runs, it was more convenient to conduct the
quantitative evaluations on the simulator.

3. Avoidance behavior: Innate and Learned

3.1. An Innate avoidance controller

In order to bootstrap the learning of the MLP controllers, the robot was given aninnate
obstacle avoidance behavior. The chosen method was essentially a localized (reactive)
version of theartificial potential fieldmethod developed by Khatib (1986) and see also
(Kassim & Kumar, 1995). In this method, obstacles are treated as repellent forces and
free space as an attractor. A simple model was used in which each sensor value,si, was
weighted according to the cosine of the absolute angle between the sensor location and the
forward direction of the Nomad. The absolute angles from the front along one side are
0◦, 22.5◦, 45◦, 67.5◦ and the cosines are, respectively, 1, 0.92, 0.71, 0.38. The rotational
velocity of the robot was directly related to the force of obstacles. Force was represented
by the sum of the sensor readings multiplied by the cosines of their respective angles. An
empirically estimated rotational constant,κr, was also used, whereκr = 1000 for the
controller described here. The mapping from the sensory input onto the rotational velocity
is given by,

R = κr

(
±s4 +

3∑
i=1

Cos(θi)si −
7∑

i=5

Cos(θi)si

)

where the rotational velocity has a negative weighting for the port sensor readings(i =
5, 6, 7), and a positive weighting for the starboard sensor readings(i = 1, 2, 3). Thus, the
Nomad rotates towards starboard when there is a greater repellent force to the port, i.e., when
the sum of the weighted sensor values is greater to port than starboard, and vice versa when
the force to starboard is greater. The sign of the front sensor,s4, depends on the distribution
of the forces to port and starboard, i.e., if there is a greater force from obstacles to port, the
Nomad should rotate towards the starboard and thuss4 would be signed negatively.

The translational velocity,T , was obtained by dividing an empirically estimated transla-
tional constant,κt, by the sum of the weighted sensor values,

T = κt/
(∑7

i=1 Cos(θi)si
)

. For the present studies,κt = 5. The robot was set to

always drive forward so that, in combination with avoiding obstacles, a natural wander-
ing behavior was produced. All of this could be hardwired into a McCullough-Pitts net
(McCulloch & Pitts, 1943) with a competitive output.
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The performance of the Innate controller was tested extensively in the laboratory pen
(19 X 24 feet) and in numerous student demonstrations and exhibitions. It produced some
collisions in irregular corners and it could catch its bumper on one obstacle while avoiding
another. These occurrences were fairly infrequent and did not happen on every run. Eval-
uation of the Innate behavior on the simulator is provided in Study 1 and the results are
given in Tables 1 and 2. These results showed a very similar performance to the laboratory
observations and are discussed in the detailed comparisons of Experiments 1(a) and 1(b).

3.2. Training a MLP for obstacle avoidance

For training a MLP using back-propagation, input and target data are required. The input
data were vectors of seven combined IR/sonar sensor readings (reciprocals of the distance
to the nearest object). For every sensory input vector a specific target vector is needed to tell
the network the required translational and rotational velocity (scaled) to drive the motors.
MLPs were trained in two modes.

In “wake” mode the Innate controller drove the robot around the laboratory for data
collection. During the drive, the MLP watched the driver closely. As shown in Figure
2, it received the same sensory input as the Innate controller and attempted to imitate the
Innate controller’s outputs. The input/output pairs were recorded in a file. If the Nomad
200 collided during wake learning, the vector pairs leading to the collision were removed
from the recorded training set. After a few thousand sensorimotor loops wandering in
the environment, the robot was put into “sleep” mode where it remained at a standstill to
accelerate the MLP training. In this mode the learning algorithm repeatedly cycled through
the training data that had been collected in wake mode.

For the current evaluation of the performance of the trained obstacle avoidance, the chosen
MLP had a 7-3-2 architecture. A small number of hidden units was used to prevent data
over-fitting. It was trained in wake mode for 2K sensorimotor loops and then in sleep mode
for 11K passes through the training data. With a learning rate = 0.8, a momentum factor =
0.1, and an error tolerance of 0.1, learning was terminated with a root mean square error,
RMSE=0.065. The trained controller produced collision free behavior during several hours
of running in the laboratory and elsewhere with the obstacles moved often. The visual
impression of the two controllers in the laboratory was that the MLP controller produced
smoother trajectories than the Innate controller and seemed to stay further away from
obstacles in general. The relative performances of the two controllers were experimentally
evaluated in Study 1.

Study 1: Comparing Innate and MLP controllers for avoidance

The relative performances of the Innate and MLP controllers were evaluated in two experi-
ments in two worlds of increasing difficulty. The first simple simulator world, Lab1, shown
in the upper left of Figure 3, is a rough, approximately scale, model of the laboratory pen.
The second world, Sim1, shown in the lower left of Figure 3, is larger and more cluttered.
For baseline measures, the same boundaries were used but were emptied of obstacles. In
both experiments the robot was driven for a fixed interval of 1000 sensorimotor loops from
each of 5 different locations (as shown by the Filled circles in Figure 3). This procedure was
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repeated twice for each controller providing 10 trials each for statistical comparisons. The
experimental hypothesis was that the MLP controller will extract the systematic structure
of the behavior of the innate controller in its interaction with the world, as a result, the robot
will improve on its innate performance.

Experiment 1(a)

The experiment was run in the world shown in Figure 3, Lab1. The data means and standard
deviations for the mean raw sensor readings (SR) and the mean distances traveled are shown
in Table 1. The Statistical analyses (Correlatedt tests) revealed no significant difference
between the mean raw sensor readings for the two controllers,t = 1.19, df = 9, p > 0.26,
wheredf =degrees of freedom. This means that, on average, both controllers maintained
similar distances from obstacles and walls. More importantly, the MLP controller drove the
robot significantly further than the Innate controller,t = 4.93, df = 9, p < 0.00082. This
finding cannot be attributed to the general operational speed of the two controllers since the
Innate controller actually drives further in an empty world as can be seen from the Baseline
Distance in Table 1. The results show that the MLP controller improves on the performance
of the Innate controller in a relatively simple obstacle laden environment (Lab1 in Figure
3).

Table 1. The results of Experiment 1(a) (Lab1 world): the mean distance, in feet, traveled by the robot and the
mean raw sensor readings (SR) in inches for the front 7 sonars/IRs for each controller over 10 runs (from 5 different
positions) in the pen with a number of rectangular obstacles (Figure 3, Lab1). The baseline conditions were taken
from a run with both controllers in the pen with all of the obstacles removed. Standard deviations (Std) are also
shown.

Innate MLP

Mean SR 57.32 60.06
Std 6.51 2.47
Mean Distance 46.26 56.78
Std 4.48 5.99
Total Bumps 3 6

Baseline SR 155.90 156.79
Baseline Distance 114.04 110.06

Experiment 1(b)

The experiment was run in the world shown in Figure 3, Sim1. The data means and standard
deviations are shown in Table 2. The statistical analysis of the mean sensor readings yielded
no significant difference between the MLP and Innate controllers, t = 0.12, df = 9, p> 0.9.
However, the robot traveled significantly further with the MLP controller than it did with
the Innate controller, t = 7.69, df = 9, p< 0.00004. As in the previous experiment, this
performance cannot be attributed to the general operational speed of the two controllers
since the Innate controller actually drives further in an empty world as can be seen from the
Baseline Distance in Table 2. The findings show that the MLP controller improves on the
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performance of the Innate controller in an environment cluttered with obstacles (Figure 3,
Sim1).

Table 2. The results from Experiment 1(b) (Sim1 world): the mean distance traveled by the robot, in feet, and
the mean sensor readings (SR) in inches for the front 7 sonars and IRs for each controller over 20 runs with the
simulator (Figure 3, Sim1). The baseline conditions were taken from a run with the simulator in an empty world
with the same boundary walls as used in the other conditions. Standard deviations (Std) are also shown.

Innate MLP

Mean SR 61.39 61.66
Std 7.06 2.21
Mean Distance 63.96 83.81
Std 7.66 4.42
Total Bumps 5 3

Baseline SR 194.83 201.14
Baseline Distance 229.58 217.90

Summary of the results from Study 1

The findings from Study 1 show that both controllers performed well; the total numbers
of bumps for the two experiments (40 runs) were 8 for the innate controller and 9 for the
MLP. These were mainly from repeated bumping on single occasions. These data were
too sparse to enter into the analyses. However, overall the MLP did better. This leads
to the rejection of the null hypothesis in favor of the experimental hypothesis that the
MLP avoidance controller can improve upon its teacher, the Innate avoidance controller.
While both controllers maintained approximately the same mean distance from the walls
and obstacles, the MLP controller drove the robot significantly further than the Innate
controller in the alloted time. This difference was not attributable to the relative operational
speed of the two controllers since, according to the baseline measures, in empty worlds the
Innate controller drove the robot further. These findings lend support to the notion that the
MLP controller is extracting an underlying systematic aspect of the behavior of the Innate
controller from the environment-specific behavioral noise in which it is embedded.

4. Goal-finding

The aim of the goal-finding behavioral module was to drive the Nomad to any goal location,
specified byxy coordinates, within the laboratory pen or elsewhere. The exclusive use of
proprioception here, as noted in the introduction, is analogous to the behavior of animals
(hymenopterans and mammals) when they are largely prevented from using normal external
cues, e.g., night active rodents.
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4.1. An Innate goal-finding controller

A ”dead reckoning” method was employed to continuously calculate the distance and di-
rection to the goal from the Nomad’s current position. The Nomad’s odometry system
provides the current position,r, of the robot and its angular direction,θr. This information
was used to calculate the distance and heading to the goal. For driving the robot to the goal
specified by a coordinate vectorg, the translational velocity,T , and the rotational velocity,
R, were calculated by,T = d(r,g)

2(1− | 2θ/π |), up to a maximum ofT = 100 and
R = 450(θ/π), whered(r,g) is the distance of the goal from the robot, andθ is the direction
of the goal from the robot. The exception being when| θ |> π/2 (the goal is behind), then
T = 5.

In many tests in an empty robot pen in the laboratory the Nomad never failed to reach a
goal using the Innate goal-find module. The main use here, in combination with the Innate
avoid module, was to train the other MLPs to perform the task.

4.2. Training a MLP goal-finding controller

For training a MLP to find a goal, the input values were given as,u1 = θ/π, andu2 =
d(r,g)/5000, and the target values were,t1 = (T +200)/400 andt2 = (R+450)/900. u2,
t1 andt2 were scaled between 0 and 1 andu1 was scaled between -1 and +1. The neural
net controllers were trained on 66 vector pairs generated such that they were equally spaced
within the input space for the laboratory. The input vectors consisted of two values giving
the scaled angle and distance to a goal. The target vectors consisted of the required (scaled)
translational and rotational velocities generated by the Innate goal-finding module.

Network controllers trained off-line from these data performed well, always finding a
path to the goal coordinates when all of the obstacles were removed from the laboratory
space. The MLP selected for more extensive evaluation here had a 2-2-2 architecture. It
was trained with backpropagation learning for 51K passes through the training data. With a
learning rate = 0.8, a momentum factor = 0.1, error tolerance = 0.1, the MLP was trained to
a RMSE = 0.075. It always located the goal in numerous tests in the laboratory pen and on
the simulator. Laboratory tests were difficult and great care had to be employed to ensure
that the robot did not crash. The goal-finding module is really only useful when combined
with the avoidance behavior and this is how it is evaluated in the next section.

Study 2: Comparing two controllers for goal-finding and obstacle avoidance

A much simplified subsumption architecture (Brooks, 1986) was designed to combine avoid
and find-goal modules into a single controller. The two innate modules formed an Innate
controller and the two MLP modules formed a Two-MLP controller. Goal-finding was the
top level behavior in the innate implementation and it was in control by default. Control
switched to the avoid module when the minimum raw sensor reading was less than 15
inches. It reverted to goal-finding again when the minimum raw sensor reading was greater
than 15 inches.

These controllers have been successfully tried and tested in the laboratory pen and in
external demonstrations and exhibitions of the robot with different numbers of obstacles
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in many different configurations. See Figure 6 for a trace of the trajectories of the Innate
and One-MLP controllers in the Sim1 world (Figure 3) driving to 4 goals and returning
home. The controllers were not perfect. There are a number of circumstances in which the
robot can get trapped in dead ends or can bump when the density of obstacles is high. The
two controllers were compared here in 3 different simulator worlds of increasing difficulty
shown in Figure 3: the Lab2 world was used for Experiment 2(a), Experiment 2(b) used the
Sim1 world, and Experiment 2(c) used the Sim2 world. The experimental hypothesis was
that the Two-MLP controller would improve on the performance of its Innate ‘teaching’
controller.

Experiment 2(a)

Experiment 2(a) was conducted in a simulator world that was a rough, approximately scale,
model of the laboratory pen in which the controllers were trained as shown in Figure 3,
Lab2. The experimental procedure was to use the Two-MLP and Innate controllers to drive
the robot around the pen through different goal locations. The Nomad was placed in turn in
each of the 5 chosen locations and the task was to visit the other 4 locations in a prespecified
order (allocated randomly in advance). The locations are shown as filled circles in Figure
3, Lab 2. This procedure was repeated twice for each controller making 20 experimental
trials altogether.

Table 3.The results from Experiments 2(a) and 3(a) (Lab2 world): the mean sensor readings (SR) in inches, the
mean number of sensorimotor loop values (SLV), and the mean distance traveled in feet, and the smoothness as
recorded for the robot for each controller to find goal locations over 10 runs (from 5 different positions) in the
pen. The mean smoothness is also shown. The baseline conditions were taken from a run in the pen with all of
the obstacles removed. Standard deviations (Std) are also shown.

Innate Two-MLPs One-MLP

Mean SR 50.48 50.75 54.47
Std 0.62 3.91 0.75
Mean SLV 933.70 857.4 749.60
Std 167.49 165.02 89.99
Mean Distance 56.85 58.55 55.04
Std 12.43 12.24 9.03
Mean Smoothness 0.061 0.068 0.074
Std 0.0098 0.0075 0.0085
Total Bumps 6 2 2

Baseline SR 110.97 114.13 113.69
Baseline SLV 673 707 701
Baseline Distance 43.79 46.10 44.65
Baseline Smooth. 0.065 0.065 0.064

The robot successfully reached all of the goals on every run with both controllers. The data
means and standard deviations for Experiment 2(a) are shown in the first two columns of
Table 3. The third column concerns the results from Experiment 3(a) and will be discussed
later. Analysis of the mean sensor readings data yielded no significant difference between
the Innate controller and the Two-MLP controllert = 0.19, df = 9, p > 0.85. Neither was
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there a significant difference observed between the mean distances traveled by the robot
using the two controllers,t = 1.30, df = 9, p > 0.22. However, the Two-MLP controller
was significantly faster than the Innate controller in terms of the number of sensorimotor
loops required to complete the task,t = 4.12, df = 9, p < 0.0026 and it was significantly
smoother,t = 4.51, df = 9, p < 0.0015. Comparisons with the baseline measures in Table
3 showed that in an empty world the Innate controller traveled faster than the Two-MLP
controller and was equally smooth. Thus, the results support the hypothesis that the Two-
MLP controller has learned to improve upon the performance of the Innate controller in an
obstacle laden environment.

Experiment 2(b)

In this experiment the robot traveled from its home to four known goal locations, indicated
by filled circles in Figure 3, Sim1, and then returned home again. The home position
is indicated by an H in Figure 3, Sim1. Each controller was run for 20 trials from the
same location. For the purposes of illustration, one trajectory for one run from each of
the controllers is shown in Figure 6. Careful study of the figure shows clear differences
between the Innate and Two-MLP controllers. However, it is the statistical analyses of the
experimental quantities over several trials that show up the main differences.

Table 4. The results from Experiments 2(b) and 3(b) (Sim1 world): the mean sensor readings (SR) in inches,
the mean number of sensorimotor loop values (SLV), the mean distance in feet traveled by the robot for each
controller to find goal locations over 20 runs in a simulated pen crowded with obstacles. The mean smoothness
is also shown. The baseline conditions were taken from a run in the simulated world with all of the obstacles
removed. Standard deviations (Std) are also shown.

Innate Two-MLPs One-MLP

Mean SR 52.94 50.75 55.25
Std 0.18 0.25 0.18
Mean SLV 1892.70 1607.00 1344.60
Std 16.13 5.87 2.28
Mean Distance 142.80 144.54 145.24
Std 0.08 0.19 0.17
Mean Smoothness 0.090 0.108 0.108
Std 0.00034 0.00015 0.00015
Total Bumps 6 0 0

Baseline SR 139.83 146.09 146.42
Baseline SLV 678 752 554
Baseline Distance 87.89 88.28 89.38
Baseline Smooth. 0.13 0.12 0.16

The robot successfully reached all of the goals on every run with both controllers. The data
means and standard deviations for Experiment 2(b) are shown in the first two columns of
Table 4. The third column concerns the results from Experiment 3(b) and will be discussed
later. Statistical analyses were not required for any of the comparisons since the populations
of scores do not overlap. The Innate controller always traveled a shorter distance to complete
the task than the Two-MLP controller. However, the Two-MLP controller completed the
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task faster than the Innate controller (in sensorimotor loops), and produced a smoother
performance. Comparisons with the baseline measures in Table 4 showed that in an empty
world the Innate controller traveled faster than the Two-MLP controller and was slightly
smoother. These results add support to the hypothesis that the Two-MLP controller learns
to outperform the Innate controller in an obstacle laden environment.

Experiment 2(c)

The experiment was run in the world shown in Figure 3, Sim2. As in the previous experi-
ment, in all of the experimental trials, the two controllers drove the robot to 4 goal locations
and returned home. This is similar to the world used in the previous experiment; it has the
same boundary walls but some more difficult turns are required by the robot. This provides
quite a tough test for the controllers. After running the Innate controller for 20 trials, only
12 were usable because the bumper stuck on 8 of the trials which terminated the experiment.
It was then decided to use only 12 trials. It took 18 runs to get 12 trials for the Two-MLP
controller since it had its bumper stuck on 6 of the trials.

The robot successfully reached all of the goals on each of the 12 experimental runs for
each of the controllers. The mean data and standard deviations are shown in the first two
columns of Table 5. The third column concerns the results from Experiment 3(c) and will be
discussed later. Although the difference between the means for the distances traveled by the
Innate (137.78 feet) and the Two-MLP (137.49 feet) controllers was very small (0.29 feet)
the differences between the measures were stable,t = 3.62, df = 22, p < 0.0016. The
Two-MLP controller performed the task faster than the Innate controller with no overlap
between the distributions of scores. It also kept further away from walls and obstacles
than the Innate controller (mean SR),t = 2.44, 22, p < 0.024 and was overall smoother
t = 2.69, df = 18, p < 0.016. The same baseline measures measure were used as for
the previous experiment, since they both used the same empty world. The comparisons
with the baselines in Table 4 showed that in an empty world the Innate controller traveled
faster than the Two-MLP controller and was slightly smoother. This is another confirmation
instance of the hypothesis that the MLP learns to improve on the performance of the Innate
controller.

Summary of the results from Study 2

The overall pattern of results from the three experiments reported in Study 2 confirmed the
experimental hypothesis that the generalization performance of the subsumption architec-
ture, consisting of the Two-MLP controller trained using backpropagation, would improve
upon the performance of the Innate ‘teaching’ controller. This was demonstrated in three
worlds of increasing difficulty. The results for the distances traveled and the mean sensor
reading were inconclusive. In the easiest world (Experiment 2(a)) the controllers main-
tained an approximately equal average distance from obstacles and walls. But in the two
more difficult environments, the Two-MLP controller maintained a greater average distance
in one experiment and less in the other. There was no significant difference for the distance
traveled in Experiment 2(a), but, although the differences were small in Experiment 2(b),
the Two-MLP traveled significantly further, and the Innate controller traveled significantly



LEARNING FROM INNATE BEHAVIORS 131

Table 5. The results from Experiments 2(c) and 3(c) (Sim2 world): sensor readings (SR) in inches, the mean
number of sensorimotor loop values (SLV), the mean distance traveled by the robot, in feet, for each controller
to find goal locations over 12 runs in a simulated pen crowded with obstacles and the smoothness of travel. The
baseline measures were taken from a run in the simulated world with only the boundaries and all of the obstacles
removed. Standard deviations (Std) are also shown. The Baseline measures are the same as those shown in the
previous Table.

Innate Two-MLPs One-MLP

Mean SR 49.68 49.50 51.50
Std 0.21 0.17 1.51
Mean SLV 3208.42 2834.00 2409.25
Std 6.37 44.45 189.93
Mean Distance 137.78 137.49 158.38
Std 0.15 0.22 11.77
Mean Smoothness 0.045 0.052 0.065
Std 0.0028 0.0079 0.00052
Total Bumps 8 6 0

further in Experiment 2(c). However, it was clear from the results of the three experiments
that the robot completed the task faster and smoother when it was driven by the Two-MLP
controller than when it was driven by the Innate controller. Thus, it appears that the plas-
ticity of MLP learning does adapt the general behavior of the Innate controller to the world
in which it is active. The findings indicate that there is an underlying systematic aspect to
the way in which the two innate control modules (goal-finding and avoid) interact with the
world.

Study 3: Comparisons with a single MLP controller

In the previous two studies it was observed that MLP controllers appear to learn some of
the regularities underlying the behavior of hardwired innate controllers in such a way as
to improve upon their performance. In this study, the notion ofincremental bootstrapping
was tested. That is, the previously trained Two-MLP controller was used to bootstrap a new
single MLP, the One-MLP controller. The reasoning was that the single MLP controller
would extract the systematic aspect of both the robot’s interaction with the word and the
interaction of the two behavioral modules in the Two-MLP subsumption controller used to
train it. In this way a new, perhaps more appropriate, function approximation can be trained
with the possibility of filtering out some more of the environment specific behavioral noise.

A single MLP controller was trained on the complete task of finding goals and avoiding
obstacles. The method of training is illustrated in Figure 5. The training data were collected
in wake mode by driving the Nomad 200 around the laboratory pen under the control of
the Two-MLP controller described in Study 2. Input/target vector pairs were collected for
training the new network with 9 inputs (2 goal vector inputs and 7 distance sensor inputs),
three hidden units, and two motor output units. The training data were gathered over a
period of time with continued learning in a changing environment. The exact number of
passes through the training data is not meaningful since training sets varied in size and some
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of the learning was in wake mode. The length of the goal paths were varied and both wake
and sleep training were used. The net to be evaluated here was trained to RMSE=0.04.
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Figure 5. An illustration of the learning method for training a single neural network controller from a subsumption
architecture with two neural net controllers. The subsumption controller drives the robot and outputs the teaching
signal for the network.

To evaluate the performance of the One-MLP controller, it was tested in the same three
worlds for the same number of experimental runs as the controllers in the previous study
and with the same experimental conditions. Statistical analyses were then employed to
compare the performance of the One-MLP controller with those of the Innate and Two-
MLP controllers described in Study 2. The experimental hypothesis was that the One-MLP
controller would improve upon the performance of the Two-MLP and Innate controllers. An
example of trajectories for the three controllers is shown for the Sim1 world in Figure 6 for
Experiment 3(b). Careful study is required to see the differences between the trajectories.
Statistical analyses of the experimental quantities make these differences clear.

Experiment 3(a)

The experiment was run in the world shown in Figure 3, Lab2. As in Experiment 2(a), the
Nomad was placed in turn in each of 5 chosen locations and the task was to visit the other 4
locations in a prespecified order (allocated randomly in advance). The locations are shown
as filled circles in Figure 3, Lab 2. This procedure was repeated twice for each controller
making 20 experimental trials altogether. The robot successfully reached all of the goals
on every run.

The data means and standard deviations for the One-MLP controller in comparison
with the other controllers are shown in Table 3. Statistical analyses revealed no signif-
icant differences between the distance traveled by the One-MLP controller compared to
the Two-MLP controller, although the result marginally favored the one-MLP controller,
t = 2.11, df = 9, p > 0.06, and the Innate controller,t = 0.87, df = 9, p > 0.4. Further
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Figure 6. An illustration of robot trajectories for three controllers running in Sim1 world (see Figure 3). Careful
study of the figures shows that the trajectory of the Innate controller is more erratic than either of the other
trajectories. The One-MLP controller produces a smoother and shorter trajectory than the Two-MLP controller,
but this is more difficult to see. The statistical analyses presented in studies 2(b) and 3(b) make the differences
clearer

comparisons showed that the One-MLP controller carried out the task faster (less sensorimo-
tor loops) than either the Innate controller,t = 5.49, df = 9, p < 0.0004, or the Two-MLP
controller,t = 3.45, df = 9, p < 0.007; the One-MLP controller stayed further from the
obstacles and walls than either the Innate controller,t = 10.31, df = 9, p < 2.79 × 10−6,
or the Two-MLP controller,t = 3.29, df = 9, p < 0.0094; and the One-MLP controller
was smoother than both the Two-MLP controller,t = 2.65, df = 9, p < 0.027 and the
Innate controller,t = 8.20, df = 9, p < 0.00002. The comparisons with the baselines
in Table 3 showed that in an empty world the One-MLP controller drove slower than the
Innate controller but slightly faster than the Two-MLP controller. Overall, the results in
Table 3 show that the One-MLP controller adapts well to its environment by improving on
the performances of the other two controllers.

Experiment 3(b)

The experiment was run in the world shown in Figure 3, Sim1. As in Experiment 2(b),
the controller was run for 20 trials from the same location (marked with an H). The robot
successfully reached all four goals and returned home on every run. The data means and
standard deviations for the One-MLP controller in comparison with the other controllers
are shown in Table 4. Statistical analyses were not required for comparing the sensorimotor
loop values or the mean sensor readings of the One-MLP controller with the Innate and Two-
MLP controllers since the distribution of the scores did not overlap. The One-MLP traveled
faster than the other controllers and stayed further away from walls and obstacles. The
One-MLP controller traveled further than both the Innate Controller (no overlap between
the distributions of their scores) and the Two-MLP controller,t = 12.25, df = 38, p <
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9.33 × 10−15. This time the One-MLP controller was not significantly smoother than the
Two-MLP controller,t = 0.70, df = 18, p > 0.4. However, as before One-MLP controller
was smoother than the Innate controller with no overlap in the distributions of the scores.
The comparisons with the baselines in Table 4 showed that in an empty world the One-
MLP controller drove faster than both the Innate controller and the Two-MLP controller.
Overall, the results shown in Table 4, show that the One-MLP controller improved upon
the performance to the other two controllers.

Experiment 3(c)

The experiment was conducted in the world shown in Figure 3, Sim2. As in Experiment
2(c), the robot was required to drive to 4 locations from its home (H) and then return. The
robot successfully reached all of the goals and returned home on all 12 runs.

The data means and standard deviations for the One-MLP controller in comparison with
the other controllers are shown in Table 5. Statistical analyses yielded a similar pattern of
results to the previous two experiments. The mean overall distance traveled by the One-MLP
controller was significantly further than for both the Two-MLP controller,t = 6.14, df =
22, p < 3.49 × 10−6, and the Innate controller,t = 6.06, df = 22, p < 4.25 × 10−6.
Analysis of sensorimotor loop values revealed that the One-MLP controller completed the
task faster than both the Two-MLP controller,t = 7.54, df = 22, p < 1.55×10−7, and the
Innate controllert = 14.57, df = 22, p < 8.84× 10−13. Note, however, the variability of
the SLV for the One-MLP condition (5). This was because it sometimes found a shortcut.
For the mean sensor readings, the One-MLP controller stayed further away from obstacles
and walls than both the Innate controller,t = 4.12, df = 22, p < 0.00046 and the Two-
MLP controller,t = 4.56, df = 22, p < 0.00016. As before, the One-MLP controller was
significantly smoother than the Two-MLP controller,t = 5.24, df = 18, p < 0.00006, and
the Innate controller,t = 22.20, df = 18, p < 1.58 × 10−14.

Summary of the results from Study 3

The findings reported in Study 3 clearly support the experimental hypothesis that the One-
MLP controller would outperform both its teacher and its teacher’s teacher. In all three
experiments in worlds of increasing difficulty the One-MLP controller drove the robot to
complete the tasks fastest, steered it furthest from the obstacles and was smoother. Although
the extra distance from the obstacles enabled the One-MLP to move faster, it was at a cost.
In all but the first experiment, when the robot was controlled by the One-MLP the distance it
traveled was greater. The overal findings provide strong support for the notion that the single
MLP controller can extract the systematic aspect of both the robot’s interaction with the
word and the interaction of its two behavioral modules in the MLP subsumption controller
used to train it.

The bump data were too sparse for statistical analysis. In the 6 experiments reported in
Studies 2 and 3, the Innate controller bumped 20 times, the Two-MLP controller bumped
8 times, and the One-MLP controller, twice. Not much can be made of these low figures
except that they indicate that all of the controllers performed reasonably well. It should
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be noted that the Innate and Two-MLP controllers had some difficulties in the Sim2 world
shown in Figure 3. Their driving resulted in stuck bumpers in a number of cases.

5. Summary and Discussion

The primary aim of the studies was to investigate the incremental adaption of robot con-
trollers given basic innate behaviors. The inspiration from biology was that predispositions
may generate behaviors that can then be adapted to more specific environmental circum-
stances. Such behavioral flexibility would be particularly useful if the type of environment
that the creature must live in, e.g., swamp, forest, desert, or office building, and the physi-
ological embodiment (length of legs, etc.) are unknowna priori. But the question is, how
can such general behavior be adapted? One suggestion (Johnson, 1992) was that the innate
behavior bootstraps learning in plastic neural networks.

The objective of the current research was to evaluate a method by which such learning
could take place. The idea was that the behavior of a simple hardwired reactive (innate)
controller on a mobile robot could exhibit an underlying systematic aspect in its interaction
with the world that could be learned and employed by MLP controllers. This would be
manifest in improved performance of the MLP controllers. Furthermore, the possibility of
incremental bootstrapping was investigated. A previously trained Two-MLP controller was
used to bootstrap a new single MLP, the One-MLP controller. The reasoning was that the
single MLP controller would extract the systematic aspect of both the robot’s interaction with
the world and the interaction of the two behavioral modules in the Two-MLP subsumption
controller used to train it.

A secondary aim of the studies was to begin the development of a method for comparing
controllers experimentally. This led to the use of four measurable quantities along four
pertinent dimensions for the tasks (bumps were too infrequent to use): the mean distance
from obstacles, the number of sensorimotor loops required for task completion, the distance
traveled, and the smoothness of travel. Using these quantities, three series of experiments
in the four different worlds shown in Figure 3 were carried out to test the general hypothesis
that MLP controllers could outperform their ‘teaching’ controllers. In all of the studies the
controllers performed well with only a total of 47 bumps recorded over 166 experimental
runs. Most of these were repeated bumps on a single obstacle on a single run. In Study 1,
comparisons were made between a MLP obstacle avoidance control module and an innate
avoidance control module used to train it. The results from the two experiments suggested
that the MLP improved upon the performance of the Innate controller by traveling further
in a fixed time period in an obstacle laden environment. These results were compared to
baseline measures that showed the opposite effect for controllers in an empty world.

Studies 2 and 3 were both concerned with goal-finding in an obstacle laden environment
and they will be treated together. In Study 2, a simple subsumption architecture was used
to combine the goal and avoidance modules into a single control structure. The reported
comparisons were between a controller consisting of two MLP modules and its teacher,
a controller consisting of the two innate control modules. In Study 3, the performance
of the two subsumption controllers, innate and MLP, were compared with a single MLP
controller that was trained on the combined task of avoiding obstacles whilst finding goals.
The specific experimental hypothesis was that the single MLP controller would extract the
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systematic aspect of both the robot’s interaction with the word and the interaction of the
two behavioral modules in the MLP subsumption controller used to train it.

To get an overall picture of the results of the comparison for Studies 2 and 3, each of
the goal-find and avoid controllers was scored according to how well it fared in pairwise
comparisons between the controllers along the measured dimensions. When a comparison
showed a controller to be superior to one other controller along one of the measured dimen-
sions, it scored 1 and when two controllers were not significantly different on a dimension,
they scored 0.5 each, otherwise they scored 0. The maximum score that a controller could
score on any dimension was 6 (beating both of the other controllers in all three experimental
setups). The results, shown in Table 6, clearly favor the One-MLP controller with 18.5 out
of 24. It had maximum scores of 6 on both the distance from obstacles and time to com-
pletion dimensions, and an almost maximum score, 5.5, for smoothness. Its only weakness
was that it tended to travel further than the other two controllers in completing its tasks
(it only scored 1 on Distance traveled). The extra distance traveled resulted, in part, from
keeping a greater distance from obstacles. This was a small price to pay for smoother and
faster performance. The One-MLP controller was less influenced by its local environment.
The runner-up was the Two-MLP controller with 12 out of 24. It outperformed the Innate
controller on three dimensions and equalized on distance traveled. The Innate controller
came last with a score of 5.5 out of 24.

Table 6. The scores for the three goal-finding and avoid controllers based on the comparisons from all of
experiments in Studies 2 and 3. See the text for an explanation.

Innate Two-MLPs One-MLP

Distance from obstacles 1.5 1.5 6
Time to completion 0 3 6
Distance traveled 4 4 1
Smoothness 0 3.5 5.5

Totals 5.5 12 18.5

One of the most significant findings here was that a single MLP was shown to extract
higher order regularities in the behavior of modules that were interacting with each other
as well as with the world. This could lead to what has been termed “emergent behavior”,
but it would also be “emergent cognition” (Sharkey & Sharkey, 1994). For example, in
the Two-MLP controller described in Study 2, the avoid module inhibited the goal-finding
module when obstacles were too close and thus the direction of the goal location did not
influence the direction of the obstacle avoidance. However, the One-MLP controller had
no knowledge of which of the two modules was in operation at any time. They were in a
black box. During training, the One-MLP observed only the sensory input to the Two-MLP
controller and its output to the motors. It makes its generalizations on the basis of the
combined behavior of the two modules and integrates them into a single controller.

In the environments used for training the MLPs, the goal behavior appears to dominate
and so the integrated behavior is more goal directed and less influenced by the force of
obstacles. Recall that the One-MLP controller had the maximum score of 6 for the number
of winning comparisons for the distance that it maintained from obstacles and 5.5 for the
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smoothness of travel. The behavior of the One-MLP controller showed a minor move up
the developmental chain from its origins to begin the escape from purely reactive control.
The robot is now in a position to detect and exploit more general trends in its behavior
(Sharkey & Heemskerk, 1997). Of course this would be better if there were more than two
modules to learn from.

Recently, Garry Trotter, a project student with our group conducted some studies in which
a “dead-end escape” module was added to the subsumption architecture described above.
This module was triggered if the goal was behind the robot within a certain angle; then the
robot moved to the nearest starboard wall and continued wall following until it had turned
180◦ in one direction and there was free space. The controllers have not been submitted to a
thorough experimental evaluation yet, but early indications are that the results are following
a similar pattern to those reported here with a three module innate controller, a three module
MLP controller and a single MLP controller. The single MLP integrated systematic aspects
of all three behaviors collectively.

These findings show promise for the general methods proposed here. It has been demon-
strated that innate behaviors can bootstrap learning in adaptive neural networks. Moreover,
the performance of the controllers improved incrementally. It would also be interesting
to enlist other learning methods such as GAs to develop the innate controllers and rein-
forcement learning to train more mature controllers. Additionally, control using the simple
infra-red and sonar sensors could be useful for bootstrapping learning with other sensors
such as lasers and cameras. Many of the ideas for developing the controllers described
here were based on inspirations from studies of animal navigation. No attempt was made
to model data from particular species. From this perspective, the robot controllers are too
under-constrained to relate to biological models. However, the establishment of general
principles of learning directed locomotion may feedback into animal research. Some ideas
were presented here about how a neural system could adapt to a particular environment
by extracting regularities from the amalgamated behavior of inflexible innate subsystems
interacting with the world.
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