
Machine Learning, 29, 213–244 (1997)
c© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Adaptive Probabilistic Networks
with Hidden Variables*

JOHN BINDER binder@cs.berkeley.edu
Computer Science Division, University of California, Berkeley, CA 94720-1776

DAPHNE KOLLER koller@cs.stanford.edu
Computer Science Department, Stanford University, Stanford, CA 94305-9010

STUART RUSSELL russell@cs.berkeley.edu
Computer Science Division, University of California, Berkeley, CA 94720-1776

KEIJI KANAZAWA keijik@microsoft.com
Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399

Editor: Padhraic Smyth

Abstract. Probabilistic networks (also known as Bayesian belief networks) allow a compact description of
complex stochastic relationships among several random variables. They are used widely for uncertain reasoning
in artificial intelligence. In this paper, we investigate the problem of learning probabilistic networks with known
structure and hidden variables. This is an important problem, because structure is much easier to elicit from
experts than numbers, and the world is rarely fully observable. We present a gradient-based algorithm and show
that the gradient can be computed locally, using information that is available as a byproduct of standard inference
algorithms for probabilistic networks. Our experimental results demonstrate that using prior knowledge about the
structure, even with hidden variables, can significantly improve the learning rate of probabilistic networks. We
extend the method to networks in which the conditional probability tables are described using a small number of
parameters. Examples include noisy-OR nodes and dynamic probabilistic networks. We show how this additional
structure can be exploited by our algorithm to speed up the learning even further. We also outline an extension to
hybrid networks, in which some of the nodes take on values in a continuous domain.

Keywords: Bayesian networks, gradient descent, prior knowledge, dynamic networks, hybrid networks

1. Introduction

Intelligent systems acting in the real world require the ability to make decisions under un-
certainty using the available evidence. Over the past decade, probabilistic networks (also
calledBayesian belief networks) have become the primary method for reasoning and act-
ing under uncertainty. Probabilistic networks are based on sound probabilistic semantics,
thereby allowing the application of well-understood techniques such as conditioning for

* The second and third authors were supported by the Army Research Office through the Multidisciplinary
University Research Initiative on Integrated Approaches to Intelligent Systems. The work of the second author
was also supported by a University of California President’s Postdoctoral Fellowship and an NSF Postdoctoral
Associateship in Experimental Science, and more recently by ONR Grant N00014-96-1-0718. The work of the
third author was also supported by NSF Grant IRI-9058427 and by a Miller Professorship of the University of
California.



214 J. BINDER ET AL.

incorporating new information and maximizing expected utility for decision making. They
take advantage of the causal structure of the domain to allow a compact and natural rep-
resentation of the joint probability distribution over the domain variables. Probabilistic
networks have been shown to perform well in complex decision-making domains such as
medical diagnosis, fault diagnosis, image analysis, natural language understanding, robot
control, and real-time monitoring (see, e.g., Heckerman & Wellman, 1995).

While the compact and natural representation considerably facilitates knowledge acquisi-
tion, the process of eliciting a probabilistic network from experts is still a slow one, largely
due to the need to obtain numerical parameters. Clearly, techniques for automatically
learning probabilistic networks from data would be of significant value.

The advantages of learning probabilistic networks go beyond the standard ones obtained
by any type of autonomous learning system: Probabilistic networks are known to be an
effective representation for decision making and reasoning. This allows our learned model
to be easily integrated as a component of a complex system. Furthermore, since probabilistic
networks have a precise, local semantics, human experts can often provide provide prior
knowledge in the form of strong constraints on the initial structure of the network. As we
will show below, this can greatly reduce the amount of training data required. Finally, the
output of the learning process is typically comprehensible to humans.

In this paper, we present a new learning algorithm for probabilistic networks. We focus
on the problem of learning networks where some of the variables arehidden—that is, their
values are not (necessarily) observable. This case is of particular interest since, in practice,
we rarely observe all the variables. In a medical environment, for example, the actual
disease is not always known even at the end of the treatment, and we rarely have results
for all possible clinical tests. Furthermore, causal models often contain variables that are
sometimes inferred but never observed directly, such as “syndromes” in medicine. As we
will see, such variables can greatly reduce the complexity of the model.

We also restrict attention to the problem of learning the probabilistic parameters, assuming
that the network structure is known. Although this is clearly only a partial solution to the
problem of learning a probabilistic network, it is a particularly relevant one. It is often easy
to elicit the causal structure from an expert, whereas eliciting exact probabilistic parameters
can be very difficult. In a medical context, for example, the causal connections between
diseases and their symptoms are often known. Furthermore, the probabilistic parameters
are far likelier to change as the environment evolves, making it much more important to
adapt them gradually over time to reflect actual events.

The network structure is used by the learning algorithm as a strong source of prior
knowledge about the domain. As our results show, this significantly reduces the amount
of data required to train the network. Clearly, this reduction results from the fact that a
given network structure implies a set of conditional independence relationships that strongly
constrain the joint probability distribution, thereby eliminating many parameters from the
learning problem.

In very large networks, however, this reduction may not be enough. For example, the
CPCS network (Pradhan, Provan, Middleton & Henrion, 1994) would require 133,931,430
parameters if defined using explicit conditional probability tables. Instead, CPCS uses
parametricdescriptions of the conditional distributions in the network, such asnoisy-OR



ADAPTIVE PROBABILISTIC NETWORKS WITH HIDDEN VARIABLES 215

andnoisy-MAX, thereby reducing the network to only 8,254 parameters. An even more
extreme illustration is provided by networks with continuous-valued variables, for which a
general conditional distribution would require an infinite number of parameters.

In many practical problems, one must therefore use distributions characterized by an even
smaller number of parameters. Hence,provided the underlying domain can be approximated
by a parameterized distribution, we expect to realize a significant reduction in sample
complexity by using parametric representations as our hypotheses. As we show, such
hypotheses can be learned using a straightforward extension of our basic learning technique.

The paper begins with a basic introduction to probabilistic networks. We then present:

• A derivation of a gradient-based learning algorithm for probabilistic networks with
hidden variables, where the gradient can be computed locally by each node using
information that is available in the normal course of probabilistic network calculations.

• Experimental demonstrations of the algorithm on small and large networks, showing a
dramatic improvement in learning rate resulting from inclusion of hidden variables.

• An extension of the algorithm to handle parameterized distributions.

• Gradient derivations and experimental results for noisy-OR and dynamic probabilistic
networks, along with discussion of continuous-variable networks.

We then describe related work, and we conclude with a discussion of future work and the
prospects for adaptive probabilistic networks (APNs) as a general tool for learning complex
models.

2. Probabilistic networks

Probability theory views the world as a set of random variablesX1, . . . , Xn, each of which
has a domain of possible values. For example, in describing cancer patients, the variables
LungCancerandSmokercan each take on one of the valuesTrueandFalse. The key concept
in probability theory is thejoint probability distribution, which specifies a probability for
each possible combination of values for all the random variables. Given this distribution,
one can compute any desired posterior probability given any combination of evidence. For
example, given observations and test results, one can compute the probability that the patient
has lung cancer.

Unfortunately, an explicit description of the joint distribution requires a number of param-
eters that is exponential inn, the number of variables. Probabilistic networks (Pearl, 1988)
derive their power from the ability to represent conditional independences among variables,
which allows them to take advantage of the “locality” of causal influences. Intuitively, a
variable is independent of its indirect causal influences given its direct causal influences. In
Figure 1, for example, the outcome of the X-ray does not depend on whether the patient is
a smoker given that we know that the patient has lung cancer. If each variable has at most
k other variables that directly influence it, then the total number of required parameters is
linear inn and exponential ink. This enables the representation of fairly large problems.



216 J. BINDER ET AL.

0.3

0.7

0.9

0.1

0.5

0.5

0.1

Smoker CoalMiner

LungCancer

PositiveXRay Dyspnea

Emphysema

Emphysema

~E

S C S ~C ~S C ~S~C

(a) (b)

  E

0.9

Figure 1. (a) A simple probabilistic network showing a proposed causal model. (b) A node with associated
conditional probability table. The table gives the conditional probability of each possible value of the variable
Emphysema, given each possible combination of values of the parent nodesSmokerandCoalMiner.

Formally, a probabilistic network is defined by a directed acyclic graph together with a con-
ditional probability table (CPT) associated with each node (see Figure 1). Each node repre-
sents a random variable. The CPT associated with variableX encodesP(X |Parents(X))—
the conditional distribution of the node given the different possible assignments of values to
its parents. While the CPT is often represented as a simple table, as in Figure 1(b), it can also
be represented implicitly as a parameterized function from values forX andParents(X)
to probability values. With implicitly represented CPTs, a network can include continuous
as well as discrete variables.

The arcs in the network encode a set of probabilistic independence assumptions: each
variable must be conditionally independent of its non-descendants in the graph, given its
parents. This constraint implies that the network provides a complete representation of the
joint distribution through the equation

P (x1 . . . xn) =
n∏
i=1

P (xi |Parents(Xi)) (1)

whereP (x1 . . . xn) is the probability of a particular combination of values forX1, . . . , Xn.
Since a probabilistic network encodes a complete representation of the joint distribution, it

implicitly contains the information to compute the probability of any set of query variables
given any set of observations. That is, there is no restriction on what variables can be
observed and what variables can be queries.

The general inference problem in probabilistic networks is NP-hard, so that all infer-
ence algorithms are of exponential complexity in the worst case. However, a number of
algorithms have been developed that take advantage of network structure to perform the
inference process effectively, often allowing the solution of large networks in practice. The
most widely used algorithms for exact inference areclustering algorithhms(Lauritzen &
Spiegelhalter, 1988), which modify the network topology, transforming it into a Markov
random field.1 Stochastic simulation algorithms have also been developed (e.g., Schacter &
Peot, 1989; Fung & Chang, 1989), allowing for an anytime approximation of the solution.
Massive parallelism can easily be applied, particularly with simulation algorithms.



ADAPTIVE PROBABILISTIC NETWORKS WITH HIDDEN VARIABLES 217

3. Learning probabilistic networks

How can probabilistic networks be learned from data? There are several variants of this
question. The structure of the network can beknownor unknown, and the variables in the
network can beobservableorhiddenin all or some of the data points. (The latter distinction
is also described by the terms “complete data” and “incomplete data.”) All of these tasks
are described in the excellent tutorial by (Heckerman, 1995).

The case of known structure and fully observable variables is the easiest. In this case, we
need only learn the CPT entries. Since every variable is observable, each data case can be
pigeonholed into the CPT entries corresponding to the values of the parent variables at each
node. Simple Bayesian updating then computes posterior values for the conditional prob-
abilities based on Dirichlet priors (Olesen, Lauritzen, & Jensen, 1992; Spiegelhalter et al.,
1993).

The case of unknown structure and fully observable variables has received a signifi-
cant amount of attention. In this case, the problem is to reconstruct the topology of the
network—a discrete optimization problem usually solved by a greedy search in the space of
structures (Cooper & Herskovits, 1992; Heckerman, Geiger & Chickering, 1994). For any
given proposed structure, the CPTs can be reconstructed as described above. The resulting
algorithms are capable of recovering fairly large networks from large data sets with a high
degree of accuracy.

Unfortunately, as we pointed out in the introduction, it is difficult to find real-life data
sets where all of the variables are always observed. The existence of hidden variables
significantly complicates the learning problem, so that the problem of learning networks
with hidden variables has received much less attention than the fully-observable case. We
discuss the previous work on this topic in Section 7.

The case on which we focus in this paper is that of known structure2 with hidden variables.
This is a particularly important case, since it seems to capture a significant range of inter-
esting practical problems. In many applications, such as insurance, finance, and medicine,
domain experts have a well-developed understanding of the qualitative properties of the
domain. Furthermore, as we discuss later on, an algorithm for learning the numerical pa-
rameters is necessarily a component in any algorithm for learning networks with hidden
variables.

One might ask why the hidden-variable problem cannot be reduced to the fully observable
case by ignoring the hidden variables, or (in the case of known structure) by eliminating
them using marginalization (“averaging out”). There are several reasons for this. First, it
is not necessarily the case that any particular variable is hidden in all the observed cases
(although we do not rule this out). Second, the hidden variable might be one that we are
interested in querying, as in learning mixture models (Titterington, Smith, & Makov, 1985).
Finally, networks with hidden variables can be morecompactthan the corresponding fully
observable network (see Figure 2). In general, if the underlying domain has significant
local structure, then with hidden variables it is possible to take advantage of that structure
to find a more concise representation for the joint distribution on the observable variables.
This, in turn, makes it possible to learn from fewer examples.



218 J. BINDER ET AL.

H

(a) (b)

Figure 2. (a) A probabilistic network with a hidden variable, labelledH, whereH is two-valued and the
other variables are three-valued. The network requires 45 independent parameters. (b) The corresponding fully
observable network, following arc reversal and node removal. The network now requires 708 parameters.

Before describing the details of our solution, we will explain the task in more detail. The
algorithm is provided with a network structure and initial (possibly randomly generated)
values for the CPTs. It is presented with a setD of data casesD1, . . . , Dm. We assume
that the cases are generated independently from some underlying distribution. In each data
case, values are given for some subset of the variables; this subset may differ from case
to case. The object is to find the CPT parametersw that best model the data, wherewijk
denotes a specific CPT entry, the probability that variableXi takes on itsjth possible value
assignment given that its parentsUi take on theirkth possible value assignment:

wijk ≡ P (Xi =xij |Ui = uik). (2)

To operationalize the phrase “best model the data,” we assume for the purposes of this paper
that each possible setting ofw is equally likelya priori, so that themaximum likelihood
(ML) model is appropriate. This means that the aim is to maximizePw(D), the probability
assigned by the network to the observed data when the CPT parameters are set tow.

One can draw a straightforward analogy between this task and the task of learning in
feedforward neural networks. In the latter task, the weights on the links are adjusted to
minimize an error functionEw(D) that describes the degree of fit between the data and
the network’s outputs. A number of different error functions can be used. Minimizing the
cross-entropyerror function (see below) can be shown to result in maximum likelihood
estimation for discrete data(Baum & Wilczek, 1988; Bishop, 1995).

In some situations, maximizing likelihood is not appropriate and can result in overfitting.
A maximuma posteriori (MAP) analysis assumes a prior distributionP (w) on the net-
work parameters and adjustsw to maximizePw(D)P (w). It is straightforward to extend
the methods described below to solve this problem, as shown by (Thiesson, 1995a). This
extension can also be performed for feedforward neural networks— the so-calledregu-
larization method (e.g., Poggio & Girosi, 1990). Finally, it is possible to perform a full
Bayesian analysis, which uses the posterior distribution over the weights,P (w |D), to make
predictions for new cases by integrating over the predictions made for each possible weight
setting. Bishop (1995, Chapter 10) gives an excellent discussion of Bayesian methods ap-
plied to neural networks, including the seminal work of MacKay (1992). Some preliminary
work on the application of the full Bayesian method to probabilistic networks has been



ADAPTIVE PROBABILISTIC NETWORKS WITH HIDDEN VARIABLES 219

done—see Heckerman (1995, Section 6), Friedman, Geiger and Goldszmidt (1997), and
the references therein. However, even approximate methods are typically computationally
intractable. Furthermore, as Heckerman points out, as the size of our training set increases,
the MAP and even the ML solutions become increasingly more accurate approximations to
the full Bayesian solution.

4. Gradient-based algorithms

Our approach is based on viewing the probabilityPw(D) as a function of the CPT entries
w. This reduces the problem to one of finding the maximum of a multivariate nonlinear
function.3 Algorithms for solving this problem typically follow a path on a surface whose
“coordinates” are the parameters and whose “height” is the value of the function, trying to
get to the “highest” point on the surface. In fact, it is easier to maximize the log-likelihood
function lnPw(D). Since the two functions are monotonically related, maximizing one is
equivalent to maximizing the other.

The simplest variant of this approach isgradient ascent(also known as “hill climbing”).
At each pointw, it computes∇w, thegradientvector of partial derivatives with respect to
the CPT entries. The algorithm then takes a small step in the direction of the gradient to the
point w + α∇w, whereα is the step-size parameter. This simple algorithm will converge
to a local optimum for small enoughα.

In the problem at hand, this approach needs to be modified to take into account the con-
straint thatw consists of conditional probability values, so thatwijk ∈ [0, 1]. Furthermore,
in any CPT, the entries corresponding to a particular conditioning case (an assignment of
values to the parents) must sum to 1, i.e.,

∑
j wijk = 1.

One can incorporate these constraints by projecting∇w onto the constraint surface. In
general, this type of projection is accomplished by taking the vector that is normal to the
constraint surface, projecting the gradient vector onto that, and subtracting it from the
original gradient vector. In this case, the constraint surface requires we have

∑
j wijk = 1

for every i andk. If, for a given value ofi andk we haveJ different values forj, the
vector which is orthonormal to the constraint surface has1/

√
J in every one of the relevant

components. Therefore, the projection of the gradient onto that vector will have, in the
position corresponding toijk, the average of the gradient components corresponding to
wi1k, . . . , wiJk. Subtracting this vector from the original gradient vector results in the
renormalized vector.

Note that, in the renormalized gradient vector, the sum of the components corresponding
to wijk for fixed i, k is zero. Therefore, if we take a small step along this vector, the
sum

∑
j wijk remains unchanged. Hence, if we started out on the constraint surface, we

necessarily remain on the constraint surface, as desired. The algorithm terminates when a
local maximum is reached, that is, when the projected gradient is zero.

An alternative method, commonly used in statistics, is to reparameterize the problem so
that the new parameters automatically respect the constraints onwijk no matter what their
values. In this case, we can define parametersβijk such that



220 J. BINDER ET AL.

wijk =
β2
ijk∑

j′ β
2
ij′k

.

This can easily be seen to enforce the constraints given above.4 Furthermore, a local maxi-
mum with respect toβijk is also a local maximum with respect towijk, and vice versa.

We can optimize for theβijks using a similar process of gradient ascent. The gradient
can be found by computing the (unnormalized) gradient with respect to thewijk, and then
deriving the gradient with respect to theβijks using the chain rule, as described in Section 6.

A variety of techniques can be used to speed up the convergence of the algorithm.
Gradient-based methods are the standard approach in a variety of applications, includ-
ing the task of training the parameters (weights) of a neural network. This has resulted in a
huge literature on optimizations for gradient-based methods, much of which can be applied
here.

5. Local computation of the gradient with explicit CPTs

The usefulness of gradient-based methods depends on the ability to compute the gradient
efficiently. This is one of the main keys to the success of gradient descent in neural networks.
There,back-propagationis used to compute the gradient of an error function with respect
to the network parameters (i.e., the weights on the links). The existence of a local training
algorithm that uses the results of inference simplifies the design and implementation of
neural network systems. Furthermore, the fact that real biological learning processes are
presumably local in the same sense lends a certain plausibility to the entire neural-network
paradigm.

We now show that a similar situation occurs in probabilistic networks. In fact, for
probabilistic networks, the inference algorithm already incorporates all of the necessary
computations, so that no additional back-propagation is needed. The gradient can be
computed locally by each node using information that is available in the normal course of
probabilistic network calculations.

5.1. Derivation of the gradient formula

First, we show that we can compute the contribution of each case to the gradient separately,
and sum the results.

∂ lnPw(D)
∂wijk

=
∂ ln

∏m
l=1 Pw(Dl)
∂wijk

(independent cases)

=
m∑
l=1

∂ lnPw(Dl)
∂wijk

=
m∑
l=1

∂Pw(Dl)/∂wijk
Pw(Dl)

. (3)



ADAPTIVE PROBABILISTIC NETWORKS WITH HIDDEN VARIABLES 221

Now the aim is to find a simple local algorithm for computing each of the expressions
∂Pw(Dl)/∂wijk

Pw(Dl)
. In order to get an expression in terms of information local to the parameter

wijk, we introduceXi andUi by averaging over their possible values:

∂Pw(Dl)/∂wijk
Pw(Dl)

=
∂

∂wijk

(∑
j′,k′ Pw(Dl |xij′ , uik′)Pw(xij′ , uik′)

)
Pw(Dl)

=
∂

∂wijk

(∑
j′,k′ Pw(Dl |xij′ , uik′)Pw(xij′ | uik′)Pw(uik′)

)
Pw(Dl)

.

For our purposes, the important property of this expression is thatwijk appears only in
linear form. In fact,wijk appears only in one term in the summation: the term forj′ = j,
k′ = k. For this term,Pw(xij′ | uik′) is justwijk. Hence

∂Pw(Dl)/∂wijk
Pw(Dl)

=
Pw(Dl |xij , uik)Pw(uik)

Pw(Dl)

=
Pw(xij , uik |Dl)Pw(Dl)Pw(uik)

Pw(xij , uik)Pw(Dl)

=
Pw(xij , uik |Dl)
Pw(xij | uik)

=
Pw(xij , uik |Dl)

wijk
. (4)

This last equation lets us “piggyback” the computation of the gradient on the calculations
of posterior probabilities done in the normal course of probabilistic network operation.
Essentially any standard probabilistic network algorithm, when executed with the evidence
Dl, will compute the termPw(xij , uik |Dl) as a by-product. We are therefore able to use
standard probabilistic network packages as a substrate for our learning system.

For example, clustering algorithms (Lauritzen & Spiegelhalter, 1988) compute a posterior
for each clique in the Markov network corresponding to the original probabilistic network.
Because a node and its parents always appear together in at least one clique, the required
probabilities can be found by summing out the other variables in that clique.

Approximate inference algorithms can also be used as the subroutine for our learning
method. Such algorithms, particularly stochastic simulation techniques such as likelihood
weighting(Shachter & Peot, 1989; Fung & Chang, 1989), provide “anytime” estimates of
the required probabilities. This suits our needs very well: Early in the gradient descent
process, we need only very rough estimates of the gradient; the use of an anytime algorithm
allows these to be generated very quickly. As the learning process converges to a maximum,
better estimates are called for, so the inference algorithm can be run for longer periods of
time.



222 J. BINDER ET AL.

Table 1.A simplified skeleton of the algorithm for adaptive probabilistic networks.

function Basic-APN(N,D) returns a modified probabilistic network
inputs: N, a probabilistic network with CPT entriesw

D, a set of data cases

repeat until ∆w ≈ 0
∆w← 0
for eachDl ∈ D

set the evidence inN fromDl
for eachvariablei, valuej, conditioning casek

∆ wijk←∆ wijk +
Pw(xij , uik | Dl)

wijk
∆w← the projection of∆w onto constraint surface
w←w + α∆w

return N

5.2. The basic algorithm

We can now summarize the above discussion in the form of a basic algorithm, which we
call the APN (adaptive probabilistic network) algorithm, for learning probabilistic networks
from data with hidden variables (see Table 1). For the sake of clarity, we show the simplest
possible version. As discussed above, the algorithm can (and, in many cases, should) be
extended to incorporate nonuniform priors over parameters, and to take advantage of more
sophisticated methods for function optimization.

In the experiments described below, we have adapted the conjugate gradient method
(Price, 1992) to keep the probabilistic variables in the legal [0,1] range as described above.
This uses repeated line minimizations (with direction chosen by the Polak–Ribi`ere method)
and a heuristic termination condition to signal a maximum. We use theHugin pack-
age (Andersen et al. 1989), which uses a clustering algorithm, for most of the inference
computations.

5.3. Experimental evaluation

In this section, we report on two experiments. The first shows the importance of prestructur-
ing the probabilistic network using hidden variables. The second shows the effectiveness of
the algorithm on a large network with many hidden variables. In our experiments, we are pri-
marily interested in the generalization ability of the algorithm as a function of the number of
training cases (X–axis). Other experimental work aimed at reducing the amount of compu-
tation required—through approximate inference and improved optimization methods—will
be discussed in other papers.



ADAPTIVE PROBABILISTIC NETWORKS WITH HIDDEN VARIABLES 223

5.3.1. Performance metric

Generalization ability is typically measured by evaluating the predictions made by a learning
algorithm against the true state of affairs for a set of test cases. Several issues are involved
in deciding how this evaluation should be done.

The first question is to decide what sort of predictions will be evaluated. The APN
algorithm described above is really designed fordensity estimation—that is, estimating
the joint distribution over all variables. Most machine learning techniques, on the other
hand, are designed forclassification—that is, predicting the values of specified output
variables given evidence on specified input variables. For the sake of comparison, we
will treat the APN algorithm as a classification technique, recognizing that this may place
it at a disadvantage given that it is estimating many more parameters than necessary for
classification.5

The next question is how to measure the quality of a prediction. To do this, we use an
error function given by the average negative log likelihood of the observed values of the
specified output variables according to the learned model, where the average is taken over
them′ cases in the test setD′. Let Y denote the output variables andE denote the input
variables, withyl andel denoting the actual values in test casel. Then the error function
for learned modelPw is given by

Ĥ(D′, Pw) = − 1
m′

m′∑
l=1

lnPw(yl | el).

Notice that this is an empirical approximation of theexpected conditional cross-entropyon
the output variables between the learned distributionPw and the true distributionP∗ from
which the data is generated. More precisely,

H(P∗, Pw) = −
∑
e,y

P∗(e, y) lnPw(y | e).

To compute the joint probability of the output variables using a standard probabilistic
network inference algorithm, we can decompose it into marginals using the chain rul (Pearl,
1988, p.226):

Pw(y | e) =
∏
i

Pw(yi | e, y1, . . . , yi−1).

5.3.2. Methodology and comparison algorithm

Data were generated randomly from a target probabilistic network and then partitioned into
training and test sets. The training data was used to train probabilistic networks that were
initialized with random parameter values. Training set sizes ranged from 0 to 5000 cases.
For each training set size, 10 training sets were selected randomly with replacement from
the training data. For each training set, five different initial random parameter settings



224 J. BINDER ET AL.

were tried. The learned model with the highest quality predictions on the training set was
selected and evaluated on the test set. Reported results were then averaged over the ten
training sets at each training set size.

Prediction performance for the APN algorithm was compared against that of a feedforward
neural network. The neural network was trained using the update rule for cross-entropy min-
imization (Baum & Wilczek, 1988), which allows the output unit values to be interpreted as
probabilities. To ensure that the distribution over the output units for each output variable
summed to 1, the output layer used the softmax parameterization (Bridle, 1990). Because a
feedforward neural network does not represent correlations among output nodes, the joint
probability on the output variables was approximated by the product of the marginals from
the output units. For the purposes of comparison, both APN and neural network algorithms
incorporated a simple version of the early stopping rule: cross-entropy was measured on
10% of the available training data, and parameter adjustment was halted as soon as the
cross-entropy began increasing. This provides a form of regularization, or MAP training.
For each probabilistic network used to generate data, a comparison neural network was
constructed with local coding for input and output variables—that is, a 0–1 unit for each
value of the variable. Results are reported for a variety of hidden layer sizes. (We also tried
cross-validation to optimize the hidden layer size, but this required too much computation
given our experimental methodology.)

5.3.3. Results

The first experiment used data generated from the “3–1–3” network in Figure 2(a). We
used the APN algorithm to train both a 3–1–3 network and the “3–3” network shown in
Figure 2(b). We also trained a 9–N–9 feedforward neural network, as described above, for
N = 1, 3, 5, 10. The results are shown in Figure 3.

The second experiment used data generated from a network for car insurance risk estima-
tion (Figure 4). The network has 27 nodes, of which only 15 are observable, and over 1400
parameters. Three of the observable nodes are designated as “outputs.” We ran an APN
with the correct structure, an APN with a “12–3” structure analogous to the 3–3 network in
Figure 2(b), and feedforward neural networks as before. The results are shown in Figure 5.

5.3.4. Discussion

The results for the 3–1–3 network in Figure 3 clearly demonstrate the advantage of using
the network structure that includes the hidden node. The advantage derives, of course, from
the reduction in the number of parameters from 708 to 45. The neural network shows fast
convergence to a large error for the 1-unit hidden layer, with slower convergence for larger
hidden layers. The APN algorithm with the correct network structure shows somewhat
better performance than the neural networks, presumably because of the APN’s ability to
represent correlations among output variables.

For the insurance network, the correctly structured APN reaches a cross-entropy value of
about 2.0 from about 500 cases, whereas the 12–3 APN requires approximately 200,000



ADAPTIVE PROBABILISTIC NETWORKS WITH HIDDEN VARIABLES 225

cases to reach the same level. The neural network, on the other hand, shows rapid conver-
gence to a cross-entropy error of about 2.2 for all hidden layer sizes, followed by a very
slow reduction thereafter. Very similar behavior was found for decision trees with pruning
and fork-nearest-neighbor learning. Thus, these three methods seem to be able to learn the
most obvious regularities in the domain—principally, that most people never claim on their
insurance—but are unable to learn the more complex patterns. In contrast, the correctly
structured APN is able to detect the underlying patterns in the data and converges quickly
to a lower error rate as a result.

Of course, this comparison between APN and neural network is not “fair” because the
APN is given prior knowledge in the form of the network structure. On the other hand,
the ability to use prior knowledge is a crucial element in machine learning. One might ask
whether such prior knowledge can be provided to a neural network system, as suggested
by Towell and Shavlik (1994). Perhaps a neural network structured similarly to the struc-
tured APN would be able to overcome this problem. Unfortunately, this approach seems
unlikely to work, at least in such a simple form, because the structure in a neural network
representsdeterministicfunctional dependencies rather than the probabilistic dependencies
represented by the probabilistic network structure. Also, training sparse neural networks
with more than a few layers seems to be very difficult because of exponential attenuation

3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45

3.5

0 1000 2000 3000 4000 5000

A
ve

ra
ge

 n
eg

at
iv

e 
lo

g 
li

ke
li

ho
od

 p
er

 c
as

e

Number of training cases

3-3 network, APN algorithm
3-1-3 network, APN algorithm

1 hidden node, NN algorithm
3 hidden nodes, NN algorithm
5 hidden nodes, NN algorithm

Target network

Figure 3. The output prediction error̂H(D′, Pw) as a function of the number of cases observed, for data generated
from the network shown in Figure 2(a). The plot shows learning curves for the APN algorithm using the network
structure in Figure 2(b), for the APN algorithm using the correct network structure, and for feedforward neural
networks with 1, 3, and 5 hidden units.



226 J. BINDER ET AL.

OtherCarCost

SocioEcon
Age

GoodStudent

ExtraCar
Mileage

VehicleYear

RiskAversion

SeniorTrain

DrivingSkill MakeModel

DrivingHist

DrivQuality

Antilock

Airbag CarValue HomeBase AntiTheft

Theft

OwnDamage

OwnCarCost

PropertyCostLiabilityCost
MedicalCost

Cushioning

Ruggedness
Accident

Figure 4. A network for estimating the expected claim costs for a car insurance policyholder. Hidden nodes are
shaded and output nodes are shown with heavy lines.

of the error signal. Finally, standard feed-forward neural networks only allow inputs at the
root nodes; restructuring the network to make the input nodes into root nodes may result in
an exponential increase in the number of network parameters.

6. Extensions for generalized parameters

Our analysis above applies only to networks where there is no relation between the different
parameters (CPT entries) in the network. Clearly, this is not always the case. If we do a
particular clinical test twice, for example, the parameters associated with these two nodes
in the network should probably be the same—even though the results of the two tests can
differ.

In many situations, the causal influences on a given node are related in such a way that
it becomes possible to represent the conditional distribution of the node given its parents
using a more compact representation than an explicit table. Viewing a CPT as a function
from the parent valuesuik and the child valuexij to the numberP (Xi =xij |Ui = uik), it
is often reasonable to describe this functionparametrically.

One common approach is to use a general-purpose function approximator such as a
neural network. In other contexts, we might have more information about the structure of
this function. Anoisy-OR model, for example, encodes our belief that a number of diseases
all have an independent chance of causing a certain symptom. We then have a parameter
qip describing the probability that diseasep in isolation fails to cause the symptomi. The



ADAPTIVE PROBABILISTIC NETWORKS WITH HIDDEN VARIABLES 227

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

0 1000 2000 3000 4000 5000

A
ve

ra
ge

 n
eg

at
iv

e 
lo

g 
li

ke
li

ho
od

 p
er

 c
as

e

Number of training cases

12--3 network, APN algorithm
Insurance network, APN algorithm

1 hidden node, NN algorithm
5 hidden nodes, NN algorithm

10 hidden nodes, NN algorithm
Target network

Figure 5. The output prediction error̂H(D′, Pw) as a function of the number of cases observed, for data generated
from the network shown in Figure 4. The plot shows learning curves for the APN algorithm using a “12–3” network
structure, for the APN algorithm using the correct network structure, and for feedforward neural networks with
hidden layers of size 1, 5, and 10.

probability of the symptom appearing given a combination of diseases is fully determined
by these parameters. If the symptom node hask parents, the CPT for the node can be
described usingk rather than2k parameters (assuming that all nodes are binary-valued).
As we show below, our algorithm can be extended to learn the noisy-OR parameters directly.

The ability to learn parametrically represented probabilistic networks confers many ad-
vantages. First, as we mentioned in the introduction, certain networks are simply impractical
unless we reduce the size of their representation in this way. For example, the CPCS network
mentioned above has only 8,254 parameters, but would require 133,931,430 parameters if
the CPTs were defined by explicit tables rather than by noisy-OR and noisy-MAX nodes.
This reduction in the number of parameters is even more important when learning such
networks, because estimating each CPT entry separately would almost certainly require an
unreasonable amount of training data. The ability of our algorithm to learn parametrized
representations is another instance where prior knowledge can be utilized in the right way
to speed up the learning process.

Even more importantly, this enables our learning algorithm to handle networks that other-
wise would not fit into this framework. For example, as we mentioned above, probabilistic
networks can also contain continuous-valued nodes. The “CPT” for such nodes must be
parametrically defined, for example as a Gaussian distribution with parameters for the mean



228 J. BINDER ET AL.

and the variance (Lauritzen & Wermuth, 1989).Dynamic probabilistic networks, which are
potentially infinite networks that represent temporal processes, also require a parametrized
representation. This is because the parameters that encode the stochastic model of state
evolution appear many times in the network. Equation 5 (below) is the fundamental tool
needed for learning both hybrid networks and dynamic probabilistic networks.

The rest of this section shows how the APN learning algorithm can be extended to deal
with parametrized representations, and then demonstrates how this technique can be applied
to networks with noisy-OR nodes, dynamic probabilistic networks, and hybrid networks.

6.1. The chain rule

Given that we want our network to be defined using parameters that are different from the
CPT entries themselves, we would like to learn these parameters from the data. Our basic
algorithm remains unchanged; rather than doing gradient ascent over the surface whose
coordinates are the CPT entries, it does gradient ascent over the surface whose coordinates
are these new parameters. The only issue we must address is the computation of the
gradient with respect to these parameters. As we now show, our previous analysis can
easily be extended to this more general case using a simple application of thechain rulefor
derivatives.

Technically, assume that the network is defined using a vector of adjustable parameters
λ. Each CPT entrywijk can be viewed as a functionwijk(λ). Assuming these functions
are differentiable, we obtain

∂ lnPw(D)
∂λp

=
∑
i,j,k

∂ lnPw(D)
∂wijk

× ∂wijk
∂λp

. (5)

Our earlier analysis showed how the first term in each product can be easily computed as
a by-product of any standard probabilistic network algorithm. In fact, the computation in
this case is somewhat simpler, since we do not have to normalize the gradient to account
for the dependencies between the differentwijk ’s. (This is automatically dealt with by the
second gradient term.) Assuming that the derivative∂wijk

∂λm
is a known function, the second

term requires only a simple function application.

The approach using the chain rule may, in the worst case, involve summing over all
combinations ofi, j, andk in the network (i.e., all possible combinations of values for each
node and its parents). In the cases we will consider, each parameterλp affects only a subset
of thewijks, so most of the terms∂wijk/∂λp will be zero. Another approach is to express
Pw(D) directly in terms ofλ and then differentiate, thereby avoiding the summation over
ijk. In some cases this may be more elegant, but the chain rule method has the advantage
of requiring less creativity to solve each new parametrization. The end results are of course
the same.



ADAPTIVE PROBABILISTIC NETWORKS WITH HIDDEN VARIABLES 229

Table 2.Conditional probability table forP (Fever|Cold,Flu,Malaria), as calculated from the noisy-OR model.

Cold Flu Malaria P (Fever) P (¬Fever)

F F F 0.0 1.0
F F T 0.9 0.1
F T F 0.8 0.2
F T T 0.98 0.02 = 0.2× 0.1
T F F 0.4 0.6
T F T 0.94 0.06 = 0.6× 0.1
T T F 0.88 0.12 = 0.6× 0.2
T T T 0.988 0.012 = 0.6× 0.2× 0.1

6.2. The noisy-OR model

Noisy-OR relationships generalize the logical notion of disjunctive causes. In propositional
logic, we might sayFeveris true if and only if at least one ofCold, Flu, or Malaria is true.
The noisy-OR model adds some uncertainty to this strict logical description. The model
makes three assumptions. First, it assumes that each of the listed causes (Cold, Flu, and
Malaria) causes the effect (Fever), unless it is inhibited from doing so by some other cause.
Second, it assumes that whatever inhibits, say,Cold from causing a fever is independent
of whatever inhibitsFlu from causing a fever. These inhibitors cause the uncertainty in
the model, giving rise to “noise parameters.” IfP (Fever|Cold,¬Flu,¬Malaria) = 0.4,
P (Fever| ¬Cold,Flu,¬Malaria) = 0.8, andP (Fever| ¬Cold,¬Flu,Malaria) = 0.9, then
the noise parameters are 0.6, 0.2, and 0.1, respectively. Finally, it assumes that all the
possible causes are listed; that is, if none of the causes hold, the effect does not happen.
(This is not as strict as it seems, because we can always add a so-calledleak nodethat covers
“miscellaneous causes.”)

These assumptions lead to a model where the causes—Cold, Flu, andMalaria—are the
parent nodes of the effect—Fever. The conditional probabilities are such that if no parent
node is true, then the effect node is false with 100% certainty. If exactly one parent is true,
then the effect is false with probability equal to the noise parameter for that node. In general,
the probability that the effect node is false is just the product of the noise parameters for
all the input nodes that are true. For theFevervariable in our example, we have the CPT
shown in Table 2.

The conditional probabilities for a noisy-OR node can therefore be described using a
number of parameters linear in the number of parents rather than exponential in the number
of parents. Letqip be the noise parameter for thepth parent node ofXi—that is,qip is the
probability thatXi is false given that only itspth parent is true, and letTik denote the set
of parent nodes ofXi that are set toT in thekth assignment of values for the parent nodes
Ui. Then

wijk =
{ ∏

p∈Tik qip if xij = F

1−
∏
p∈Tik qip if xij = T

. (6)



230 J. BINDER ET AL.

Thus, the parameterizationλ consists of all the noise parametersqip in the network.
Becausewijk is independent of the values of parameters other than those associated with
nodei, we can mix noisy-OR and other types of nodes in the same network without difficulty.
The gradient term for each noise parameter can be computed as follows:

∂wijk
∂qip

=


0 if p /∈ Tik∏
p′∈(Tik−{p}) qip′ if xij = F andp ∈ Tik
−

∏
p′∈(Tik−{p}) qip′ if xij = T andp ∈ Tik.

(7)

The gradient of the log-likelihood with respect to each noise parameter is then computed
by plugging Equations 4 and 7 into Equation 5.

We illustrate the application of the resulting equations using the noisy-OR network shown
in Figure 6. Using the experimental methodology described in Section 5.3, we obtained
the learning curve shown in Figure 7. As expected, the noisy-OR model results in faster
learning than the corresponding model with explicitly represented CPTs.

6.3. Dynamic probabilistic networks

One of the most important applications of Equation 5 is in learning the behavior of stochastic
temporal processes. Such processes are typically represented usingdynamic probabilistic
networks (DPNs)(Dean & Kanazawa, 1988). A DPN is structured as a sequence oftime
slices, where the nodes at each slice encode the state at the corresponding time point.
Figure 8 shows the coarse structure of a generic DPN. The CPTs for a DPN encode both
a state evolution model, which describes the transition probabilities between states, and a
sensor model, which describes the observations that can result from a given state. Typically,
one assumes that the CPTs in each slice do not vary over time. The same parameters therefore
are duplicated in every time slice in the network.

As in a standard probabilistic network, we typically wish to describe our environment in
terms of an assignment of values to multiple random variables. Thus, in an actual DPN,
we often have many state and sensor variables in each time slice. A simple example DPN
is shown in Figure 9.

For simplicity, we will use indicesi andt to denote a single node in the DPN—theith
node in time slicet. Letwijkt be a CPT entry for time slicet, with ijk interpreted as above,
and letλijk be the generalized parameter such that

wijkt = λijk for all t.

Since∂wijkt/∂λi′j′k′ = 1 if ijk = i′j′k′ and0 otherwise, we obtain

∂ lnPw(D)
∂λijk

=
∑
t

∂ lnPw(D)
∂wijkt

. (8)

In other words, we simply sum the gradients corresponding to the different instances of the
parameter.6



ADAPTIVE PROBABILISTIC NETWORKS WITH HIDDEN VARIABLES 231

lights

no oil no gas
starter
broken

battery age alternator
  broken

fanbelt
broken

battery
  dead no charging

battery
    flat

engine won’t
       start

gas gauge

fuel line
blocked

oil light

Figure 6. A network with noisy-OR nodes. Each node with multiple parents has a CPT described by the noisy-OR
model (Equation 6). The network has 22 parameters, compared to 59 for a network that uses explicitly tabulated
conditional probabilities.

1.4

1.6

1.8

2

2.2

2.4

0 100 200 300 400 500

A
ve

ra
g

e
 n

e
g

a
tiv

e
 lo

g
 li

ke
lih

o
o

d
 p

e
r 

ca
se

Number of training cases

Explicit CPT network
Noisy−OR network

Target network

Figure 7. The output prediction error̂H(D′, Pw) as a function of the number of cases observed, for data generated
from the network shown in Figure 6. The plot shows learning curves for the APN algorithm using a noisy-OR
representation and using explicit CPTs.



232 J. BINDER ET AL.

STATE EVOLUTION MODEL

SENSOR MODEL

Percept.t−2 Percept.t−1 Percept.t Percept.t+1 Percept.t+2

State.t−2 State.t−1 State.t State.t+1 State.t+2

Figure 8. Generic structure of a dynamic probabilistic network.

We illustrate the application of the preceding equation using the DPN shown in Figure 9.
As a strawman comparison, we show results for the “hidden Markov model” (HMM) version
of this network. The HMM version has exactly the structure shown in Figure 8, with 32
states for the hidden variable and 8 values for the percept variable. Using the experimental
methodology described in Section 5.3, We obtain the learning curves shown in Figure 10.

As a way of modelling a partially observable process, DPNs are directly comparable to
HMMs. In an HMM, the hidden state of the process at a given time point is represented
as the value of a single state variable. Similarly, at each time point, the observation is the
value of a single sensor variable. Clearly, one can therefore view an HMM as a degenerate
version of a DPN, essentially as in Figure 8. Smyth, Heckerman and Jordan (1997) give a
thorough analysis of the mapping netween the two representations.

In comparing DPNs and HMMs as tools for learning, the primary differences arise from
the way in which state information and the state transition model are represented. An HMM
represents each state as a node in a graph with state transition probabilities on the links,
whereas a DPN decomposes the state into a set of state variables with the state transition
model decomposed into the conditional distributions on each state variable. HMMs provide
a natural sparse encoding for transition models in which each state can transition only to
a small number of other states—for example, the motion of a stochastic robot on a grid.
Such models are not necessarily naturally encoded by DPNs, although in the worst case
the DPN can use a single state variable and a sparse transition matrix to obtain the same
representation size as the HMM. On the other hand, sparse DPNs, in which each state
variable influences only a small number of variables in the next slice, can have very large
encodings as HMMs. For example, a completelydisconnectedDPN in which each state
variable has no connections to other state variables translates into a completelyconnected
HMM, provided there are no zeroes in the conditional distributions for each state variable.
It was exactly this observation that led Ghahramani and Jordan (1997) to developfactorial
HMMs, which are essentially DPNs.

We expect that, for complex structured environments, the state variable decomposition
afforded by DPNs will usually allow for a more parsimonious representation. Essentially,
if one wants to carryn bits of state information, an HMM requiresO(2n) states withO(2n)
parameters for a sparse model with each state connected to a constant number of other
states, orO(22n) parameters for a dense model. On the other hand, a DPN requiresn state
variables withO(n) parameters for a locally structured model with a constant number of



ADAPTIVE PROBABILISTIC NETWORKS WITH HIDDEN VARIABLES 233

Base.0

H−A.0

H−C.0

H−B.0

Ready.0

Exon?.0

Base.1

H−A.1

H−B.1

H−C.1

Ready.1

Exon?.1

Base.2

H−A.2

H−B.2

H−C.2

Ready.2

Exon?.2

Figure 9. Three slices of a simple dynamic probabilistic network modelling an abstract version of the DNA
splicing process. Hidden nodes are shaded.

31

31.5

32

32.5

33

33.5

34

34.5

35

0 20 40 60 80 100

A
ve

ra
ge

 n
eg

at
iv

e 
lo

g 
li

ke
li

ho
od

 p
er

 c
as

e

Number of training cases

DNA network, APN algorithm
HMM network, APN algorithm

Target network

Figure 10.The output prediction error̂H(D′, Pw) as a function of the number of cases observed, for data generated
from the network shown in Figure 9. The plot shows learning curves for the APN algorithm using the correct
structure and for the APN algorithm using the HMM structure.



234 J. BINDER ET AL.

parents for each variable, orO(22n) parameters for a dense model. Experiments by Zweig
(1996) show that this difference leads to a significant improvement in learning rates for
DPNs when the underlying domain is locally structured.

6.4. Continuous variables

Many real-world problems involve continuous variables such as heights, masses, tempera-
tures, and amounts of money; in fact, much of statistics deals with random variables whose
domains are continuous. Given this fact, it is perhaps surprising that standard probabilistic
network systems usually handle only discrete variables, forcing the user to discretize vari-
ables that are more naturally considered as continuous-valued. Discretization is sometimes
an adequate solution, but often results in considerable loss of accuracy and very large CPTs.

Whenever a continuous variable appears in a probabilistic network, the CPT for that node
becomes a conditional density function, since it must specify probabilities for the infinite
domain of values of the variable. On the other hand, whenever a node has a continuous
parent, then we must define an infinite set of distributions for the child—one for every
possible value that the parent can take. In general, maintaining the analogy to CPTs, we
have one ‘CPT entry’ for each possible value of the node and each possible value of the
parents (although there can be infinitely many of each). Hence, for each nodei, we will
have a functionwi(x, u) that denotes the conditional density (or probability) ofXi = x
givenUi = u.

6.4.1. The chain rule for continuous-variable parametrizations

It turns out that the application of the chain rule, given by Equation 5, holds unchanged if
we simply substitute the probabilities by densities and the integrals by sums. To see this,
consider some particular parameterλp, and assume (for simplicity) thatλp only affects the
parameter associated with the family consisting of the nodeX and its parentsU.

As before, we can separate the contribution of the different data cases:

∂ lnPw(D)
∂λp

=
m∑
l=1

∂ lnPw(Dl)
∂λp

=
m∑
l=1

∂Pw(Dl)
∂λp

Pw(Dl)
. (9)

Now, lettingpw be the density function for this probabilistic network, and by using Leibniz’s
rule and then the chain rule, we obtain

∂Pw(Dl)
∂λp

=
∂

∂λp

∫ ∞
−∞
···

∫ ∞
−∞

(pw(Dl |x, u)pw(x | u)pw(u))dxdu

=
∫ ∞
−∞
···

∫ ∞
−∞

∂

∂λp
(pw(Dl |x, u)pw(x | u)pw(u))dxdu

=
∫ ∞
−∞
···

∫ ∞
−∞

∂

∂pw(x | u)
(pw(Dl |x, u)pw(x | u)pw(u))× ∂pw(x | u)

∂λp
dxdu



ADAPTIVE PROBABILISTIC NETWORKS WITH HIDDEN VARIABLES 235

=
∫ ∞
−∞
···

∫ ∞
−∞

(pw(Dl |x, u)pw(u))× ∂pw(x | u)
∂λp

dxdu .

Reintroducing the denominator ofPw(Dl), we can now repeat the steps used in the derivation
of Equation 4, yielding

∂ lnPw(Dl)
∂λp

=
∫ ∞
−∞
···

∫ ∞
−∞

pw(x, u |Dl)
wλ(x, u)

× ∂wλ(x, u)
∂λp

dxdu . (10)

6.4.2. Conditional Gaussian networks

Up to now, most continuous and hybrid networks have used a Gaussian distribution for
the density function at a continuous node. In this case, the conditional density function
can be described by two parameters—the meanµ and the varianceσ2. For the case of a
continuous child with a continuous parent, it is common to use a linear function to describe
the relationship between the continuous parent value and the mean of the child’s Gaussian,
while leaving the variance fixed (Pearl, 1988; Shachter & Kenley, 1989). The conditional
density is then defined by the parameters of the linear function and the variance.7

In a conditional Gaussian(CG) distribution (Lauritzen & Wermuth, 1989), which de-
scribes the case where a continuous node has both discrete and continuous parents, one set
of parameters is provided for each possible instantiation of the discrete parents. The full
parameterized description is rather complicated, so we begin by illustrating the idea with a
simple example.

Consider thePrice node in Figure 11, which denotes the price of a particular type of
fruit. The price depends onSupport? (whether a government price support mechanism is
operating) andCrop (the amount of fruit harvested that year). The CG model describes the
conditional density distribution forPriceas

p(Price=x |Support? = T ∧ Crop=h) =
1

σt
√

2π
exp

(
−1

2

(
x− (ath+ bt)

σt

)2
)

p(Price=x |Support? = F ∧ Crop=h) =
1

σf
√

2π
exp

(
−1

2

(
x− (afh+ bf )

σf

)2
)

These equations describe the value ofw(x, S, h), whereS is eitherT orF . The parameters
λ on whichw depends areat, af , bt, bf , σt, andσf .

In general, a continuous nodeX in a CG network may have both continuous parentsU
and discrete parentsZ. The conditional density ofX is defined via a set of parameters as
follows: For each possible assignment of valuesz to the discrete parentsZ, we have a real
vectoraz whose length is the number of continuous parentsU ofX, and two parametersbz

andσz. The conditional densitywλ(x, u) then becomes

p(x | u, z) =
1

σz
√

2π
exp

(
−1

2

(
x− (az · u + bz)

σz

)2
)

.



236 J. BINDER ET AL.

Support?

Price

Buys?

Crop

Figure 11. A simple network with discrete variables (Support? andBuys) and continuous variables (Crop and
Price).

Differentiating with respect tobz and with respect to componentazm of az, we obtain

∂

∂bz
p(x | u, z) = p(x | u, z)× x− (az · u + bz)

σ2
z

∂

∂azm
p(x | u, z) = p(x | u, z)× um

x− (az · u + bz)
σ2

z
,

whereum is themth component ofu. This yields a particularly simple form for Equation 10
in this case:

∂ lnPw(Dl)
∂bz

=
∫ ∞
−∞
···

∫ ∞
−∞

pw(x, u |Dl)×
x− (az · u + bz)

σ2
z

dxdu

∂ lnPw(Dl)
∂azm

=
∫ ∞
−∞
···

∫ ∞
−∞

pw(x, u |Dl)× um
x− (az · u + bz)

σ2
z

dxdu .

6.4.3. Discrete children of continuous parents

CG networks are a useful class because they allow for exact solution algorithms using an
extension of standard clustering methods. However, this comes at a cost of restricting to a
somewhat narrow class of hybrid networks. In particular, CG networks preclude discrete
variables with continuous parents. Such variables are common in many domains. For
example, whether or not a consumer buys a given product (a Boolean variable) depends
on its price (a continuous variable). One simple formulation of this relationship would be
to say that the consumer will buy the product if and only if the price is below some sharp
thresholda (such as the price of some other substitutable fruit). A somewhat softer version
of this case may have the probability of the purchase depending on whether the price is
above or belowa. In this case, we can describe the probability ofBuys? as follows:

P (Buys? = T |Price = x) =
{
q1 if x ≤ a
q2 if x > a

.



ADAPTIVE PROBABILISTIC NETWORKS WITH HIDDEN VARIABLES 237

The weight functionw(B, x) (for B ∈ {T, F}) can be viewed as depending on the param-
etersq1 andq2, and possibly ona as well.

It is instructive to consider the gradient∂w(B,x)
∂λp

for different parametersλp. In spite of
the discontinuous nature of a threshold function, this derivative is well-defined for bothq1
andq2, since the change inw(B, x) is continuous in both these parameters. However, the
gradient with respect toa is in generalnot continuous. Hence, we cannot use the method
described above to adjust the threshold parameter.

The same problem was encountered in the context of neural networks, where the usual
solution is to use the sigmoid function as an approximation to a threshold. A similar idea
can be used in this context, where it has the natural interpretation that the probability of
purchase varies from 0 to 1 continuously as the price drops. Neal (1992b) has investigated
the learning of sigmoid models in belief networks.

In statistics, models for discrete choices dependent on continuous variables include both
the sigmoid model (often called thelogit model) and theprobit model, which is the cu-
mulative distribution of the normal density function (Finney, 1947). The use of the probit
model in our example can be justified by positing a random, normally distributed noise
process that interferes with the consumer’s pure price comparison by imposing extra costs
or benefits on the purchasing decision. Thus we have the weight function

w(F, x) = p(Buys? =F |Price=x) =
∫ x

−∞
Nµ,σ(x′)dx′.

Hereµ andσ parameterize the conditional distribution. Again, gradients with respect toµ
andσ can be computed easily. For example, we have

∂w(F, x)
∂µ

= −Nµ,σ(x) .

The probit model can be extended to the multinomial case, where there are more than
two discrete choices (Daganzo, 1979). We can also include multiple parents. There is
a large body of work on constructing and fitting complex probit models for a variety of
applications. Most of this work can be imported into the context of probabilistic networks,
which provide a natural platform for combining any of a huge variety of probabilistic models
into composite representations for complex processes.

6.4.4. Computation of the gradient

As these examples illustrate, it is typically easy to compute the gradient
∂w(x, u)/∂λp. But how do we compute the value of the entire expression in Equation 10?
In the discrete case, the conditional probability ofx, u given the data was easily computed as
a byproduct of a number of inference algorithms. In the case of hybrid networks, however,
the applicability of this approach is more limited. For one thing, exact inference algorithms
are currently known only for CG networks. For another, even if we could somehow com-
pute both elements in the product, how would we compute the integral? After all, it is very
unlikely that, in general, the joint distributions can be expressed in closed form.



238 J. BINDER ET AL.

Stochastic simulation algorithms may solve both problems at once. First, stochastic
simulation algorithms can be used to approximate the posterior distribution for general
networks. Second, we can use the same sampling process to approximate the integral in
a straightforward way. Each sample that we generate in the stochastic simulation process
defines a value for each node in the network. The conditional density of each such point
(given the data) is defined by the network. For each parameterλp at a given node, we simply
maintain a running sum of this conditional density divided by the appropriatew(x, u) and
multiplied by ∂w(x,u)

∂λp
. This is essentially a numerical integration process for the integral

in Equation 10, where the points at which we take the integral are the samples generated
by the stochastic simulation process. Note that this process does not sample uniformly
throughout the entire space of possible values forx andu. Rather, it tends to focus on those
points where the densityw(x, u) is highest. But these are points where the value of the
function we are integrating also tends to be higher, so that their effect on the integral is also
higher. We believe that this phenomenon will tend to improve the quality of the numerical
integration process, but this has yet to be verified.

Whether this is true or not, it appears that stochastic simulation allows us to obtain an
anytime approximation for the gradient, as in the discrete case. In this way, arbitrary combi-
nations of discrete and continuous variables and arbitrary (finitely describable) distributions
can be handled without resorting to complicated mathematics for each new model.

7. Related work

In this section, we discuss related work on the problem of learning parameters for prob-
abilistic networks with hidden variables. For a survey on the full spectrum of topics in
learning complex probabilistic models, see Buntine (1996).

Most of the work on learning networks with hidden variables has been restricted to the
case of a fixed structure. This problem has been studied by several researchers, often
explicitly noting the connection to neural network learning. The earliest work of which
we are aware is that of Laskey (1990), who pointed out that both Boltzmann Machines and
probabilistic networks are special cases of Markov networks. She used this fact to apply the
Boltzmann Machine learning algorithm to probabilistic networks. Apolloni and de Falco
(1991) devised a learning algorithm for what they calledasymmetric parallelBoltzmann
machines, which, as shown by Neal (1992a), are essentially sigmoid probabilistic networks.
Neal (1992b) independently derived expressions for the likelihood gradient in sigmoid and
noisy-OR probabilistic networks. Golmard and Mallet (1991) described a gradient-based
algorithm for learning in tree-structured networks, and Kwoh and Gillies (1996) derived a
version for polytree (singly connected) networks; both papers use anL2 error function.

Our results, which apply to any probabilistic network, are significantly more general than
those of Neal, Golmard and Mallet, or Kwoh and Gillies. As is clear from our derivation, the
simple structure of the gradient expression follows from the fact that the network represents
the joint probability as a sum of products of the local parameters, which is true both for
multiply connected networks and for arbitrary CPTs. Buntine (1994), in the course of a
general mathematical analysis of structured learning problems, also suggests that one could



ADAPTIVE PROBABILISTIC NETWORKS WITH HIDDEN VARIABLES 239

use generalized network differentiation for learning probabilistic networks with hidden
variables, observing that the method should work for any distribution in the exponential
family (of which probabilistic networks are a particular case, provided the conditional
distributions at the nodes are themselves in the exponential family). Thiesson (1995b)
analyzes this class of models, which he callsrecursiveexponential models (REMs). DPN
models can be viewed as a special case of REMs.

For the specific case of maximizing likelihood by altering parameters of a probability dis-
tribution, the EM (Expectation Maximization) algorithm (Dempster, Laird, & Rubin, 1977)
can be used. This observation was made by Lauritzen (1991, 1995), who discussed its ap-
plication to general probabilistic networks (see also Spiegelhalter et al, 1993; Olesen, Lau-
ritzen, & Jensen, 1992; Spiegelhalter & Cowell, 1992; Heckerman, 1995).
Like gradient descent, EM can be used to find local maxima on the likelihood surface defined
by the network parameters. EM can also be used in the context of maximum a posteriori
(MAP) learning, where we have a prior over the set of parameters (Heckerman, 1995).
Thiesson (1995a) shows that a similar analysis can be used to do MAP learning with
gradient-based methods.

EM can be shown to converge faster than simple gradient ascent, but the comparison
between EM and conjugate gradient remains unclear. Lauritzen notes some difficulties
with the use of EM for this problem, and suggests gradient-based methods as a possible
alternative. Thiesson (1995a) combines EM with conjugate gradient methods, using the
latter when close to a maximum in order to speed up convergence.

When learning a network with explicitly enumerated CPT entries, the EM algorithm
reduces to a particularly simple form in which each E-step requires a computation of
the posterior for a node and its parents, exactly as in Equation 4, and each M-step is
trivial, requiring only that we instantiate the CPT entries to the average, over the different
data cases, of the posterior probability of a node given its parents. However, for more
complex problems with generalized parameters, the M-step may itself require an iterative
optimization algorithm. Dempster, Laird, and Rubin (1977) discuss generalized EM (GEM)
algorithms that execute only a partial M-step; as long as this step increases the likelihood,
the algorithm will converge (Neal & Hinton, 1993). Thus, a gradient-based approach is
closely related to a GEM algorithm.

There has also been some work on the more complex problem of learning with hidden
variables when the structural properties of the network are not all known. As in the fully
observable case, dealing with an unknown structure necessarily involves a search over the
space of possible structures. This, however, may be further complicated in the case of
latentvariables: hidden variables of whose existence we may be unaware. If we allow the
introduction of new variables, the space of possible network structures becomes infinite,
greatly complicating the problem. There is some work on this problem (Spirtes, Glymour,
& Scheines, 1993; Geiger, Heckerman, & Meek, 1996), but much remains to be done.

8. Conclusions

We have demonstrated a gradient-descent learning algorithm for probabilistic networks
with hidden variables that uses localized gradient computations piggybacked on the stan-



240 J. BINDER ET AL.

dard network inference calculations. Although a detailed comparison between neural and
probabilistic networks requires more extensive analysis than is possible in this paper, one
is struck by the fact that some of the primary motivations for the widespread adoption of
neural networks as cognitive and neural models—localized learning, massive parallelism,
and robust handling of noisy data—are also satisfied by probabilistic networks. Therefore,
probabilistic networks seem to have the potential to provide a bridge between the symbolic
and neural paradigms, as suggested by (Laskey, 1990). They also provide a way of compos-
ing a variety of local probabilistic models in order to represent a complex process; a huge
amount of work in statistics can be imported for the purpose of fitting these local models
to observations.

In addition to the basic algorithm, we have extended our analysis to the case of paramet-
rically represented conditional distributions. This extension allows networks to be learned
by estimating far fewer parameters, and improves the sample complexity accordingly. This
speed-up has been demonstrated for noisy-OR and dynamic networks, and similar ex-
tensions for continuous variables have been outlined. We are currently investigating the
application of APNs to modelling and prediction in financial areas such as insurance and
credit approval, and in scientific areas such as intron/exon prediction in molecular biology.
Results of the type obtained in this paper are crucial in extending APNs to these complex
tasks.

The precise, local semantics of probabilistic networks allows humans or other systems
to provide prior knowledge to constrain the learning process. We have demonstrated the
improvements that can be achieved by pre-structuring the network, especially using hidden
variables. Theoretical analysis of the sample complexity of learning probabilistic networks
is an obvious next step, and first results have been obtained by Friedman and Yakhini
(1996) and Dagsgupta (1997). These results are currently being extended to cover dynamic
probabilistic networks and networks with continuous variables.

Another possible improvement over the basic APN model is to allow the user or do-
main expert to prespecify constraints on the conditional distributions. One possibility is
to specify a qualitative probabilistic network (Wellman, 1990) that provides appropriate
monotonicity constraints on the conditional distributions. For example, the higher one’s
driving skill, the less likely it is that one has had an accident. In the extreme case, the
user may be able to provide exact conditional distributions for some of the nodes in the
network, particularly when those nodes depend deterministically on their parents. Since all
such constraints eliminate some hypotheses from the hypothesis space, they will inevitably
reduce the number of cases required for learning.

We are also looking at the problem of learning probabilistic parameters in cases where
the network is implicitly represented as a set of first-order probabilistic rules, as described
by Haddawy (1994) and by Ngo, Haddawy, and Helwig (1995). Just as for other param-
eterized representations, the resulting reduction in the number of parameters should allow
for significantly faster learning. Koller and Pfeffer (1996) give some preliminary results
along these lines. Such an approach transfers into the probabilistic domain the idea of
declarative bias(Russell & Grosof, 1987). Results by Tadepalli (1993) show that learning
within a structured model derived from a declarative bias can be made much more efficient
using membership queries—that is, generating specific experiments on the domain rather



ADAPTIVE PROBABILISTIC NETWORKS WITH HIDDEN VARIABLES 241

than sampling it randomly. It would be interesting to see if the same ideas can be made to
work in the context of APNs.

The extensions to parameterized representations and additional constraints make it pos-
sible to learn in situations where we have more prior knowledge about the domain than just
the network topology. We are also considering the problem of learning in contexts where
we havelessprior knowledge. For example, as discussed in Section 7, we may have only
partial knowledge about the network structure, about the set of values taken by a hidden
variable, and even about the existence of hidden variables. These problems all require a
discrete search over the space of possibilities. However, one important component in every
such search algorithm is the instantiation of network parameters for the different structural
options under consideration. The APN algorithm can clearly be used in that role. Its ability
to handle parameterized representation may turn out to be particularly valuable in this case.
As demonstrated in the recent results of Friedman and Goldszmidt (1996), incorporating
parametric representations of CPTs into the structure search algorithm significantly changes
the bias of the learning algorithm, greatly reducing the penalty for introducing additional
arcs. In many cases, this results in greater prediction accuracy that is achievable with
explicit CPTs.

Acknowledgments

We gratefully acknowledge useful comments and contributions from Wray Buntine, David
Heckerman, Kathy Laskey, Steffen Lauritzen, Radford Neal, Judea Pearl, Avi Pfeffer, Terry
Sejnowski, Padhraic Smyth, Bo Thiesson, Geoff Zweig, and the anonymous reviewers.

Notes

1. The term “clustering” here refers to the fact that the algorithms cluster nodes together to form larger entities;
it should not be confused with the use of the term to refer to a form of unsupervised learning.

2. In this case, knowledge of structure is taken to include knowledge of the number of values of each variable.
In other settings, particularly in learning mixture models (Titterington, Smith, & Makov, 1985), finding the
number of values of a class variable may be part of the learning task.

3. Since the function being maximized is a likelihood, the EM algorithm can also be used, as discussed in
Section 7.

4. One can also use thesoftmaxreparameterization (Bridle, 1990) which usesexp(β) instead ofβ2.

5. It is possible to compute the gradient for the likelihood of specified output variables, rather than for the
likelihood of all the variables. This form of optimization is discussed by (Spiegelhalter & Cowell, 1992).

6. (Werbos, 1990) surveys work onback-propagation through time, which uses a similar analysis based on the
chain rule to derive the same conclusion for “unrolled” neural networks that represent temporal processes.

7. The model family obtained in this way is identical to that studied in the widely used technique offactor
analysis.



242 J. BINDER ET AL.

References

Andersen, S. K., Olesen, K. G., Jensen, F. V., & Jensen, F. (1989). HUGIN—A shell for building Bayesian
belief universes for expert systems.Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence(pp. 1080–1085). Detroit, MI: Morgan Kaufmann.

Apolloni, B., & de Falco, D. (1991). Learning by asymmetric parallel Boltzmann machines.Neural Computation,
3, 402–408.

Baum, E. B., & Wilczek, F. (1988). Supervised learning of probability distributions by neural networks. In
Anderson, D. Z. (Ed.),Neural Information Processing Systems, (pp. 52–61). American Institute of Physics,
New York.

Bishop, C. M. (1995).Neural Networks for Pattern Recognition. Oxford University Press, Oxford.
Bridle, J. S. (1990). Probabilistic interpretation of feedforward classification network outputs, with relationships

to statistical pattern recognition. In F. Fogelman Souli´e & J. Hérault, (Eds.),Neurocomputing: Algorithms,
architectures and applications. Berlin: Springer-Verlag.

Buntine, W. L. (1994). Operations for learning with graphical models.Journal of Artificial Intelligence Research,
2, 159–225.

Buntine, W. L. (1996). A guide to the literature on learning probabilistic networks from data.IEEE Transactions
on Knowledge and Data Engineering, 8, 195–210.

Cooper, G., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data.
Machine Learning, 9, 309–347.

Daganzo, C. (1979).Multinomial probit: The theory and its application to demand forecasting. Academic Press,
New York.

Dasgupta, S. (1997). The sample complexity of learning Bayesian nets.Machine Learning, 29, 165–180.
Dean, T., & Kanazawa, K. (1988). Probabilistic temporal reasoning.Proceedings of the Seventh National Con-

ference on Artificial Intelligence(pp. 524–528). St. Paul, MN: American Association for Artificial Intelligence.
Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm.

Journal of the Royal Statistical Society, 39 (Series B), 1–38.
Finney, D. J. (1947).Probit analysis; a statistical treatment of the sigmoid response curve. Cambridge, UK:

Cambridge University Press.
Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers.Machine Learning, 29,

131–163.
Friedman, N., & Goldszmidt, M. (1996). Learning Bayesian networks with local structure.Uncertainty in

Artificial Intelligence: Proceedings of the Twelfth Conference(pp. 252–262). Portland, OR: Morgan Kaufmann.
Friedman, N., & Yakhini, M. (1996). On the sample complexity of learning Bayesian networks.Uncertainty in

Artificial Intelligence: Proceedings of the Twelfth Conference(pp. 274–282). Portland, OR: Morgan Kaufmann.
Fung, R., & Chang, K. C. (1989). Weighting and integrating evidence for stochastic simulation in Bayesian

networks. Proceedings of the Fifth Conference on Uncertainty in Artificial Intelligence. Windsor, Ontario:
Morgan Kaufmann.

Geiger, D., Heckerman, D., & Meek, C. (1996). Asymptotic model selection for directed networks with hidden
variables.Uncertainty in Artificial Intelligence: Proceedings of the Twelfth Conference(pp. 283–290). Portland,
OR: Morgan Kaufmann.

Ghahramani, Z., & Jordan, M. I. (1997). Factorial hidden Markov models.Machine Learning, 29, 245–273.
Golmard, J.-L., & Mallet, A. (1991). Learning probabilities in causal trees from incomplete databases.Revue

d’Intelligence Artificielle, 5, 93–106.
Haddawy, P. (1994). Generating Bayesian networks from probability logic knowledge bases.Uncertainty in

Artificial Intelligence: Proceedings of the Tenth Conference(pp. 262–269). Seattle, WA: Morgan Kaufmann.
Heckerman, D. (1996). A tutorial on learning with Bayesian networks (Technical report MSR-TR-95-06).

Microsoft Research, Redmond, Washington.
Heckerman, D., Geiger, D., & Chickering, M. (1994). Learning Bayesian networks: The combination of

knowledge and statistical data (Technical report MSR-TR-94-09). Microsoft Research, Redmond, Washington.
Heckerman, D., & Wellman, M. (1995). Bayesian networks.Communications of the Association for Computing

Machinery, 38, 27–30.
Koller, D., & Pfeffer, A. (1996). Learning the parameters of first order probabilistic rules.Working Notes

of the AAAI Fall Symposium on Learning Complex Behaviors in Adaptive Intelligent Systems. Cambridge,
Massachusetts.



ADAPTIVE PROBABILISTIC NETWORKS WITH HIDDEN VARIABLES 243

Kwoh, C.-K., & Gillies, D. F. (1996). Using hidden nodes in Bayesian networks.Artificial Intelligence, 88, 1–38.
Laskey, K. B. (1990). Adapting connectionist learning to Bayes networks.International Journal of Approximate

Reasoning, 4, 261–282.
Lauritzen, S. L. (1995). The EM algorithm for graphical association models with missing data.Computational

Statistics and Data Analysis, 19, 191–201.
Lauritzen, S. L., & Wermuth, N. (1989). Graphical models for associations between variables, some of which are

qualitative and some quantitative.Annals of Statistics, 17, 31–57.
Lauritzen, S. L. (1991). The EM algorithm for graphical association models with missing data (Technical report

TR-91-05). Department of Statistics, Aalborg University.
Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computations with probabilities on graphical structures and

their application to expert systems.Journal of the Royal Statistical Society, B 50, 157–224.
MacKay, D. J. C. (1992). A practical Bayesian framework for back-propagation networks.Neural Computation,

4, 448–472.
Neal, R. M. (1992a). Asymmetric parallel Boltzmann machines are belief networks.Neural Computation, 4,

832–834.
Neal, R. M. (1992b). Connectionist learning of belief networks.Artificial Intelligence, 56, 71–113.
Neal, R. M., & Hinton, G. E. (1993). A new view of the EM algorithm that justifies incremental and other variants.

Unpublished manuscript, Department of Computer Science, University of Toronto, Toronto, Ontario.
Ngo, L., Haddawy, P., & Helwig, J. (1995). A theoretical framework for context-sensitive temporal probability

model construction with application to plan projection.Uncertainty in Artificial Intelligence: Proceedings of
the Eleventh Conference(pp. 419–426). Montreal, Canada: Morgan Kaufmann.

Olesen, K. G., Lauritzen, S. L., & Jensen, F. V. (1992). aHUGIN: A system for creating adaptive causal
probabilistic networks.Uncertainty in Artificial Intelligence: Proceedings of the Eighth Conference. Stanford,
CA: Morgan Kaufmann.

Pearl, J. (1988).Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo, CA:
Morgan Kaufmann.

Poggio, T., & Girosi, F. (1990). Regularization algorithms for learning that are equivalent to multilayer networks.
Science, 247, 978–982.

Pradhan, M., Provan, G. M., Middleton, B., & Henrion, M. (1994). Knowledge engineering for large belief
networks. Uncertainty in Artificial Intelligence: Proceedings of the Tenth Conference(pp. 484–490). Seattle,
WA: Morgan Kaufmann.

Price, W. H. (1992).Numerical recipes in C. Cambridge, UK: Cambridge University Press.
Russell, S. J., & Grosof, B. (1987). A declarative approach to bias in concept learning.Proceedings of the Sixth

National Conference on Artificial Intelligence. Seattle, WA: Morgan Kaufmann.
Shachter, R. D., & Peot, M. A. (1989). Simulation approaches to general probabilistic inference on belief

networks. Proceedings of the Fifth Conference on Uncertainty in Artificial Intelligence. Windsor, Ontario:
Morgan Kaufmann.

Shachter, R. S., & Kenley, C. R. (1989). Gaussian influence diagrams.Management Science, 35, 527–550.
Smyth, P., Heckerman, D., & Jordan, M. (1997). Probabilistic independence networks for hidden Markov

probability models.Neural Computation, 9, 227–269.
Spiegelhalter, D., Dawid, P., Lauritzen, S., & Cowell, R. (1993). Bayesian analysis in expert systems.Statistical

Science, 8, 219–282.
Spiegelhalter, D. J., & Cowell, R. G. (1992). Learning in probabilistic expert systems. In Bernardo, J. M., Berger,

J. O., Dawid, A. P., & Smith, A. F. M. (Eds.),Bayesian Statistics 4. Oxford, UK: Oxford University Press.
Spirtes, P., Glymour, C., & Scheines, R. (1993).Causation, prediction, and search. Berlin: Springer-Verlag.
Tadepalli, P. (1993). Learning from queries and examples with tree-structured bias.Proceedings of the Tenth

International Conference on Machine Learning. Amherst, MA: Morgan Kaufmann.
Thiesson, B. (1995a). Accelerated quantification of Bayesian networks with incomplete data.Proceedings of the

First International Conference on Knowledge Discovery and Data Mining(pp. 306–311). Montreal, Canada:
AAAI Press.

Thiesson, B. (1995b). Score and information for recursive exponential models with incomplete data (Technical
report R-95-2020). Institute for Electronic Systems, Aalborg University, Denmark.

Titterington, D., Smith, A., & Makov, U. (1985).Statistical analysis of finite mixture distributions. New York:
John Wiley.

Towell, G., & Shavlik, J. (1994). Knowledge-based artificial neural networks.Artificial Intelligence, 70, 119–165.



244 J. BINDER ET AL.

Wellman, M. P. (1990). Fundamental concepts of qualitative probabilistic networks.Artificial Intelligence, 44,
257–303.

Werbos, P. J. (1990). Backpropagation through time: What it does and how to do it.Proceedings of the IEEE,
78, 1550–1560.

Zweig, G. (1996). Methods for learning dynamic probabilistic networks and a comparison with hidden Markov
models. Master’s thesis, Computer Science Division, University of California, Berkeley.

Received July 25, 1996
Accepted January 14, 1997
Final Manuscript August 8, 1997


