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1. Introduction

Decision tree induction offers a highly practical method for generalizing from examples
whose class membership is known. The most common approach to inducing a decision
tree isto partition the labelled examples recursively until a stopping criterion is met. The
partition is defined by selecting atest that has asmall set of outcomes, creating abranch for
each possible outcome, passing each example down the corresponding branch, and treating
each block of the partition as a subproblem, for which a subtree is built recursively. A
common stopping criterion for ablock of examplesisthat they all be of the same class.
This non-incremental approach to inducing a decision tree is quite inexpensive because
exactly one tree is generated, without constructing or evaluating explicit alternatives. In
terms of searching the space of all possible decision trees, the induction process consists
of instantiating a specific tree, starting at the root. When one determines that a particular
node shall be adecision node with a specified test, or aleaf with a specified classlabel, one
implicitly regjectsall other treesthat would differ at thisnode. This greedy tree construction
process implements a function that maps a particular set of examplesto a particular tree.
There are aternative strategies for searching tree-space, two of which are presented
here. First, for incremental decision tree induction, one can map an existing tree and a
new training example to a new tree. Thisis different from the non-incremental approach
described above, in which one maps asingle batch of examplesto aparticular tree. Second,
for decision tree induction using a measure of tree quality, hereafter called direct metric
tree induction, one simply maps an existing tree to another. As explained below, each of
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these methods requires the ability to restructure an existing decision tree efficiently. The
next section presents the tree revision mechanism, and the following two sections present
the two decision tree induction algorithms that are based upon it.

2. TreeRevision

Both of the decision tree induction algorithms presented here depend on the ability to
transform one decision tree into another. For simplicity, the discussion is limited in this
section to atreethat is based on aconsistent set of |abelled examples. For any particular set
of consistent examples, there exists a multitude of decision trees that would classify each
of those examples correctly. For example, if onewereto place atest t; at theroot, and then
build the rest of the tree recursively, a particular tree would result. However, if instead one
wereto place adifferent test ¢, at the root, and then build the rest of the tree recursively, a
different particular tree would be produced. Each tree would be consistent with thetraining
examples, but would likely represent a different partition of the example space.

An algorithm that restructuresatree will sometimesneed to changethetest that isinstalled
at a decision node. When this occurs, one would like to be able to produce as efficiently
as possible the tree that would result when using the newly installed test. One would like
to effect such a change of the installed test by revising the existing tree, instead of building
anew tree from the original training examples, assuming that thisis computationally more
efficient.

2.1. Representation

It isassumed that every possible test at a decision node has exactly two possible outcomes,
which means that the decision tree is aways binary. There is no loss of representational
power in this choice because for every non-binary tree there are one or more binary trees
that produce an identical partition of the example space. Symbolic variables with more
than two possible values are mapped automatically to an equivalent set of propositional
variables. For example, if the value set for the variable color were {red, green, blue} then
the possible binary tests would be (color = red), (color = green), and (color = blue). For
numeric variables, the conversion to abinary test isdone asit is by C4.5 (Quinlan, 1993),
by finding a cutpoint and incorporating it into athreshold test, for example (x < cutpoint).
The outcome of atest is either that the value of the variablein the example satisfies the test,
or that it does not.

The adoption of only binary tests brings two principal benefits. The first is that there
can be no bias among tests that is due to the tests having a different number of possible
outcomes. Thisisimportant because many common methods for selecting atest are biased
in this manner (White & Liu, 1994). Second, choosing a binary split at a decision node
is a conservative approach to partitioning, because a block of examplesis divided into at
most two smaller blocks. Thisis beneficial because each block can be further subdivided,
if necessary, by selection of a new test that is deemed best for that block. Choosing a test
that immediately partitionsaset of examplesinto more than two blocksis more aggressive.
By partitioning more conservatively, one keeps a larger number of examples availablein
each block, which isimportant if additional partitioning will be done in that block.
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Mooney, Shavlik, Towell, and Gove (1989) found that recoding discrete variables as
propositional variablesimproved classification accuracy for the ID3 decision tree induction
algorithm. Breiman, Friedman, Olshen, and Stone (1984) employ binary testsinthe CART
decision tree induction program. Fayyad (1991) observes that for numeric variables, it can
be advantageous to search for multiple cutpoints, rather than a single one. While several
binary tests can represent the same partition that would be produced by a multiway test,
thereis no reason to believethat a greedy selection of such binary tests would actually lead
to the same partition. One could search for multiple cutpoints, and then pick just one for a
binary test, leaving other cutpoints to be found for the subtrees.

2.2. Information Maintained at Each Decision Node

To be able to change the test that is installed at a decision node, one needs to maintain
information at that node that provides the basis for evaluating the quality of each possible
test. Theideaof maintaining such information for symbolic variables was demonstrated by
Schlimmer and Fisher (1986). For each test that is based on a specific value of asymbolic
variable, e.g. (color = blue), the frequency counts for each outcome-class combination are
kept and updated as necessary. For each possible test (based on a specific cutpoint) of a
numeric variable, it would be too costly to keep a separate set of frequency counts for each
test. Instead, the list of values observed in the examples at that node is maintained in sorted
order by value, with each valuetagged by the class of the example in which it was observed.
For each pair of adjacent values, the midpoint of the two values defines a possible cutpoint.
The possible cutpoints and the merit of each one can be computed efficiently during asingle
pass over the sorted list of tagged values. When average class entropy isthe metric for test
selection, one needs only to consider those cutpointsthat separate two valuesfrom different
classses (Fayyad & Irani, 1992).

2.3. Incorporating a Training Example

A basic operationintreerevisionisto change the set of examples onwhich thetreeisbased.
Variousformsof incremental treeinduction are presented in the next section, each of which
depends on the ability to add an exampl e to the set of examples on which the tree is based.
Adding an examplein thisway isalso known asincorporating the training exampleinto the
tree.

When an example is to be incorporated into an empty tree, the tree is replaced by a leaf
node that indicatesthe classof theleaf, and the exampleis saved at theleaf node. Whenever
an example is to be incorporated, the branches of the tree are followed as far as possible
according to the values in the example. If the example has the same class as the |eaf, the
example is simply added to the set of examples saved at the leaf node. If the example has
adifferent class label from the leaf, the algorithm attempts to turn the leaf into a decision
node, picking the best test according to the test-selection metric. The examples saved at
the node that was just converted from aleaf node to a decision node are then incorporated
recursively by sending each onedown its proper branch according to the new test. Thus, an
example can be added to anode, and it will work its way down the tree to aleaf, possibly
sprouting branches at leaves as it moves downward through the tree. The procedure that
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Table 1. Procedure add_example_to_tree()

add_exanpl e_t o_t ree(node, exanpl e)
if node is NULL
then convert node to an enpty | eaf

if node is a |eaf
then save exanpl e at node
i f node should be converted to a decision node
then construct information at node
mar k node fresh
for each exanple j saved at node
if test_is_true(node,j)
then add_exanpl e_to_tree(node->left,j)
el se add_exanpl e_to_tree(node->right,j)
el se update informati on at node
mar k node stale
if test_is_true(node, exanpl e)
then add_exanpl e_to_tree(node->| eft, exanpl e)
el se add_exanpl e_to_tree(node->ri ght, exanpl e)

accomplishes this task is named add_example_to_tree, and pseudo-code for it is shown in
Table 1.

2.4. Missing Values

One must be able to handle an example for which the value of one or more input variables
are missing. For tree construction, this is problematic when a test has been chosen for
the decision node that reguires knowing the value that is missing in an example. For
classification of an unlabelled example, one must somehow use the tree and its leaves to
infer the label for the unlabelled example.

A missing value is treated as a special value that does not satisfy the test at a decision
node. A valuein an example either satisfies the test, or it does not. For example, if the test
is (color = blue), then a value of blue satisfies the test, and neither the value red nor the
value ? (missing) satisfies the test. Similarly, if the test is (age < 46), then a value of 31
satisfiesthetest, and neither the value 57 nor the value ? (missing) satisfiesthetest. During
tree construction and classification alike, an example with a missing value for the test at
the decision node will be passed down the false branch. Thisis similar to treating ? as a
bonafide value, but it is different because no symbolic equality test can test for this value,
nor can any numeric inequality test use ? asits cutpoint.

With binary tests, all the exampleswith missing valuesfor the test are sent down the false
branch. This concentrates examples missing a value for the particular test into the right
subtree, and keeps the | eft subtree free of such examples. If further partitioning isrequired
inthe right subtree, the tree induction algorithm is of course freeto select anew test, which
can be based on any variable.
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This approach to handling missing values also simplifies computation of the test selection
metric. For the purpose of computing the metric, there is no such thing as a missing value
because every example is placed into one of the two blocks of the candidate partition. There
are many test selection metrics that one could choose, but Quinlan’s gain-ratio metric is
adopted here. Given that a missing value for a test is false for that test, there are no missing
values for the computation of the metric. Hence Quinlan’s (1992) special adjustments for
missing values do not apply here.

2.5. Recursive Tree Transposition

When a decision tree induction algorithm elects to change the test that is installed at a
decision node, the tree needs to be revised so that it corresponds to the newly installed test.
The set of training examples that satisfied the old test is generally different from the set of
examples that satisfies the new test. The subtrees need to be revised accordingly, and one
would like this process to be less expensive than rebuilding the subtrees from the examples
on which they are based.

The operation of changing the installed test at a decision node is accomplished through
a sequence of tree transpositions that is determined recursively. After the desired test has
been installed, it may be that one or more subtrees has a test installed at a decision node
that was necessary to accomplish the original tree transposition, rather than one that the
decision tree induction algorithm would otherwise choose. To ensure that the best test is
installed at each of the decision nodes below, the tree revision process checks that each
installed test below is the one desired. If not, the subtree is revised recursively to install the
desired test at its root decision node.

Consider one of the base cases, as illustrated in Figure 1. The goal is to transpose
the lefthand tree into the righthand tree. This can be accomplished easily by rearranging
pointers because the test (size < 2/.70) that is to be installed at the root is already installed
at each of the children of the root. Notice that the subtrees A, B, C, and D are simply
reattached, and are not revisited for this case. The sets of examples on which each of A, B,
C, and D are based have not changed, so there is no need to change those subtrees. Hence,
the test or leaf information maintained at any of these grandchildren nodes has not changed.
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Similarly, the set of examples corresponding to the root has also not changed, though the
designation of the installed test has, which means that the test information maintained at
the root also remains unchanged. Only the sets of examples at the two new children of the
root, now with test (color = blue), have changed. For example, the left subtree formerly
corresponded to the examples used to build subtrees A and B, but now corresponds to the
examples used to build subtrees A and C'. Thisraises the problem of how to update the test
information at each child of the root.

Fortunately, the problem has an inexpensive solution that does not generally require
rebuilding the information from the training examples. One simply recreates the test in-
formation by merging the test information of the two grandchildren. For example, for the
left subtree, one would define the information as the ‘sum’ of the information at nodes A
and C. For a symbolic variable, one adds the corresponding frequency counts, and for a
numeric variable one copies and merges the two sorted tagged lists of values.

There are several other base cases, all dealing with one or more grandchildren being
leaves, or one or both children being leaves. If one of the children of the root is a leaf
node, instead of a decision node, then transposition is accomplished somewhat differently.
For example, consider the case in which the right subtree is aleaf. Then transposition is
accomplished by discarding the root node, reattaching theleft subtreeinitsplace, discarding
the right subtree (the leaf), and reincorporating its examples at the root. For the base case
in which both subtrees are leaves, one discards both subtrees, installs the desired test at the
root, and then reincorporates the examples from both leaves at the root. Reincorporating
an example from adiscarded leaf does constitute reprocessing the example, but this occurs
only at the fringe of the tree.

All of these base cases revise the tree in such a way that the tree has no node that is
unnecessarily expanded. Every node that should be aleef is aleaf. There are afew other
base cases that arise during the transposition process when a subtree may not exist because
no examples had that outcome for the installed test, but these represent temporary states
that are handled in a straightforward manner.

The base cases handle any treein which achild of theroot iseither aleaf or isadecision
node whose test isthe onethat isto beinstalled at the root. When either child isadecision
node that has an installed test that is not the one to be installed at the root, then tree
transposition is applied recursively to that child so that it hasthe desired installed test. This
always produces one of the base cases, which is then handled directly.

2.6. When to Apply Recursive Transposition

Asdescribed above, the recursivetree transposition operator provides the ability to restruc-
ture agiven tree into another that has the designated test installed at the root. Thisis quite
useful, but it is not enough by itself for producing the best tree because it has only caused
one decision node to have the desired test installed. During the recursive transposition, it
may be that the subtrees have been transposed as a by-product of bringing the desired test
to the root. The installed test of each decision node in the subtrees may be there as the
result of transposition rather than as the result of a deliberate choice. Again consider the
transposed tree in Figure 1. Each of the two subtrees has test (color = blue) installed, but
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Table 2. Procedure ensure_best_test()

ensur e_best _t est (node)
if node is a decision node and node is stale
then find best_test for this node
if best_test is not already installed
then transpose_tree(node, best _test)
if node is a decision node
then nmark node fresh
ensur e_best _t est (node->l eft)
ensur e_best _t est (node- >ri ght)

that is only because a transposition was performed from above, not because (color = blue)
was identified as the best choice and installed intentionally.

To ensurethat every decision node has the desired test installed, according to the attribute
selection metric, one needs to visit the subtrees recursively. At each decision node that
requires that adifferent test be installed, the algorithm transposes the tree to install the best
test at the node. It could become costly to check every decision node of the subtrees after a
transposition. Often, a subtree is not touched during a transposition. To this end, a marker
is maintained in each decision node that indicates whether the choice of theinstalled test is
stale. Any operation that changes the set of examples on which asubtree isbased marksthe
test asstale. This can happen either when incorporating an example or when transposing a
tree. Changing the set of examples onwhich asubtreeisbased changesthetest information,
invalidating the basis on which the installed test was sel ected.

Whenever adesired test has been identified and, if necessary, installed, one removes the
test’s stale mark. To ensure that every decision node has the desired test installed, one
proceeds recursively in the following manner: at the root, identify the desired test and
install it viarecursive transposition; for each subtree, if it is marked stale, then recursively
identify its desired test and install it. The procedure that accomplishes this task is named
ensure_best_test, and pseudo-code for it is shown in Table 2.

3. Incremental Treelnduction

This section presents an incremental treeinduction algorithm I Tl (incremental treeinducer)
that makes extensive use of the tree transformation mechanism described in the previous
section. An incremental algorithm makes sense for an application that uses an embedded
classifier that is based on a stream of observed examples. Applications currently exist that
accumulate examples by day, and rebuild the embedded decision tree by night. Employing
an incremental method would allow online tree updating.

The algorithm described here was motivated by several design goals:

1. Theaverageincrementa cost of updating thetree should be muchlower thanthe average
cost of building anew decision tree from scratch. However, it is not necessary that the
sum of the incremental costs be lower because we care only about the cost of being
brought up to date at a particular point in time.



12 P.E. UTGOFF, N.C. BERKMAN AND J.A. CLOUSE

Table 3. Procedure incremental _update()

i ncrenment al _updat e( node, exanpl e)
add_exanpl e_t o_t ree(node, exanpl e)
ensur e_best _t est (node)

2. Totheextent possible, the update cost should be independent of the number of training
examples on which the tree is based.

3. Thetreethat is produced by the incremental algorithm should depend only on the set
of examples that has been incorporated into the tree, without regard to the sequencein
which those examples were presented.

4. The agorithm should not be biased toward selection of a test because the test has a
larger set of possible outcomes than that of another test.

Additional well-accepted design goals are that the algorithm should accept examples de-
scribed by any mix of symbolic and numeric variables (attributes), handle multiple classes,
handle inconsistent training examples, handle examples with missing values, and avoid
fitting noise in the examples.

3.1. AlgorithmITI

The basic ITI incremental decision tree induction algorithm is based on the tree revision
mechanism described in Section 2, and thus can be stated simply. When given atraining
examplethat isto beincorporated into thetree, passit down the proper branches until aleaf
is reached. This includes updating the test information kept at each node through which
it passes, and marking each such node stale. It also includes the process of incorporating
an example at aleaf, which may cause additional growth of the tree below that leaf. After
the example has been incorporated, visit each stale node recursively, as described above,
ensuring that the desired test isinstalled at that node. The procedure that accomplishesthis
task is named incremental _update, and pseudo-code for it is shown in Table 3.

Asusual, atestisconsidered best if it hasthemost favorabl eval ueof theattribute-selection
metric. For the order of the training examples to remain immaterial, atie for the best test
must be broken deterministically. Recall that a test is constructed from a variable and its
observed value set. For ITI, such atieis resolved in favor of the lexically lower variable
name. For tests based on the same variable, atieisresolved in favor of the lexically lower
symbolic value or the numerically lower cutpoint, depending on the type of the variable.
Thistie-breaking mechanism ensuresthat there isa uniquetree for any given set of training
examples.

3.2. Inconsistent Training Examples

Two examples are inconsistent if they are described by the same variable values but have
different classlabels. When inconsistent examples occur, they will be directed to the same
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leaf. If onewereto split every impureleaf, thiswould cause aninfinite recursion. However,
since converting the leaf to a decision nodewould provide no information, and thisis easily
detected by the gain-ratio metric, I Tl keepsthe node as aleaf and simply adds the example
to the set of examples retained at the leaf, making an impure leaf. This causes no trouble
for classification because the class name that is returned for the unlabelled example is that
of the magjority class of the examples at that leaf. A tieis broken in favor of the lexically
lower class name.

3.3.  Mrtual Pruning

Animportant component of decision tree induction is to avoid overfitting the training data,
especially when the data are known to contain attribute or classification error (noise). A
variety of methods have comeinto existence, and the question iswhich of themishbest suited
totheincremental induction problem. All of the approachesthat maintain aseparate pruning
set are oxymoronic for incremental tree induction. For 1T, a suitable approach is based on
the minimum description length principle (Rissanen, 1978, Quinlan & Rivest, 1989).

To decide whether to prune a subtree to aleaf, one considers whether the subtree could
be represented more compactly by aleaf with adefault class and alist of exceptions, where
each exceptionisan index into thelist of examplesand an indication of its non-default class
label. For any subtreethat one would want to be pruned (replaced with aleaf), one marksits
root decision node as being pruned, but does not actually discard anything. For incremental
induction, one preservesall information so that it is possible to reconsider whether a subtree
should or should not be virtually pruned. To unprune it, one simply removes the mark that
it is considered to be pruned. For all practical purposes, such as classifying examples with
the tree, or inspecting the tree by printing it, avirtually pruned tree behaves and appears as
though it had been truly pruned.

The virtual pruning processis accomplished by a post-order traversal of the decision tree
that sets a marker in each decision node to indicate whether that decision node is to be
considered pruned to aleaf. The previous status of whether the node was marked as pruned
isimmaterial. The procedure windsitsway down to the leavesviathe post-order traversal,
and sets each subtree as pruned (or not) based on the minumum description length (MDL).

For each leaf, the number of bits needed to encode the leaf is measured as 1 + log(c) +
x(log(i)+log (c—1)), wherecisthe number of classes observed at thelesf, « isthe number
of examplesat theleaf that are not of the default class, and+ isthe total number of examples
at theleaf. Onebit is needed to indicate whether the nodeis aleaf, log (¢) bitsare needed to
indicate the default class, and for each of the = exceptions, one needslog () bits to specify
the exception, and log (¢ — 1) bitsto specify its non-default class. Thistotal number of bits
to encode the leaf is stored in the leaf node.

For each decision node, the number of bits needed to encode the subtree is measured as
1+ log(t) + 1+ r, wheret isthe number of possible tests at the node, I isthe MDL of the
left subtree (already set), and r is the MDL of the right subtree (already set). One hit is
needed to indicate whether the node is a decision node, log (¢) bits are needed to identify
the test, and ! and r bits are needed to encode the left and right subtrees respectively. This
total number of bits to encode the decision node is stored in the decision node.
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Table 4. Procedure error_correction_train()

error_correction_trai n(node, pool)
pool _perfect := fal se
whi | e not pool _perfect
pool _perfect := true
for each exanmple in poo
if classify(node,strip_|label (example)) != |abel (exanple)
then pool _perfect := false
remove exanple from pool
add_exanpl e_t o_t ree(node, exanpl e)
ensur e_best _t est (node)

To decide whether to mark a decision node as pruned, the MDL for the node is computed
for the case in which the node is left as a decision node (not pruned), and for the case in
which it would be pruned to aleaf. If the virtual leaf would require fewer bits to encode,
then the node is marked as pruned, and the MDL of the virtual leaf is saved at the node.
Otherwise, the nodeis marked as not pruned, and the MDL of the subtree is saved instead.

3.4. Variantsof ITI

A variety of training modes are possible, four of which are described here. Upon presen-
tation of a training example, one can decide whether or not to incorporate that training
example into the tree. Any policy for making this decision constitutes one element of a
training mode. When one does elect to incorporate a new training example into the tree,
one can then decide whether or not to ensure immediately afterward that the best test is
installed at each decision node. Because the process of adding an example to atree can be
accomplished independently from revising thetree, it is possibleto accept several examples
at atime, add each oneto thetree without revising (except possibly for growing new leaves),
and then revise the tree just once by visiting the decision nodes to ensure that each has the
best test installed

Inincremental mode, each training examplethat is presented isimmediately incorporated
into thetree, and thetreeisthenimmediately restructured asnecessary sothat every decision
node has its most desired test installed. This mode always produces the same tree that one
would obtain with the batch version that is described below.

For error-correction mode, one incorporates a training example only if the existing tree
wouldmisclassify it. Otherwisethetraining exampleisnotincorporated and thereforehasno
effect onthetree. Thismodeof trainingisakintotheerror correction proceduresof statistical
pattern recognition, and it was also suggested by Schlimmer and Fisher (1986). There are
two variations of this mode. First, for a stream of training examples, one simply ignores
examples for which the tree is currently correct. Second, for afixed pool of examples that
have not been incorporated into the tree, one cycles through the pool repeatedly, removing
each incorrectly classified example from the pool and incorporating it into the decision
tree, until the tree does not misclassify any example still remaining in the pool. Although
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examples are examined one at a time, this training regimen departs somewhat from the
notion of alinear stream of training examples.

For apool of examples, ITI will alwaysbuild atree and halt. Thisistrue even when the
examples are noisy, because I Tl continues cycling through the pool until every example
remaining in the pool is classified correctly. When an examplein the pool is misclassified,
it is removed from the pool and added to the tree. Thus, even though the tree may not
become a perfect classifier on all the training examples that it has incorporated (when there
is noise or inconsistency or pruning is turned on), it does continue to select and remove
currently misclassified training examples from the pool until no misclassified examples
remain in the pool. Thisoccurs either when the current tree classifies al training examples
till inthe pool correctly or when the pool becomes empty because all examples have been
incorporated in thetree. The procedure that accomplishes training from apool of examples
is named error_correction_train, and pseudo-code for it is shown in Table 4.

In lazy mode, one delays ensuring that the tree is up to date until the tree is needed for
some purpose, such asto classify an unlabelled example. Most of the effort in I TI goes to
ensuring, after each training exampl e, that the tree hasthe best test installed at each decision
node. However, one could avoid thiswork by not doing it until the tree is needed. Instead,
one can add each exampleto the tree without revising thetree, beyond the simple operations
that occur when incorporating an example. Then, whenever the treeis needed, asingle call
to the procedure for ensuring that the best test isinstalled at each node bringsthetreeto its
proper form. For al practical purposes, the treeis being updated in incremental mode, but
presumably with less overall computation.

A batch mode exists for the case in which one has an initial batch of examples and no
current tree, and wants to build a tree as quickly as possible. Of course this mode is not
incremental in any sense, but it provides a method of building an initial tree from a set of
examplesthat is more efficient than incremental mode. Thea gorithm constructsall the data
structures that the incremental mode would, but in the traditional top-down manner. This
modeisthefastest way to build an I Tl tree from scratch, and makes sense for someone who
wants to build a tree in the standard one-shot way. The data structures are created as they
would be for incremental mode so that subsequent operations that might require revising
the tree remain applicable. If one were to give up the ability to do subsequent revisions,
one could be even more efficient by not building the data structures that go along with the
tree revision capability.

4. Direct Metric Tree Induction

This section presents a direct metric tree induction algorithm DMTI (direct metric tree
inducer) that relies on the tree restructuring mechanism described in Section2. DMTI isnot
anincremental algorithm, but isinstead agreedy top-down treeinducer. The distinguishing
aspect of DMTI isthat for each test that it could install at a node, it actually installsit, and
then uses a metric that is a function of the resulting tree to assess the desirability of that
test. Thisdiffersfrom the usual approach of picking atest based on aheuristic function (an
indirect metric) of various frequency countstallied from the examples.
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Table 5. Procedure dmti()

dnti (node)
if node is a decision node
then for each eligible_test at node

transpose_tree(node, eligibile_test)
note direct metric value for the resulting tree

transpose_tree(node, best _eligible_test)

dnti (node- >l eft)

dnti (node->right)

4.1. Algorithm DMTI

TheDMTI algorithmisavariation of the classical top-down approach, because onefindsthe
best test to install at the root, installsit, and then solves the subproblems recursively. There
arethreeimportant differences. First, one startsthe processwith adecisiontreebuilt by I TI,
instead of a set of examples. Second, atest is assessed at a node by installing it, including
automatic revision of the subtrees using the indirect metric, and then by evaluating the
direct metric on the resulting tree. Thus, for n permissible tests at anode, DM TI evaluates
n different treesin order to pick the best test to install at that node. Third, it would typically
be quite expensive to consider all possible tests at a node, so the set of permissible tests
is limited to the best test for each input variable according to the indirect metric. For a
symbolic variable, the best test is the best equality test variable, and for a numeric variable
it isthe best threshold test. So, for DMTI, the set of permissible tests at anode is limited
in sizeto the number of input variables. Pseudo-code for the DMTI procedure is shown in
Table 5.

4.2. Direct Metrics

A direct metric defineswhether onetest is preferred to another based on acomparison of the
trees that would result. Thisraisesthe familiar question of how to decide whether one tree
should be preferred to another. With no additional information, there can be no universally
correct answer to this question, but in practiceit is usually possible to make agood choice.
For example, if one has a strong prior belief that the target concept can be modelled best
by a decision tree that is a simple function of the input variables, then one would prefer a
smaller consistent treeto alarger consistent tree. Such a preference accompaniesthe belief
that a designer of a set of training examples will try to choose input variables that are as
predictive of the class label as possible. Other prior knowledge can be used to determine
adirect metric that will be appropriate for a given tree induction task. Consider four such
possible metrics.

The direct metric expected-number-of-tests returns the number of tests that one would
expect to evaluatein order to classify an example, assuming that testing examplesare drawn
according to the same probability distribution as the training examples. The expected
number of tests can be computed by counting the total number of tests evaluated while
classifying all the training examples, and dividing by the total number of training examples.
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Itis possibleto calculatethe value of this metric during asingletraversal of the tree, without
actualy classifying any examples. All the examples that have been incorporated into the
tree are saved at aleaf of the tree, and all node heights are known during the traversal.

The metric leaf-count returns the number of leaf nodes in the tree. This count can be
computed during a single traversal of the tree. Though the number of leavesis related to
the number of tests, it is not directly related to the expected number of tests. For example,
itispossible for atreet; to have ahigher leaf count and alower expected number of tests
than another treet.

The minimum-description-length metric returns the number of bits needed to encode the
tree, using the encoding scheme described in Section 3.3. Whether or not one has pruning
turned on, one can apply DMTI to search for a test that produces a tree with the locally
smallest attainable MDL.

The metric expected-classification-cost is identical to expected-number-of-tests except
that each test has a specified evaluation cost, instead of theimplied uniform evaluation cost.
In some applications, such as diagnosis, some tests are much more expensive than others,
and the cost of producing the answer is an important factor (Tan & Schlimmer, 1990).

Finally, the direct metric expected-misclassification-cost measures the penalty that one
would pay when misclassifying an example, assuming that testing examples are drawn
according to the same probability distribution as training examples. Often, tree induc-
tion algorithms embody the assumption that all classification errors incur the same cost
(Pazzani, Merz, Murphy, Ali, Hume & Brunk, 1994). To be more comprehensive, one can
include an explicit cost matrix that specifies the cost of labelling an example with class X
when it should have been class Y. It is possible to calculate the value of this metric in a
single traversal of the tree.

5. Comparison of Performance Characteristics

When might one want to use ITI or DMTI? To answer such a question, one first needs to
know how good a classifier one can expect, and how much it may cost to produce it. To
this end, consider a comparison of severa algorithms along severa criteria: classification
accuracy, tree size as measured by number of leaves, classification cost as measured by the
number of tests one can expect to evaluate when classifying an example, and the CPU cost
to build the tree. Which algorithms are better than which?

5.1. Experimental Design

The algorithms to be compared are three variants of I Tl, three variants of DMTI, and two
variants of Quinlan’s C4.5. All eight algorithms are applied to forty-six classification tasks
in aperfectly balanced and perfectly crossed manner. For each task-al gorithm combination,
the variables mentioned above are measured by aten-fold stratified cross validation. The
purpose of the cross validation is to obtain a reasonably unbiased point estimate, not to
obtain ten separate measurements. The same splits of the data were used for al algorithms.

To beableto draw conclusions about which algorithms are significantly different from the
others, one must choose a significance test that is designed to handle multiple comparisons.
Onecannot simply apply atest for each comparison, because the chance of afa sedifference
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riseswith each test, much likerepeatedly rolling atwenty-sided die that has oneface marked
‘significant’. A variety of multiplecomparison procedureshavebeen devised, and Duncan’'s
Multiple Range Test (Walpole, 1974) is used here.

To usethe Duncan Multiple Range Test (DM RT), onefirst i solatesthe variancethat cannot
be attributed to any treatment, which is called the error variance. To do this, one proceeds
with the initial stages of an analysis of variance. Here, atwo-way analysisis used to factor
out variance that can be attributed to choice of task or choice of algorithm. Then, instead
of proceeding with an F-test, as one would for an analysis of variance, one proceeds with
the multiple range test, which involves comparing the means of the algorithms. The term
‘agorithm mean’ indicates the mean for the algorithm across al the tasks.

The least significant range for the p means to be compared is the product of the least
significant studentized range and the square root of the quotient of the error variance and
the number of tasks. Theleast significant studentized range can be determined from atable
that isindexed by the error degrees of freedom and the number p of means being compared.
If therange of the means (highest - lowest) being compared isgreater than the corresponding
least significant range, then the means are presumed to be significantly different. Thetable
of least significant studentized ranges was computed by Duncan to compenstate for the fact
that multiple comparisons are being made.

One initialy sorts the algorithm means, and then tests each of the possible ranges of
means. If a group of adjacent means is not significantly different, then that is depicted
by drawing a line segment under that group, and none of its subgroups are tested further.
Any two means that are underscored by any common line are not significantly different,
and any two means that are not underscored by a common line are significantly different
(Steel & Torrie, 1960).

Finally, to reduce experimental error, the eight algorithm variants are run as a group with
pruning turned off, and then again as a separate group with pruning turned on. Thereisno
discussion here of the relative merits of pruning versus not pruning.

5.2. Algorithms

For ease of reference, each of the eight algorithmsisgivenasimple name here. Variant11 is
ITI in batch mode, with aleaf being split when thereis at least one example of the second-
most frequently occuring (second-majority) class. Variant 12 is ITI in batch mode, with
aleaf being split only when there are at least two examples of the second-majority class.
Batch mode is used here because it runs more quickly than incremental mode, and builds
the sametree. The computational characteristics of incremental mode are discussed below
in Section 6, and are not of interest here. Variant IE islikell, but runsin error-correction
mode instead of batch mode.

Variant C2isC4.5withitsdefault settings. Likethel2 variant, C2 splitsaleaf whenthere
are at least two examples of the second-magjority cass. The C1 variant uses the -m1 option
of C4.5to makeit correspond to theI1 variant of ITI. The C4.5 algorithm uses non-binary
tests for discrete variablesthat have a value set larger than two. One could recode the data
in apreprocessing step, so that C4.5 would be forced to produce binary tests, but that is not
what C4.5 does, so ho recoding has been done here.
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Theremaining three algorithmsare variantsof DMTI, each using adifferent direct metric.
The DM variant uses minimum description length, the DE variant uses expected number of
testsfor classification, and the DL variant uses the number of leaves.

5.3. Tasks

Thirty-nine of the tasks were taken from the UCI (Murphy & Aha, 1994) repository, and
the remaining seven were acquired or produced elsewhere. From &l the available UCI
tasks, one was generally taken from UCI and included here if it was not extraordinarily
largeand if there was a clearly defined classlabel. The forty-six tasksdiffer in many ways,
including number and type of attributes, number of classes, noise, missing values, and
default accuracy. The goal wasto pick as many tasks as was practical.

The heart disease tasks (cleveland, hungarian, switzerland, and va) are each five-
class problems, whereas in many reports one sees four of the classes grouped, resulting
in a two-class problem. The fayyad and usama-mys tasks come from Usama Fayyad.
The horse-dead and horse-sick tasks are different from the UCI horse-cholic task. The
mplex-6 and mplex-11 are six and eleven bit versions of the multiplexor problem. The
tictactoe data is different from the UCI task of similar name. Here, al positions that can
occur during play appear as examples, labelled with ‘draw’, or the number of ply until a
win will be achieved. All positions are represented from the point of view of the player
on-move, coded as ‘Xx’.

For any task in which atraining set and testing set were given, those sets were merged
into asingle set of examples. In this way, the stratified cross validation could be applied
to al tasks. The tasks for which this was done were audio-no-id, monks-2, soybean,
splice, and vowel.

5.4. Accuracy
For average accuracy of the algorithms when pruning is turned off, the DMRT

DM DE IE DL 11 12 C1 C2
7798 7786 77.73 77.70 76.87 76.64 76.01 75.68

indicates no significant differences. When pruning is turned on, the DMRT

DM IE C1 12 11 Cc2 DL DE
79.48 7814 7792 7753 7753 7734 76.89 76.74

indicates that DM is significantly more accurate on average than each of 12, 11, C2, DL,
and DE. There are no other significant differences.

TableA.1 showsthe cross-validated accuracy for each of the task-al gorithm combinations,
with pruning turned off. The corresponding standard deviations are shown separately in
Table A.2 because they do not fit into one table. These deviations do not play arolein the
analyses, but are included in order to help interpret the point estimates. Similarly, Table
A.3 shows the cross-validated accuracy for each of the task-algorithm combinations when
pruning is turned on, with the standard deviations shown separately in Table A.4.
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55. Leaves

Consider the average tree size, as measured by the number of leaves. It is important to
use the number of leaves because thisindicates the number of blocksin the partition of the
examplespace. Thisnumber iscomparablefor the different algorithms, whether or not they
use abinary test at a decision node. For average tree size of the algorithms when pruning
isturned off, the DMRT

C1 Cc2 11 IE DE DL DM 12
371.18 189.47 108.04 101.49 9433 8452 84.43 69.09

indicates that C1 produces significantly larger trees on average than each of 11, IE, DE,
DL, DM, and 12. When pruning is turned on, the DMRT

C1 Cc2 11 12 IE DE DL DM
15512 91.18 4391 4277 40.84 36.14 3432 33.90

indicates the same set of significant differences.

Table A.5 shows the leaf counts for each task-algorithm combination when pruning is
turned off, with the corresponding deviations appearing in Table A.6. Inspection of the
data shows considerable variability with respect to which algorithms produced the smallest
or largest trees. The means for C1 and C2 seem to be pulled up by just a few tasks. For
example, C1 and C2 produce large trees for the nettalk task. Although there are only
seven attributes, each has a very large value set, and neither the C1 algorithm nor the C2
agorithm are restricted to binary tests. For this task, any test will have alarge number of
branches. In contrast, the binary tests of ITI/DMTI cause a more conservative two-way
split. Table A.7 shows the leaf counts for each task-algorithm combination when pruning
isturned on, with the associated deviations appearing in Table A.8.

5.6. Expected Tests

The expected number of tests provides a measure of classification efficiency. The C1 and
C2 variants were omitted because this measure is not readily available. One would expect
DE to havethelowest mean sinceit attemptsto minimizethisvery measure. For theaverage
number of expected tests when pruning is turned off, the DMRT

IE 11 2 DL DM DE
1045 898 845 7.13 6.66 554

indicates that 11 and 12 are not significantly different, nor are DL and DM. All other differ-
ences are significant. When pruning is turned on, the DMRT

IE 11 12 DL DM DE
7.76 658 657 540 5.03 4.46
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indicates a similar story, with the addition that DM and DE are not significantly different.
More generally, the DMTI variants produce more efficient trees than the I Tl variants.

Table A.9 shows the expected number of tests for each task-algorithm combination when
pruning is turned off, and Table A.10 shows the corresponding deviations. The means and
deviations when pruning is turned on are shown in TablesA.11 and A.12.

5.7. CPU Cost

Finally, consider the question of how the CPU requirements compare (on aDEC 3000 with
96M main memory). The DMRT

DL DM DE IE 11 12 C1 cC2
514.12 488.82 394.23 152.17 152 144 059 0.50

indicates that each of DL and DM is significantly more costly than each of IE, 11, 12, C1,
and C2. It aso indicates that DE is significantly more costly than each of 11, 12, C1, and
C2. There are no other significant differences. The DMRT

DL DM DE IE 11 12 C1 cC2
591.00 479.32 456.64 171.74 154 146 059 0.50

shows the same set of significant differences when pruning isturned on. The ITI and C4.5
variants are not significantly different in CPU cost. Thell and 12 CPU requirements are
within one second of those of C1 and C2 on average.

The DMTI variants are much more expensive, but perhaps worth the cost for some
applications. For example, if onewants adecision treethat requiresfew testson averagefor
classification, then DE producesasignificant improvement, at the cost of extracomputation.
One might argue that an algorithm such as 11 that builds a classifier in an average of 1.5
seconds is not working hard enough to find atree that provides efficient classification.

Table A.13 shows the valuesfor each task-al gorithm combination when pruning isturned
off, with the corresponding deviations shown in Table A.14. Table A.15 shows the costs
for each task-algorithm combination when pruning is turned on, with the corresponding
deviations shown in Table A.16.

6. Incremental Update Cost

Might one want to use the incremental ITI algorithm within a serial learning system or
knowledge maintenance system? The primary issue is whether online learning via incre-
mental treerevision is sufficiently time efficient. Under what conditions, if any, would one
prefer to build a new tree from scratch?

Inaseria task, in which each new training exampleis received sequentially, the problem
to be solved by the algorithm is to obtain the new tree based on the newly augmented set
of training examples. In the batch case, one takes the complete set of examples that has
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accumulated, and buildsanew tree from them. Intheincremental case, onetakesthe current
decision tree and the new training example, and produces the new decision tree from them.
What is the cost of obtaining the tree at time ¢, where ¢ is the number of training examples
that have been observed? For the incremental case, one has the tree at timet — 1 and the
new exampleobserved at timet. The costsaccrued prior to timet are not aconcern because
they have already been incurred and paid. Of interest is the cost of producing the tree at
timet.

6.1. Cost Factors

There are fiveimportant factorsthat affect the cost of an incremental update of the existing
decision tree. First is the cost of adding the information from the example to the data
structures maintained at a decision node. For each symbolic variable, one increments the
counter for the value-class combination present in the example. Asthe number of different
observed values (the value set) grows, there is additional overhead in locating the counter
in the data structure. For each numeric variable, oneinserts the valuefound in the example
(tagged with the classin the exampl ) into asorted list of values. For symbolic and numeric
variables alike, the cost is proportional to the log of the size of the value set. For symbolic
variables, the value set of avariabletypically reachesitsfinal size early in the training.

The second cost factor isthe number of decision nodes that are updated when an example
isincorporated into the tree. The treeis relatively small early in the training, and will tend
to do most of its growing early, as the utility of observing new examples diminishes. It is
amatter of seeing alarge enough number of training examples to be representative of the
underlying example distribution. As enough examples come to have been seen, the size of
the tree tends to stabilize.

Thethirdfactoristhefrequency of changing theinstalled test at adecision nodesomewhere
inthetree. Early in the training, the example distribution is not well represented, meaning
that a new example can by itself cause a noticeable change in the distribution and the
conditional probabilities that are computed within the test metric computation. Later in
training, one example is unlikely to have much effect. Indeed, most examples do not lead
to a change of the installed test. This effect of increased stability occurs earlier at higher
decision nodesin thetree because these nodesare based on moreexamples. Astheexamples
are partitioned, the decision nodes lower in the tree are based on fewer examples, and tend
to lag in stability.

The fourth factor is the cost of restructuring a tree or subtree. This cost is attributable
mostly totreetranspositions. What affectsthe cost of treetransposition? Thereisthe matter
of how many recursive calls are needed to set up a base case at the node in hand, and how
many follow-up recursive calls are needed to ensure that the best test isinstalled at each of
the decision nodesbel ow. Asmentioned above, stability of the best test at anode tendsto be
greater at nodes closer to the root of thetree. From this, one can surmise that transposition
activity isgenerally lowest at the root, and generally highest at the fringe. The closer to the
fringe that one transposes, the cheaper itis.

For a base case tree transposition of the kind shown in Figure 1, adjusting the pointers
to reattach the subtrees has negligible cost. The bulk of the expense is in recreating the
counting information that is maintained in each of the two decision nodes below the root.
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Figure 2. Incremental Update Cost for soybean

Although onc does not re-cxamine training examples, it still takes effort to reconstruct
the information from the two grandchildren decision nodes. Merging of symbolic variable
information involves creating the structures to hold the information, and then adding it from
each grandchild. Merging of numeric variable information requires copying and merging
the two sorted-tagged lists of the grandchildren.

If one assumes that the size of the value set is independent of the number of cxamples scen,
then the cost of a base case tree transposition is independent of the number of examples.
The size of the value set of a symbolic variable is often smaller than the size of the value
set for a numeric variable. For a symbolic variable, the size of the value set is likely to be
independent of the number of examples, but for a numeric variable, this is less likely. It is
quite possible to have a real-valued numeric variable in which the value in each example
is unigue, meaning that the size of the value set continues to grow as new examples are
observed.

The fifth and final important cost factor is associated with the simpler base cases of
tree transposition. As mentioned above, when one of the subtrees is a leaf, transposition
is accomplished by taking the non-leaf subtree as the result, and then incorporating the
examples from the leftover leaf into the scavenged subtree. This causes an example to be
handled further as it becomes incorporated into the surviving subtree. This activity qualifies
as a limited re-examination of the example. Transposition is implemented this way in order
to keep the tree in a reduced form. There is no decision node in the tree that could have
been a leaf.

6.2. llustrations

Three illustrations of ITI in its incremental mode show the net effect of these cost factors
under different circumstances. The soybean, hungarian, and vowel tasks were run on all of
the available examples, while measuring the cost of each update of the tree.

The soybean task has all symbolic variables, and in Figure 2 one sees that most updates
are inexpensive. The cost of building the tree in batch mode for all the examples is 2.01
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Figure 3. Incremental Update Cost for hungarian

seconds. The hungarian task has an equal number of symbolic and numeric variables, and
as one can see in Figure 3, there are only a few relatively costly revisions. For this task,
the cost of building the tree in batch mode for all the examples is 0.43 seconds. The vowel
task has all numeric variables, and Figure 4 shows that a large number of expensive updates
occurred. Furthermore, one can see that the cost of each revision tends to increase with
training. This is a case in which the value sets continue to grow throughout training. In
batch mode, the cost of building the tree for all the examples is 5.63 seconds. One can see
that several of the updates cost more than this.

On average, the cost of an incremental update will be lower than the cost of rebuilding the
tree, despite an occasional expensive update. The figures do not show the cost of building
a new tree at cach point. It would be uscful to be able to predict when an update will be
more expensive than rebuilding the tree. In such a case, one could instead opt to rebuild the
tree. It would be better still to improve upon the current ITI so that no update ever costs as
much as rebuilding the tree.

7. Leave-One-Out Cross Validation

For some learning methods, it is possible to perform a leave-one-out cross validation in-
expensively because it is easy to modify the classifier incrementally. For example, one
can change an instance-based classifier simply by adding or subtracting an example from
the instance base. This makes leave-one-out cross validation inexpensive because for each
instance in the base, one removes it from the base, classifies it, and then puts it back into the
base. The cross-validated accuracy is the percentage of classifications that were correct.
With efficient tree revision, leave-one-out cross validation is practical for decision tree
classification (Kohavi, 1995). One first builds a tree from all the examples using ITI in
incremental or batch mode. Then for each example, one subtracts it from the tree, classifies
it, and adds it to the tree. This requires adding a primitive that subtracts an example from
the tree, which is straightforward; it is the inverse of adding an example. When an example
is subtracted or added, the algorithm uses the indirect metric to identify the best test at each
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Figure 4. Incremental Update Cost for vowel

decision node. The cost of subtracting an example and adding it back is dramatically less,
on average, than the cost of building the tree from scratch.

8. Software

The ITI system is available via http://www-ml.cs.umass.edw/iti.html or anonymous ftp to
ftp.cs.umass.edu on directory /pub/iti. The distribution includes the C source code for
the two algorithms ITI and DMTI, and for several additional small programs for running
experiments, plotting performance graphs, and plotting decision trees. The tree plotting
program PST generates PostScript code that draws a tree on as many pages as necessary
for the specified font and pointsize.

Everything discussed in this article has been implemented except for the I'TI lazy mode, the
DMTTI expected-classification-expense metric, and the DMTI expected-misclassification-
cost metric. Several useful operators have been implemented that have not been discussed
here, such as save-tree and restore-tree. In addition, a Kolmogorov-Smirnoff distance
attribute selection metric can be selected as the indirect metric (Utgoff & Clouse, 1996)
instead of the default.

In the implementation, every set of information items Kept at a decision node is main-
tained as an AVL tree, which is an almost-balanced binary search tree (Wirth, 1976). This
organization provides O(log n) insert, delete and lookup. Specifically, the set of variables
is maintained at a decision node as an attached AVL-tree of variables. For each variable
(node) in this attached AVL-tree, the set of observed values for that variable is maintained
as its own attached AVL-tree. Similarly, for each value (node) in that attached AVL-tree,
the set of observed classes with frequency counts, is kept as an attached AVL-tree. This
tree of trees of trees is independent of the semantics of the decision tree itself, and serves
merely as an efficient scheme for tracking the information that must be maintained at the
decision node. Due to this organization, neither a large number of variables, nor a large
number of values, nor a large number of classes is debilitating computationally. This is alt
the information that is needed to evaluate all of the possible binary tests that are permitted
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at adecision node. It does however bring some inefficiency when merging two AV L-trees,
for example two sorted lists of tagged values, making the cost O (n log n) instead of O(n).

9. Related Work

Theincremental tree induction algorithm ID5R (Utgoff, 1989) demonstrated the basic pro-
cessof treerevision. It did not handle numeric variables, multiclasstasks, or missing values,
and did not include any prepruning or postpruning method for avoiding overfitting. The
first version of ITI (Utgoff, 1994) had an awvkward manner for handling numeric variables
and for handling missing values, which have been replaced here. Schlimmer and Fisher’'s
(1986) ID4 demonstrated incremental tree induction through test revision and discarding
of subtrees.

Crawford (1989) has constructed an incremental version of the CART algorithm
(Breiman, Friedman, Olshen & Stone, 1984). When a new example is received, if a new
test would be picked at a decision node, a new subtree with the new test is constructed
by building the new subtree from scratch from the corresponding subset of the training
examples. Crawford notes that this approach is expensive, and proposes an aternative that
invokes tree rebuilding less often. Van de Velde (1990) designed IDL, based on 1D4 and
ID5, with the goal of finding trees smaller than those that result from the standard top-down
induction methods. Lovell and Bradley (1996) present the MSC agorithm, which refines
adecision tree incrementally, with limited backtracking, making it dependent on the order
of the presented training examples.

Fisher (1996) presents amethod for optimizing a hierarchical clustering built initially by
COBWERB. Itimplementsahill-climbing search through the space of clusterings, attempting
to find an improved clustering according to specified metric, similar in spirit to DMTI.
Cockett and Herrera (1990) present an algebraic approach to finding irreducible trees.
Kalles and Morris (1996) have devised a scheme to reduce the number of times the test
selection metric must be evaluated.

10. Conclusions

This article has presented a set of fundamental tree revision operators, and shown how two
decision tree induction algorithms can be built from them. The ITI agorithm performs
incremental decision tree induction on symbolic or numeric variables, and handles noise
and missing values. The agorithm also includes a virtual pruning mechanism that can
operate in conjunction with atree induction agorithm. 1Tl is suitable for embedding in an
application that receives or creates new examples online, such as knowledge maintenance
systems. For taskswith no numeric variables, the cost of treerevisionislargely independent
of the number of examples that have been incorporated. For tasks with numeric variables
that have large value sets, the cost of tree revision can grow noticeably with the number of
examples.

The non-incremental DMTI algorithm uses an attribute selection metric that isafunction
of atreeinstead of afunction of counting information kept at anode. This makesit possible
to choose from among a set of trees based on a direct measure of tree quality. It aso
lends itself to studies of how well the indirect metrics do at identifying tests that lead to
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induction of the most preferred trees. DM T issuitablefor producing treesthat areintended
to minimize a specified objective function. Due to DMTI’s greater computational expense
and associated greater minimization ability, it is suitable when oneiswilling to spend extra
time to produce a superior tree.
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Appendix

The tables here show the point estimates and standard deviations for each of the mea-
surements for each of the algorithm-task combinations discussed in Section 5. The point
estimates and deviations are presented as a pair of tables because asingle tablewith al this
information would be too large. For each of the variables measured, thereisa pair of tables
for the case in which pruning is turned off, and another pair of tables for when pruning is
turned on. See Section 5.2 for an explanation of the algorithm names.
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Table A.1. Accuracy (no pruning)

See Table A.2 for associated standard deviations
Task DM DE IE DL 11 12 C1 C2 Mean

audiono-id 817 761 8L7 830 804 804 835 757 803
badancescde 768 778 770 754 765 781 760 783 770
bcwisc 956 944 944 949 936 936 933 937 942
breast-cancer 666 728 662 659 645 638 638 662  66.2
bupa 646 657 640 654 611 620 614 646 636
chess551x39 921 868 945 934 923 923 916 925 919
clevdand 497 503 468 494 468 484 461 468 480
ox 803 796 799 797 801 816 803 809 803

fagyyad 891 845 873 827 82 84 873 84 865
glassno-id 686 700 659 677 664 668 664 677 674
hepatitis 800 713 831 806 781 819 769 769 786
horsedead 545 636 582 627 645 655 645 618 619
horsesick 956 956 969 969 99 9.3 950 96 9.1
hungarian 780 753 737 743 750 780 737 757 755
hypothyroid 987 982 990 989 986 989 990 991 9838
ionosphere 894 878 936 892 939 933 911 914 912
iis 956 950 938 956 944 950 931 944 946

landsst 811 800 805 805 813 824 816 821 812
led24 529 529 552 519 524 614 581 610 557

led7 657 686 671 671 676 657 686 681 673

lenses 633 733 700 633 700 733 700 733 696
lung-cancer 500 425 375 350 425 400 475 375 416
lymphography ~ 760 800 800 787 760 707 733 773 765
monks1 1000 1000 1000 1000 970 916 91 952 975
monks2 995 1000 995 1000 968 939 427 445 846
monks-3 1000 1000 1000 100.0 1000 1000 1000 1000 100.0
mplex-11 1000 1000 1000 1000 1000 999 1000 998 100.0
mplex-6 1000 1000 900 1000 843 657 871 571 855
mushroom 1000 1000 100.0 1000 1000 1000 1000 1000 100.0
nettalk 840 824 838 849 838 834 827 821 834

pima 700 690 710 706 699 700 697 696 700

post-op 660 620 640 600 570 540 600 630 608
primary-tumor 341 359 368 344 365 362 376 409 365
promoter 709 782 800 809 773 782 773 809 780
road 779 755 770 785 774 787 792 792 779
soybean 929 919 935 917 933 930 910 903 922
splice 924 917 920 913 917 928 916 918 919
switzerland 362 346 354 362 300 331 254 323 329
tictactoe 768 751 755 767 720 738 664 663 728
usamamys 768 784 774 763 774 784 837 826 789
va 300 343 252 290 205 233 295 281 275

votes 918 920 918 920 925 927 943 957 929

vowe 819 794 789 815 796 785 810 792 800
waveform 681 700 658 661 665 658 687 697  67.6
wine 956 939 91 950 950 950 928 933 946

z00 9.4 955 955 964 964 918 973 927 952

Mean 78.0 779 o 7.7 76.9 76.6 76.0 75.7 77.1
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Table A.2. Standard Deviation for Accuracy (no pruning)

See Table A.1 for associated point estimates

Task DM DE IE DL 11 12 C1 c2
audio-no-id 75 81 9.9 7.6 9.0 71 51 9.6
balance-scale 4.2 35 44 4.0 3.7 28 34 41
bc-wisc 15 21 23 18 31 34 24 2.8
breast-cancer 7.2 93 113 59 6.0 49 6.0 6.9
bupa 6.5 75 6.5 74 6.9 53 43 53
chess-551x39 31 39 31 21 18 30 29 4.0
cleveland 6.8 69 101 6.9 72 6.8 7.8 41
crx 52 31 3.6 49 6.2 49 41 35

fayyad 6.8 9.1 8.3 9.5 7.1 7.3 6.0 7.3
glass-no-id 9.0 71 127 101 115 104 9.1 8.7
hepatitis 9.6 11.3 6.3 71 8.9 71 6.9 49
horse-dead 199 100 142 160 125 121 8.6 9.8
horse-sick 29 49 31 31 31 41 47 4.0
hungarian 8.7 48 6.2 7.2 4.8 43 5.0 6.8
hypothyroid 0.6 0.7 0.5 0.4 0.6 0.7 05 0.8
ionosphere 5.2 52 35 42 3.7 3.6 3.0 32
iris 4.0 4.7 4.0 4.0 52 47 7.6 7.6

landsat 32 33 23 32 17 21 3.0 22

led24 84 86 121 103 136 110 116 9.0

led7 139 128 130 139 131 120 121 109

lenses 180 249 180 180 180 200 180 200
lung-cancer 194 225 168 166 225 166 261 16.8
lymphography  10.4 7.3 99 129 124 137 112 124
monks-1 0.0 0.0 0.0 0.0 2.0 7.4 39 45
monks-2 14 0.0 0.9 0.0 3.7 6.3 9.8 9.3
monks-3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
mplex-11 0.0 0.0 0.0 0.0 0.0 0.4 0.0 05
mplex-6 0.0 00 129 00 149 223 135 202
mushroom 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
nettalk 17 1.0 1.0 17 12 1.0 18 14

pima 47 52 41 29 3.7 35 36 43

post-op 9.2 8.7 92 100 9.0 128 155 100
primary-tumor 6.1 6.1 6.1 5.4 6.3 7.1 6.8 5.3
promoter 134 116 106 160 117 109 109 143
road 23 21 14 29 23 25 22 19
soybean 29 29 24 32 3.0 24 22 2.8
splice 1.2 14 18 0.8 0.9 0.8 2.0 21
switzerland  11.4 86 138 142 126 9.8 85 9.6
tictactoe 1.6 17 2.6 23 17 18 2.8 20
usamamys 6.7 7.2 8.2 6.8 94 7.6 8.9 71
va 104 9.0 80 107 7.7 69 116 127

votes 4.2 31 41 33 41 32 46 37

vowel 36 3.7 5.0 4.0 45 42 45 45
waveform 6.5 8.0 6.9 86 111 9.3 95 104
wine 4.2 52 56 4.6 46 5.2 6.1 6.0

Z00 45 45 45 45 45 6.4 42 6.8
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Table A.3. Accuracy (pruning)

See Table A .4 for associated standard deviations
Task DM IE (o4} 12 11 Cc2 DL DE Mean

audionoid 791 8L7 848 796 796 778 757 643 778
bdancescdle 781 776 775 789 789 775 781 775 780
bc-wisc 943 946 949 937 937 949 947 947 944
breast-cancer 714  69.7 755 686 686 755 731 728 719
bupa 674 671 651 663 663 646 620 646 654
chess551x39 920 941 920 920 920 911 896 843  90.9
ceveland 503 494 471 516 516 468 513 539 502
ox 837 853 829 826 826 834 853 844 838

fajyad 873 873 864 845 845 864 818 809 849
glassnoid 714 650 673 668 668 691 641 650 669
hepatitis 850 831 794 806 806 775 819 800 8LO
horsedead 627 591 655 600 600 655 636 609 622
horsesick 944 956 956 956 956 956 938 919 948
hungarian 803 803 780 813 813 783 783 790 796
hypothyroid 992 992 990 990 990 991 990 990 991
ionosphere 908 933 911 925 925 914 914 847 910
iis 950 944 944 944 944 944 925 938 941

landst 847 849 845 858 857 851 850 838 849
led24 619 629 614 629 624 624 605 571 6Ll4

led7 686 662 700 657 667 695 686 705 682

lensess 900 833 833 833 833 833 700 90 833
lung-cancer 600 350 475 325 325 425 225 375 388
lymphography 693 760 767 733 733 780 693 693 732
monks1l 1000 1000 968 916 916 968 1000 1000  97.1
monks2 936 961 659 923 923 659 893 852 851
monks3 1000 1000 1000 1000 1000 1000 1000 1000  100.0
mplex-11 1000 1000 998 997 997 998 1000 1000 999
mplex-6 1000 686 714 643 643 571 657 729 705
mushroom 1000 1000 1000 1000 1000 1000 1000 1000 100.0
nettalk 829 833 809 830 830 806 818 799 819

pima 744 729 718 745 745 719 729 717 731

post-op 630 610 690 620 610 690 650 660 645
primary-tumor 385 385 409 382 376 409 426 400 397
promoter 718 791 782 791 791 773 718 691 757
road 787 822 810 84 8L4 8L1 796 799 806
soybean 920 936 925 933 933 922 901 878 919
splice 936 948 938 943 943 937 926 923 937
switzerland 354 331 269 331 331 331 469 408 353
tictactoe 784 759 689 745 747 681 732 754 736
usamamys 842 842 858 842 842 832 811 837 838
va 271 248 267 233 238 267 367 300 274

votes 943 959 964 950 950 966 943 936 951

vowd 771 762 801 761 761 789 713 706 758
waveform 700 645 700 655 655 700 655 674 673
wine 956 939 933 950 950 933 917 922 937

00 882 99 945 945 945 918 927 918 924

Mean 79.5 78.1 77.9 775 775 77.3 76.9 76.7 7.7
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Table A.4. Standard Deviation for Accuracy (pruning)

See Table A.3 for associated point estimates

Task DM IE C1 12 11 Cc2 DL DE
audio-no-id 38 7.0 56 85 85 6.6 8.7 8.0
balance-scale 36 34 32 33 33 32 3.7 35
bec-wisc 25 31 23 2.7 2.7 23 19 18
breast-cancer 6.4 48 39 6.1 6.1 39 37 47
bupa 4.3 45 5.7 51 51 5.6 85 4.8
chess-551x39 38 35 39 42 42 48 41 5.6
cleveland 8.2 6.1 6.8 5.8 5.8 54 7.0 43
crx 21 31 38 24 24 24 35 36

fayyad 8.3 8.3 7.3 8.2 8.2 73 115 103
glass-no-id 46 122 83 102 102 7.3 9.2 9.1
hepatitis 7.5 5.6 6.9 9.0 9.0 5.7 44 6.7
horse-dead 131 174 89 153 153 79 100 10.0
horse-sick 52 4.9 4.0 4.0 4.0 4.0 28 49
hungarian 5.7 4.8 6.0 7.9 7.9 4.0 7.8 6.2
hypothyroid 0.4 0.6 0.7 0.6 0.6 0.6 0.5 0.4
ionosphere 51 45 30 4.3 4.3 3.6 4.9 6.2
iris 6.1 6.5 7.6 6.5 6.5 7.6 6.1 6.2

landsat 25 3.0 3.3 18 18 2.6 22 2.7

led24 74 104 8.4 9.9 9.4 94 100 128

led7 123 139 95 120 140 107 138 134

lenses 21.3 224 224 224 224 224 314 213
lung-cancer 255 166 261 160 160 225 175 280
lymphography 9.0 90 116 137 137 119 108 100
monks-1 0.0 0.0 37 7.2 7.2 3.7 0.0 0.0
monks-2 2.6 29 0.0 6.2 6.2 0.0 4.4 4.0
monks-3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
mplex-11 0.0 0.0 0.4 0.7 0.7 0.4 0.0 0.0
mplex-6 00 140 202 160 160 192 114 7.7
mushroom 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
nettalk 14 11 21 1.0 1.0 19 0.7 0.9

pima 3.3 44 3.9 51 51 4.2 32 5.0

post-op 78 122 83 160 151 8.3 6.7 8.0
primary-tumor 58 58 6.5 7.0 7.1 6.4 7.7 6.5
promoter 11.8 122 13.0 115 115 142 175 148
road 24 14 22 2.0 2.0 22 14 1.6
soybean 16 16 2.7 2.2 22 24 2.0 38
splice 18 16 13 12 12 13 15 14
switzerland 155 129 105 103 103 77 106 114
tictactoe 25 18 21 1.9 21 23 17 14
usama-mys 7.1 53 8.2 4.7 4.7 74 7.9 8.3
va 74 112 126 75 8.2 7.7 100 9.0

votes 3.6 33 31 45 45 33 3.6 4.4

vowel 45 31 44 48 4.8 45 4.8 44
waveform 6.0 122 97 106 106 107 106 53
wine 4.2 7.6 6.0 52 52 6.0 45 3.7

Z00 58 4.1 45 45 45 6.4 55 7.6




32 P.E. UTGOFF, N.C. BERKMAN AND J.A. CLOUSE

Table A.5. Leaves (no pruning)

See Table A.6 for associated standard deviations

Task c1 c2 1 IE DE DL DM 12 Mean
audio-no-id 748 417 454 469 562 423 415 339 478
baancescde 1382 617 1388 1439 1392 1356 1347 554 1184
be-wisc 338 217 399 334 296 275 275 267 300
breast-cancer ~ 277.8 1434 985 95 770 734 755 697 1138
bupa 776 534 87 83 711 713 675 7L7 737
chess-551x39 722 40 711 6Ll 930 563 564 484 624
cleveland 950 568 1022 1026 856 809 795 667 837
crx 1418 840 929 956 846 754 725 675  89.3

fayyad 124 76 124 124 121 122 114 86 11.1
glass-no-id 428 284 439 411 423 374 3B5 313 378
hepatitis 20 152 226 201 188 168 166 139 183
horse-dead 205 151 226 219 186 178 169 183 190
horse-sick 6.6 6.2 5.7 58 64 57 57 46 5.8
hungarian 548 341 579 546 460 427 416 404 465
hypothyroid 367 159 429 380 368 334 341 229 326
ionosphere 204 162 230 214 207 178 181 178 194
iris 9.8 5.3 9.2 94 88 83 83 57 8.1

landsat 1342 832 1411 1365 1274 1145 1128 924 1178
led24 637 356 637 625 636 577 574 333 547

led7 331 181 460 436 447 444 444 263 376

lenses 7.9 42 6.6 73 63 66 65 39 6.2
lung-cancer 105 74 110 110 85 81 81 77 9.0
lymphography 633 323 262 303 231 205 208 201 @ 296
monks-1 843 717 402 84 91 98 98 366 337
monks-2 2625 924 510 465 410 410 410 464 777
monks-3 140 140 5.0 54 50 50 50 50 73
mplex-11 918 913 922 602 160 160 160 920 594
mplex-6 216 151 205 68 80 80 80 161 14.3
mushroom %6 256 129 123 96 100 90 129 147

nettalk 105284  5065.8 840.3 8238 9235 7421 7542 560.7 25299
pima 134.2 93.8 1534 1512 1221 1136 1154 1241 126.0

post-op 48.8 21.2 37.7 35.6 339 31.3 30.2 22.4 32.6
primary-tumor 163.5 66.7 174.4 1712 1696 1570 157.2 84.0 142.9
promoter 30.7 24.1 12.3 11.9 10.6 9.7 9.8 8.7 14.7

road 302.2 185.6 327.9 311.8 3129 265:2 269:2 216.2 273.9
soybean 172.0 118.3 67.3 64.5 68.8 60.7 60.3 54.5 83.3
splice 1002.7 721.3 142.1 136.6 1501 1203 1188 98.8 311.3

switzerland 52.7 325 53.6 52.5 485 452 44.9 35.3 45.6
tictactoe 2369.6 10242 13481 12200 9770 9623 957.3 7058 11955
usama-mys 18.7 12.8 28.1 25.7 22.7 20.3 21.0 17.6 20.9
va 80.2 50.6 103.0 101.0 84.3 80.1 80.7 62.2 80.3

votes 24.6 13.9 28.1 24.8 236 22.0 21.9 175 22.1
vowel 136.2 102.7 154.7 1439 1357 1169 1177 1224 128.8
waveform 37.6 27.9 46.7 449 311 29.3 27.8 37.9 354
wine 8.6 5.6 7.8 6.7 6.3 5.8 5.8 57 6.5

Z00 14.0 10.2 10.1 9.8 9.6 9.6 9.6 83 10.2

Mean 371.2 189.5 108.0 101.5 94.3 84.5 84.4 69.1 137.8
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Table A.6. Standard Deviation for Leaves (no pruning)

See Table A.5 for associated point estimates

Task C1 c2 11 IE DE DL DM 12
audio-no-id 74 7.7 2.6 23 1.6 1.6 16 25
balance-scale 39 38 37 23 21 29 3.7 28
bec-wisc 23 33 2.7 24 14 12 19 22
breast-cancer 26.1 16.0 5.6 5.9 31 34 38 37
bupa 3.6 37 6.5 8.7 4.0 3.0 28 6.5
chess-551x39 6.3 1.9 59 3.7 100 29 3.0 1.6
cleveland 4.6 24 44 3.7 35 21 17 44

crx 18.0 14.3 49 54 2.7 31 31 49

fayyad 15 0.7 1.6 1.6 13 16 11 12
glass-no-id 24 24 29 4.6 16 2.6 19 20
hepatitis 238 15 2.7 33 15 15 16 15
horse-dead 13 0.9 16 28 14 14 12 17
horse-sick 0.8 13 0.5 0.4 0.5 0.5 0.5 0.7
hungarian 34 3.9 20 31 41 21 16 14
hypothyroid 32 31 4.2 4.9 31 33 29 28
ionosphere 21 19 15 22 17 13 13 12
iris 13 0.8 11 14 11 0.8 0.8 0.8

landsat 4.0 54 5.0 6.0 6.6 4.2 35 41

led24 2.3 19 2.3 29 3.9 3.3 34 20

led7 22 11 18 2.0 20 18 18 1.0

lenses 12 0.9 11 14 0.8 11 1.0 0.3
lung-cancer 12 14 18 18 0.5 0.5 0.3 22
lymphography 6.3 7.3 25 3.6 19 16 14 31
monks-1 295 217 16.6 12 0.8 19 19 138
monks-2 9.2 4.3 9.7 6.4 0.0 0.0 0.0 5.3
monks-3 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0
mplex-11 224 221 204 146 0.0 0.0 00 204
mplex-6 24 1.0 20 31 0.0 0.0 0.0 0.9
mushroom 20 20 0.3 0.6 0.5 0.0 0.0 0.3
nettalk 1106 1185 117 126 19.7 121 85 7.7

pima 6.0 4.8 77 123 3.7 54 6.0 103

post-op 4.2 4.2 41 34 2.3 0.6 0.7 19
primary-tumor 4.8 41 3.3 41 4.2 2.6 35 4.3
promoter 37 19 18 16 0.9 0.8 1.0 13
road 9.1 58 9.5 6.6 136 51 6.3 75
soybean 118 6.2 3.2 2.2 4.2 2.6 18 2.6
splice 34.2 375 35 32 7.6 33 35 3.9
switzerland 31 25 2.8 38 3.7 20 25 22
tictactoe 20.0 238 181 337 181 276 290 101
usama-mys 18 19 19 22 21 12 16 13
va 55 39 6.8 51 3.6 24 25 47

votes 2.8 3.0 34 2.8 1.6 2.0 24 22

vowel 35 4.0 6.1 4.3 5.6 39 35 5.7
waveform 3.0 3.3 8.8 6.8 20 18 17 7.3
wine 16 0.9 11 0.8 0.8 0.4 0.4 1.0

Z00 1.0 2.8 0.8 0.6 0.5 0.5 0.5 0.8
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Table A.7. Leaves (pruning)

See Table A.8 for associated standard deviations
Task C1 c2 11 12 IE DE DL DM Mean

audio-no-id 47.4 30.2 26.8 26.8 291 26.0 226 20.0 28.6
balance-scale 52.3 40.0 48.7 47.0 49.4 43.8 41.9 41.0 455
bc-wisc 12.6 10.0 121 121 9.2 9.5 7.8 8.1 10.2
breast-cancer 9.0 8.0 21.4 21.4 26.1 11.7 12.4 15.2 15.6
bupa 48.1 37.3 30.1 30.1 29.1 17.3 175 231 291
chess-551x39 34.2 24.3 217 217 36.3 32.2 333 20.6 295
cleveland 71.6 45.7 42.6 425 38.7 331 337 294 42.2

crx 455 34.2 21.5 21.5 12.3 331 34.2 17.8 275

fayyad 7.2 71 69 69 77 60 60 70 6.9
glassnoid 352 252 235 235 246 201 220 168 239
hepatiis ~ 10.6 88 67 67 45 40 47 60 65
horsedesd 168 113 65 65 58 41 42 37 74
horse-sick 46 46 39 39 35 33 36 31 38
hungarian 156 138 100 100 86 73 75 87 102
hypothyroid 74 60 93 93 63 52 50 45 6.6
ionosphere 164 129 75 75 59 100 60 74 9.2
iris 55 51 37 37 37 30 36 31 39

landsst 626 427 345 338 375 333 329 303 385

led24 413 200 259 248 258 225 232 229 269

led7 221 175 296 227 299 269 263 266 252

lenses 39 36 32 32 31 30 30 30 32
lung-cancer 9.0 64 40 40 45 34 33 35 48
lymphography ~ 28.2 182 109 109 120 97 92 74 133
monksl 294 294 325 325 80 91 98 98 201

monks-2 1.0 1.0 40.9 40.9 40.1 345 35.7 34.8 28.6
monks-3 14.0 14.0 5.0 5.0 5.0 5.0 5.0 5.0 72
mplex-11 88.2 88.2 91.6 91.6 54.8 16.0 16.0 16.0 57.8
mplex-6 12.9 12.3 7.6 7.6 9.0 6.0 6.0 8.0 8.7

mushroom 25.6 25.6 12.9 12.9 12.2 9.6 10.0 9.0 14.7
nettalk 46108 22708 4186 4117 4035 4119 3330 3347 11494
pima 80.9 63.6 24.0 24.0 29.0 40.2 44.6 31.8 423

post-op 37 18 9.5 9.2 8.6 8.0 8.2 7.0 7.0
primary-tumor 95.3 435 78.2 62.0 79.6 74.3 67.0 67.6 70.9
promoter 17.5 16.3 6.3 6.3 55 4.2 39 44 81

road 175.2 119.3 95.0 94.6 78.6 85.9 83.6 81.3 1017
soybean 77.0 62.5 34.1 34.0 279 39.8 354 32.8 429
splice 397.2 298.5 51.6 51.6 47.1 49.2 46.1 43.6 1231
switzerland 40.5 28.0 26.3 26.1 24.6 18.6 17.4 16.4 24.7
tictactoe 611.4 4844 4856 4683 4506 3284 3381 3831 4437

usama-mys 12.2 10.7 49 4.9 7.6 73 12.0 5.7 8.2
va 57.8 36.9 46.5 46.2 46.4 329 324 33.2 415
votes 6.2 59 6.1 6.1 57 4.5 55 6.4 5.8

vowel 122.2 97.9 97.9 97.8 92.8 834 78.4 75.8 93.3
waveform 31.9 26.0 15.2 15.2 16.3 115 134 134 17.9
wine 58 55 54 54 55 5.0 4.7 41 52

Z00 11.9 10.1 7.0 7.0 6.8 8.7 85 6.5 83

Mean 155.1 91.2 43.9 42.8 40.8 36.1 34.3 33.9 59.8
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Table A.8. Standard Deviation for Leaves (pruning)

See Table A.7 for associated point estimates
Task C1 c2 11 12 IE DE DL DM

audio-no-id 43 3.0 15 15 11 44 18 15
balance-scale 6.5 5.7 29 29 32 34 20 27
bec-wisc 2.6 2.0 13 13 19 35 2.7 1.6
breast-cancer 10.7 8.0 4.8 4.8 5.0 37 40 24
bupa 52 6.2 6.5 6.5 5.9 7.7 56 43
chess-551x39 7.8 32 4.7 4.7 41 84 64 16
cleveland 7.6 58 44 43 6.0 44 59 23
crx 13.3 75 8.2 8.2 3.6 6.2 89 27

fayyad 0.6 0.3 10 10 0.6 0.9 10 038
glass-no-id 31 29 3.0 3.0 24 49 5.7 17
hepatitis 38 23 0.8 0.8 23 11 14 08
horse-dead 25 32 22 22 14 1.9 19 10
horse-sick 0.8 0.8 05 05 05 0.5 12 03
hungarian 6.9 5.0 18 18 12 2.0 17 16
hypothyroid 19 1.0 13 13 19 0.6 04 05
ionosphere 24 2.3 0.8 0.8 0.3 2.3 04 05
iris 0.8 0.9 0.5 0.5 0.5 0.0 09 03

landsat 9.4 74 238 2.6 26 34 55 27

led24 32 13 18 15 14 14 19 11

led7 21 17 24 14 28 25 22 24

lenses 0.3 05 0.4 0.4 0.3 0.0 00 00
lung-cancer 18 15 12 12 1.6 17 19 05
lymphography 7.2 45 1.9 19 1.9 2.7 22 10
monks-1 5.0 50 109 109 0.0 0.8 19 19
monks-2 0.0 0.0 33 33 31 13 21 20
monks-3 0.0 0.0 0.0 0.0 0.0 0.0 00 00
mplex-11 191 191 200 200 18 0.0 00 00
mplex-6 31 24 15 15 13 0.0 00 00
mushroom 2.0 2.0 0.3 0.3 16 0.5 00 00
nettalk 1824 91.6 7.9 7.9 88 297 170 89

pima 75 31 7.2 72 104 144 82 49

post-op 21 16 23 24 31 14 12 12
primary-tumor 7.4 44 3.2 4.6 3.8 8.2 4.4 34
promoter 31 2.8 1.0 1.0 0.7 0.9 0.5 1.0
road 4.6 7.5 54 57 30 124 138 57
soybean 7.8 5.8 2.8 29 3.0 5.2 28 18
splice 321 261 22 22 45 6.2 40 30
switzerland 45 29 34 33 3.6 4.3 4.0 1.6
tictactoe 339 342 112 101 192 112 110 69
usama-mys 21 17 18 18 18 33 47 08
va 73 6.0 2.9 31 3.0 3.8 39 31

votes 0.4 0.3 0.8 0.8 0.8 0.7 0.8 14

vowel 3.0 3.8 4.9 5.0 51 7.0 61 33
waveform 25 3.0 22 22 21 24 5.2 18
wine 12 0.7 0.5 05 0.5 0.9 05 03

z00 23 2.7 0.0 0.0 0.4 0.6 08 05
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Table A.9. Expected-Tests (no pruning)

See Table A.10 for associated standard deviations
Task IE 11 12 DL DM DE Mean

audio-no-id 122 111 103 107 8.6 6.0 9.8
balance-scale 9.0 7.0 59 7.0 6.9 6.5 7.0
bc-wisc 8.2 7.4 7.1 45 4.3 3.8 59
breast-cancer 159 129 124 85 89 6.7 10.9
bupa 253 213 209 157 123 9.6 175
chess-551x39 194 9.4 88 148 141 7.1 12.3
cleveland 136 126 119 8.3 7.6 6.4 10.1
crx 186 111 106 9.4 17 6.3 10.6

fayyad 59 4.7 4.3 53 45 4.4 4.9
glass-no-id 9.6 9.2 85 8.1 6.5 6.0 8.0
hepatitis 6.4 6.6 5.7 5.2 48 39 54
horse-dead 122 112 107 6.9 5.8 4.9 8.6
horse-sick 238 2.6 21 2.7 2.2 22 2.4
hungarian  10.5 9.8 9.2 7.3 6.6 5.8 82
hypothyroid 6.5 6.9 6.0 41 36 29 5.0
ionosphere  11.0 107 104 6.0 5.7 44 8.0
iris 4.0 29 23 2.7 2.7 2.6 29

landsat 155 130 125 105 100 7.6 115

led24 6.4 6.2 53 6.1 5.9 5.8 5.9

led7 59 5.8 5.0 5.9 5.8 5.6 5.7

lenses 29 22 17 24 22 21 22
lung-cancer 5.6 4.8 4.1 35 33 33 41
lymphography  11.1 7.8 7.4 5.0 4.9 4.4 6.8
monks-1 40 4.6 4.6 35 35 34 39
monks-2 5.7 55 55 55 55 53 55
monks-3 2.6 21 21 21 21 21 2.2
mplex-11 5.6 6.1 6.1 40 4.0 40 5.0
mplex-6 39 41 39 3.0 3.0 3.0 35
mushroom 7.3 5.0 5.0 3.7 38 28 4.6
nettalk 336 267 260 221 222 192 25.0

pima 235 181 176 121 118 8.2 15.2

post-op 8.2 8.1 72 6.2 58 52 6.8
primary-tumor 106  10.2 8.8 9.6 9.1 7.7 9.4
promoter 43 39 35 36 35 31 37
road 229 183 176 150 148 112 16.6

soybean  11.0 84 8.2 7.3 6.9 5.8 79
splice 8.2 7.3 6.9 6.8 6.8 6.5 7.1
switzerland 128 128 121 8.7 83 59 10.1
tictactoe 11.3 105 99 101 100 95 10.2
usama-mys 9.3 94 8.6 6.5 5.8 4.7 74
va 189 178 170 103 9.6 6.8 134

votes 4.7 35 31 38 3.6 32 37

vowel 141 138 135 9.8 9.2 7.9 114
waveform 128 133 127 75 6.4 55 9.7
wine 2.8 31 2.7 2.7 2.7 2.6 2.8

Z00 41 29 238 35 31 2.7 32

Mean 104 9.0 8.4 7.1 6.7 55 7.9
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Table A.10. Standard Deviation for Expected-Tests (no
pruning)

See Table A.9 for associated point estimates
Task IE 11 12 DL DM DE

audio-no-id 09 09 10 07 09 01
balancescdle 02 01 01 02 01 01
bcwisc 11 04 05 04 05 00
breast-cancer 07 06 06 10 17 03
bupa 50 23 23 22 18 13
chess551x39 15 04 05 17 19 03
clevdland 10 12 11 09 09 02
cax 28 10 10 07 09 01

fagyad 05 04 04 09 02 03
glassno-id 13 07 06 13 10 03
hepatitis 07 06 06 04 03 02
horsedead 17 05 06 16 10 05
horse-sick 02 01 03 02 01 01
hungarian 1.3 03 03 08 06 02
hypothyroid 04 07 07 09 07 01
ionosphere 1.0 05 05 06 08 03
irns 06 02 02 02 02 02

landst 09 10 09 10 10 05

led24 01 01 01 02 02 02

led7 01 01 01 02 02 01

lenses 03 02 01 04 02 02
lung-cancer 13 13 15 02 02 01
lymphography 1.7 11 11 03 03 02
monkss1 04 06 05 02 02 01
monks2 02 01 01 00 00 00
monks3 02 00 00 00 00 00
mplex-11 04 03 03 00 00 00
mplex-6 03 01 01 00 00 00
mushroom 04 01 01 00 00 01
nettalk 08 02 02 06 06 02

pima 35 30 30 19 23 04

post-op 0.7 04 04 06 04 02
primary-tumor 0.3 03 02 0.6 05 01
promoter 05 06 05 03 04 02
rood 12 13 13 09 07 04

soybeen 06 01 01 03 04 02
splice 02 01 01 02 03 02
switzerland 20 21 20 15 15 01
tictactoe 01 00 00 01 01 01
usama-mys 08 09 08 10 11 06
va 15 28 28 20 19 01

votes 03 04 03 03 02 03

vowed 05 06 07 09 08 04
waveform 20 29 28 09 08 05
wine 03 04 04 02 01 01

zo0 02 00 01 01 02 00
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Table A.11. Expected-Tests (pruning)

See Table A.12 for associated standard deviations
Task IE 11 12 DL DM DE Mean

audio-no-id 113 9.7 9.7 7.9 75 5.2 85
balance-scale 7.2 5.7 5.7 5.8 5.7 5.4 5.9
bc-wisc 45 5.2 5.2 33 32 35 4.2
breast-cancer  11.5 8.0 8.0 38 45 35 6.5
bupa 187 155 155 9.7 9.7 7.1 12.7
chess-551x39  17.9 7.4 74 102 7.2 5.9 9.3
cleveland 108 103 10.3 7.2 5.8 5.4 8.3
crx 7.8 6.0 6.0 7.4 45 6.3 6.3

fayyad 49 38 38 3.7 39 35 39
glass-no-id 9.6 7.6 7.6 7.3 55 5.4 7.2
hepatitis 29 35 35 2.3 3.2 18 29
horse-dead 4.2 48 4.8 24 19 20 33
horse-sick 2.0 1.9 19 19 14 16 18
hungarian 6.2 4.6 4.6 33 37 2.7 4.2
hypothyroid 34 31 31 14 14 13 2.3
ionosphere 38 50 5.0 43 45 29 43
iris 2.4 19 19 19 17 17 19

landsat 11.3 9.1 9.1 7.3 6.7 5.6 8.2

led24 51 5.0 49 4.8 47 45 4.8

led7 53 5.0 47 5.0 5.0 4.8 5.0

lenses 16 15 15 15 15 15 15
lung-cancer 2.7 2.3 23 17 21 17 21
lymphography 8.3 6.0 6.0 3.8 34 3.2 51
monks-1 40 45 45 35 35 34 39
monks-2 55 54 54 53 53 51 53
monks-3 2.7 21 21 21 21 21 2.2
mplex-11 5.6 6.1 6.1 40 4.0 40 5.0
mplex-6 31 238 28 25 3.0 25 2.8
mushroom 7.6 5.0 5.0 3.7 38 2.8 4.7
nettak 312 249 248 200 202 178 232

pima 14.6 8.6 86 105 8.6 83 9.9

post-op 45 49 49 34 31 33 4.0
primary-tumor 9.1 8.4 8.2 8.1 7.9 6.7 81
promoter 31 3.0 3.0 21 21 21 2.6
road 137 139 139 115 104 9.2 12.1
soybean 8.3 7.7 7.7 6.4 6.4 55 7.0
splice 7.8 55 55 52 53 49 5.7
switzerland 108 113 113 5.6 59 4.7 83
tictactoe 9.9 94 9.3 9.0 9.2 85 9.2
usama-mys 5.6 3.2 32 6.8 31 4.0 43
va 180 164 164 7.8 79 5.6 12.0

votes 2.8 21 21 23 22 17 22

vowel 131 128 128 9.9 89 7.4 10.8
waveform 6.3 6.5 6.5 51 4.8 39 55
wine 2.8 2.6 2.6 2.3 21 23 2.4

Z00 34 27 2.7 34 2.7 2.6 2.9

Mean 7.8 6.6 6.6 5.4 5.0 45 6.0
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Table A.12. Standard Deviation for Expected-Tests (prun-
ing)

See Table A.11 for associated point estimates
Task IE 11 12 DL DM DE

audio-no-id 07 09 09 10 07 05
balancescdle 03 01 01 02 01 01
bcwisc 11 05 05 06 03 07
breast-cancer 24 16 16 07 09 08
bupa 33 23 23 23 22 24
chess551x39 14 10 10 07 05 10
cleveland 1.7 13 13 14 07 06
cax 23 12 12 19 05 18

fayyad 04 05 05 06 02 03
glassnoid 16 08 08 20 09 08
hepatitis 1.7 05 05 07 04 04
horseedead 10 16 16 09 05 09
horsesick 04 03 03 07 01 02
hungarian 1.1 06 06 0.7 07 05
hypothyroild 12 06 06 01 00 00
ionosphere 02 06 06 03 08 03
ins 03 02 02 03 01 00

landst 08 07 07 09 04 03

led24 01 01 01 01 01 o1

led7 02 01 01 01 02 02

lenses 01 01 01 01 00 00
lung-cancer 12 08 08 10 03 08
lymphography 1.1 08 08 08 06 05
monks1 01 05 05 02 02 01
monks2 01 01 01 01 01 01
monks3 01 00 00 00 00 00
mplex-11 01 03 03 00 00 00
mplex-6 02 03 03 00 00 00
mushroom 10 01 01 00 00 01
nettak 07 03 03 03 07 03

pma 26 18 18 22 15 23

post-op 1.7 12 12 03 03 05
primary-tumor 05 03 03 0.3 04 01
promoter 0.6 0.7 0.7 02 04 02
rood 11 15 15 20 08 13

soybean 09 02 02 06 04 01
splice 04 01 01 01 06 02
switzerland 18 24 24 12 09 07
tictactoe 01 01 01 01 01 01
usama-mys 12 10 10 23 06 18
va 27 28 28 10 20 04

votes 04 02 02 04 06 03

vowed 07 06 06 08 08 04
wavefoom 06 11 11 14 05 06
wine 05 03 03 02 01 03

zoo0 01 00 00 01 01 00
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Table A.13. CPU (no pruning)

See Table A.14 for associated standard deviations

Task DL DM DE IE 11 12 C1 cC2 Mean
audio-no-id 13385 1084.5 552.9 209 17 16 03 02 3751
balance-scale 2.9 2.8 25 53 0.1 01 02 02 18
bc-wisc 14.0 133 11.9 7.7 0.3 02 01 01 6.0

breast-cancer 36.2 40.8 233 227 0.2 02 01 00 155
bupa 124.9 92.3 74.4 152.8 0.5 05 03 02 55.8
chess-551x39  1619.4  1463.4 777.1 61.5 14 13 03 02 490.6
cleveland 94.4 88.4 70.4 73.0 0.6 06 04 03 41.0

crx 3151 2441 166.5 199.4 12 11 04 04 116.0

fayyad 03 02 02 01 00 00 00 00 0.1
glassnoid 379 307 231 209 04 03 03 03 142

hepatiis 259 241 192 52 02 01 01 O01 9.4
horsedead 572 480 382 91 04 03 02 02 192
horse-sick 6.1 48 50 07 01 01 01 01 21

hungarian 35.8 34.0 26.5 32.3 0.3 03 02 02 16.2
hypothyroid 4334 374.0 303.7 24.1 4.1 36 13 11 143.2
ionosphere 9769 10333 657.0 18.6 31 31 14 14 336.8

iris 0.2 0.2 0.2 0.1 0.0 00 00 00 0.1

landsat 83.0 79.2 53.5 89.2 0.8 08 07 06 385
led24 62.2 61.6 60.9 45 0.3 03 01 o1 23.7

led7 3.0 29 28 0.6 0.1 01 00 00 12

lenses 0.0 0.0 0.0 0.0 0.0 00 00 00 0.0
lung-cancer 21.3 20.0 195 12 0.1 01 00 00 7.8
lymphography 17.3 17.7 15.2 4.5 0.1 01 00 00 6.9
monks-1 14 14 14 0.1 0.1 01 00 00 0.6
monks-2 17 17 15 25 0.1 01 01 00 1.0
monks-3 04 04 0.4 0.0 0.0 00 00 00 0.2
mplex-11 239 234 229 6.7 0.8 08 02 02 9.9
mplex-6 0.2 0.2 0.2 0.1 0.0 00 00 00 0.1
mushroom 888.4 793.0 690.9 19 5.7 57 04 04 298.3

nettalk 39253 38855 28679 10830 120 117 50 30 14742
pima 395.9 378.2 1927 11213 16 16 09 08 261.6

post-op 29 27 23 0.9 0.0 00 00 00 11
primary-tumor 127.2 122.2 96.5 250 0.7 05 03 02 46.6
promoter 113.3 113.0 93.0 7.6 0.2 02 00 00 40.9

road 969.4 941.9 642.6 1709.5 4.4 42 38 35 534.9
soybean 504.7 453.6 337.2 14.8 16 16 04 04 164.3
splice  7747.0 77464  7605.4 469.2 123 115 16 15 29494
switzerland 353 35.6 18.2 14.0 0.2 02 02 01 13.0
tictactoe 488.8 488.3 478.1 496.7 31 27 12 08 245.0
usama-mys 121.9 99.0 70.2 13.6 0.7 07 03 03 38.3
va 109.5 103.3 534 62.0 0.6 05 03 02 41.2

votes 14.8 13.8 11.9 15 0.2 01 01 01 53
vowel 734.2 675.4 512.3 831.4 4.9 48 34 33 346.2
waveform  2127.6 18367 15229 382.2 42 40 19 18 735.2
wine 75 7.3 6.9 10 0.1 01 01 01 29

Z00 2.2 21 2.3 0.1 0.0 00 00 00 0.8

Mean 514.1 488.8 394.2 152.2 15 14 06 05 194.2
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Table A.14. Standard Deviation for CPU (no pruning)

See Table A.13 for associated point estimates

Task DL DM DE IE 11 12 C1 cC2
audio-no-id 3211 2788 81.9 54 01 01 00 00
balance-scale 0.3 0.3 0.1 06 00 00 00 00
bec-wisc 16 18 0.7 17 00 00 00 00
breast-cancer 10.8 14.7 28 29 00 00 00 00
bupa 287 21.0 175 3%2 01 01 00 00
chess-551x39  200.7 2622 1285 72 01 01 01 01
cleveland 16.4 13.7 42 128 01 01 00 00
crx 54.3 60.7 9.2 328 01 01 00 00

fayyad 0.1 0.0 0.0 00 00 00 00 O00
glass-no-id 9.2 7.6 23 37 00 00 00 00
hepatitis 22 25 15 13 00 00 00 00
horse-dead 19.8 12.7 7.3 20 00 00 00 00
horse-sick 0.8 05 05 02 00 00 00 00
hungarian 3.0 39 10 60 00 00 00 00
hypothyroid 96.8 65.0 13.8 56 03 04 02 01
ionosphere  192.7  276.2 88.2 52 01 01 01 01
iris 0.0 0.0 0.0 00 00 00 00 00

landsat 85 75 44 166 00 00 00 00

led24 23 25 32 11 00 00 00 00

led7 0.2 0.2 0.2 01 00 00 00 00

lenses 0.0 0.0 0.0 00 00 00 00 00
lung-cancer 24 19 18 06 00 00 00 00
lymphography 21 2.2 15 11 00 00 00 00
monks-1 0.2 0.2 0.1 00 00 00 00 00
monks-2 0.1 0.1 0.1 07 00 00 00 00
monks-3 0.0 0.0 0.0 00 00 00 00 00
mplex-11 12 12 12 33 00 00 00 00
mplex-6 0.0 0.0 0.0 00 00 00 00 00
mushroom 12.4 375 221 08 02 02 00 00
nettalk 1882 1751 1835 771 01 01 00 00

pima 146.0 1738 165 1289 03 03 00 00

post-op 0.4 0.4 0.1 01 00 00 00 00
primary-tumor 15.7 12.3 59 49 00 00 00 00
promoter 219 230 9.5 22 00 00 00 o0
road 1359 70.5 378 3133 03 03 01 01
soybean 49.8 43.6 16.0 18 00 00 00 00
splice 3528 6130 4980 1086 02 03 00 0.0
switzerland 12.1 11.7 21 33 00 00 00 OO0
tictactoe 12.2 12.3 8.2 630 00 00 00 00
usamamys 283 237 13.6 30 01 01 00 00
va 431 41.6 39 88 01 01 00 00

votes 2.0 14 17 05 00 00 00 00

vowel 1142 109.7 676 1085 02 02 01 01
waveform  480.8 3965 358.1 879 09 08 01 01
wine 0.6 0.7 0.9 04 00 00 00 00

Z00 0.1 0.1 0.1 00 00 00 00 00
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Table A.15. CPU (pruning)

See Table A.16 for associated standard deviations

Task DL DM DE IE 11 12 C1 cC2 Mean
audio-no-id 11785  1159.5 575.6 225 17 16 03 02 367.5
balance-scale 31 2.9 2.6 8.3 0.1 01 02 02 22
bc-wisc 15.7 13.0 15.7 12.0 0.3 03 01 01 7.1

breast-cancer 50.4 29.9 453 25.0 0.2 02 01 00 189
bupa 166.1 94.0 133.0 160.3 0.6 05 03 02 69.4
chess-551x39  1154.4 919.8 847.4 89.8 14 13 03 02 376.8
cleveland 116.6 90.5 81.6 87.8 0.6 06 04 03 47.3

crx 505.4 228.8 371.7 298.2 12 12 04 04 175.9

fayyad 02 02 0.2 02 00 00 00 00 0.1
glassnoid 453 308 279 220 04 04 03 03 159

hepatitis 339 259 300 56 02 01 01 01 120
horsedead 994 455 686 130 04 03 02 02 284
horse-sick 7.0 49 5.9 14 01 01 01 01 24

hungarian 50.1 333 46.1 39.3 0.3 03 02 02 21..2
hypothyroid 404.9 365.1 387.3 29.3 4.1 36 13 11 149.6
ionosphere  2281.0  1366.9 893.6 20.5 33 32 14 14 571.4

iris 0.3 0.3 0.3 0.1 0.0 00 00 00 0.1

landsat 88.2 735 70.7 116.8 0.9 08 07 06 44.0
led24 66.6 61.1 63.7 49 0.3 03 01 01 24.6

led7 29 29 28 0.7 0.1 01 00 00 12

lenses 0.0 0.0 0.0 0.0 0.0 00 00 00 0.0
lung-cancer 452 21.9 37.9 12 0.1 01 00 00 133
lymphography 231 19.2 18.4 5.6 0.1 01 00 00 8.3
monks-1 14 14 14 0.2 0.1 01 00 00 0.6
monks-2 19 18 17 47 0.1 01 01 00 13
monks-3 04 04 0.4 0.0 0.0 00 00 00 0.2
mplex-11 24.0 235 230 12.2 0.8 08 02 02 10.6
mplex-6 0.3 0.2 0.3 0.2 0.0 00 00 00 0.1
mushroom 888.2 792.1 690.9 55 5.7 57 04 04 298.6

nettalk 38536 38159 28709 13801 121 117 50 30 14940
pima 897.5 390.9 682.3 1422.6 16 16 09 08 424.8

post-op 34 2.8 33 0.8 0.0 00 00 00 13
primary-tumor 125.3 122.8 100.9 26.0 0.7 05 03 02 47.1
promoter 134.7 100.9 125.7 9.7 0.2 02 00 00 46.4

road 11785 793.4 840.0 13558 45 43 38 35 523.0
soybean 430.7 454.8 365.3 16.4 16 16 04 04 158.9
splice 82817 77449 8184.6 4664 124 116 16 15 30881
switzerland 279 29.8 20.7 14.0 0.2 02 02 01 11.6
tictactoe 481.1 485.5 487.6 724.7 31 27 12 08 2733
usama-mys 193.0 86.4 129.8 14.0 0.8 07 03 03 53.2
va 96.1 99.9 59.4 64.0 0.6 05 03 02 40.1

votes 16.3 13.8 13.7 14 0.2 01 01 01 5.7
vowel 929.4 741.1 541.2 1019.9 5.0 50 34 33 406.0
waveform 32720 17476 21267 395.5 43 42 19 18 944.2
wine 8.1 7.0 7.3 15 0.1 01 01 01 3.0

Z00 2.2 21 2.3 0.1 0.0 00 00 00 0.9

Mean 591.0 479.3 456.6 171.7 15 15 06 05 212.8
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Table A.16. Standard Deviation for CPU (pruning)

See Table A.15 for associated point estimates

Task DL DM DE IE 11 12 C1 cC2
audio-no-id 2404 2015 89.8 46 01 01 00 00
balance-scale 0.3 0.3 0.1 10 00 00 00 00
bec-wisc 22 0.7 24 18 00 00 00 00
breast-cancer 7.0 6.7 6.0 27 00 00 00 OO0
bupa  41.2 24.1 27.3 278 01 01 00 00
chess-551x39 1419 107.0 1436 185 01 01 01 o1
cleveland 259 12.3 6.2 90 01 01 00 00
crx 1754 56.2 215.9 495 01 01 00 00

fayyad 0.0 0.0 0.0 00 00 00 00 O00
glass-no-id 16.5 8.0 44 36 00 00 00 O00
hepatitis 6.3 38 5.7 13 00 00 00 00
horse-dead 453 7.6 21.6 13 00 00 00 00
horse-sick 2.7 05 15 04 00 00 00 00
hungarian 9.4 51 7.9 75 00 00 00 00
hypothyroid 315 37.7 338 95 04 04 02 01
ionosphere 2233 2765 1528 35 01 01 01 01
iris 0.0 0.0 0.0 00 00 00 00 00

landsat 8.2 6.9 48 171 00 00 00 00

led24 2.0 25 21 08 00 00 00 00

led7 0.2 0.2 0.2 01 00 00 00 00

lenses 0.0 0.0 0.0 00 00 00 00 00
lung-cancer 19.0 23 18.1 04 00 00 00 00
lymphography 4.6 2.8 1.9 06 00 00 00 00
monks-1 0.2 0.2 0.1 01 00 00 00 00
monks-2 0.1 0.1 0.2 07 00 00 00 00
monks-3 0.0 0.0 0.0 00 00 00 00 00
mplex-11 12 12 12 37 00 00 00 00
mplex-6 0.0 0.0 0.0 00 00 00 00 00
mushroom 12.4 37.7 219 09 02 02 00 00
nettalk 166.6 186.0 232.3 667 01 01 00 00

pima 3290 1300 3142 1436 03 03 00 00

post-op 0.4 0.3 0.4 01 00 00 00 00
primary-tumor 9.3 10.9 7.0 25 00 00 00 o0
promoter 10.7 12.8 10.0 19 00 00 00 00
road 2115 736 1109 1903 03 03 01 o1
soybean 69.6 53.5 134 18 00 00 00 00
splice 3131 6755 3865 548 02 03 00 00
switzerland 7.9 6.9 1.9 22 00 00 00 OO0
tictactoe 9.7 89 9.0 771 00 00 00 00
usama-mys ~ 39.9 138 31.0 28 01 01 00 00
va 185 436 53 83 01 01 00 00

votes 18 18 2.0 04 00 00 00 00

vowel 1590 1334 672 1403 02 02 01 01
waveform 7220 2486 5814 574 09 09 01 01
wine 0.9 0.6 12 04 00 00 00 00

Z00 0.1 0.2 0.2 00 00 00 00 00
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