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1. Introduction

Decision tree induction offers a highly practical method for generalizing from examples
whose class membership is known. The most common approach to inducing a decision
tree is to partition the labelled examples recursively until a stopping criterion is met. The
partition is defined by selecting a test that has a small set of outcomes, creating a branch for
each possible outcome, passing each example down the corresponding branch, and treating
each block of the partition as a subproblem, for which a subtree is built recursively. A
common stopping criterion for a block of examples is that they all be of the same class.

This non-incremental approach to inducing a decision tree is quite inexpensive because
exactly one tree is generated, without constructing or evaluating explicit alternatives. In
terms of searching the space of all possible decision trees, the induction process consists
of instantiating a specific tree, starting at the root. When one determines that a particular
node shall be a decision node with a specified test, or a leaf with a specified class label, one
implicitly rejects all other trees that would differ at this node. This greedy tree construction
process implements a function that maps a particular set of examples to a particular tree.

There are alternative strategies for searching tree-space, two of which are presented
here. First, for incremental decision tree induction, one can map an existing tree and a
new training example to a new tree. This is different from the non-incremental approach
described above, in which one maps a single batch of examples to a particular tree. Second,
for decision tree induction using a measure of tree quality, hereafter called direct metric
tree induction, one simply maps an existing tree to another. As explained below, each of
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these methods requires the ability to restructure an existing decision tree efficiently. The
next section presents the tree revision mechanism, and the following two sections present
the two decision tree induction algorithms that are based upon it.

2. Tree Revision

Both of the decision tree induction algorithms presented here depend on the ability to
transform one decision tree into another. For simplicity, the discussion is limited in this
section to a tree that is based on a consistent set of labelled examples. For any particular set
of consistent examples, there exists a multitude of decision trees that would classify each
of those examples correctly. For example, if one were to place a test t1 at the root, and then
build the rest of the tree recursively, a particular tree would result. However, if instead one
were to place a different test t2 at the root, and then build the rest of the tree recursively, a
different particular tree would be produced. Each tree would be consistent with the training
examples, but would likely represent a different partition of the example space.

An algorithm that restructures a tree will sometimes need to change the test that is installed
at a decision node. When this occurs, one would like to be able to produce as efficiently
as possible the tree that would result when using the newly installed test. One would like
to effect such a change of the installed test by revising the existing tree, instead of building
a new tree from the original training examples, assuming that this is computationally more
efficient.

2.1. Representation

It is assumed that every possible test at a decision node has exactly two possible outcomes,
which means that the decision tree is always binary. There is no loss of representational
power in this choice because for every non-binary tree there are one or more binary trees
that produce an identical partition of the example space. Symbolic variables with more
than two possible values are mapped automatically to an equivalent set of propositional
variables. For example, if the value set for the variable color were {red, green, blue} then
the possible binary tests would be (color = red), (color = green), and (color = blue). For
numeric variables, the conversion to a binary test is done as it is by C4.5 (Quinlan, 1993),
by finding a cutpoint and incorporating it into a threshold test, for example (x < cutpoint).
The outcome of a test is either that the value of the variable in the example satisfies the test,
or that it does not.

The adoption of only binary tests brings two principal benefits. The first is that there
can be no bias among tests that is due to the tests having a different number of possible
outcomes. This is important because many common methods for selecting a test are biased
in this manner (White & Liu, 1994). Second, choosing a binary split at a decision node
is a conservative approach to partitioning, because a block of examples is divided into at
most two smaller blocks. This is beneficial because each block can be further subdivided,
if necessary, by selection of a new test that is deemed best for that block. Choosing a test
that immediately partitions a set of examples into more than two blocks is more aggressive.
By partitioning more conservatively, one keeps a larger number of examples available in
each block, which is important if additional partitioning will be done in that block.
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Mooney, Shavlik, Towell, and Gove (1989) found that recoding discrete variables as
propositional variables improved classification accuracy for the ID3 decision tree induction
algorithm. Breiman, Friedman, Olshen, and Stone (1984) employ binary tests in the CART
decision tree induction program. Fayyad (1991) observes that for numeric variables, it can
be advantageous to search for multiple cutpoints, rather than a single one. While several
binary tests can represent the same partition that would be produced by a multiway test,
there is no reason to believe that a greedy selection of such binary tests would actually lead
to the same partition. One could search for multiple cutpoints, and then pick just one for a
binary test, leaving other cutpoints to be found for the subtrees.

2.2. Information Maintained at Each Decision Node

To be able to change the test that is installed at a decision node, one needs to maintain
information at that node that provides the basis for evaluating the quality of each possible
test. The idea of maintaining such information for symbolic variables was demonstrated by
Schlimmer and Fisher (1986). For each test that is based on a specific value of a symbolic
variable, e.g. (color = blue), the frequency counts for each outcome-class combination are
kept and updated as necessary. For each possible test (based on a specific cutpoint) of a
numeric variable, it would be too costly to keep a separate set of frequency counts for each
test. Instead, the list of values observed in the examples at that node is maintained in sorted
order by value, with each value tagged by the class of the example in which it was observed.
For each pair of adjacent values, the midpoint of the two values defines a possible cutpoint.
The possible cutpoints and the merit of each one can be computed efficiently during a single
pass over the sorted list of tagged values. When average class entropy is the metric for test
selection, one needs only to consider those cutpoints that separate two values from different
classses (Fayyad & Irani, 1992).

2.3. Incorporating a Training Example

A basic operation in tree revision is to change the set of examples on which the tree is based.
Various forms of incremental tree induction are presented in the next section, each of which
depends on the ability to add an example to the set of examples on which the tree is based.
Adding an example in this way is also known as incorporating the training example into the
tree.

When an example is to be incorporated into an empty tree, the tree is replaced by a leaf
node that indicates the class of the leaf, and the example is saved at the leaf node. Whenever
an example is to be incorporated, the branches of the tree are followed as far as possible
according to the values in the example. If the example has the same class as the leaf, the
example is simply added to the set of examples saved at the leaf node. If the example has
a different class label from the leaf, the algorithm attempts to turn the leaf into a decision
node, picking the best test according to the test-selection metric. The examples saved at
the node that was just converted from a leaf node to a decision node are then incorporated
recursively by sending each one down its proper branch according to the new test. Thus, an
example can be added to a node, and it will work its way down the tree to a leaf, possibly
sprouting branches at leaves as it moves downward through the tree. The procedure that
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Table 1. Procedure add example to tree()

add_example_to_tree(node,example)
if node is NULL

then convert node to an empty leaf

if node is a leaf
then save example at node

if node should be converted to a decision node
then construct information at node

mark node fresh
for each example j saved at node
if test_is_true(node,j)

then add_example_to_tree(node->left,j)
else add_example_to_tree(node->right,j)

else update information at node
mark node stale
if test_is_true(node,example)

then add_example_to_tree(node->left,example)
else add_example_to_tree(node->right,example)

accomplishes this task is named add example to tree, and pseudo-code for it is shown in
Table 1.

2.4. Missing Values

One must be able to handle an example for which the value of one or more input variables
are missing. For tree construction, this is problematic when a test has been chosen for
the decision node that requires knowing the value that is missing in an example. For
classification of an unlabelled example, one must somehow use the tree and its leaves to
infer the label for the unlabelled example.

A missing value is treated as a special value that does not satisfy the test at a decision
node. A value in an example either satisfies the test, or it does not. For example, if the test
is (color = blue), then a value of blue satisfies the test, and neither the value red nor the
value ? (missing) satisfies the test. Similarly, if the test is (age < 46), then a value of 31
satisfies the test, and neither the value 57 nor the value ? (missing) satisfies the test. During
tree construction and classification alike, an example with a missing value for the test at
the decision node will be passed down the false branch. This is similar to treating ? as a
bonafide value, but it is different because no symbolic equality test can test for this value,
nor can any numeric inequality test use ? as its cutpoint.

With binary tests, all the examples with missing values for the test are sent down the false
branch. This concentrates examples missing a value for the particular test into the right
subtree, and keeps the left subtree free of such examples. If further partitioning is required
in the right subtree, the tree induction algorithm is of course free to select a new test, which
can be based on any variable.
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Similarly, the set of examples corresponding to the root has also not changed, though the
designation of the installed test has, which means that the test information maintained at
the root also remains unchanged. Only the sets of examples at the two new children of the
root, now with test (color = blue), have changed. For example, the left subtree formerly
corresponded to the examples used to build subtrees A and B, but now corresponds to the
examples used to build subtreesA and C . This raises the problem of how to update the test
information at each child of the root.

Fortunately, the problem has an inexpensive solution that does not generally require
rebuilding the information from the training examples. One simply recreates the test in-
formation by merging the test information of the two grandchildren. For example, for the
left subtree, one would define the information as the ‘sum’ of the information at nodes A
and C . For a symbolic variable, one adds the corresponding frequency counts, and for a
numeric variable one copies and merges the two sorted tagged lists of values.

There are several other base cases, all dealing with one or more grandchildren being
leaves, or one or both children being leaves. If one of the children of the root is a leaf
node, instead of a decision node, then transposition is accomplished somewhat differently.
For example, consider the case in which the right subtree is a leaf. Then transposition is
accomplished by discarding the root node, reattaching the left subtree in its place, discarding
the right subtree (the leaf), and reincorporating its examples at the root. For the base case
in which both subtrees are leaves, one discards both subtrees, installs the desired test at the
root, and then reincorporates the examples from both leaves at the root. Reincorporating
an example from a discarded leaf does constitute reprocessing the example, but this occurs
only at the fringe of the tree.

All of these base cases revise the tree in such a way that the tree has no node that is
unnecessarily expanded. Every node that should be a leaf is a leaf. There are a few other
base cases that arise during the transposition process when a subtree may not exist because
no examples had that outcome for the installed test, but these represent temporary states
that are handled in a straightforward manner.

The base cases handle any tree in which a child of the root is either a leaf or is a decision
node whose test is the one that is to be installed at the root. When either child is a decision
node that has an installed test that is not the one to be installed at the root, then tree
transposition is applied recursively to that child so that it has the desired installed test. This
always produces one of the base cases, which is then handled directly.

2.6. When to Apply Recursive Transposition

As described above, the recursive tree transposition operator provides the ability to restruc-
ture a given tree into another that has the designated test installed at the root. This is quite
useful, but it is not enough by itself for producing the best tree because it has only caused
one decision node to have the desired test installed. During the recursive transposition, it
may be that the subtrees have been transposed as a by-product of bringing the desired test
to the root. The installed test of each decision node in the subtrees may be there as the
result of transposition rather than as the result of a deliberate choice. Again consider the
transposed tree in Figure 1. Each of the two subtrees has test (color = blue) installed, but
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Table 2. Procedure ensure best test()

ensure_best_test(node)
if node is a decision node and node is stale

then find best_test for this node
if best_test is not already installed

then transpose_tree(node,best_test)
if node is a decision node

then mark node fresh
ensure_best_test(node->left)
ensure_best_test(node->right)

that is only because a transposition was performed from above, not because (color = blue)
was identified as the best choice and installed intentionally.

To ensure that every decision node has the desired test installed, according to the attribute
selection metric, one needs to visit the subtrees recursively. At each decision node that
requires that a different test be installed, the algorithm transposes the tree to install the best
test at the node. It could become costly to check every decision node of the subtrees after a
transposition. Often, a subtree is not touched during a transposition. To this end, a marker
is maintained in each decision node that indicates whether the choice of the installed test is
stale. Any operation that changes the set of examples on which a subtree is based marks the
test as stale. This can happen either when incorporating an example or when transposing a
tree. Changing the set of examples on which a subtree is based changes the test information,
invalidating the basis on which the installed test was selected.

Whenever a desired test has been identified and, if necessary, installed, one removes the
test’s stale mark. To ensure that every decision node has the desired test installed, one
proceeds recursively in the following manner: at the root, identify the desired test and
install it via recursive transposition; for each subtree, if it is marked stale, then recursively
identify its desired test and install it. The procedure that accomplishes this task is named
ensure best test, and pseudo-code for it is shown in Table 2.

3. Incremental Tree Induction

This section presents an incremental tree induction algorithm ITI (incremental tree inducer)
that makes extensive use of the tree transformation mechanism described in the previous
section. An incremental algorithm makes sense for an application that uses an embedded
classifier that is based on a stream of observed examples. Applications currently exist that
accumulate examples by day, and rebuild the embedded decision tree by night. Employing
an incremental method would allow online tree updating.

The algorithm described here was motivated by several design goals:

1. The average incremental cost of updating the tree should be much lower than the average
cost of building a new decision tree from scratch. However, it is not necessary that the
sum of the incremental costs be lower because we care only about the cost of being
brought up to date at a particular point in time.
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Table 3. Procedure incremental update()

incremental_update(node,example)
add_example_to_tree(node,example)
ensure_best_test(node)

2. To the extent possible, the update cost should be independent of the number of training
examples on which the tree is based.

3. The tree that is produced by the incremental algorithm should depend only on the set
of examples that has been incorporated into the tree, without regard to the sequence in
which those examples were presented.

4. The algorithm should not be biased toward selection of a test because the test has a
larger set of possible outcomes than that of another test.

Additional well-accepted design goals are that the algorithm should accept examples de-
scribed by any mix of symbolic and numeric variables (attributes), handle multiple classes,
handle inconsistent training examples, handle examples with missing values, and avoid
fitting noise in the examples.

3.1. Algorithm ITI

The basic ITI incremental decision tree induction algorithm is based on the tree revision
mechanism described in Section 2, and thus can be stated simply. When given a training
example that is to be incorporated into the tree, pass it down the proper branches until a leaf
is reached. This includes updating the test information kept at each node through which
it passes, and marking each such node stale. It also includes the process of incorporating
an example at a leaf, which may cause additional growth of the tree below that leaf. After
the example has been incorporated, visit each stale node recursively, as described above,
ensuring that the desired test is installed at that node. The procedure that accomplishes this
task is named incremental update, and pseudo-code for it is shown in Table 3.

As usual, a test is considered best if it has the most favorablevalue of the attribute-selection
metric. For the order of the training examples to remain immaterial, a tie for the best test
must be broken deterministically. Recall that a test is constructed from a variable and its
observed value set. For ITI, such a tie is resolved in favor of the lexically lower variable
name. For tests based on the same variable, a tie is resolved in favor of the lexically lower
symbolic value or the numerically lower cutpoint, depending on the type of the variable.
This tie-breaking mechanism ensures that there is a unique tree for any given set of training
examples.

3.2. Inconsistent Training Examples

Two examples are inconsistent if they are described by the same variable values but have
different class labels. When inconsistent examples occur, they will be directed to the same
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leaf. If one were to split every impure leaf, this would cause an infinite recursion. However,
since converting the leaf to a decision node would provide no information, and this is easily
detected by the gain-ratio metric, ITI keeps the node as a leaf and simply adds the example
to the set of examples retained at the leaf, making an impure leaf. This causes no trouble
for classification because the class name that is returned for the unlabelled example is that
of the majority class of the examples at that leaf. A tie is broken in favor of the lexically
lower class name.

3.3. Virtual Pruning

An important component of decision tree induction is to avoid overfitting the training data,
especially when the data are known to contain attribute or classification error (noise). A
variety of methods have come into existence, and the question is which of them is best suited
to the incremental induction problem. All of the approaches that maintain a separate pruning
set are oxymoronic for incremental tree induction. For ITI, a suitable approach is based on
the minimum description length principle (Rissanen, 1978, Quinlan & Rivest, 1989).

To decide whether to prune a subtree to a leaf, one considers whether the subtree could
be represented more compactly by a leaf with a default class and a list of exceptions, where
each exception is an index into the list of examples and an indication of its non-default class
label. For any subtree that one would want to be pruned (replaced with a leaf), one marks its
root decision node as being pruned, but does not actually discard anything. For incremental
induction, one preserves all information so that it is possible to reconsider whether a subtree
should or should not be virtually pruned. To unprune it, one simply removes the mark that
it is considered to be pruned. For all practical purposes, such as classifying examples with
the tree, or inspecting the tree by printing it, a virtually pruned tree behaves and appears as
though it had been truly pruned.

The virtual pruning process is accomplished by a post-order traversal of the decision tree
that sets a marker in each decision node to indicate whether that decision node is to be
considered pruned to a leaf. The previous status of whether the node was marked as pruned
is immaterial. The procedure winds its way down to the leaves via the post-order traversal,
and sets each subtree as pruned (or not) based on the minumum description length (MDL).

For each leaf, the number of bits needed to encode the leaf is measured as 1 + log(c) +
x(log(i)+log(c−1)), where c is the number of classes observed at the leaf, x is the number
of examples at the leaf that are not of the default class, and i is the total number of examples
at the leaf. One bit is needed to indicate whether the node is a leaf, log(c) bits are needed to
indicate the default class, and for each of the x exceptions, one needs log(i) bits to specify
the exception, and log(c− 1) bits to specify its non-default class. This total number of bits
to encode the leaf is stored in the leaf node.

For each decision node, the number of bits needed to encode the subtree is measured as
1 + log(t) + l + r, where t is the number of possible tests at the node, l is the MDL of the
left subtree (already set), and r is the MDL of the right subtree (already set). One bit is
needed to indicate whether the node is a decision node, log(t) bits are needed to identify
the test, and l and r bits are needed to encode the left and right subtrees respectively. This
total number of bits to encode the decision node is stored in the decision node.
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Table 4. Procedure error correction train()

error_correction_train(node,pool)
pool_perfect := false
while not pool_perfect

pool_perfect := true
for each example in pool
if classify(node,strip_label(example)) != label(example)

then pool_perfect := false
remove example from pool
add_example_to_tree(node,example)
ensure_best_test(node)

To decide whether to mark a decision node as pruned, the MDL for the node is computed
for the case in which the node is left as a decision node (not pruned), and for the case in
which it would be pruned to a leaf. If the virtual leaf would require fewer bits to encode,
then the node is marked as pruned, and the MDL of the virtual leaf is saved at the node.
Otherwise, the node is marked as not pruned, and the MDL of the subtree is saved instead.

3.4. Variants of ITI

A variety of training modes are possible, four of which are described here. Upon presen-
tation of a training example, one can decide whether or not to incorporate that training
example into the tree. Any policy for making this decision constitutes one element of a
training mode. When one does elect to incorporate a new training example into the tree,
one can then decide whether or not to ensure immediately afterward that the best test is
installed at each decision node. Because the process of adding an example to a tree can be
accomplished independently from revising the tree, it is possible to accept several examples
at a time, add each one to the tree without revising (except possibly for growing new leaves),
and then revise the tree just once by visiting the decision nodes to ensure that each has the
best test installed.

In incremental mode, each training example that is presented is immediately incorporated
into the tree, and the tree is then immediately restructured as necessary so that every decision
node has its most desired test installed. This mode always produces the same tree that one
would obtain with the batch version that is described below.

For error-correction mode, one incorporates a training example only if the existing tree
would misclassify it. Otherwise the training example is not incorporated and therefore has no
effect on the tree. This mode of training is akin to the error correction procedures of statistical
pattern recognition, and it was also suggested by Schlimmer and Fisher (1986). There are
two variations of this mode. First, for a stream of training examples, one simply ignores
examples for which the tree is currently correct. Second, for a fixed pool of examples that
have not been incorporated into the tree, one cycles through the pool repeatedly, removing
each incorrectly classified example from the pool and incorporating it into the decision
tree, until the tree does not misclassify any example still remaining in the pool. Although
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examples are examined one at a time, this training regimen departs somewhat from the
notion of a linear stream of training examples.

For a pool of examples, ITI will always build a tree and halt. This is true even when the
examples are noisy, because ITI continues cycling through the pool until every example
remaining in the pool is classified correctly. When an example in the pool is misclassified,
it is removed from the pool and added to the tree. Thus, even though the tree may not
become a perfect classifier on all the training examples that it has incorporated (when there
is noise or inconsistency or pruning is turned on), it does continue to select and remove
currently misclassified training examples from the pool until no misclassified examples
remain in the pool. This occurs either when the current tree classifies all training examples
still in the pool correctly or when the pool becomes empty because all examples have been
incorporated in the tree. The procedure that accomplishes training from a pool of examples
is named error correction train, and pseudo-code for it is shown in Table 4.

In lazy mode, one delays ensuring that the tree is up to date until the tree is needed for
some purpose, such as to classify an unlabelled example. Most of the effort in ITI goes to
ensuring, after each training example, that the tree has the best test installed at each decision
node. However, one could avoid this work by not doing it until the tree is needed. Instead,
one can add each example to the tree without revising the tree, beyond the simple operations
that occur when incorporating an example. Then, whenever the tree is needed, a single call
to the procedure for ensuring that the best test is installed at each node brings the tree to its
proper form. For all practical purposes, the tree is being updated in incremental mode, but
presumably with less overall computation.

A batch mode exists for the case in which one has an initial batch of examples and no
current tree, and wants to build a tree as quickly as possible. Of course this mode is not
incremental in any sense, but it provides a method of building an initial tree from a set of
examples that is more efficient than incremental mode. The algorithm constructs all the data
structures that the incremental mode would, but in the traditional top-down manner. This
mode is the fastest way to build an ITI tree from scratch, and makes sense for someone who
wants to build a tree in the standard one-shot way. The data structures are created as they
would be for incremental mode so that subsequent operations that might require revising
the tree remain applicable. If one were to give up the ability to do subsequent revisions,
one could be even more efficient by not building the data structures that go along with the
tree revision capability.

4. Direct Metric Tree Induction

This section presents a direct metric tree induction algorithm DMTI (direct metric tree
inducer) that relies on the tree restructuring mechanism described in Section 2. DMTI is not
an incremental algorithm, but is instead a greedy top-down tree inducer. The distinguishing
aspect of DMTI is that for each test that it could install at a node, it actually installs it, and
then uses a metric that is a function of the resulting tree to assess the desirability of that
test. This differs from the usual approach of picking a test based on a heuristic function (an
indirect metric) of various frequency counts tallied from the examples.
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Table 5. Procedure dmti()

dmti(node)
if node is a decision node

then for each eligible_test at node
transpose_tree(node,eligibile_test)
note direct metric value for the resulting tree

transpose_tree(node,best_eligible_test)
dmti(node->left)
dmti(node->right)

4.1. Algorithm DMTI

The DMTI algorithm is a variation of the classical top-down approach, because one finds the
best test to install at the root, installs it, and then solves the subproblems recursively. There
are three important differences. First, one starts the process with a decision tree built by ITI,
instead of a set of examples. Second, a test is assessed at a node by installing it, including
automatic revision of the subtrees using the indirect metric, and then by evaluating the
direct metric on the resulting tree. Thus, for n permissible tests at a node, DMTI evaluates
n different trees in order to pick the best test to install at that node. Third, it would typically
be quite expensive to consider all possible tests at a node, so the set of permissible tests
is limited to the best test for each input variable according to the indirect metric. For a
symbolic variable, the best test is the best equality test variable, and for a numeric variable
it is the best threshold test. So, for DMTI, the set of permissible tests at a node is limited
in size to the number of input variables. Pseudo-code for the DMTI procedure is shown in
Table 5.

4.2. Direct Metrics

A direct metric defines whether one test is preferred to another based on a comparison of the
trees that would result. This raises the familiar question of how to decide whether one tree
should be preferred to another. With no additional information, there can be no universally
correct answer to this question, but in practice it is usually possible to make a good choice.
For example, if one has a strong prior belief that the target concept can be modelled best
by a decision tree that is a simple function of the input variables, then one would prefer a
smaller consistent tree to a larger consistent tree. Such a preference accompanies the belief
that a designer of a set of training examples will try to choose input variables that are as
predictive of the class label as possible. Other prior knowledge can be used to determine
a direct metric that will be appropriate for a given tree induction task. Consider four such
possible metrics.

The direct metric expected-number-of-tests returns the number of tests that one would
expect to evaluate in order to classify an example, assuming that testing examples are drawn
according to the same probability distribution as the training examples. The expected
number of tests can be computed by counting the total number of tests evaluated while
classifying all the training examples, and dividing by the total number of training examples.
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It is possible to calculate the value of this metric during a single traversal of the tree, without
actually classifying any examples. All the examples that have been incorporated into the
tree are saved at a leaf of the tree, and all node heights are known during the traversal.

The metric leaf-count returns the number of leaf nodes in the tree. This count can be
computed during a single traversal of the tree. Though the number of leaves is related to
the number of tests, it is not directly related to the expected number of tests. For example,
it is possible for a tree t1 to have a higher leaf count and a lower expected number of tests
than another tree t2.

The minimum-description-length metric returns the number of bits needed to encode the
tree, using the encoding scheme described in Section 3.3. Whether or not one has pruning
turned on, one can apply DMTI to search for a test that produces a tree with the locally
smallest attainable MDL.

The metric expected-classification-cost is identical to expected-number-of-tests except
that each test has a specified evaluation cost, instead of the implied uniform evaluation cost.
In some applications, such as diagnosis, some tests are much more expensive than others,
and the cost of producing the answer is an important factor (Tan & Schlimmer, 1990).

Finally, the direct metric expected-misclassification-cost measures the penalty that one
would pay when misclassifying an example, assuming that testing examples are drawn
according to the same probability distribution as training examples. Often, tree induc-
tion algorithms embody the assumption that all classification errors incur the same cost
(Pazzani, Merz, Murphy, Ali, Hume & Brunk, 1994). To be more comprehensive, one can
include an explicit cost matrix that specifies the cost of labelling an example with class X
when it should have been class Y. It is possible to calculate the value of this metric in a
single traversal of the tree.

5. Comparison of Performance Characteristics

When might one want to use ITI or DMTI? To answer such a question, one first needs to
know how good a classifier one can expect, and how much it may cost to produce it. To
this end, consider a comparison of several algorithms along several criteria: classification
accuracy, tree size as measured by number of leaves, classification cost as measured by the
number of tests one can expect to evaluate when classifying an example, and the CPU cost
to build the tree. Which algorithms are better than which?

5.1. Experimental Design

The algorithms to be compared are three variants of ITI, three variants of DMTI, and two
variants of Quinlan’s C4.5. All eight algorithms are applied to forty-six classification tasks
in a perfectly balanced and perfectly crossed manner. For each task-algorithm combination,
the variables mentioned above are measured by a ten-fold stratified cross validation. The
purpose of the cross validation is to obtain a reasonably unbiased point estimate, not to
obtain ten separate measurements. The same splits of the data were used for all algorithms.

To be able to draw conclusions about which algorithms are significantly different from the
others, one must choose a significance test that is designed to handle multiple comparisons.
One cannot simply apply a test for each comparison, because the chance of a false difference
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rises with each test, much like repeatedly rolling a twenty-sided die that has one face marked
‘significant’. A variety of multiple comparison procedures have been devised, and Duncan’s
Multiple Range Test (Walpole, 1974) is used here.

To use the Duncan Multiple Range Test (DMRT), one first isolates the variance that cannot
be attributed to any treatment, which is called the error variance. To do this, one proceeds
with the initial stages of an analysis of variance. Here, a two-way analysis is used to factor
out variance that can be attributed to choice of task or choice of algorithm. Then, instead
of proceeding with an F-test, as one would for an analysis of variance, one proceeds with
the multiple range test, which involves comparing the means of the algorithms. The term
‘algorithm mean’ indicates the mean for the algorithm across all the tasks.

The least significant range for the p means to be compared is the product of the least
significant studentized range and the square root of the quotient of the error variance and
the number of tasks. The least significant studentized range can be determined from a table
that is indexed by the error degrees of freedom and the number p of means being compared.
If the range of the means (highest - lowest) being compared is greater than the corresponding
least significant range, then the means are presumed to be significantly different. The table
of least significant studentized ranges was computed by Duncan to compenstate for the fact
that multiple comparisons are being made.

One initially sorts the algorithm means, and then tests each of the possible ranges of
means. If a group of adjacent means is not significantly different, then that is depicted
by drawing a line segment under that group, and none of its subgroups are tested further.
Any two means that are underscored by any common line are not significantly different,
and any two means that are not underscored by a common line are significantly different
(Steel & Torrie, 1960).

Finally, to reduce experimental error, the eight algorithm variants are run as a group with
pruning turned off, and then again as a separate group with pruning turned on. There is no
discussion here of the relative merits of pruning versus not pruning.

5.2. Algorithms

For ease of reference, each of the eight algorithms is given a simple name here. Variant I1 is
ITI in batch mode, with a leaf being split when there is at least one example of the second-
most frequently occuring (second-majority) class. Variant I2 is ITI in batch mode, with
a leaf being split only when there are at least two examples of the second-majority class.
Batch mode is used here because it runs more quickly than incremental mode, and builds
the same tree. The computational characteristics of incremental mode are discussed below
in Section 6, and are not of interest here. Variant IE is like I1, but runs in error-correction
mode instead of batch mode.

Variant C2 is C4.5 with its default settings. Like the I2 variant, C2 splits a leaf when there
are at least two examples of the second-majority cass. The C1 variant uses the -m1 option
of C4.5 to make it correspond to the I1 variant of ITI. The C4.5 algorithm uses non-binary
tests for discrete variables that have a value set larger than two. One could recode the data
in a preprocessing step, so that C4.5 would be forced to produce binary tests, but that is not
what C4.5 does, so no recoding has been done here.
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The remaining three algorithms are variants of DMTI, each using a different direct metric.
The DM variant uses minimum description length, the DE variant uses expected number of
tests for classification, and the DL variant uses the number of leaves.

5.3. Tasks

Thirty-nine of the tasks were taken from the UCI (Murphy & Aha, 1994) repository, and
the remaining seven were acquired or produced elsewhere. From all the available UCI
tasks, one was generally taken from UCI and included here if it was not extraordinarily
large and if there was a clearly defined class label. The forty-six tasks differ in many ways,
including number and type of attributes, number of classes, noise, missing values, and
default accuracy. The goal was to pick as many tasks as was practical.

The heart disease tasks (cleveland, hungarian, switzerland, and va) are each five-
class problems, whereas in many reports one sees four of the classes grouped, resulting
in a two-class problem. The fayyad and usama-mys tasks come from Usama Fayyad.
The horse-dead and horse-sick tasks are different from the UCI horse-cholic task. The
mplex-6 and mplex-11 are six and eleven bit versions of the multiplexor problem. The
tictactoe data is different from the UCI task of similar name. Here, all positions that can
occur during play appear as examples, labelled with ‘draw’, or the number of ply until a
win will be achieved. All positions are represented from the point of view of the player
on-move, coded as ‘x’.

For any task in which a training set and testing set were given, those sets were merged
into a single set of examples. In this way, the stratified cross validation could be applied
to all tasks. The tasks for which this was done were audio-no-id, monks-2, soybean,
splice, and vowel.

5.4. Accuracy

For average accuracy of the algorithms when pruning is turned off, the DMRT

DM DE IE DL I1 I2 C1 C2
77.98 77.86 77.73 77.70 76.87 76.64 76.01 75.68

indicates no significant differences. When pruning is turned on, the DMRT

DM IE C1 I2 I1 C2 DL DE
79.48 78.14 77.92 77.53 77.53 77.34 76.89 76.74

indicates that DM is significantly more accurate on average than each of I2, I1, C2, DL,
and DE. There are no other significant differences.

Table A.1 shows the cross-validated accuracy for each of the task-algorithm combinations,
with pruning turned off. The corresponding standard deviations are shown separately in
Table A.2 because they do not fit into one table. These deviations do not play a role in the
analyses, but are included in order to help interpret the point estimates. Similarly, Table
A.3 shows the cross-validated accuracy for each of the task-algorithm combinations when
pruning is turned on, with the standard deviations shown separately in Table A.4.
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5.5. Leaves

Consider the average tree size, as measured by the number of leaves. It is important to
use the number of leaves because this indicates the number of blocks in the partition of the
example space. This number is comparable for the different algorithms, whether or not they
use a binary test at a decision node. For average tree size of the algorithms when pruning
is turned off, the DMRT

C1 C2 I1 IE DE DL DM I2
371.18 189.47 108.04 101.49 94.33 84.52 84.43 69.09

indicates that C1 produces significantly larger trees on average than each of I1, IE, DE,
DL, DM, and I2. When pruning is turned on, the DMRT

C1 C2 I1 I2 IE DE DL DM
155.12 91.18 43.91 42.77 40.84 36.14 34.32 33.90

indicates the same set of significant differences.
Table A.5 shows the leaf counts for each task-algorithm combination when pruning is

turned off, with the corresponding deviations appearing in Table A.6. Inspection of the
data shows considerable variability with respect to which algorithms produced the smallest
or largest trees. The means for C1 and C2 seem to be pulled up by just a few tasks. For
example, C1 and C2 produce large trees for the nettalk task. Although there are only
seven attributes, each has a very large value set, and neither the C1 algorithm nor the C2
algorithm are restricted to binary tests. For this task, any test will have a large number of
branches. In contrast, the binary tests of ITI/DMTI cause a more conservative two-way
split. Table A.7 shows the leaf counts for each task-algorithm combination when pruning
is turned on, with the associated deviations appearing in Table A.8.

5.6. Expected Tests

The expected number of tests provides a measure of classification efficiency. The C1 and
C2 variants were omitted because this measure is not readily available. One would expect
DE to have the lowest mean since it attempts to minimize this very measure. For the average
number of expected tests when pruning is turned off, the DMRT

IE I1 I2 DL DM DE
10.45 8.98 8.45 7.13 6.66 5.54

indicates that I1 and I2 are not significantly different, nor are DL and DM. All other differ-
ences are significant. When pruning is turned on, the DMRT

IE I1 I2 DL DM DE
7.76 6.58 6.57 5.40 5.03 4.46
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indicates a similar story, with the addition that DM and DE are not significantly different.
More generally, the DMTI variants produce more efficient trees than the ITI variants.

Table A.9 shows the expected number of tests for each task-algorithm combination when
pruning is turned off, and Table A.10 shows the corresponding deviations. The means and
deviations when pruning is turned on are shown in Tables A.11 and A.12.

5.7. CPU Cost

Finally, consider the question of how the CPU requirements compare (on a DEC 3000 with
96M main memory). The DMRT

DL DM DE IE I1 I2 C1 C2
514.12 488.82 394.23 152.17 1.52 1.44 0.59 0.50

indicates that each of DL and DM is significantly more costly than each of IE, I1, I2, C1,
and C2. It also indicates that DE is significantly more costly than each of I1, I2, C1, and
C2. There are no other significant differences. The DMRT

DL DM DE IE I1 I2 C1 C2
591.00 479.32 456.64 171.74 1.54 1.46 0.59 0.50

shows the same set of significant differences when pruning is turned on. The ITI and C4.5
variants are not significantly different in CPU cost. The I1 and I2 CPU requirements are
within one second of those of C1 and C2 on average.

The DMTI variants are much more expensive, but perhaps worth the cost for some
applications. For example, if one wants a decision tree that requires few tests on average for
classification, then DE produces a significant improvement, at the cost of extra computation.
One might argue that an algorithm such as I1 that builds a classifier in an average of 1.5
seconds is not working hard enough to find a tree that provides efficient classification.

Table A.13 shows the values for each task-algorithm combination when pruning is turned
off, with the corresponding deviations shown in Table A.14. Table A.15 shows the costs
for each task-algorithm combination when pruning is turned on, with the corresponding
deviations shown in Table A.16.

6. Incremental Update Cost

Might one want to use the incremental ITI algorithm within a serial learning system or
knowledge maintenance system? The primary issue is whether online learning via incre-
mental tree revision is sufficiently time efficient. Under what conditions, if any, would one
prefer to build a new tree from scratch?

In a serial task, in which each new training example is received sequentially, the problem
to be solved by the algorithm is to obtain the new tree based on the newly augmented set
of training examples. In the batch case, one takes the complete set of examples that has
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accumulated, and builds a new tree from them. In the incremental case, one takes the current
decision tree and the new training example, and produces the new decision tree from them.
What is the cost of obtaining the tree at time t, where t is the number of training examples
that have been observed? For the incremental case, one has the tree at time t − 1 and the
new example observed at time t. The costs accrued prior to time t are not a concern because
they have already been incurred and paid. Of interest is the cost of producing the tree at
time t.

6.1. Cost Factors

There are five important factors that affect the cost of an incremental update of the existing
decision tree. First is the cost of adding the information from the example to the data
structures maintained at a decision node. For each symbolic variable, one increments the
counter for the value-class combination present in the example. As the number of different
observed values (the value set) grows, there is additional overhead in locating the counter
in the data structure. For each numeric variable, one inserts the value found in the example
(tagged with the class in the example) into a sorted list of values. For symbolic and numeric
variables alike, the cost is proportional to the log of the size of the value set. For symbolic
variables, the value set of a variable typically reaches its final size early in the training.

The second cost factor is the number of decision nodes that are updated when an example
is incorporated into the tree. The tree is relatively small early in the training, and will tend
to do most of its growing early, as the utility of observing new examples diminishes. It is
a matter of seeing a large enough number of training examples to be representative of the
underlying example distribution. As enough examples come to have been seen, the size of
the tree tends to stabilize.

The third factor is the frequency of changing the installed test at a decision node somewhere
in the tree. Early in the training, the example distribution is not well represented, meaning
that a new example can by itself cause a noticeable change in the distribution and the
conditional probabilities that are computed within the test metric computation. Later in
training, one example is unlikely to have much effect. Indeed, most examples do not lead
to a change of the installed test. This effect of increased stability occurs earlier at higher
decision nodes in the tree because these nodes are based on more examples. As the examples
are partitioned, the decision nodes lower in the tree are based on fewer examples, and tend
to lag in stability.

The fourth factor is the cost of restructuring a tree or subtree. This cost is attributable
mostly to tree transpositions. What affects the cost of tree transposition? There is the matter
of how many recursive calls are needed to set up a base case at the node in hand, and how
many follow-up recursive calls are needed to ensure that the best test is installed at each of
the decision nodes below. As mentioned above, stability of the best test at a node tends to be
greater at nodes closer to the root of the tree. From this, one can surmise that transposition
activity is generally lowest at the root, and generally highest at the fringe. The closer to the
fringe that one transposes, the cheaper it is.

For a base case tree transposition of the kind shown in Figure 1, adjusting the pointers
to reattach the subtrees has negligible cost. The bulk of the expense is in recreating the
counting information that is maintained in each of the two decision nodes below the root.
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at a decision node. It does however bring some inefficiency when merging two AVL-trees,
for example two sorted lists of tagged values, making the costO(n log n) instead of O(n).

9. Related Work

The incremental tree induction algorithm ID5R (Utgoff, 1989) demonstrated the basic pro-
cess of tree revision. It did not handle numeric variables, multiclass tasks, or missing values,
and did not include any prepruning or postpruning method for avoiding overfitting. The
first version of ITI (Utgoff, 1994) had an awkward manner for handling numeric variables
and for handling missing values, which have been replaced here. Schlimmer and Fisher’s
(1986) ID4 demonstrated incremental tree induction through test revision and discarding
of subtrees.

Crawford (1989) has constructed an incremental version of the CART algorithm
(Breiman, Friedman, Olshen & Stone, 1984). When a new example is received, if a new
test would be picked at a decision node, a new subtree with the new test is constructed
by building the new subtree from scratch from the corresponding subset of the training
examples. Crawford notes that this approach is expensive, and proposes an alternative that
invokes tree rebuilding less often. Van de Velde (1990) designed IDL, based on ID4 and
ID5, with the goal of finding trees smaller than those that result from the standard top-down
induction methods. Lovell and Bradley (1996) present the MSC algorithm, which refines
a decision tree incrementally, with limited backtracking, making it dependent on the order
of the presented training examples.

Fisher (1996) presents a method for optimizing a hierarchical clustering built initially by
COBWEB. It implements a hill-climbing search through the space of clusterings, attempting
to find an improved clustering according to specified metric, similar in spirit to DMTI.
Cockett and Herrera (1990) present an algebraic approach to finding irreducible trees.
Kalles and Morris (1996) have devised a scheme to reduce the number of times the test
selection metric must be evaluated.

10. Conclusions

This article has presented a set of fundamental tree revision operators, and shown how two
decision tree induction algorithms can be built from them. The ITI algorithm performs
incremental decision tree induction on symbolic or numeric variables, and handles noise
and missing values. The algorithm also includes a virtual pruning mechanism that can
operate in conjunction with a tree induction algorithm. ITI is suitable for embedding in an
application that receives or creates new examples online, such as knowledge maintenance
systems. For tasks with no numeric variables, the cost of tree revision is largely independent
of the number of examples that have been incorporated. For tasks with numeric variables
that have large value sets, the cost of tree revision can grow noticeably with the number of
examples.

The non-incremental DMTI algorithm uses an attribute selection metric that is a function
of a tree instead of a function of counting information kept at a node. This makes it possible
to choose from among a set of trees based on a direct measure of tree quality. It also
lends itself to studies of how well the indirect metrics do at identifying tests that lead to
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induction of the most preferred trees. DMTI is suitable for producing trees that are intended
to minimize a specified objective function. Due to DMTI’s greater computational expense
and associated greater minimization ability, it is suitable when one is willing to spend extra
time to produce a superior tree.

Acknowledgments

This material is based upon work supported by the National Science Foundation under
Grant No. IRI-9222766, by a grant from the Digital Equipment Corporation, and by a grant
to Ross Quinlan from the Australian Research Council. Ross Quinlan made many excellent
suggestions during the first author’s Summer 1993 stay at the University of Sydney. Doina
Precup, David Skalak, Gunnar Blix, and David Jensen provided very helpful comments.
Doug Fisher suggested many improvements that have greatly improved the presentation.
The idea of implementing an efficient leave-one-out cross validation was suggested inde-
pendently by each of Ron Kohavi and Mike Pazzani.

Many of the UCI tasks originate from sources outside the machine learning community.
The audiology data file originates from Professor Jergen at Baylor College of Medicine.
The breast-cancer data file, lymphography data file, and primary-tumor data file come
from M. Zwitter and M. Soklic of the University Medical Centre at the Institute of Oncology
in Ljubljana. The bupa data file was provided by Richard S. Forsyth of BUPA Medical
Research Ltd. The cleveland and va data files were created by Robert Detrano of the
Long Beach and Cleveland Clinic Foundation. The hungarian data file was compiled by
Andras Janosi at the Hungarian Institute of Cardiology in Budapest. The switzerland data
was produced by William Steinbrunn of the University Hospital in Zurich, and Matthias
Pfisterer of the University Hospital in Basel. The remaining UCI data files not mentioned
here by name were also provided to UCI by generous donors.

Appendix

The tables here show the point estimates and standard deviations for each of the mea-
surements for each of the algorithm-task combinations discussed in Section 5. The point
estimates and deviations are presented as a pair of tables because a single table with all this
information would be too large. For each of the variables measured, there is a pair of tables
for the case in which pruning is turned off, and another pair of tables for when pruning is
turned on. See Section 5.2 for an explanation of the algorithm names.
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Table A.1. Accuracy (no pruning)

See Table A.2 for associated standard deviations
Task DM DE IE DL I1 I2 C1 C2 Mean

audio-no-id 81.7 76.1 81.7 83.0 80.4 80.4 83.5 75.7 80.3
balance-scale 76.8 77.8 77.0 75.4 76.5 78.1 76.0 78.3 77.0

bc-wisc 95.6 94.4 94.4 94.9 93.6 93.6 93.3 93.7 94.2
breast-cancer 66.6 72.8 66.2 65.9 64.5 63.8 63.8 66.2 66.2

bupa 64.6 65.7 64.0 65.4 61.1 62.0 61.4 64.6 63.6
chess-551x39 92.1 86.8 94.5 93.4 92.3 92.3 91.6 92.5 91.9

cleveland 49.7 50.3 46.8 49.4 46.8 48.4 46.1 46.8 48.0
crx 80.3 79.6 79.9 79.7 80.1 81.6 80.3 80.9 80.3

fayyad 89.1 84.5 87.3 82.7 88.2 86.4 87.3 86.4 86.5
glass-no-id 68.6 70.0 65.9 67.7 66.4 66.8 66.4 67.7 67.4

hepatitis 80.0 71.3 83.1 80.6 78.1 81.9 76.9 76.9 78.6
horse-dead 54.5 63.6 58.2 62.7 64.5 65.5 64.5 61.8 61.9
horse-sick 95.6 95.6 96.9 96.9 96.9 96.3 95.0 95.6 96.1
hungarian 78.0 75.3 73.7 74.3 75.0 78.0 73.7 75.7 75.5

hypothyroid 98.7 98.2 99.0 98.9 98.6 98.9 99.0 99.1 98.8
ionosphere 89.4 87.8 93.6 89.2 93.9 93.3 91.1 91.4 91.2

iris 95.6 95.0 93.8 95.6 94.4 95.0 93.1 94.4 94.6
landsat 81.1 80.0 80.5 80.5 81.3 82.4 81.6 82.1 81.2

led24 52.9 52.9 55.2 51.9 52.4 61.4 58.1 61.0 55.7
led7 65.7 68.6 67.1 67.1 67.6 65.7 68.6 68.1 67.3

lenses 63.3 73.3 70.0 63.3 70.0 73.3 70.0 73.3 69.6
lung-cancer 50.0 42.5 37.5 35.0 42.5 40.0 47.5 37.5 41.6

lymphography 76.0 80.0 80.0 78.7 76.0 70.7 73.3 77.3 76.5
monks-1 100.0 100.0 100.0 100.0 97.0 91.6 96.1 95.2 97.5
monks-2 99.5 100.0 99.5 100.0 96.8 93.9 42.7 44.5 84.6
monks-3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

mplex-11 100.0 100.0 100.0 100.0 100.0 99.9 100.0 99.8 100.0
mplex-6 100.0 100.0 90.0 100.0 84.3 65.7 87.1 57.1 85.5

mushroom 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
nettalk 84.0 82.4 83.8 84.9 83.8 83.4 82.7 82.1 83.4

pima 70.0 69.0 71.0 70.6 69.9 70.0 69.7 69.6 70.0
post-op 66.0 62.0 64.0 60.0 57.0 54.0 60.0 63.0 60.8

primary-tumor 34.1 35.9 36.8 34.4 36.5 36.2 37.6 40.9 36.5
promoter 70.9 78.2 80.0 80.9 77.3 78.2 77.3 80.9 78.0

road 77.9 75.5 77.0 78.5 77.4 78.7 79.2 79.2 77.9
soybean 92.9 91.9 93.5 91.7 93.3 93.0 91.0 90.3 92.2

splice 92.4 91.7 92.0 91.3 91.7 92.8 91.6 91.8 91.9
switzerland 36.2 34.6 35.4 36.2 30.0 33.1 25.4 32.3 32.9

tictactoe 76.8 75.1 75.5 76.7 72.0 73.8 66.4 66.3 72.8
usama-mys 76.8 78.4 77.4 76.3 77.4 78.4 83.7 82.6 78.9

va 30.0 34.3 25.2 29.0 20.5 23.3 29.5 28.1 27.5
votes 91.8 92.0 91.8 92.0 92.5 92.7 94.3 95.7 92.9

vowel 81.9 79.4 78.9 81.5 79.6 78.5 81.0 79.2 80.0
waveform 68.1 70.0 65.8 66.1 66.5 65.8 68.7 69.7 67.6

wine 95.6 93.9 96.1 95.0 95.0 95.0 92.8 93.3 94.6
zoo 96.4 95.5 95.5 96.4 96.4 91.8 97.3 92.7 95.2

Mean 78.0 77.9 77.7 77.7 76.9 76.6 76.0 75.7 77.1
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Table A.2. Standard Deviation for Accuracy (no pruning)

See Table A.1 for associated point estimates
Task DM DE IE DL I1 I2 C1 C2

audio-no-id 7.5 8.1 9.9 7.6 9.0 7.1 5.1 9.6
balance-scale 4.2 3.5 4.4 4.0 3.7 2.8 3.4 4.1

bc-wisc 1.5 2.1 2.3 1.8 3.1 3.4 2.4 2.8
breast-cancer 7.2 9.3 11.3 5.9 6.0 4.9 6.0 6.9

bupa 6.5 7.5 6.5 7.4 6.9 5.3 4.3 5.3
chess-551x39 3.1 3.9 3.1 2.1 1.8 3.0 2.9 4.0

cleveland 6.8 6.9 10.1 6.9 7.2 6.8 7.8 4.1
crx 5.2 3.1 3.6 4.9 6.2 4.9 4.1 3.5

fayyad 6.8 9.1 8.3 9.5 7.1 7.3 6.0 7.3
glass-no-id 9.0 7.1 12.7 10.1 11.5 10.4 9.1 8.7

hepatitis 9.6 11.3 6.3 7.1 8.9 7.1 6.9 4.9
horse-dead 19.9 10.0 14.2 16.0 12.5 12.1 8.6 9.8
horse-sick 2.9 4.9 3.1 3.1 3.1 4.1 4.7 4.0
hungarian 8.7 4.8 6.2 7.2 4.8 4.3 5.0 6.8

hypothyroid 0.6 0.7 0.5 0.4 0.6 0.7 0.5 0.8
ionosphere 5.2 5.2 3.5 4.2 3.7 3.6 3.0 3.2

iris 4.0 4.7 4.0 4.0 5.2 4.7 7.6 7.6
landsat 3.2 3.3 2.3 3.2 1.7 2.1 3.0 2.2

led24 8.4 8.6 12.1 10.3 13.6 11.0 11.6 9.0
led7 13.9 12.8 13.0 13.9 13.1 12.0 12.1 10.9

lenses 18.0 24.9 18.0 18.0 18.0 20.0 18.0 20.0
lung-cancer 19.4 22.5 16.8 16.6 22.5 16.6 26.1 16.8

lymphography 10.4 7.3 9.9 12.9 12.4 13.7 11.2 12.4
monks-1 0.0 0.0 0.0 0.0 2.0 7.4 3.9 4.5
monks-2 1.4 0.0 0.9 0.0 3.7 6.3 9.8 9.3
monks-3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

mplex-11 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.5
mplex-6 0.0 0.0 12.9 0.0 14.9 22.3 13.5 20.2

mushroom 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
nettalk 1.7 1.0 1.0 1.7 1.2 1.0 1.8 1.4

pima 4.7 5.2 4.1 2.9 3.7 3.5 3.6 4.3
post-op 9.2 8.7 9.2 10.0 9.0 12.8 15.5 10.0

primary-tumor 6.1 6.1 6.1 5.4 6.3 7.1 6.8 5.3
promoter 13.4 11.6 10.6 16.0 11.7 10.9 10.9 14.3

road 2.3 2.1 1.4 2.9 2.3 2.5 2.2 1.9
soybean 2.9 2.9 2.4 3.2 3.0 2.4 2.2 2.8

splice 1.2 1.4 1.8 0.8 0.9 0.8 2.0 2.1
switzerland 11.4 8.6 13.8 14.2 12.6 9.8 8.5 9.6

tictactoe 1.6 1.7 2.6 2.3 1.7 1.8 2.8 2.0
usama-mys 6.7 7.2 8.2 6.8 9.4 7.6 8.9 7.1

va 10.4 9.0 8.0 10.7 7.7 6.9 11.6 12.7
votes 4.2 3.1 4.1 3.3 4.1 3.2 4.6 3.7

vowel 3.6 3.7 5.0 4.0 4.5 4.2 4.5 4.5
waveform 6.5 8.0 6.9 8.6 11.1 9.3 9.5 10.4

wine 4.2 5.2 5.6 4.6 4.6 5.2 6.1 6.0
zoo 4.5 4.5 4.5 4.5 4.5 6.4 4.2 6.8
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Table A.3. Accuracy (pruning)

See Table A.4 for associated standard deviations
Task DM IE C1 I2 I1 C2 DL DE Mean

audio-no-id 79.1 81.7 84.8 79.6 79.6 77.8 75.7 64.3 77.8
balance-scale 78.1 77.6 77.5 78.9 78.9 77.5 78.1 77.5 78.0

bc-wisc 94.3 94.6 94.9 93.7 93.7 94.9 94.7 94.7 94.4
breast-cancer 71.4 69.7 75.5 68.6 68.6 75.5 73.1 72.8 71.9

bupa 67.4 67.1 65.1 66.3 66.3 64.6 62.0 64.6 65.4
chess-551x39 92.0 94.1 92.0 92.0 92.0 91.1 89.6 84.3 90.9

cleveland 50.3 49.4 47.1 51.6 51.6 46.8 51.3 53.9 50.2
crx 83.7 85.3 82.9 82.6 82.6 83.4 85.3 84.4 83.8

fayyad 87.3 87.3 86.4 84.5 84.5 86.4 81.8 80.9 84.9
glass-no-id 71.4 65.0 67.3 66.8 66.8 69.1 64.1 65.0 66.9

hepatitis 85.0 83.1 79.4 80.6 80.6 77.5 81.9 80.0 81.0
horse-dead 62.7 59.1 65.5 60.0 60.0 65.5 63.6 60.9 62.2
horse-sick 94.4 95.6 95.6 95.6 95.6 95.6 93.8 91.9 94.8
hungarian 80.3 80.3 78.0 81.3 81.3 78.3 78.3 79.0 79.6

hypothyroid 99.2 99.2 99.0 99.0 99.0 99.1 99.0 99.0 99.1
ionosphere 90.8 93.3 91.1 92.5 92.5 91.4 91.4 84.7 91.0

iris 95.0 94.4 94.4 94.4 94.4 94.4 92.5 93.8 94.1
landsat 84.7 84.9 84.5 85.8 85.7 85.1 85.0 83.8 84.9

led24 61.9 62.9 61.4 62.9 62.4 62.4 60.5 57.1 61.4
led7 68.6 66.2 70.0 65.7 66.7 69.5 68.6 70.5 68.2

lenses 90.0 83.3 83.3 83.3 83.3 83.3 70.0 90.0 83.3
lung-cancer 60.0 35.0 47.5 32.5 32.5 42.5 22.5 37.5 38.8

lymphography 69.3 76.0 76.7 73.3 73.3 78.0 69.3 69.3 73.2
monks-1 100.0 100.0 96.8 91.6 91.6 96.8 100.0 100.0 97.1
monks-2 93.6 96.1 65.9 92.3 92.3 65.9 89.3 85.2 85.1
monks-3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

mplex-11 100.0 100.0 99.8 99.7 99.7 99.8 100.0 100.0 99.9
mplex-6 100.0 68.6 71.4 64.3 64.3 57.1 65.7 72.9 70.5

mushroom 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
nettalk 82.9 83.3 80.9 83.0 83.0 80.6 81.8 79.9 81.9

pima 74.4 72.9 71.8 74.5 74.5 71.9 72.9 71.7 73.1
post-op 63.0 61.0 69.0 62.0 61.0 69.0 65.0 66.0 64.5

primary-tumor 38.5 38.5 40.9 38.2 37.6 40.9 42.6 40.0 39.7
promoter 71.8 79.1 78.2 79.1 79.1 77.3 71.8 69.1 75.7

road 78.7 82.2 81.0 81.4 81.4 81.1 79.6 79.9 80.6
soybean 92.0 93.6 92.5 93.3 93.3 92.2 90.1 87.8 91.9

splice 93.6 94.8 93.8 94.3 94.3 93.7 92.6 92.3 93.7
switzerland 35.4 33.1 26.9 33.1 33.1 33.1 46.9 40.8 35.3

tictactoe 78.4 75.9 68.9 74.5 74.7 68.1 73.2 75.4 73.6
usama-mys 84.2 84.2 85.8 84.2 84.2 83.2 81.1 83.7 83.8

va 27.1 24.8 26.7 23.3 23.8 26.7 36.7 30.0 27.4
votes 94.3 95.9 96.4 95.0 95.0 96.6 94.3 93.6 95.1

vowel 77.1 76.2 80.1 76.1 76.1 78.9 71.3 70.6 75.8
waveform 70.0 64.5 70.0 65.5 65.5 70.0 65.5 67.4 67.3

wine 95.6 93.9 93.3 95.0 95.0 93.3 91.7 92.2 93.7
zoo 88.2 90.9 94.5 94.5 94.5 91.8 92.7 91.8 92.4

Mean 79.5 78.1 77.9 77.5 77.5 77.3 76.9 76.7 77.7
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Table A.4. Standard Deviation for Accuracy (pruning)

See Table A.3 for associated point estimates
Task DM IE C1 I2 I1 C2 DL DE

audio-no-id 3.8 7.0 5.6 8.5 8.5 6.6 8.7 8.0
balance-scale 3.6 3.4 3.2 3.3 3.3 3.2 3.7 3.5

bc-wisc 2.5 3.1 2.3 2.7 2.7 2.3 1.9 1.8
breast-cancer 6.4 4.8 3.9 6.1 6.1 3.9 3.7 4.7

bupa 4.3 4.5 5.7 5.1 5.1 5.6 8.5 4.8
chess-551x39 3.8 3.5 3.9 4.2 4.2 4.8 4.1 5.6

cleveland 8.2 6.1 6.8 5.8 5.8 5.4 7.0 4.3
crx 2.1 3.1 3.8 2.4 2.4 2.4 3.5 3.6

fayyad 8.3 8.3 7.3 8.2 8.2 7.3 11.5 10.3
glass-no-id 4.6 12.2 8.3 10.2 10.2 7.3 9.2 9.1

hepatitis 7.5 5.6 6.9 9.0 9.0 5.7 4.4 6.7
horse-dead 13.1 17.4 8.9 15.3 15.3 7.9 10.0 10.0
horse-sick 5.2 4.9 4.0 4.0 4.0 4.0 2.8 4.9
hungarian 5.7 4.8 6.0 7.9 7.9 4.0 7.8 6.2

hypothyroid 0.4 0.6 0.7 0.6 0.6 0.6 0.5 0.4
ionosphere 5.1 4.5 3.0 4.3 4.3 3.6 4.9 6.2

iris 6.1 6.5 7.6 6.5 6.5 7.6 6.1 6.2
landsat 2.5 3.0 3.3 1.8 1.8 2.6 2.2 2.7

led24 7.4 10.4 8.4 9.9 9.4 9.4 10.0 12.8
led7 12.3 13.9 9.5 12.0 14.0 10.7 13.8 13.4

lenses 21.3 22.4 22.4 22.4 22.4 22.4 31.4 21.3
lung-cancer 25.5 16.6 26.1 16.0 16.0 22.5 17.5 28.0

lymphography 9.0 9.0 11.6 13.7 13.7 11.9 10.8 10.0
monks-1 0.0 0.0 3.7 7.2 7.2 3.7 0.0 0.0
monks-2 2.6 2.9 0.0 6.2 6.2 0.0 4.4 4.0
monks-3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

mplex-11 0.0 0.0 0.4 0.7 0.7 0.4 0.0 0.0
mplex-6 0.0 14.0 20.2 16.0 16.0 19.2 11.4 7.7

mushroom 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
nettalk 1.4 1.1 2.1 1.0 1.0 1.9 0.7 0.9

pima 3.3 4.4 3.9 5.1 5.1 4.2 3.2 5.0
post-op 7.8 12.2 8.3 16.0 15.1 8.3 6.7 8.0

primary-tumor 5.8 5.8 6.5 7.0 7.1 6.4 7.7 6.5
promoter 11.8 12.2 13.0 11.5 11.5 14.2 17.5 14.8

road 2.4 1.4 2.2 2.0 2.0 2.2 1.4 1.6
soybean 1.6 1.6 2.7 2.2 2.2 2.4 2.0 3.8

splice 1.8 1.6 1.3 1.2 1.2 1.3 1.5 1.4
switzerland 15.5 12.9 10.5 10.3 10.3 7.7 10.6 11.4

tictactoe 2.5 1.8 2.1 1.9 2.1 2.3 1.7 1.4
usama-mys 7.1 5.3 8.2 4.7 4.7 7.4 7.9 8.3

va 7.4 11.2 12.6 7.5 8.2 7.7 10.0 9.0
votes 3.6 3.3 3.1 4.5 4.5 3.3 3.6 4.4

vowel 4.5 3.1 4.4 4.8 4.8 4.5 4.8 4.4
waveform 6.0 12.2 9.7 10.6 10.6 10.7 10.6 5.3

wine 4.2 7.6 6.0 5.2 5.2 6.0 4.5 3.7
zoo 5.8 4.1 4.5 4.5 4.5 6.4 5.5 7.6
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Table A.5. Leaves (no pruning)

See Table A.6 for associated standard deviations
Task C1 C2 I1 IE DE DL DM I2 Mean

audio-no-id 74.8 41.7 45.4 46.9 56.2 42.3 41.5 33.9 47.8
balance-scale 138.2 61.7 138.8 143.9 139.2 135.6 134.7 55.4 118.4

bc-wisc 33.8 21.7 39.9 33.4 29.6 27.5 27.5 26.7 30.0
breast-cancer 277.8 143.4 98.5 95.5 77.0 73.4 75.5 69.7 113.8

bupa 77.6 53.4 88.7 88.3 71.1 71.3 67.5 71.7 73.7
chess-551x39 72.2 41.0 71.1 61.1 93.0 56.3 56.4 48.4 62.4

cleveland 95.0 56.8 102.2 102.6 85.6 80.9 79.5 66.7 83.7
crx 141.8 84.0 92.9 95.6 84.6 75.4 72.5 67.5 89.3

fayyad 12.4 7.6 12.4 12.4 12.1 12.2 11.4 8.6 11.1
glass-no-id 42.8 28.4 43.9 41.1 42.3 37.4 35.5 31.3 37.8

hepatitis 22.0 15.2 22.6 20.1 18.8 16.8 16.6 13.9 18.3
horse-dead 20.5 15.1 22.6 21.9 18.6 17.8 16.9 18.3 19.0
horse-sick 6.6 6.2 5.7 5.8 6.4 5.7 5.7 4.6 5.8
hungarian 54.8 34.1 57.9 54.6 46.0 42.7 41.6 40.4 46.5

hypothyroid 36.7 15.9 42.9 38.0 36.8 33.4 34.1 22.9 32.6
ionosphere 20.4 16.2 23.0 21.4 20.7 17.8 18.1 17.8 19.4

iris 9.8 5.3 9.2 9.4 8.8 8.3 8.3 5.7 8.1
landsat 134.2 83.2 141.1 136.5 127.4 114.5 112.8 92.4 117.8

led24 63.7 35.6 63.7 62.5 63.6 57.7 57.4 33.3 54.7
led7 33.1 18.1 46.0 43.6 44.7 44.4 44.4 26.3 37.6

lenses 7.9 4.2 6.6 7.3 6.3 6.6 6.5 3.9 6.2
lung-cancer 10.5 7.4 11.0 11.0 8.5 8.1 8.1 7.7 9.0

lymphography 63.3 32.3 26.2 30.3 23.1 20.5 20.8 20.1 29.6
monks-1 84.3 71.7 40.2 8.4 9.1 9.8 9.8 36.6 33.7
monks-2 262.5 92.4 51.0 46.5 41.0 41.0 41.0 46.4 77.7
monks-3 14.0 14.0 5.0 5.1 5.0 5.0 5.0 5.0 7.3

mplex-11 91.8 91.3 92.2 60.2 16.0 16.0 16.0 92.0 59.4
mplex-6 21.6 15.1 20.5 16.8 8.0 8.0 8.0 16.1 14.3

mushroom 25.6 25.6 12.9 12.3 9.6 10.0 9.0 12.9 14.7
nettalk 10528.4 5065.8 840.3 823.8 923.5 742.1 754.2 560.7 2529.9

pima 134.2 93.8 153.4 151.2 122.1 113.6 115.4 124.1 126.0
post-op 48.8 21.2 37.7 35.6 33.9 31.3 30.2 22.4 32.6

primary-tumor 163.5 66.7 174.4 171.2 169.6 157.0 157.2 84.0 142.9
promoter 30.7 24.1 12.3 11.9 10.6 9.7 9.8 8.7 14.7

road 302.2 185.6 327.9 311.8 312.9 265.2 269.2 216.2 273.9
soybean 172.0 118.3 67.3 64.5 68.8 60.7 60.3 54.5 83.3

splice 1002.7 721.3 142.1 136.6 150.1 120.3 118.8 98.8 311.3
switzerland 52.7 32.5 53.6 52.5 48.5 45.2 44.9 35.3 45.6

tictactoe 2369.6 1024.2 1348.1 1220.0 977.0 962.3 957.3 705.8 1195.5
usama-mys 18.7 12.8 28.1 25.7 22.7 20.3 21.0 17.6 20.9

va 80.2 50.6 103.0 101.0 84.3 80.1 80.7 62.2 80.3
votes 24.6 13.9 28.1 24.8 23.6 22.0 21.9 17.5 22.1

vowel 136.2 102.7 154.7 143.9 135.7 116.9 117.7 122.4 128.8
waveform 37.6 27.9 46.7 44.9 31.1 29.3 27.8 37.9 35.4

wine 8.6 5.6 7.8 6.7 6.3 5.8 5.8 5.7 6.5
zoo 14.0 10.2 10.1 9.8 9.6 9.6 9.6 8.3 10.2

Mean 371.2 189.5 108.0 101.5 94.3 84.5 84.4 69.1 137.8
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Table A.6. Standard Deviation for Leaves (no pruning)

See Table A.5 for associated point estimates
Task C1 C2 I1 IE DE DL DM I2

audio-no-id 7.4 7.7 2.6 2.3 1.6 1.6 1.6 2.5
balance-scale 3.9 3.8 3.7 2.3 2.1 2.9 3.7 2.8

bc-wisc 2.3 3.3 2.7 2.4 1.4 1.2 1.9 2.2
breast-cancer 26.1 16.0 5.6 5.9 3.1 3.4 3.8 3.7

bupa 3.6 3.7 6.5 8.7 4.0 3.0 2.8 6.5
chess-551x39 6.3 1.9 5.9 3.7 10.0 2.9 3.0 1.6

cleveland 4.6 2.4 4.4 3.7 3.5 2.1 1.7 4.4
crx 18.0 14.3 4.9 5.4 2.7 3.1 3.1 4.9

fayyad 1.5 0.7 1.6 1.6 1.3 1.6 1.1 1.2
glass-no-id 2.4 2.4 2.9 4.6 1.6 2.6 1.9 2.0

hepatitis 2.8 1.5 2.7 3.3 1.5 1.5 1.6 1.5
horse-dead 1.3 0.9 1.6 2.8 1.4 1.4 1.2 1.7
horse-sick 0.8 1.3 0.5 0.4 0.5 0.5 0.5 0.7
hungarian 3.4 3.9 2.0 3.1 4.1 2.1 1.6 1.4

hypothyroid 3.2 3.1 4.2 4.9 3.1 3.3 2.9 2.8
ionosphere 2.1 1.9 1.5 2.2 1.7 1.3 1.3 1.2

iris 1.3 0.8 1.1 1.4 1.1 0.8 0.8 0.8
landsat 4.0 5.4 5.0 6.0 6.6 4.2 3.5 4.1

led24 2.3 1.9 2.3 2.9 3.9 3.3 3.4 2.0
led7 2.2 1.1 1.8 2.0 2.0 1.8 1.8 1.0

lenses 1.2 0.9 1.1 1.4 0.8 1.1 1.0 0.3
lung-cancer 1.2 1.4 1.8 1.8 0.5 0.5 0.3 2.2

lymphography 6.3 7.3 2.5 3.6 1.9 1.6 1.4 3.1
monks-1 29.5 21.7 16.6 1.2 0.8 1.9 1.9 13.8
monks-2 9.2 4.3 9.7 6.4 0.0 0.0 0.0 5.3
monks-3 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0

mplex-11 22.4 22.1 20.4 14.6 0.0 0.0 0.0 20.4
mplex-6 2.4 1.0 2.0 3.1 0.0 0.0 0.0 0.9

mushroom 2.0 2.0 0.3 0.6 0.5 0.0 0.0 0.3
nettalk 110.6 118.5 11.7 12.6 19.7 12.1 8.5 7.7

pima 6.0 4.8 7.7 12.3 3.7 5.4 6.0 10.3
post-op 4.2 4.2 4.1 3.4 2.3 0.6 0.7 1.9

primary-tumor 4.8 4.1 3.3 4.1 4.2 2.6 3.5 4.3
promoter 3.7 1.9 1.8 1.6 0.9 0.8 1.0 1.3

road 9.1 5.8 9.5 6.6 13.6 5.1 6.3 7.5
soybean 11.8 6.2 3.2 2.2 4.2 2.6 1.8 2.6

splice 34.2 37.5 3.5 3.2 7.6 3.3 3.5 3.9
switzerland 3.1 2.5 2.8 3.8 3.7 2.0 2.5 2.2

tictactoe 20.0 23.8 18.1 33.7 18.1 27.6 29.0 10.1
usama-mys 1.8 1.9 1.9 2.2 2.1 1.2 1.6 1.3

va 5.5 3.9 6.8 5.1 3.6 2.4 2.5 4.7
votes 2.8 3.0 3.4 2.8 1.6 2.0 2.4 2.2

vowel 3.5 4.0 6.1 4.3 5.6 3.9 3.5 5.7
waveform 3.0 3.3 8.8 6.8 2.0 1.8 1.7 7.3

wine 1.6 0.9 1.1 0.8 0.8 0.4 0.4 1.0
zoo 1.0 2.8 0.8 0.6 0.5 0.5 0.5 0.8
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Table A.7. Leaves (pruning)

See Table A.8 for associated standard deviations
Task C1 C2 I1 I2 IE DE DL DM Mean

audio-no-id 47.4 30.2 26.8 26.8 29.1 26.0 22.6 20.0 28.6
balance-scale 52.3 40.0 48.7 47.0 49.4 43.8 41.9 41.0 45.5

bc-wisc 12.6 10.0 12.1 12.1 9.2 9.5 7.8 8.1 10.2
breast-cancer 9.0 8.0 21.4 21.4 26.1 11.7 12.4 15.2 15.6

bupa 48.1 37.3 30.1 30.1 29.1 17.3 17.5 23.1 29.1
chess-551x39 34.2 24.3 27.7 27.7 36.3 32.2 33.3 20.6 29.5

cleveland 71.6 45.7 42.6 42.5 38.7 33.1 33.7 29.4 42.2
crx 45.5 34.2 21.5 21.5 12.3 33.1 34.2 17.8 27.5

fayyad 7.2 7.1 6.9 6.9 7.7 6.0 6.0 7.0 6.9
glass-no-id 35.2 25.2 23.5 23.5 24.6 20.1 22.0 16.8 23.9

hepatitis 10.6 8.8 6.7 6.7 4.5 4.0 4.7 6.0 6.5
horse-dead 16.8 11.3 6.5 6.5 5.8 4.1 4.2 3.7 7.4
horse-sick 4.6 4.6 3.9 3.9 3.5 3.3 3.6 3.1 3.8
hungarian 15.6 13.8 10.0 10.0 8.6 7.3 7.5 8.7 10.2

hypothyroid 7.4 6.0 9.3 9.3 6.3 5.2 5.0 4.5 6.6
ionosphere 16.4 12.9 7.5 7.5 5.9 10.0 6.0 7.4 9.2

iris 5.5 5.1 3.7 3.7 3.7 3.0 3.6 3.1 3.9
landsat 62.6 42.7 34.5 33.8 37.5 33.3 32.9 30.3 38.5

led24 41.3 29.0 25.9 24.8 25.8 22.5 23.2 22.9 26.9
led7 22.1 17.5 29.6 22.7 29.9 26.9 26.3 26.6 25.2

lenses 3.9 3.6 3.2 3.2 3.1 3.0 3.0 3.0 3.2
lung-cancer 9.0 6.4 4.0 4.0 4.5 3.4 3.3 3.5 4.8

lymphography 28.2 18.2 10.9 10.9 12.0 9.7 9.2 7.4 13.3
monks-1 29.4 29.4 32.5 32.5 8.0 9.1 9.8 9.8 20.1
monks-2 1.0 1.0 40.9 40.9 40.1 34.5 35.7 34.8 28.6
monks-3 14.0 14.0 5.0 5.0 5.0 5.0 5.0 5.0 7.2

mplex-11 88.2 88.2 91.6 91.6 54.8 16.0 16.0 16.0 57.8
mplex-6 12.9 12.3 7.6 7.6 9.0 6.0 6.0 8.0 8.7

mushroom 25.6 25.6 12.9 12.9 12.2 9.6 10.0 9.0 14.7
nettalk 4610.8 2270.8 418.6 411.7 403.5 411.9 333.0 334.7 1149.4

pima 80.9 63.6 24.0 24.0 29.0 40.2 44.6 31.8 42.3
post-op 3.7 1.8 9.5 9.2 8.6 8.0 8.2 7.0 7.0

primary-tumor 95.3 43.5 78.2 62.0 79.6 74.3 67.0 67.6 70.9
promoter 17.5 16.3 6.3 6.3 5.5 4.2 3.9 4.4 8.1

road 175.2 119.3 95.0 94.6 78.6 85.9 83.6 81.3 101.7
soybean 77.0 62.5 34.1 34.0 27.9 39.8 35.4 32.8 42.9

splice 397.2 298.5 51.6 51.6 47.1 49.2 46.1 43.6 123.1
switzerland 40.5 28.0 26.3 26.1 24.6 18.6 17.4 16.4 24.7

tictactoe 611.4 484.4 485.6 468.3 450.6 328.4 338.1 383.1 443.7
usama-mys 12.2 10.7 4.9 4.9 7.6 7.3 12.0 5.7 8.2

va 57.8 36.9 46.5 46.2 46.4 32.9 32.4 33.2 41.5
votes 6.2 5.9 6.1 6.1 5.7 4.5 5.5 6.4 5.8

vowel 122.2 97.9 97.9 97.8 92.8 83.4 78.4 75.8 93.3
waveform 31.9 26.0 15.2 15.2 16.3 11.5 13.4 13.4 17.9

wine 5.8 5.5 5.4 5.4 5.5 5.0 4.7 4.1 5.2
zoo 11.9 10.1 7.0 7.0 6.8 8.7 8.5 6.5 8.3

Mean 155.1 91.2 43.9 42.8 40.8 36.1 34.3 33.9 59.8
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Table A.8. Standard Deviation for Leaves (pruning)

See Table A.7 for associated point estimates
Task C1 C2 I1 I2 IE DE DL DM

audio-no-id 4.3 3.0 1.5 1.5 1.1 4.4 1.8 1.5
balance-scale 6.5 5.7 2.9 2.9 3.2 3.4 2.0 2.7

bc-wisc 2.6 2.0 1.3 1.3 1.9 3.5 2.7 1.6
breast-cancer 10.7 8.0 4.8 4.8 5.0 3.7 4.0 2.4

bupa 5.2 6.2 6.5 6.5 5.9 7.7 5.6 4.3
chess-551x39 7.8 3.2 4.7 4.7 4.1 8.4 6.4 1.6

cleveland 7.6 5.8 4.4 4.3 6.0 4.4 5.9 2.3
crx 13.3 7.5 8.2 8.2 3.6 6.2 8.9 2.7

fayyad 0.6 0.3 1.0 1.0 0.6 0.9 1.0 0.8
glass-no-id 3.1 2.9 3.0 3.0 2.4 4.9 5.7 1.7

hepatitis 3.8 2.3 0.8 0.8 2.3 1.1 1.4 0.8
horse-dead 2.5 3.2 2.2 2.2 1.4 1.9 1.9 1.0
horse-sick 0.8 0.8 0.5 0.5 0.5 0.5 1.2 0.3
hungarian 6.9 5.0 1.8 1.8 1.2 2.0 1.7 1.6

hypothyroid 1.9 1.0 1.3 1.3 1.9 0.6 0.4 0.5
ionosphere 2.4 2.3 0.8 0.8 0.3 2.3 0.4 0.5

iris 0.8 0.9 0.5 0.5 0.5 0.0 0.9 0.3
landsat 9.4 7.4 2.8 2.6 2.6 3.4 5.5 2.7

led24 3.2 1.3 1.8 1.5 1.4 1.4 1.9 1.1
led7 2.1 1.7 2.4 1.4 2.8 2.5 2.2 2.4

lenses 0.3 0.5 0.4 0.4 0.3 0.0 0.0 0.0
lung-cancer 1.8 1.5 1.2 1.2 1.6 1.7 1.9 0.5

lymphography 7.2 4.5 1.9 1.9 1.9 2.7 2.2 1.0
monks-1 5.0 5.0 10.9 10.9 0.0 0.8 1.9 1.9
monks-2 0.0 0.0 3.3 3.3 3.1 1.3 2.1 2.0
monks-3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

mplex-11 19.1 19.1 20.0 20.0 1.8 0.0 0.0 0.0
mplex-6 3.1 2.4 1.5 1.5 1.3 0.0 0.0 0.0

mushroom 2.0 2.0 0.3 0.3 1.6 0.5 0.0 0.0
nettalk 182.4 91.6 7.9 7.9 8.8 29.7 17.0 8.9

pima 7.5 3.1 7.2 7.2 10.4 14.4 8.2 4.9
post-op 2.1 1.6 2.3 2.4 3.1 1.4 1.2 1.2

primary-tumor 7.4 4.4 3.2 4.6 3.8 8.2 4.4 3.4
promoter 3.1 2.8 1.0 1.0 0.7 0.9 0.5 1.0

road 4.6 7.5 5.4 5.7 3.0 12.4 13.8 5.7
soybean 7.8 5.8 2.8 2.9 3.0 5.2 2.8 1.8

splice 32.1 26.1 2.2 2.2 4.5 6.2 4.0 3.0
switzerland 4.5 2.9 3.4 3.3 3.6 4.3 4.0 1.6

tictactoe 33.9 34.2 11.2 10.1 19.2 11.2 11.0 6.9
usama-mys 2.1 1.7 1.8 1.8 1.8 3.3 4.7 0.8

va 7.3 6.0 2.9 3.1 3.0 3.8 3.9 3.1
votes 0.4 0.3 0.8 0.8 0.8 0.7 0.8 1.4

vowel 3.0 3.8 4.9 5.0 5.1 7.0 6.1 3.3
waveform 2.5 3.0 2.2 2.2 2.1 2.4 5.2 1.8

wine 1.2 0.7 0.5 0.5 0.5 0.9 0.5 0.3
zoo 2.3 2.7 0.0 0.0 0.4 0.6 0.8 0.5
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Table A.9. Expected-Tests (no pruning)

See Table A.10 for associated standard deviations
Task IE I1 I2 DL DM DE Mean

audio-no-id 12.2 11.1 10.3 10.7 8.6 6.0 9.8
balance-scale 9.0 7.0 5.9 7.0 6.9 6.5 7.0

bc-wisc 8.2 7.4 7.1 4.5 4.3 3.8 5.9
breast-cancer 15.9 12.9 12.4 8.5 8.9 6.7 10.9

bupa 25.3 21.3 20.9 15.7 12.3 9.6 17.5
chess-551x39 19.4 9.4 8.8 14.8 14.1 7.1 12.3

cleveland 13.6 12.6 11.9 8.3 7.6 6.4 10.1
crx 18.6 11.1 10.6 9.4 7.7 6.3 10.6

fayyad 5.9 4.7 4.3 5.3 4.5 4.4 4.9
glass-no-id 9.6 9.2 8.5 8.1 6.5 6.0 8.0

hepatitis 6.4 6.6 5.7 5.2 4.8 3.9 5.4
horse-dead 12.2 11.2 10.7 6.9 5.8 4.9 8.6
horse-sick 2.8 2.6 2.1 2.7 2.2 2.2 2.4
hungarian 10.5 9.8 9.2 7.3 6.6 5.8 8.2

hypothyroid 6.5 6.9 6.0 4.1 3.6 2.9 5.0
ionosphere 11.0 10.7 10.4 6.0 5.7 4.4 8.0

iris 4.0 2.9 2.3 2.7 2.7 2.6 2.9
landsat 15.5 13.0 12.5 10.5 10.0 7.6 11.5

led24 6.4 6.2 5.3 6.1 5.9 5.8 5.9
led7 5.9 5.8 5.0 5.9 5.8 5.6 5.7

lenses 2.9 2.2 1.7 2.4 2.2 2.1 2.2
lung-cancer 5.6 4.8 4.1 3.5 3.3 3.3 4.1

lymphography 11.1 7.8 7.4 5.0 4.9 4.4 6.8
monks-1 4.0 4.6 4.6 3.5 3.5 3.4 3.9
monks-2 5.7 5.5 5.5 5.5 5.5 5.3 5.5
monks-3 2.6 2.1 2.1 2.1 2.1 2.1 2.2

mplex-11 5.6 6.1 6.1 4.0 4.0 4.0 5.0
mplex-6 3.9 4.1 3.9 3.0 3.0 3.0 3.5

mushroom 7.3 5.0 5.0 3.7 3.8 2.8 4.6
nettalk 33.6 26.7 26.0 22.1 22.2 19.2 25.0

pima 23.5 18.1 17.6 12.1 11.8 8.2 15.2
post-op 8.2 8.1 7.2 6.2 5.8 5.2 6.8

primary-tumor 10.6 10.2 8.8 9.6 9.1 7.7 9.4
promoter 4.3 3.9 3.5 3.6 3.5 3.1 3.7

road 22.9 18.3 17.6 15.0 14.8 11.2 16.6
soybean 11.0 8.4 8.2 7.3 6.9 5.8 7.9

splice 8.2 7.3 6.9 6.8 6.8 6.5 7.1
switzerland 12.8 12.8 12.1 8.7 8.3 5.9 10.1

tictactoe 11.3 10.5 9.9 10.1 10.0 9.5 10.2
usama-mys 9.3 9.4 8.6 6.5 5.8 4.7 7.4

va 18.9 17.8 17.0 10.3 9.6 6.8 13.4
votes 4.7 3.5 3.1 3.8 3.6 3.2 3.7

vowel 14.1 13.8 13.5 9.8 9.2 7.9 11.4
waveform 12.8 13.3 12.7 7.5 6.4 5.5 9.7

wine 2.8 3.1 2.7 2.7 2.7 2.6 2.8
zoo 4.1 2.9 2.8 3.5 3.1 2.7 3.2

Mean 10.4 9.0 8.4 7.1 6.7 5.5 7.9
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Table A.10. Standard Deviation for Expected-Tests (no
pruning)

See Table A.9 for associated point estimates
Task IE I1 I2 DL DM DE

audio-no-id 0.9 0.9 1.0 0.7 0.9 0.1
balance-scale 0.2 0.1 0.1 0.2 0.1 0.1

bc-wisc 1.1 0.4 0.5 0.4 0.5 0.0
breast-cancer 0.7 0.6 0.6 1.0 1.7 0.3

bupa 5.0 2.3 2.3 2.2 1.8 1.3
chess-551x39 1.5 0.4 0.5 1.7 1.9 0.3

cleveland 1.0 1.2 1.1 0.9 0.9 0.2
crx 2.8 1.0 1.0 0.7 0.9 0.1

fayyad 0.5 0.4 0.4 0.9 0.2 0.3
glass-no-id 1.3 0.7 0.6 1.3 1.0 0.3

hepatitis 0.7 0.6 0.6 0.4 0.3 0.2
horse-dead 1.7 0.5 0.6 1.6 1.0 0.5
horse-sick 0.2 0.1 0.3 0.2 0.1 0.1
hungarian 1.3 0.3 0.3 0.8 0.6 0.2

hypothyroid 0.4 0.7 0.7 0.9 0.7 0.1
ionosphere 1.0 0.5 0.5 0.6 0.8 0.3

iris 0.6 0.2 0.2 0.2 0.2 0.2
landsat 0.9 1.0 0.9 1.0 1.0 0.5

led24 0.1 0.1 0.1 0.2 0.2 0.2
led7 0.1 0.1 0.1 0.2 0.2 0.1

lenses 0.3 0.2 0.1 0.4 0.2 0.2
lung-cancer 1.3 1.3 1.5 0.2 0.2 0.1

lymphography 1.7 1.1 1.1 0.3 0.3 0.2
monks-1 0.4 0.6 0.5 0.2 0.2 0.1
monks-2 0.2 0.1 0.1 0.0 0.0 0.0
monks-3 0.2 0.0 0.0 0.0 0.0 0.0

mplex-11 0.4 0.3 0.3 0.0 0.0 0.0
mplex-6 0.3 0.1 0.1 0.0 0.0 0.0

mushroom 0.4 0.1 0.1 0.0 0.0 0.1
nettalk 0.8 0.2 0.2 0.6 0.6 0.2

pima 3.5 3.0 3.0 1.9 2.3 0.4
post-op 0.7 0.4 0.4 0.6 0.4 0.2

primary-tumor 0.3 0.3 0.2 0.6 0.5 0.1
promoter 0.5 0.6 0.5 0.3 0.4 0.2

road 1.2 1.3 1.3 0.9 0.7 0.4
soybean 0.6 0.1 0.1 0.3 0.4 0.2

splice 0.2 0.1 0.1 0.2 0.3 0.2
switzerland 2.0 2.1 2.0 1.5 1.5 0.1

tictactoe 0.1 0.0 0.0 0.1 0.1 0.1
usama-mys 0.8 0.9 0.8 1.0 1.1 0.6

va 1.5 2.8 2.8 2.0 1.9 0.1
votes 0.3 0.4 0.3 0.3 0.2 0.3

vowel 0.5 0.6 0.7 0.9 0.8 0.4
waveform 2.0 2.9 2.8 0.9 0.8 0.5

wine 0.3 0.4 0.4 0.2 0.1 0.1
zoo 0.2 0.0 0.1 0.1 0.2 0.0
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Table A.11. Expected-Tests (pruning)

See Table A.12 for associated standard deviations
Task IE I1 I2 DL DM DE Mean

audio-no-id 11.3 9.7 9.7 7.9 7.5 5.2 8.5
balance-scale 7.2 5.7 5.7 5.8 5.7 5.4 5.9

bc-wisc 4.5 5.2 5.2 3.3 3.2 3.5 4.2
breast-cancer 11.5 8.0 8.0 3.8 4.5 3.5 6.5

bupa 18.7 15.5 15.5 9.7 9.7 7.1 12.7
chess-551x39 17.9 7.4 7.4 10.2 7.2 5.9 9.3

cleveland 10.8 10.3 10.3 7.2 5.8 5.4 8.3
crx 7.8 6.0 6.0 7.4 4.5 6.3 6.3

fayyad 4.9 3.8 3.8 3.7 3.9 3.5 3.9
glass-no-id 9.6 7.6 7.6 7.3 5.5 5.4 7.2

hepatitis 2.9 3.5 3.5 2.3 3.2 1.8 2.9
horse-dead 4.2 4.8 4.8 2.4 1.9 2.0 3.3
horse-sick 2.0 1.9 1.9 1.9 1.4 1.6 1.8
hungarian 6.2 4.6 4.6 3.3 3.7 2.7 4.2

hypothyroid 3.4 3.1 3.1 1.4 1.4 1.3 2.3
ionosphere 3.8 5.0 5.0 4.3 4.5 2.9 4.3

iris 2.4 1.9 1.9 1.9 1.7 1.7 1.9
landsat 11.3 9.1 9.1 7.3 6.7 5.6 8.2

led24 5.1 5.0 4.9 4.8 4.7 4.5 4.8
led7 5.3 5.0 4.7 5.0 5.0 4.8 5.0

lenses 1.6 1.5 1.5 1.5 1.5 1.5 1.5
lung-cancer 2.7 2.3 2.3 1.7 2.1 1.7 2.1

lymphography 8.3 6.0 6.0 3.8 3.4 3.2 5.1
monks-1 4.0 4.5 4.5 3.5 3.5 3.4 3.9
monks-2 5.5 5.4 5.4 5.3 5.3 5.1 5.3
monks-3 2.7 2.1 2.1 2.1 2.1 2.1 2.2

mplex-11 5.6 6.1 6.1 4.0 4.0 4.0 5.0
mplex-6 3.1 2.8 2.8 2.5 3.0 2.5 2.8

mushroom 7.6 5.0 5.0 3.7 3.8 2.8 4.7
nettalk 31.2 24.9 24.8 20.0 20.2 17.8 23.2

pima 14.6 8.6 8.6 10.5 8.6 8.3 9.9
post-op 4.5 4.9 4.9 3.4 3.1 3.3 4.0

primary-tumor 9.1 8.4 8.2 8.1 7.9 6.7 8.1
promoter 3.1 3.0 3.0 2.1 2.1 2.1 2.6

road 13.7 13.9 13.9 11.5 10.4 9.2 12.1
soybean 8.3 7.7 7.7 6.4 6.4 5.5 7.0

splice 7.8 5.5 5.5 5.2 5.3 4.9 5.7
switzerland 10.8 11.3 11.3 5.6 5.9 4.7 8.3

tictactoe 9.9 9.4 9.3 9.0 9.2 8.5 9.2
usama-mys 5.6 3.2 3.2 6.8 3.1 4.0 4.3

va 18.0 16.4 16.4 7.8 7.9 5.6 12.0
votes 2.8 2.1 2.1 2.3 2.2 1.7 2.2

vowel 13.1 12.8 12.8 9.9 8.9 7.4 10.8
waveform 6.3 6.5 6.5 5.1 4.8 3.9 5.5

wine 2.8 2.6 2.6 2.3 2.1 2.3 2.4
zoo 3.4 2.7 2.7 3.4 2.7 2.6 2.9

Mean 7.8 6.6 6.6 5.4 5.0 4.5 6.0
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Table A.12. Standard Deviation for Expected-Tests (prun-
ing)

See Table A.11 for associated point estimates
Task IE I1 I2 DL DM DE

audio-no-id 0.7 0.9 0.9 1.0 0.7 0.5
balance-scale 0.3 0.1 0.1 0.2 0.1 0.1

bc-wisc 1.1 0.5 0.5 0.6 0.3 0.7
breast-cancer 2.4 1.6 1.6 0.7 0.9 0.8

bupa 3.3 2.3 2.3 2.3 2.2 2.4
chess-551x39 1.4 1.0 1.0 0.7 0.5 1.0

cleveland 1.7 1.3 1.3 1.4 0.7 0.6
crx 2.3 1.2 1.2 1.9 0.5 1.8

fayyad 0.4 0.5 0.5 0.6 0.2 0.3
glass-no-id 1.6 0.8 0.8 2.0 0.9 0.8

hepatitis 1.7 0.5 0.5 0.7 0.4 0.4
horse-dead 1.0 1.6 1.6 0.9 0.5 0.9
horse-sick 0.4 0.3 0.3 0.7 0.1 0.2
hungarian 1.1 0.6 0.6 0.7 0.7 0.5

hypothyroid 1.2 0.6 0.6 0.1 0.0 0.0
ionosphere 0.2 0.6 0.6 0.3 0.8 0.3

iris 0.3 0.2 0.2 0.3 0.1 0.0
landsat 0.8 0.7 0.7 0.9 0.4 0.3

led24 0.1 0.1 0.1 0.1 0.1 0.1
led7 0.2 0.1 0.1 0.1 0.2 0.2

lenses 0.1 0.1 0.1 0.1 0.0 0.0
lung-cancer 1.2 0.8 0.8 1.0 0.3 0.8

lymphography 1.1 0.8 0.8 0.8 0.6 0.5
monks-1 0.1 0.5 0.5 0.2 0.2 0.1
monks-2 0.1 0.1 0.1 0.1 0.1 0.1
monks-3 0.1 0.0 0.0 0.0 0.0 0.0

mplex-11 0.1 0.3 0.3 0.0 0.0 0.0
mplex-6 0.2 0.3 0.3 0.0 0.0 0.0

mushroom 1.0 0.1 0.1 0.0 0.0 0.1
nettalk 0.7 0.3 0.3 0.3 0.7 0.3

pima 2.6 1.8 1.8 2.2 1.5 2.3
post-op 1.7 1.2 1.2 0.3 0.3 0.5

primary-tumor 0.5 0.3 0.3 0.3 0.4 0.1
promoter 0.6 0.7 0.7 0.2 0.4 0.2

road 1.1 1.5 1.5 2.0 0.8 1.3
soybean 0.9 0.2 0.2 0.6 0.4 0.1

splice 0.4 0.1 0.1 0.1 0.6 0.2
switzerland 1.8 2.4 2.4 1.2 0.9 0.7

tictactoe 0.1 0.1 0.1 0.1 0.1 0.1
usama-mys 1.2 1.0 1.0 2.3 0.6 1.8

va 2.7 2.8 2.8 1.0 2.0 0.4
votes 0.4 0.2 0.2 0.4 0.6 0.3

vowel 0.7 0.6 0.6 0.8 0.8 0.4
waveform 0.6 1.1 1.1 1.4 0.5 0.6

wine 0.5 0.3 0.3 0.2 0.1 0.3
zoo 0.1 0.0 0.0 0.1 0.1 0.0
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Table A.13. CPU (no pruning)

See Table A.14 for associated standard deviations
Task DL DM DE IE I1 I2 C1 C2 Mean

audio-no-id 1338.5 1084.5 552.9 20.9 1.7 1.6 0.3 0.2 375.1
balance-scale 2.9 2.8 2.5 5.3 0.1 0.1 0.2 0.2 1.8

bc-wisc 14.0 13.3 11.9 7.7 0.3 0.2 0.1 0.1 6.0
breast-cancer 36.2 40.8 23.3 22.7 0.2 0.2 0.1 0.0 15.5

bupa 124.9 92.3 74.4 152.8 0.5 0.5 0.3 0.2 55.8
chess-551x39 1619.4 1463.4 777.1 61.5 1.4 1.3 0.3 0.2 490.6

cleveland 94.4 88.4 70.4 73.0 0.6 0.6 0.4 0.3 41.0
crx 315.1 244.1 166.5 199.4 1.2 1.1 0.4 0.4 116.0

fayyad 0.3 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.1
glass-no-id 37.9 30.7 23.1 20.9 0.4 0.3 0.3 0.3 14.2

hepatitis 25.9 24.1 19.2 5.2 0.2 0.1 0.1 0.1 9.4
horse-dead 57.2 48.0 38.2 9.1 0.4 0.3 0.2 0.2 19.2
horse-sick 6.1 4.8 5.0 0.7 0.1 0.1 0.1 0.1 2.1
hungarian 35.8 34.0 26.5 32.3 0.3 0.3 0.2 0.2 16.2

hypothyroid 433.4 374.0 303.7 24.1 4.1 3.6 1.3 1.1 143.2
ionosphere 976.9 1033.3 657.0 18.6 3.1 3.1 1.4 1.4 336.8

iris 0.2 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.1
landsat 83.0 79.2 53.5 89.2 0.8 0.8 0.7 0.6 38.5

led24 62.2 61.6 60.9 4.5 0.3 0.3 0.1 0.1 23.7
led7 3.0 2.9 2.8 0.6 0.1 0.1 0.0 0.0 1.2

lenses 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
lung-cancer 21.3 20.0 19.5 1.2 0.1 0.1 0.0 0.0 7.8

lymphography 17.3 17.7 15.2 4.5 0.1 0.1 0.0 0.0 6.9
monks-1 1.4 1.4 1.4 0.1 0.1 0.1 0.0 0.0 0.6
monks-2 1.7 1.7 1.5 2.5 0.1 0.1 0.1 0.0 1.0
monks-3 0.4 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.2

mplex-11 23.9 23.4 22.9 6.7 0.8 0.8 0.2 0.2 9.9
mplex-6 0.2 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.1

mushroom 888.4 793.0 690.9 1.9 5.7 5.7 0.4 0.4 298.3
nettalk 3925.3 3885.5 2867.9 1083.0 12.0 11.7 5.0 3.0 1474.2

pima 395.9 378.2 192.7 1121.3 1.6 1.6 0.9 0.8 261.6
post-op 2.9 2.7 2.3 0.9 0.0 0.0 0.0 0.0 1.1

primary-tumor 127.2 122.2 96.5 25.0 0.7 0.5 0.3 0.2 46.6
promoter 113.3 113.0 93.0 7.6 0.2 0.2 0.0 0.0 40.9

road 969.4 941.9 642.6 1709.5 4.4 4.2 3.8 3.5 534.9
soybean 504.7 453.6 337.2 14.8 1.6 1.6 0.4 0.4 164.3

splice 7747.0 7746.4 7605.4 469.2 12.3 11.5 1.6 1.5 2949.4
switzerland 35.3 35.6 18.2 14.0 0.2 0.2 0.2 0.1 13.0

tictactoe 488.8 488.3 478.1 496.7 3.1 2.7 1.2 0.8 245.0
usama-mys 121.9 99.0 70.2 13.6 0.7 0.7 0.3 0.3 38.3

va 109.5 103.3 53.4 62.0 0.6 0.5 0.3 0.2 41.2
votes 14.8 13.8 11.9 1.5 0.2 0.1 0.1 0.1 5.3

vowel 734.2 675.4 512.3 831.4 4.9 4.8 3.4 3.3 346.2
waveform 2127.6 1836.7 1522.9 382.2 4.2 4.0 1.9 1.8 735.2

wine 7.5 7.3 6.9 1.0 0.1 0.1 0.1 0.1 2.9
zoo 2.2 2.1 2.3 0.1 0.0 0.0 0.0 0.0 0.8

Mean 514.1 488.8 394.2 152.2 1.5 1.4 0.6 0.5 194.2
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Table A.14. Standard Deviation for CPU (no pruning)

See Table A.13 for associated point estimates
Task DL DM DE IE I1 I2 C1 C2

audio-no-id 321.1 278.8 81.9 5.4 0.1 0.1 0.0 0.0
balance-scale 0.3 0.3 0.1 0.6 0.0 0.0 0.0 0.0

bc-wisc 1.6 1.8 0.7 1.7 0.0 0.0 0.0 0.0
breast-cancer 10.8 14.7 2.8 2.9 0.0 0.0 0.0 0.0

bupa 28.7 21.0 17.5 35.2 0.1 0.1 0.0 0.0
chess-551x39 200.7 262.2 128.5 7.2 0.1 0.1 0.1 0.1

cleveland 16.4 13.7 4.2 12.8 0.1 0.1 0.0 0.0
crx 54.3 60.7 9.2 32.8 0.1 0.1 0.0 0.0

fayyad 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
glass-no-id 9.2 7.6 2.3 3.7 0.0 0.0 0.0 0.0

hepatitis 2.2 2.5 1.5 1.3 0.0 0.0 0.0 0.0
horse-dead 19.8 12.7 7.3 2.0 0.0 0.0 0.0 0.0
horse-sick 0.8 0.5 0.5 0.2 0.0 0.0 0.0 0.0
hungarian 3.0 3.9 1.0 6.0 0.0 0.0 0.0 0.0

hypothyroid 96.8 65.0 13.8 5.6 0.3 0.4 0.2 0.1
ionosphere 192.7 276.2 88.2 5.2 0.1 0.1 0.1 0.1

iris 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
landsat 8.5 7.5 4.4 16.6 0.0 0.0 0.0 0.0

led24 2.3 2.5 3.2 1.1 0.0 0.0 0.0 0.0
led7 0.2 0.2 0.2 0.1 0.0 0.0 0.0 0.0

lenses 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
lung-cancer 2.4 1.9 1.8 0.6 0.0 0.0 0.0 0.0

lymphography 2.1 2.2 1.5 1.1 0.0 0.0 0.0 0.0
monks-1 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0
monks-2 0.1 0.1 0.1 0.7 0.0 0.0 0.0 0.0
monks-3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

mplex-11 1.2 1.2 1.2 3.3 0.0 0.0 0.0 0.0
mplex-6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

mushroom 12.4 37.5 22.1 0.8 0.2 0.2 0.0 0.0
nettalk 188.2 175.1 183.5 77.1 0.1 0.1 0.0 0.0

pima 146.0 173.8 16.5 128.9 0.3 0.3 0.0 0.0
post-op 0.4 0.4 0.1 0.1 0.0 0.0 0.0 0.0

primary-tumor 15.7 12.3 5.9 4.9 0.0 0.0 0.0 0.0
promoter 21.9 23.0 9.5 2.2 0.0 0.0 0.0 0.0

road 135.9 70.5 37.8 313.3 0.3 0.3 0.1 0.1
soybean 49.8 43.6 16.0 1.8 0.0 0.0 0.0 0.0

splice 352.8 613.0 498.0 108.6 0.2 0.3 0.0 0.0
switzerland 12.1 11.7 2.1 3.3 0.0 0.0 0.0 0.0

tictactoe 12.2 12.3 8.2 63.0 0.0 0.0 0.0 0.0
usama-mys 28.3 23.7 13.6 3.0 0.1 0.1 0.0 0.0

va 43.1 41.6 3.9 8.8 0.1 0.1 0.0 0.0
votes 2.0 1.4 1.7 0.5 0.0 0.0 0.0 0.0

vowel 114.2 109.7 67.6 108.5 0.2 0.2 0.1 0.1
waveform 480.8 396.5 358.1 87.9 0.9 0.8 0.1 0.1

wine 0.6 0.7 0.9 0.4 0.0 0.0 0.0 0.0
zoo 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0
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Table A.15. CPU (pruning)

See Table A.16 for associated standard deviations
Task DL DM DE IE I1 I2 C1 C2 Mean

audio-no-id 1178.5 1159.5 575.6 22.5 1.7 1.6 0.3 0.2 367.5
balance-scale 3.1 2.9 2.6 8.3 0.1 0.1 0.2 0.2 2.2

bc-wisc 15.7 13.0 15.7 12.0 0.3 0.3 0.1 0.1 7.1
breast-cancer 50.4 29.9 45.3 25.0 0.2 0.2 0.1 0.0 18.9

bupa 166.1 94.0 133.0 160.3 0.6 0.5 0.3 0.2 69.4
chess-551x39 1154.4 919.8 847.4 89.8 1.4 1.3 0.3 0.2 376.8

cleveland 116.6 90.5 81.6 87.8 0.6 0.6 0.4 0.3 47.3
crx 505.4 228.8 371.7 298.2 1.2 1.2 0.4 0.4 175.9

fayyad 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.1
glass-no-id 45.3 30.8 27.9 22.0 0.4 0.4 0.3 0.3 15.9

hepatitis 33.9 25.9 30.0 5.5 0.2 0.1 0.1 0.1 12.0
horse-dead 99.4 45.5 68.6 13.0 0.4 0.3 0.2 0.2 28.4
horse-sick 7.0 4.9 5.9 1.4 0.1 0.1 0.1 0.1 2.4
hungarian 50.1 33.3 46.1 39.3 0.3 0.3 0.2 0.2 21.2

hypothyroid 404.9 365.1 387.3 29.3 4.1 3.6 1.3 1.1 149.6
ionosphere 2281.0 1366.9 893.6 20.5 3.3 3.2 1.4 1.4 571.4

iris 0.3 0.3 0.3 0.1 0.0 0.0 0.0 0.0 0.1
landsat 88.2 73.5 70.7 116.8 0.9 0.8 0.7 0.6 44.0

led24 66.6 61.1 63.7 4.9 0.3 0.3 0.1 0.1 24.6
led7 2.9 2.9 2.8 0.7 0.1 0.1 0.0 0.0 1.2

lenses 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
lung-cancer 45.2 21.9 37.9 1.2 0.1 0.1 0.0 0.0 13.3

lymphography 23.1 19.2 18.4 5.6 0.1 0.1 0.0 0.0 8.3
monks-1 1.4 1.4 1.4 0.2 0.1 0.1 0.0 0.0 0.6
monks-2 1.9 1.8 1.7 4.7 0.1 0.1 0.1 0.0 1.3
monks-3 0.4 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.2

mplex-11 24.0 23.5 23.0 12.2 0.8 0.8 0.2 0.2 10.6
mplex-6 0.3 0.2 0.3 0.2 0.0 0.0 0.0 0.0 0.1

mushroom 888.2 792.1 690.9 5.5 5.7 5.7 0.4 0.4 298.6
nettalk 3853.6 3815.9 2870.9 1380.1 12.1 11.7 5.0 3.0 1494.0

pima 897.5 390.9 682.3 1422.6 1.6 1.6 0.9 0.8 424.8
post-op 3.4 2.8 3.3 0.8 0.0 0.0 0.0 0.0 1.3

primary-tumor 125.3 122.8 100.9 26.0 0.7 0.5 0.3 0.2 47.1
promoter 134.7 100.9 125.7 9.7 0.2 0.2 0.0 0.0 46.4

road 1178.5 793.4 840.0 1355.8 4.5 4.3 3.8 3.5 523.0
soybean 430.7 454.8 365.3 16.4 1.6 1.6 0.4 0.4 158.9

splice 8281.7 7744.9 8184.6 466.4 12.4 11.6 1.6 1.5 3088.1
switzerland 27.9 29.8 20.7 14.0 0.2 0.2 0.2 0.1 11.6

tictactoe 481.1 485.5 487.6 724.7 3.1 2.7 1.2 0.8 273.3
usama-mys 193.0 86.4 129.8 14.0 0.8 0.7 0.3 0.3 53.2

va 96.1 99.9 59.4 64.0 0.6 0.5 0.3 0.2 40.1
votes 16.3 13.8 13.7 1.4 0.2 0.1 0.1 0.1 5.7

vowel 929.4 741.1 541.2 1019.9 5.0 5.0 3.4 3.3 406.0
waveform 3272.0 1747.6 2126.7 395.5 4.3 4.2 1.9 1.8 944.2

wine 8.1 7.0 7.3 1.5 0.1 0.1 0.1 0.1 3.0
zoo 2.2 2.1 2.3 0.1 0.0 0.0 0.0 0.0 0.9

Mean 591.0 479.3 456.6 171.7 1.5 1.5 0.6 0.5 212.8
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Table A.16. Standard Deviation for CPU (pruning)

See Table A.15 for associated point estimates
Task DL DM DE IE I1 I2 C1 C2

audio-no-id 240.4 201.5 89.8 4.6 0.1 0.1 0.0 0.0
balance-scale 0.3 0.3 0.1 1.0 0.0 0.0 0.0 0.0

bc-wisc 2.2 0.7 2.4 1.8 0.0 0.0 0.0 0.0
breast-cancer 7.0 6.7 6.0 2.7 0.0 0.0 0.0 0.0

bupa 41.2 24.1 27.3 27.8 0.1 0.1 0.0 0.0
chess-551x39 141.9 107.0 143.6 18.5 0.1 0.1 0.1 0.1

cleveland 25.9 12.3 6.2 9.0 0.1 0.1 0.0 0.0
crx 175.4 56.2 215.9 49.5 0.1 0.1 0.0 0.0

fayyad 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
glass-no-id 16.5 8.0 4.4 3.6 0.0 0.0 0.0 0.0

hepatitis 6.3 3.8 5.7 1.3 0.0 0.0 0.0 0.0
horse-dead 45.3 7.6 21.6 1.3 0.0 0.0 0.0 0.0
horse-sick 2.7 0.5 1.5 0.4 0.0 0.0 0.0 0.0
hungarian 9.4 5.1 7.9 7.5 0.0 0.0 0.0 0.0

hypothyroid 31.5 37.7 33.8 9.5 0.4 0.4 0.2 0.1
ionosphere 223.3 276.5 152.8 3.5 0.1 0.1 0.1 0.1

iris 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
landsat 8.2 6.9 4.8 17.1 0.0 0.0 0.0 0.0

led24 2.0 2.5 2.1 0.8 0.0 0.0 0.0 0.0
led7 0.2 0.2 0.2 0.1 0.0 0.0 0.0 0.0

lenses 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
lung-cancer 19.0 2.3 18.1 0.4 0.0 0.0 0.0 0.0

lymphography 4.6 2.8 1.9 0.6 0.0 0.0 0.0 0.0
monks-1 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0
monks-2 0.1 0.1 0.2 0.7 0.0 0.0 0.0 0.0
monks-3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

mplex-11 1.2 1.2 1.2 3.7 0.0 0.0 0.0 0.0
mplex-6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

mushroom 12.4 37.7 21.9 0.9 0.2 0.2 0.0 0.0
nettalk 166.6 186.0 232.3 66.7 0.1 0.1 0.0 0.0

pima 329.0 130.0 314.2 143.6 0.3 0.3 0.0 0.0
post-op 0.4 0.3 0.4 0.1 0.0 0.0 0.0 0.0

primary-tumor 9.3 10.9 7.0 2.5 0.0 0.0 0.0 0.0
promoter 10.7 12.8 10.0 1.9 0.0 0.0 0.0 0.0

road 211.5 73.6 110.9 190.3 0.3 0.3 0.1 0.1
soybean 69.6 53.5 13.4 1.8 0.0 0.0 0.0 0.0

splice 313.1 675.5 386.5 54.8 0.2 0.3 0.0 0.0
switzerland 7.9 6.9 1.9 2.2 0.0 0.0 0.0 0.0

tictactoe 9.7 8.9 9.0 77.1 0.0 0.0 0.0 0.0
usama-mys 39.9 13.8 31.0 2.8 0.1 0.1 0.0 0.0

va 18.5 43.6 5.3 8.3 0.1 0.1 0.0 0.0
votes 1.8 1.8 2.0 0.4 0.0 0.0 0.0 0.0

vowel 159.0 133.4 67.2 140.3 0.2 0.2 0.1 0.1
waveform 722.0 248.6 581.4 57.4 0.9 0.9 0.1 0.1

wine 0.9 0.6 1.2 0.4 0.0 0.0 0.0 0.0
zoo 0.1 0.2 0.2 0.0 0.0 0.0 0.0 0.0
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