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Abstract. We present a method for autonomous learning of dextrous manipulation skills with multifingered
robot hands. We use heuristics derived from observations made on human hands to reduce the degrees of freedom
of the task and make learning tractable. Our approach consists of learning and storing a few basic manipulation
primitives for a few prototypical objects and then using an associative memory to obtain the required parameters
for new objects and/or manipulations. The parameter space of the robot is searched using a modified version of the
evolution strategy, which is robust to the noise normally present in real-world complex robotic tasks. Given the
difficulty of modeling and simulating accurately the interactions of multiple fingers and an object, and to ensure that
the learned skills are applicable in the real world, our system does not rely on simulation; all the experimentation
is performed by a physical robot, in this case the 16-degree-of-freedom Utah/MIT hand. Experimental results
show that accurate dextrous manipulation skills can be learned by the robot in a short period of time. We also
show the application of the learned primitives to perform an assembly task and how the primitives generalize to
objects that are different from those used during the learning phase.
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1. Introduction

A dextrous manipulator is a robotic system composed of two or more cooperating serial
manipulators. Dextrous manipulators have potential applications in areas such as prosthetics
and space and deep sea exploration, where a single robotic system will be required to perform
avariety of tasks and thus versatility rather than precision is the main requirement. However,
programming these robots to solve complex tasks in the real world has remained an elusive
goal. The complexity and unpredictability of the interactions of multiple effectors with
objects is an important reason for this difficulty.

In complex and hard-to-model situations, such as dextrous manipulation, it would be
desirable if the behaviors or skills exhibited by the robot could be learned autonomously by
means of the robot’s interaction with the world instead of being programmed by hand. How-
ever, machine learning of robotic tasks using dextrous manipulators is extremely difficult,
mainly due to the high dimensionality of the parameter space of these robots. Conventional
approachesto this problem face the well-known “curse of dimensionality” (Bellman, 1957),
which essentially states that the number of samples required to learn a task grows expo-
nentially with the number of parameters of the task. Another problem is that autonomous
experimentation with real robots is expensive both in terms of time and equipment wear.
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For these reasons, most applications of machine learning to robotics have dealt with simple
robots, and have concentrated on simple tasks with a few discrete states and actions.

A commonly used approach to make robot learning feasible despite the high dimension-
ality of the sensory and motor spaces is to run the learning algorithms using simulated envi-
ronments. However, in situations involving complex robots and environments, it is difficult
or impossible to gather enough knowledge to build a realistic simulation (Mai®¥4).
Moreover, some physical events such as sliding and collisions are difficult to simulate even
when there is complete knowledge. For these reasons, we believe that for the learned skills
to be applicable by the physical robot in its environment, much of the learning and experi-
mentation has to be carried out by the physical robotitself. Given the high cost of real-world
experimentation, for the learning algorithms to be successfully applied, itis crucial that they
converge within a reasonable number of trials.

Observations made on human hands offer some clues about how to deal with the problem
of the high dimensionality of the parameter space of dextrous manipulators. Arbib et al.
(1983) introduced the conceptywftual fingersas a model for task representation at higher
levels in the human central nervous system. In this model, a virtual finger is composed of
one or more real fingers working together to solve a problem in a task. The use of virtual
fingers limits the degrees of freedom to those needed for a task, rather than the number of
physical degrees of freedom the hand, human or robotic, has. Iberall (1987) has shown
how the hand can be used as essentially three different grippers by changing the mapping
of virtual fingers to real fingers. A generalization of virtual fingers, calledrtaal tool
(Nelson et al., 1995; Fuentes & Nelson, 1996b), has been proposed as a way of dealing with
the redundant degrees of freedom of complex robotic systems.

An object translation by a human hand using a precision grasp, that is, a grasp where
the only contacts occur at the fingertips, can be viewed as the action of two virtual fingers
moving in the direction of the translation while maintaining a roughly constant force applied
to the object. In general, the thumb will constitute one virtual finger, while one or more of
the remaining four fingers work in conjunction and form the other virtual finger.

Using the virtual finger abstraction, the dimensionality of learning a manipulation task
is greatly reduced, since the task of the learning method is to find the required commands
to the virtual fingers, instead of direct commands to physical actuators. Meanwhile, the
mappings from virtual to real fingers can be learned as a separate problem or be provided
by a human.

In this paper we present an approach for autonomous learning of dextrous manipulation
skills that uses the concept of virtual fingers to limit the dimensionality of the search space.
The approach consists of first learning and storing a few basic manipulation primitives for a
few prototypical objects and then using a nearest-neighbor method to compute the required
parameters for new objects and manipulations. The primitives are learned using a modified
version of the evolution strategy, which allows us to deal with the noise normally presentin
tasks involving complex interactions between a robot and its environment. Our system does
not rely on simulation or modeling; instead, all the experimentation is performed by the
physical robot. In Section 2 we describe the learning method in detail, Section 3 presents
experimental results using the Utah/MIT hand, Section 4 briefly outlines related work, and
Section 5 discusses salient features of our approach and directions for future work.
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Figure 1. Schematic diagram of the manipulation system.

2. Learning Manipulation Skills

Figure 1 shows the general structure of our manipulation system, including its learning
component. The input is a perceptual goal and the output is a robot command that when
executed by the robot will take it to a configuration that will satisfy the goal. The goal of the
learning system is to build a table, indexed by goals, that gives as output the virtual finger
commands that can later be converted to the robot commands that will achieve the goal.
It is assumed that the mapping from virtual to real fingers, which is task and manipulator
dependent, is provided by the human programmer.

The system first learns a set of primitives for performing basic translations and rota-
tions of several different objects. New manipulations can be obtained by scaling and
adding or subtracting the primitives. This method is similar to Speatartson primitives
(Speeter, 1991), the main difference being that in his system the primitives were supplied
by the programmer, while in ours they are learned automatically.

Normally, a primitive would consist of the changes in joint angles of the hand that are
required to perform the desired manipulation; however, using the virtual finger observation,
as explained in Section 1, we command identical changes to corresponding joints of each
of the real fingers that are coupled to form a virtual finger. Essentially, the system learns
to manipulate objects using two 3 degree-of-freedom virtual fingers, while the programmer
provides the mappings from virtual finger parameters to the joint angles of the particular
robot used. Besides efficiency, this has the advantage of making the learning mechanism
manipulator-independent.

We assume that the programmer providgseeceptual goain the form of the sensor
readings that will be observed at the goal position. In the case of dextrous manipulation, a
perceptual goal is given by the desired final position and orientation of the object and the
forces applied by each of the fingers.

A perceptual goal has the forgn= [z, y, z, o, 8,7, p1, - . ., pn], Wherez, y, z encode the
position of the object in 3-dimensional Cartesian space} and~ are the Euler angles
azimuth, elevation and roll defining the object’s orientation with respect to a hand-centered
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coordinate system, and, . . ., p,, are the readings in the tactile sensors located at each of
then fingertips.

Let g be a perceptual goal and be a vector encoding virtual finger commands. Let
p(x) be the perception vector obtained from reading the sensors after executing the robot
command corresponding # A metric f, which monotonically increases with the quality
of the manipulation encoded hy; is given by

flg,p(x)) = — Zwi(gi —pi(m))Q

wherem is the dimensionality of the sensory spaee, . . . , w,, are the relative weights of
the errors in the different elements of the perception vectovare {1, ..., m} w; > 0.

Given the uncertainty present in sensors and effectors, and the fatttizgthave several
local minima, it is unlikely that a standard Newton or gradient-based minimization method
would suffice for this problem. Therefore, we have to resort to optimization techniques
that are better at dealing with local minima and handling an apparently nondeterministic
environment.

The optimization method we use is a modification of the well-known evolution strat-
egy (Rechenberg, 1973; Schwefel, 1981), augmented with an extrapolation operation in
addition to the standard mutation operator.

2.1. The evolution strategy

The evolution strategy is a family of iterative probabilistic optimization algorithms loosely
based on biological evolution. In its simplest form, the optimization starts wjthrant
a real-valued vector which encodes a candidate solution to the problem at hand. The
following two steps are then repeated until a termination condition is attajig¢Create
a descendant, by randomly changing the parent (mutat{@)Select the better of parent
and descendant as the parent for the next iteration (selection). The process terminates when
a prespecified number of iterations is executed or a goal value in the objective function is
attained. According to the biological observations that offspring are similar to their parents
and that small changes occur more often that large ones, mutation is realized by adding
to the parent a normally distributed random vector with expected value zero. A major
feature of this family of algorithms is the dynamic updating of the standard deviation of the
distribution used to obtain the descendant in response to the characteristics of the region
of the objective function that is being explored. If successful mutations occur rarely, the
search is likely to be near a minimum and thus it is a good idea to decrease the size of the
neighborhood being searched, since the minimum must be nearby. If successful mutations
occur very often, it means that convergence could be sped-up by increasing the step size.
The evolution strategy has been shown to be globally convergent given unbounded run-
ning time (Born, 1978). Similar results have also been shown for simulated annealing
(Arts & Korst, 1989) and genetic algorithms (Eiben et al., 1991). Of more practical inter-
est, the evolution strategy has been shown in many applications to converge quickly and
be relatively insensitive to local minima. The evolution strategy is generally preferable to
genetic algorithms for solving problems that deal with the optimization of functions of real
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numbers!. Its main advantage over simulated annealing lies in its adaptive step-length,
realized by dynamically varying the standard deviation of the mutation vector in response
to the characteristics of the objective function and the region being explored.

2.2. The learning algorithm

The algorithm we use for learning manipulation primitives uses an extrapolation operator

as an heuristic to guide the search in the direction of decreasing value of the objective
function in addition to the standard mutation operator. The idea behind the extrapolation

operator is to use the values of the objective function in the previous iterations to estimate
the direction of the gradient of the function and obtain a new descendant by extrapolating
in that direction. The extrapolation step-length is dynamically adapted in response to the
local characteristics of the function being explored. As in the mutation case, we increase
the step-length when the probability of a successful extrapolation is above a threshold and
decrease it otherwise.

Formally, the algorithm we use for learning the virtual fingers commands that will execute
the desired manipulation can be described as follows.

Let f be the objective function as defined earlier détc R**! be the set of valid virtual
finger commands, wheteis the number of virtual fingers arids the number of degrees of
freedom of each virtual finger. Let(x) € R™,x € M be the perception obtained after
executing the virtual finger command wherem is the dimensionality of the sensor space.

Given a perceptual gogl the overall goal of the optimization procedure is to find a vector
x* € M such that

(Ve € M) f(g,p(x")) = f(g,p(x))

The algorithm starts with parentu® = (z°, 0%, \°, 2°), wherex® € M is a candidate
virtual finger command;® > 0 is the standard deviation? > 0 is the extrapolation step-
length anck® € R¥*!is the estimated gradient vector. In the absence of prior information,
these values can be initialized randomly.

In each iteration, a candidate virtual finger command’ is obtained by mutating the
parent

xz! =x' +7r(0,0%)
wherer (0, o%) denotes a random vector with each element obtained from a normal distri-
bution with zero mean ang’ standard deviation.
Another candidate virtual finger comman{lis then obtained by adding to the parent a
vector with magnitude\? in the estimated direction of the gradient.

zi

A N
12|

After executing the commands encodedddy z?, andx, we obtain the perceptions
p(z'), p(z;,) andp(z.) and the objective function valugig, p(z’)), f(g, p(x},)) and
f(g,p(z?)). _ S

The individualu'™t = (z'+! o1 N+l 2i+1) to be used as the parent in the next
generation is given by:
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a = argmin f(g,p(x)), © € {z',x,, ¢}

, o L
i+1 O'z*Cd pr:n>5

ag = i .
o'/cq oOtherwise

AiJrl _ )\’L * Cq if pé > %
A'/cq oOtherwise

i il _ i . ; ;

Zi+1 _ Oé-* é_" + (1 — Q)M |f $7'+1 7é $Z
2" otherwise
wherel > a > 0, pi, is the estimated probability of having a successful mutation, that
is, the ratio of timesf(x! ) is greater tharf(z?) to the number of iteration$, p! is the
estimated probability of having a successful extrapolation, computed similaply,tand
cq > 1is a constant.
The choice oﬁ as a constant to modify and )\ is based on Rechenberd & success rule

(Rechenberg, 1973) and was proven to be optimal for a restricted kind of object functions
and has been observed to work well in practice.

Table 1.Table to be filled-up by the learning algo-

rithm.
Perceptual Goals
Joint Angles | g, go xE I
J1 1,1 T2 Tlm
Jo 21 T22 o T2m
jn Tn,1 Tn,2 cct Tn,m

The goal of the learning algorithm is to fill-up a table containing virtual finger commands
and indexed by object and perceptual goal, as shown in table 1. In thejalsle, vector
encoding the joint angles of the hand after graspingth®bject in the prototype set. For
each object the system stores the configuration of the liaafter the grasping operation
and then it learns the virtual finger commansgls, . .., x; ,,, required to attain perceptual
goalsg,, ..., g,, for that object using the algorithm described earlier.

Inthe look-up phase we use a nearest-neighbors approach to obtain the appropriate virtual
finger commands for a given object and goal. kgt be the measured configuration of
the hand, obtained from the hand’s joint angle sensors angt Ibe the perceptual goal.
Letj, andj,, p # q be the two closest values (nearest neighborg),tan the row index
column. Letg, andg,, r # s be the two closest values 3 in the column index row. The
commande* to attain the goal for the new object is given by:

Z Z ( Jml |g*7 —9 ‘ — g*| w{p,q}ia{’”»s}j)

ie{p.q} je{r,s} |3p*]m|+\3q*jm| g, —g*| +19.
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Figure 2. The experimental setup.

Although combining two or more manipulation primitives in Cartesian space by interpo-
lating the changes in joint space required for each of them is not mathematically correct,
experimental results using the Utah/MIT have shown that the hand’s compliance allows this
to work well in practice.

3. Experimental Results

The algorithms described in the previous section were implemented in the University of
Rochester’s vision and robotics lab using the Utah/MIT dextrous hand (Jacobsen et al., 1986).
We used an Ascension flock of bird4’ magnetic sensor attached to the object being ma-
nipulated for position and orientation sensing. For tactile sensing we used inteffink
pressure-sensitive resistors, which where taped to the object. Both types of sensors are
fairly noisy, and better results could be expected if more accurate sensors, such as a laser
rangefinder, were available. The experimental setup is shown in figure 2.

In the four-fingered Utah/MIT hand the thumb is permanently opposed to the index,
middle and ring fingers, therefore it is natural to partition the real fingers into two virtual
fingers, one composed by the thumb and the other by the remaining fingers. Each finger of
the Utah/MIT hand is itself redundant, having four joints, three of which are coplanar. To
solve this redundancy we use another observation made on human hands, namely, that the
angles of the last two joints of each finger are roughly equarhis form of redundancy
resolution and the use of virtual fingers, reduce the dimensionality of the parameter space
from 16 to 6 and make autonomous learning in a reasonably short period of time feasible.

The system learned several basic manipulations consisting of translations along the three
main axes and rotations about 2 of the main axes and several combinations of them. For
computing the manipulation quality functighwe usedv = [2,2,2,1, 1,1, 10, 10, 10, 10],
where errors in position (corresponding to the first three elements of the perception vector)
are given in millimeters, errors in orientation (the next three elements) are given in degrees,
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Figure 3. Translation along the-axis.
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Figure 4. Translation along thg-axis.

and errors in applied force (the last four elements) are given in Newtons. It was observed
that the method was not very sensitive to changes in theses values. On average, each
primitive was learned in about 50 generations using the algorithm described in Section 2.
The algorithm was run until the precision exceeded a predefined threshold. Each trial move
took about one second. With three trials moves per generation and including other delays,
each primitive was learned in a little over three minutes on average. The main bottleneck
we faced was the hysteresis in the interlink tactile sensors, which forced us to wait for a
few tenths of a second between moves to allow the sensors to return to their normal state.
This alone accounted for about 40% of the running time.

Figures 3 shows the hand performing a translation alongethgis by sequentially
moving to the previously learned godls, v, z] = [-25,0,0], [z,y,2] = [0,0,0] and
[z,y,2] = [25,0,0], where displacements are given in millimeters. Similarly, figure 4
shows a translation along theaxis using the sequen{® —25, 0], [0, 0, 0], [0, 25, 0]. Fig-
ure 5 shows the sequenfte 0, 10}, [0, 0, 0], [0, 0, —10] to perform a movement along the
z-axis. Intermediate positions (not shown) where obtained using the nearest neighbors
approach, as explained in Section 2. These movements were learned with an object that is
similar, but not identical, to the one used during execution (see figure 2.) It can be seen
that the quality of the manipulation is quite good, showing also that the learned skills can
be transferred between similar objects. Although few quantitative results for other systems
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have been reported, the quality of the manipulations seems comparable to the one obtained
by other systems where the manipulations are programmed by hand, such as (Speeter, 1991;
Michelman & Allen, 1993; dgersand et al., 1996; Fuentes & Nelson, 1996a).

10 20 30 40 50 60

Figure 6. Evaluation of the quality of manipulation as a function of generation. A perfect manipulation has an
f value of 0. The perceptual goal wib, 0, 0, 0, 0, 0], corresponding to a 25 mm translation along thexis.
The initial perception value wgs, 0, 0, 0, 0, 0].

Figure 6 shows the value of the manipulation quality functjofor a translation of
25 mm along ther-axis as a function of the generation. The perceptual goal also in-
cluded maintaining a constant force applied by each finger, equal to the forces mea-
sured at the start of the manipulation. After approximately 25 generations a good level
of performance is attained. Near the goal, further exploration yields slower improve-
ment, due in part to the fact that the noise makes the choices between two very similar
parameter sets almost random. After 63 generations the prespecified accuracy was ob-
tained and the program stopped. In this particular run the perception at that point was
p = [24.940,0.110,—1.208,0.2406, —1.5355, —0.0688], yielding a final error of 1.21
mm in position and 1.56 degrees in orientation, which is remarkably accurate. Similarly,
figure 7 plotsf for a translation of -25 mm along the y-axis. In this case the conver-
gence was a little quicker, exceeding the threshold after 48 generations. The final error
was slightly larger in position and smaller in orientation, with a final perceptiop of
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Figure 7. Evaluation of the quality of manipulation as a function of generation for perceptual goal
[0,—25,0,0,0,0], corresponding to a -25 mm translation along ghexis. The initial perception value
wag0, 0,0, 0,0, 0].
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Figure 8. Evaluation of the quality of manipulation as a function of generation for perceptual goal
[0,0,-10,0,0,0], corresponding to a -10 mm translation along thaxis. The initial perception value was
[0,0,0,0,0,0].

Table 2.Goal positions, actual positions after learning and errors for a few selected prototype
movements. Positions are given in millimeters and orientation angles and errors in degrees.

Goal =[z, v, z, a, 3,7] Actual final position P. Error | O. Error
[25,0,0,0,0,0] [24.9,0.11,-1.21,0.24,-1.54,-0.07] 1.21 1.56
[-25,0,0,0,0,0] [-26.6,-3.41, 1.87, -2.60, 0.88, 1.19]  4.20 3.44
[0, 25,0,0,0,0] [-1.76, 24.5,0.99, -6.63, 0.02, 0.15] 2.08 6.64
[0, -25,0,0,0, 0] [-0.99, -26.3, 0.11, 0.24, -0.09, 0.07] 1.60 0.26
[0,0,10,0,0,0] [-1.54,-0.88,9.78,0.73,2.88,0.33] 1.79 2.99
[0, 0,-10, 0,0, O] [0.11, -1.65, -9.01, -0.53, -7.45, 0.33] 1.93 7.51

= [-0.99, —-26.28,0.11,0.243, —0.091, 0.066], an error of 1.6 mm in position and 0.26
degrees in orientation. Figure 8 shows the learning plofpfer [0,0,—10,0,0,0]; the
overall behavior of the optimization is similar to the previous two cases. Table 2 shows
goal positions, actual positions after learning and errors for a few selected manipulations.
In general the results are consistent with the ones described above.
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Figure 9. Generalization to a new object.

Figure 9 illustrates how the system can generalize to new objects. The figure shows the
hand manipulating an object that was not in the original prototype set. The appropriate
virtual finger commands were computed using the nearest neighbors method, as explained
in Section 2. It can be seen that the quality of the manipulation is good, even though the
system did not receive any training for that particular type of object.

3.1. Aninsertion task

In figure 10 we show how a set of learned manipulation primitives can be used to perform a
simple teleoperated assembly task. The goal is to insert the hexagonal piece into the nearby
hexagonal hole. The system first learned 8 primitives, consisting of translations along the
three main axes and a rotation about the vertical axis in the positive and negative directions.
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Figure 10. Performing a teleoperated task using the learned primitives.

The learned primitives could then be invoked by a human teleoperator, using the keyboard
in the controlling workstation, in order to solve the task. This is similar to the approach
described in (Fuentes & Nelson, 1996b), where a teleoperator commands manipulations in
object space instead of direct commands to the actuators, with the difference that in that work
the manipulation primitives were provided by a programmer. The learned manipulations
were accurate enough to allow inexperienced teleoperators to achieve a success rate of over
90% in the insertion task.
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4. Related Work

Some work has been done in robotic manipulation using machine learning techniques. In
general, these approaches have dealt with simple tasks such as grasping with parallel jaw
grippers, and simple manipulation strategies using robot arms.

Dunn and Segen (1988) presented a robotic system that learns how to grasp objects. In
their system, when an object is presented for the first time the robot experiments with it,
seeking a way to grasp it by trial and error using visual information and input from the robot
gripper. A discovered grasp is saved along with the object’s shape. The system generalizes
to different positions and orientations but not to sizes.

Kamon et al. (1996) presented a robotic system that learned to grasp objects with a
parallel-jaw gripper using visual information. Their system learns two separate subprob-
lems: to choose grasping points, and to predict the quality of a given grasp. Itincrementally
improves its performance over the course of a training session. The system used very lit-
tle information about the target object; in particular, no attempt was made to recover the
object’s shape.

Salganicoff etal. (1994) used a modified version of the ID-3 inductive learning algorithm
(Quinlan, 1986) in a robotic system that learned to grasp objects using visual information.
Their system learned likely to succeed grasping strategies in the form of the azimuth and
elevation approach angles of the gripper to the object given a superellipsoid fit of the object
as input.

Maes and Brooks (1990) developed a methodology for learning to coordinate independent
primitives or behaviors of multiple actuators using a reinforcement learning framework.
They demonstrated their approach with a six-legged walking robot that is initially given
independent behaviors for moving each leg and then learns the situations in which each
behavior should be triggered to enable the robot to walk. They report a learning time on
the order of 10 minutes, without requiring the use of a simulator.

Christiansen, Mason and Mitchell (1990) described a system that learned models of
manipulation actions from observations of the effects of such actions. In their experimental
implementation, a robot learned how to reposition and reorient an object located on a tray,
held by the robot from underneath, by a sequence of tray tilts. This work introduced the term
apparent non-deterministo refer to the fact that executing the same action twice from the
same starting state might give different results. They coped with apparent non-determinism
by assuming probabilistic rather than deterministic transitions between states. This system
uses a discretization of the perception and action spaces, which are both one-dimensional
and scalability to more complex tasks may be difficult.

The approaches to manipulation using machine learning described in this section deal with
low-dimensional parameter spaces, and thus might not be suitable for use with a redundant,
high-degree-of-freedom manipulator. Another potential inconvenience is the discretization
of the action and state spaces.

5. Conclusions and Future Work

In this paper we have presented a method for machine learning of dextrous manipulation
skills. We consider the following to be the most salient features of this work.
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e Heuristics derived form observations made on human hands were used to reduce the
degrees of freedom of dextrous manipulation with robotic hands. This significantly
simplified the task and made autonomous learning feasible.

e Our system does not rely on simulation. Instead, all the experimentation is done by
a physical robot. This is valuable in situations such as dextrous manipulation, where
building a realistic and accurate simulator is extremely difficult.

e We used a modified version of the evolution strategy to learn manipulation primitives.
This learning algorithm successfully dealt with the noise in sensors and effectors and
allowed the primitives to be learned in a period of a few minutes.

¢ We showed that the learned primitives can be combined to form general manipulations
and perform more complex tasks.

Future work includes a quantitative comparison between our approach and more tradi-
tional nonlearning approaches to dextrous manipulation. It also includes learning primitives
that require repositioning the fingers on the surface of the object, and using a more sophis-
ticated version of the evolution strategy to learn the primitive skills in even shorter periods
of time.
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Notes

1. Some modifications to the original binary-valued representation have been proposed and used somewhat
successfully (Grossman & Davidor, 1992)

2. Inthe implementation we use a fixed length window of past results to estimate this probability

3. This observation has been used in other systergsilarasimhan, 1988) for computing the inverse kinematics
of the Utah/MIT hand.
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