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Abstract. Learning from “structured examples” is necessary in a number of settings, including inductive logic
programming. Here we analyze a simple learning problem in which examples have non-trivial structure: specif-
ically, a learning problem in which concepts are strings over a fixed alphabet, examples are deterministic finite
automata (DFAs), and a string represents the set of all DFAs that accept it. We show that solving this “dual”
DFA learning problem is hard, under cryptographic assumptions. This result implies the hardness of several other
more natural learning problems, including learning the description [Bgicssic from subconcepts, and learning
arity-two “determinate” function-free Prolog clauses from ground clauses. The result also implies the hardness
of two formal problems related to the area of “programming by demonstration”: learning straightline programs
over a fixed operator set from input-output pairs, and learning straightline programs from input-output pairs and
“partial traces”.
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1. Introduction

In a number of settings it is necessary to learn from “structured” examples: ex-

amples that cannot be easily encoded as feature vectors. Examples of such settings in-
clude multiple-instance learning (Dietterich et al., 1997), learning knowledge representa-
tion languages (Cohen & Hirsh, 1994b), and inductive logic programming (Quinlan, 1990,
De Raedt, 1995, Muggleton & De Raedt, 1994). In this paper we will analyze a simple in-
stance of a learning problem in which examples have a non-trivial structure—specifically,

a learning problem in which the examples are directed graphs.

More formally, we consider a learning problem in which the examples are determin-
istic finite automata (DFAS), the concepts are strings over a fixed alphabet, and a string
s denotes the set of all DFAs that accept it. This problem is, in a very natural sense,
the dual of the well-investigated problem of learning DFAs from strir{@sgluin, 1987,

Kearns & Valiant, 1989). Note that in this “dual” DFA learning problem, although the
examples have non-trivial structure, the concepts are very simple: a concept essentially tra-
verses a single path through the graph, and tests a single label associated with the endpoint
of this path.

We investigate thpolynomial predictabilit{Pitt & Warmuth, 1990) of this learning prob-
lem: in other words, we investigate the complexity of finding a hypothesis which is probably
approximately correct, without placing any restrictions on how the hypothesisis represented.
We show that solving the “dual DFA problem” in this representation-independent sense is
as hard as solving certain cryptographic problems that are widely assumed to be compu-
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tationally difficult, such as inverting the RSA encryption function. Moreover, this result
holds even if the class of example DFAs is highly restricted.

This result leads immediately to a number of similar hardness results for less artificial non-
propositional representations, including the resolution of two previously open problems.
As one corollary of the dual DFA result we show that the description I@gigssic is not
polynomially predictable, again under cryptographic assumptiBescription logicsare
a family of representation languages that have been heavily investigated by the knowledge
representation community; for surveys of this work, see Borgida (Borgida, 1992), MacGre-
gor (MacGregor, 1991), or Woods and Schmolze (Woods & Schmolze, 1992). Previously,
Cohen and Hirsh (Cohen & Hirsh, 1994a) showed that the descriptiondagissic is not
pac-learnable from examples, and Frazier and Pitt (Frazier & Pitt, 1996) showed theat
sIC is not pac-learnable from membership queries alone. Both of these negative results,
however, pertain only to learners that are restricted to output a hypothesisGh.nssic
language; the question of the learnability@f Assic and related description logics from
random examples in a representation independent sense has until now remained open.

Another well-studied problem is the learnability of logic programs (Page & Frisch, 1992,
Dzeroski et al., 1992, Cohen & Page, 1995). In this paper we show that arity-two “deter-
minate” function-free Prolog clauses are not polynomially predictable, under cryptographic
assumptions. Again, although Kietz (Kietz, 1993) showed earlier that this language is not
pac-learnable, its learnability in the polynomial predictability model has remained open.

Finally, the dual DFA result gives some insight into the problem of learning simple
programs from examples and traces. We show that learning straight-line code (without
loops or branches) from input/output pairs is hard, even if there are only three possible
actions to take at each step of the program. We then show that this problem becomes
tractable if the learner also has access to a “trace” that reveals the intermediate values
computed by the target program after performing each individual action. However, learning
from traces is shown to be cryptographically hard if an adversary is allowed to hide even
O(loglog n) bits of each intermediate value. Further, learning from traces is shown to be as
hard as learning DNF if an adversary is allowed to hide dwlybits of each intermediate
value. These results are motivated by problems from the research area of “programming
by demonstration” (Cypher, 1993).

In the remainder of the paper, we will first present some preliminary definitions, and
then the hardness results for the dual DFA problem. We will then discuss the technical
implications of this result with respect to problems in first-order learning and automatic
programming. We will conclude with a summary, and a more general discussion of the
consequence of the results.

2. Preliminaries

This paper uses the model péc-learnability as introduced by Valiant (Valiant, 1984).

Let X be a set, called thdomain Define aconceptC' over X to be a subset ok, and
alanguage” to be a set of concepts. Associated witlis some scheme for representing
the concepts irC. In general, we will be casual about the distinction between a concept
and its representation; when there is a risk of confusion we will write the set denoted by a
representatiod’ (i.e., the extension of”) asext(C). We will assume a&izeor complexity
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measureon representationS € £, and also a size measure on instances X . The size
of C' € L (respectively: € X) will be denoted C| (or |z|). Typically these measures will
be polynomially related to the number of bits needed to encode a concept (or instance).

If P is a probability distribution, aample of” drawn fromX according toP is a pair of
multisetsST, S~ drawn according taP, ST containing only the positive examples ©f
and.S~— containing the negative ones. We define a sample te;Hsoundedf it contains
no example larger tham;. We will not assume that; is known to the learning algorithms.

Informally, pac-learnability requires that a learning algoritRacLEARN be “probably
approximately correcti.e., thatPACLEARN outputs an accurate hypothesis from a given
languageL most of the time, whenever the target concept is succinctly expressille in
Formally, we define a languaggto bepac-learnabléff there is an algorithnrPACLEARN
and a polynomial functiorm(%, %,nj,nT) so that for everyny > 0, everyC € L of
size less thamp, every0 < € < 1, every0 < 6 < 1, and every probability distribution
P, PACLEARN has the following behavior: when run onmma-bounded samplé™, S~
of C drawn according td” of size|S™| + [S~| > m(2, 5, n7, nr), PACLEARN outputs
a hypothesis? € L such thatProb(P(HAC) > ¢) < ¢, where/A denotes symmetric
difference, and furthermor&acLEARN runs in time polynomial ir%, % nr, nt, and the
size of the sample. The probability above is taken over the possible safplasd S~
and (if PACLEARN is a randomized algorithm) over any coin flips madeltaCLEARN.

The functionm (1, %, ny, nr) is called thesample complexityf PACLEARN. A hypoth-
esis H such thatProb(P(HAC) > €) < ¢ is callede-good with respect to the target
C.

The definition of pac-learnability requires that the hypothédsisf the learner be ex-
pressed in the languadg®& Since this is not always strictly necessary, it is often desirable
to relax this requirement (particularly when proving negative results.) We will saytisat
polynomially predictablé there is an algorithnPAcPREDICT that satisfies all the require-
ments for a pac-learning algorithm fdr, except thaPACPREDICT outputs a polynomial
time evaluable hypothesig which is perhapsaotin the target languagé. Negative results
in the polynomial predictability model are sometimes called “representation independent”
hardness results.

One important analytic tool used in this papeprediction-preserving reducibilityas
described by Pitt and Warmuth (Pitt & Warmuth, 1990) {fis a language over domaity
and., is a language over domaiXi;, then we say thatredicting£; reduces to predicting
Lo, written £, < Lo, iff there is a functionf : X; — X5, henceforth called thmstance
mapping and a functiory : £; — L», henceforth called theoncept mappingso that the
following all hold:

1. z € C ifandonlyif f(z) € g(C)—i.e, concept membership is preserved by the
mappings;

2. the size complexity of(C) is polynomial in the size complexity @f—i.e., the size of
concepts is preserved within a polynomial factor; and

3. f(x) can be computed in polynomial time.

Intuitively, g(C1) returns a concepfs € Lo that will “emulate”C; (i.e., make the same
decisions about concept membership) on examples that have been “preprocessed” with
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the functionf. Pitt and Warmuth (Pitt & Warmuth, 1990) showed thatif < £, and
Lo is polynomially predictable, thef; is also polynomially predictable. Conversely, if
Ly, < Ly andLy is not polynomially predictable, then neitherds.

3. Hardness of the dual DFA problem

A well-studied problem in computational learning theory is the learnability of DFAs from
strings (Angluin, 1987, Kearns & Valiant, 1989). We will now consider a dual version of
this problem, in which the concepts are strings and the examples are DFAs. Let us consider
the domain of DFAs over a fixed alphabigtand the concept clasg’¥™ of stringss € £*,
with semantics defined as follows: if is a DFA ands is a string in¥*, thenM € ext(s)
iff sis accepted by/. In other words, a string denotes the class of DFAs that accept it.

Let us first consider the learnability of this language in the pac-learning model. Using a
construction from Cohen and Hirsh (Cohen & Hirsh, 1994a) it can be easily shown that the
dual DFA learning problem is hard in the pac-learnability model.

THEOREM 1 The languagesP™ is not pac-learnable unless RP=NP.

Proof: We only sketch the argument, as it closely parallels (part of) the argument used
in Theorem 3 of Cohen and Hirsh (Cohen & Hirsh, 1994a). By the results of Pitt and
Valiant (Pitt & Valiant, 1988), a language is pac-learnable only if there is a polynomial-
time algorithm for the correspondingpnsistency problemin this case, the problem of
finding a consistent hypothesisd¥™ given a set of positive and negative example DFAs.
We will reduce 3SAT (Hopcroft & Ullman, 1979) to the consistency problem for dual DFAs,
thereby showing that the consistency problem is NP-hard.

Assume that there is an algorithrhthat solves the consistency problem, anddet
A1 (li, V1, V 1;,) be a 3CNF sentence overvariables, where each litergl is either
a variabler;; or its negation. Without loss of generality, assume that the litérals;,,
and/;, are in strictly increasing alphabetical order. Now construct fgpanset ofn DFAS
My, ..., M, wherel; is the minimal DFA accepting the language

(0+ 1) 7s(l,) (0 + 1m0
(0+1)27"s(li) (0 + 1"
(04 1)~ 1s(ly, ) (0 + 1)

Wheres(l)is 1ifl = x, ands(l) is0if | = T. The DFAsM;, ..., M, are then presented
to A as positive examples. Now, if the binary strings of lengtaccepted by these DFAs
are interpreted as assignments to the variables that appéait is easily verified thaflZ;
accepts exactly the assignments that satisfyieclause ofp. Thus any concept (string)

s that covers all the positive examples must satisfy all the literads ahd therefore satisfy

¢ itself, and hence if a polynomial time algorithmexists it can be used to solve instances
of 3SAT. ]

Proposition 1 shows thatlearning is hard when the learner is required to output a hypothesis
in the target languag8”™ . Now let us consider the more interesting question of whether
a pac hypothesis can be found in some other representatienthe question of whether
this language is polynomially predictable.
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Table 1.Examples of formulae idﬁﬁy* for various values ofl

d
Bn,*

x1 NT3

x2 AN T4

(xz /\ﬂ) \Y (ml /\E)

(1 ANz2a Az3) V (H/\LU_Q/\at_g)

(x2 ATD) V (21 ATB)) A (24 ATZ) V (w5 ATD)

NP, P, OO U

The principle technical result of this paper is the following theorem, which shows that
the “dual DFA problem” is as hard as learning log-depth boolean circuits, even if example
DFAs are restricted to be over a three-letter alphabet. In fact, in the proof, we will show
that this result holds even for a rather restricted class of DFAs, nhamely those that are also
acyclic, leveled, and of logarithmic level width (as defined below).

THEOREM 2 If |X| > 3 then the language&P™™ is not polynomially predictable under
cryptographic assumptiorts.

The remainder of this section is a proof of this result. The proof is based on a prediction-
preserving reducibility from a certain class of boolean formulae, which we define below, to
the dual DFA learning problem. Given this reduction, existing hardness results for boolean
formulae can be used to establish the theorem itself.

Given the boolean variables, . . ., x,,, define the class of boolean formulaé,* induc-
tively as follows. (The reason for the somewhat cumbersome notation will become clear
shortly.)

. Bg’* is the class of monomials ovet, . .., z,.

e if d > 0anddis odd, then

Bl ={bVby:b € B, andb, € BI!

e if d > 0anddis even, then

B, ={biAby:b € B andb, € BI!

In other words,Bgﬁ* is the class of balanced alternating degtheolean formulae ovet
variables with monomials as leaves. Table 1 contains some examples of formBiae.in

We will now define some restrictions on DFAs. Lkt be a DFA with start statg, and
transition functiory. DefineLEVEL(d, M) to be the set of states W that can be reached
with input strings of lengthl. Thelevel widthof a DFA M is defined to be the maximum
cardinality over alll of the setLEVEL(d, M). A DFAis leveledif LEVEL(d;, M) and
LEVEL(ds, M) are disjoint for alld; # d. Note that leveled DFAs are always acyclic.

We defineLDFA (w) to be the set of leveled DFAs of level width at mast By way of
example, Figure 1 shows two leveled DFAs of width 2, and Figure 4 shows a leveled DFA
of width 3.



62 W.W. COHEN

f%arazas. .. ay,)

ai, * . ag, * ag, x > an7
\ \12 \ \

0,1,* 0,1,* 0,1,*

£°(0110)

—~O

\\\\
O+707

0,1,*

Figure 1. The general construction used fff#(n), and a specific example.

We will also adopt the following notation: if is a language over the domaln, then
L., denotes the set of concepf€’ € £ : |C| < nr} over the restricted domain
{z € X : |z| < ns};thatis,L,, », is the set of small (siz& nr) concepts over the

domain of small (size< n,) instances. Also leC,, . denote the set); £, ;. Thus

S,%ES’;(”) denotes the class of all strings of length at mostover the domain of widths

leveled acyclic DFAs of size at most. The size measure we will use for instances (DFAS)
is simply the number of states.

LDFA(d+2 .
We will now show thai3? , < Syrn, d() pT()n ») Where the functiong; (x, ) andpr (x, )

are both polynomials in and2?. The lemma below establishes a slightly stronger result
by induction ond.

LEMMA 1 AssumeéXl| > 3. Then for alld > 0 and alln > 2,

B? < SLDFA(d+2)

n,x — “nr.nr
wheren; = (d + 2)(n + 2)2% andny = (n + 2)2%. Further, in every example DFA there

is exactly one accepting state, which appears at the maximal depth, and exactly two states
total at the maximal depth.

Proof: The proof is by induction or. Without loss of generality leE = {0, 1, x}.
(The symbol %" will be used as a sort of a wildcard in our construction, and should not
be confused with the regular expression “star” operator.) For daeh will produce an
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instance mapping“ and a concept mapping that preserve membership, as required by
the definition of prediction-preserving reducibilities, and also satisfy the other conditions
of the lemma. We will focus on the bounds on level width{of 2) and string length (of
(n + 2)29), since the bound on instance size is implied by these bounds.

Base caseletn = a; ...a, be an assignment to,,...,x,. (l.e, a; = 1 if z; is true
anda; = 0 if x; is false.) Leta; denote the negation af. (l.e, 0 = 1 and1 = 0.) Recall
that the instance mappinghere must map an assignmerto a DFA, and defing®(n) to
be a DFA with the following structure.

1. Recalling that is the number of variables involved in the assignmgtitere ar&n + 1
states: the start statd’, n states nameg? , ..., ¢, andn states nameg!, ... ¢~.
The only accepting state ig .

2. Fori:1<i<n,
e thereis an arc labeled from ¢! , to ¢,

e there are two arcs labeled andx from ¢! ; to ¢/, and
e if i > 1, then there are three arcs labelega;, andx from ¢7 | to ¢

See Figure 1 for examples of this construction.
Now, we will define the corresponding concept mappgifigRecalling thay® must map a

monomial to a string, lei € B?L’* be a monomial overy, ..., z, and definer; as follows:
1 if x; €D
* else

We defineg®(b) to be the stringr; . .. o,,. For example, when = 4 then
g% (22T7) = %140

Let us consider now the size and level width bounds. Cle#flfr) is leveled, and the
width of f°(n) is exactly2 = 0 + 2; alsog®(b) is of sizen < (n +2)2°. Itis also obvious
that f° is computable in polynomial time, and that there are two states of maximal depth,
exactly one of which is accepting, and no other accepting states in the automaton.

It remains to be shown that membership is preserved. Itis nottoo hard to see thatthe DFA
f%(n) accepts the string®(b) exactly wheny, satisfiesh. To argue this formally, we will
introduce the following notation. For a stringand a DFAM, let M (s) denote the state
reached by after reading in the string, and IetMg = f%(n). Consider the monomial
as asubset of the literafs:, 771, . . ., z,, T, }, and let|; denoteb N {z1, 771, ..., 2;, T, }.

By induction one can easily show that for g?llM,?(al ...0;) must be eitheq;f or qf,
and thatM (o1 ... 0;) = q] iff n satisfiesh|;. Thus the lemma holds for the base case of
d=0.

To summarize the argument above, we have so far shown that learning problem for
monomials can be reduced to the dual DFA learning problem. To accomplish this reduction,
it was necessary to show that an assignmerdan be converted into a DFA which accepts
exactly those monomials that are satisfied)lffor a suitable encoding of monomials). As
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f%(n) for oddd (the “OR” case)

____________________

____________________

copy of f4~(n) : — @)

____________________

copy of /=1 (1)

f4(n) for evend (the “AND” case)

0,1, %

Figure 2. The constructions used fgi¢ () ford > 0

Figure 1 shows, this computation is easy to do with a DFA. With the encoding we chose, the
DFA can simply scan through the literals in the monomial, one by one; it is only necessary
for the automaton to “remember” if any literal in the monomial has been falsified by

The inductive step. Let us consider first the case in whidhs odd—and hence for a
formulab € B;‘f’*, b = by V bo. By induction there exists an instance mappjifg' and a
concept mapping?~! that satisfy the conditions of the lemma; algscandb, are both in
Bt

We now definef? andg? as follows. For an assignment f¢(n) is an automaton with
the following structure.
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1. Letm be the depth of?~1(n). We will useq{ to denote the start state ¢f—1(n),
¢! to denote the maximal-depth accepting state, gndo denote the maximal-depth
rejecting state. (Note that by inductiayf, andq’, are unique.)

The states of the automaton include each statef<—!(n); a copyq of each state of
f4=1(n); m statesry, ..., 7,; and two additional states’” andr*".

The start state ig! . The sole accepting stateri$.

2. If there is an arc labeledin f9~!(n) between stateg; andg;, then there is an arc
labeleda in f%(n) between stateg andg;, and also between statgsandg; .

3. Fori: 1 <i < mthere are arcs labeled 1 andx from stater; to stater; ;.

4. There are arcs labeléd 1 andx between all of following pairs of stateg;, andr,
qb andgl’, r,, andr®, gL andr?, andgt andrf.

Whend is even, then conditions 1 through 3 are the same, but condition 4 is amended to
require arcs labele@ 1 andx between these pairs of stated; andg?l, ¢f; andry, r,,, and
r¥', ¢ andrT, andgl, andrt.

See Figure 2 for examples of the construction. Clearly this DFA can be constructed in
polynomial time, if the size bounds of the theorem hold.

To define the concept mapping, leta = ¢4=(b;) and3 = g%~ '(by). We define
g(by V by) (for odd d) or g%(b; A by) (for evend) to be the stringvx3x. For example,
whenn = 4, then the following are examples of the mappiyfg (The underlining is for
clarity, and shows the recursive structure of the strings.)

g (z2Tg) = *1x0%
g (295 V Tamy) = #1x0 K x0xlx
g (x3T1 VT3x4) = xx10 * ox01x
9 ((xoTg V Taxg) N (23Tz V T324)) = *1x0 * x0x1x * %k10 * *k01x *

Below we will argue that this construction correctly implements boolean AND and OR

for functions ianLy*; that is, we will argue that the DFA?(n) for oddd accepts exactly

the formulae of the formd, \ b, satisfied byy, and thatf¢(n) for evend accepts exactly

the formulae of the fornh; A by satisfied byy. By induction we can assume that the DFA

4 1(n) accepts exactly those formulae satisfiedryAgain, the basic idea is simple.

The constructed DFA scans the encodingqfand then the encoding éf. In each case

it is only necessary for the automaton to “remember” which of the subforndylaadb

are satisfied by) to correctly perform the computation; and by induction, copies of the

automaton forf—1(n) can be used to determinejfkatisfies the subexpressiansandbs.
More formally, we wish to show that for any assignmergnd anyb € Bﬁ)*, 7 satisfies

biff f4(n) accepty(b). Assume that this is true fak— 1, let M, be the maching(n),

and letM (s) denote the state that the DEA is in after reading in the string. We can

now argue as follows.

Case 1. Assumed is odd. Ifn satisfiesh = by V bo, eithern satisfiesb; or b, or both.
For the following, please refer to Figure 2. Jff satisfiesb; then by the inductive
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hypothesisM;i~! (g4~ (b1)) is the accepting statg ; referring to Figure 2, clearly
Mg (g(b)) = r™, and hencg(b) is accepted by . If  satisfiesh, but notb, then
M{=1(g41(b1)) is the rejecting statgl,, but M~ (g%~ (b,)) is the accepting state
g}, Again, M (g%(b)) = r™, following the pathyg , ..., ¢}, G5+ - - Gy 77
Conversely, supposgdoes not satisfy = by V bs. Thenn satisfies neithel; norbs.
By induction) ! rejects botty~! (b;) andg? ! (b), and hence the automatai
will, on reading the string/(b), visit the stateg,..., ¢&', 7', ..., g%, and finally
r¥, rejecting the string.

Case 2. Assumed is even. The argument is analogous to Case 4 s#tisfied = by A by,
then M~ acceptsy~'(b1) and g*~!(b). HenceM, will, on reading the string
g?(b), visitthe stateg? ,..., ¢%, ¢, ..., 4%, and finallyrT, accepting the string. If
does not satisfy, thenA~! rejects eithe ! (b;) or g*~*(by). In either case\/;!
finally reaches the staté’, rejecting the string?(b).

Finally let us consider the size and level width bounds. Inspection of the construction
shows that the level width gf?(#) is bounded by one plus the level width st~ (5). By
induction, this can be bounded bl — 1) +2) + 1 = d + 2. For the size bound ogf'(b),
let LEN(d) denote the length of*(b) for b € B¢ . We claim that for all

d
LEN(d) = n2? + > 2’
=1

Iftrue, this claim clearly satisfies the size bound stated in the Iemma,@ﬁgg? < (n+
2)2¢. The base case for the claim is immediateL&N(0) = n. The inductive case can
be easily verified by substitution, using the fact th&fN(d) = 2LEN(d — 1) + 2:

LEN(d) = 2 (LEN(d—1)+1)
d—1
=227+ ) 2 4 1)
=1
d—1 ‘
= n2?+) 2% 42
=1

d
= n2?+) 2
=1

This completes the proof of the lemma. ]

Lemma 1 gives a polynomial reduction froﬁ?ﬁfﬁi” to the dual DFA problem. To
complete the proof of Theorem 2, it is only necessary to show lﬂﬁ?ﬁ" is crypto-
graphically hard. This result follows easily from known results on circuit complexity
(Boppana & Sipser, 1990); however for completeness, we will sketch the argument.

Consider the language of boolean circuits using AND, OR and unary NOT gates with
fan-in two and unbounded fan-out. Any boolean circuit can be converted to a boolean
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formula by replicating portions of the circuit; note that if this is done, a gate at level
d need be replicated at mo®t times. This means that circuits of defthgn can be
converted to boolean formulae of deptlg n with only a polynomial increase in size—
specifically the size is increased by a factomof Also note that negations appearing in
a boolean formula can be pushed to the inputs by repeated application of De Morgan’s
laws, without any increase in size. Finally, a boolean formula that contains only AND
and OR operators internally can be forced to strictly alternate AND and OR operators by
padding non-alternating subformulae. (For example, AND(AND(w,x),0OR(y,z)) would be
replaced by AND(OR(AND(w,x),AND(w,X)),OR(y,z)).) Note that padding will at most
double the depth of the formula. Thus log-depth circuits can be represented as log-depth
strictly alternating boolean formulae—a strict subseBEE".

Thus we have the following proposition.

ProprosiTION 1 For every boolean circui€’ of depthlog n overn variables, there is an
equivalent formula®” in B5'25™.

By Lemma 1 the size af” is bounded byn +2)221°8 ™ = (n+2)n?. Thus together with
the reduction of Lemma 1 this proposition shows that the language of log-depth circuits is
prediction-preserving reducible to

SLDFA(2 log n+2)
(2log n+2)(n+2)n?,(n+2)n>

which is polynomial ima. The expressive power of depth-bounded boolean circuits, as well
as their learnability, has been well studied; in particular it is known that log-depth circuits
are hard to predict under cryptographic assumptions (Kearns & Valiant, 1989, Thectem 4).
This completes the proof of Theorem 2. Note that the construction actually shows the
dual DFA problem to be cryptographically hard even for a rather restricted class of DFAs:
the examples used in the construction are all acyclic, leveled, and of logarithmic level width.
In passing, we note that for the hardness result above, it would be sufficient to consider a
further restriction of3¢ ,, in which the leaves are single variables rather than monomials.
The constructions and the proof for this simpler class of boolean formulae would be essen-
tially identical to the proof above; we have chosen the slightly more complexl&fg@ﬁor
this reduction because it will simplify the proof of Theorem 8, below.

4. The dual DFA result and first-order learnability

The dual DFA problem is an interesting but somewhat artificial problem. Inthe introduction,
we motivated analysis of the dual DFA problem based on its broad similarity to problems
such as relational learning and inductive logic programming; like these problems, the dual
DFA examples have non-trivial structure (namely, a graph-like structure.)

In this section we will discuss some more concrete relationships between the dual DFA
problem and certain learnability problems for first-order languages. In particular, we will
show that the dual DFA learning problem can be easily reduced to two previously open
learning problems, one involving a restricted class of logic programs, and one involving
description logics. The reductions show these learning problems to be hard, under crypto-
graphic assumptions.
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(AND WOMAN “The set of women whose daughters are all
(ALL DAUGHTER unemployed theory PhDs, and all of whose
(AND THEORYPHD sons are married to doctors.”
UNEMPLOYED))
(ALL SON

(AND MARRIED
(ALL SPOUSE

DOCTOR))))
(AND MORTGAGEAPPLICATION “The set of mortgage applications that are
(SAME-AS (GUARANTOR) guaranteed by the applicant’'s mother-in-law.”
(APPLICANT SPQUSE
MOTHER)))
DAUGHTER O{THEDRYPHD,UNEMPLUYED} GUARANTOR > O{}
O{WOMAN} O {MRTGAGEAPPLIC} MDTHERT
SON O SPOUSE PPLICANT SPOUSE Q
g {MARRIED} {DOCTOR} {} {}

Figure 3. ExampleCorECLASSIC concepts, and equivalent concept graphs

It should be emphasized that although the dual DFA problems is closely connected
with first-order learning, the dual nature of the problem makes our results incompara-
ble to results obtained in previously studied graph-learning problems (Angluin, 1988,
Erglin et al., 1995)—in these problems, thgothesispace, rather than the instance space,
is a set of graphs.

4.1. Description logics with equality

4.1.1. Background. Descriptionlogiosterminological logicsare afamily of knowl-
edge representation and reasoning systems that have found applications in several diverse
areas, ranging from database interfaces (Beck et al., 1989) to software information bases
(Devanbu et al., 1991) to financial management (Mays et al., 1987) to hardware configu-
ration (Wright et al., 1993). Most of the applications of description logics have not in-
volved learning; however, the learnability of description logics has also been analyzed
(Cohen & Hirsh, 1994a, Cohen & Hirsh, 1994b, Frazier & Pitt, 1996). In this section we
will consider the pac-predictability @@orRECLASSIC, the simple description logic analyzed
by Cohen and Hirsh (Cohen & Hirsh, 1994a).

Briefly, description logics are to used to reason alumscriptions which describe sets
of atomic elements calleiddividuals Individuals can be organized inpoimitive classes
which denote sets of individuals, and are related through binary relations calbsdor
attributeswhen the relation is functional). For example, the individi@sJOHNSON and
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CS-101 might be related by th@EACHES role, andCS-101 might be an instance of the
primitive classCOURSE. Descriptionsare composite terms that denote sets of individuals,
and are built from primitive classes (suchPERSON), and restrictions on the properties an
individual may have, such as the kinds or number of role fillers. For instance the description

(AND PERSON (ALL TEACHES (AND GRADUATE-LEVEL COURSE)))

might denote “the set of people that teach only graduate-level courses”, or in predicate
calculus, the set of individualsthat satisfy

PERSON(x) A Vy[TEACHES(x,y) = (GRADUATE-LEVEL(y) A COURSE(y))]

CoreCLASSIC is a description logic containing primitive concepts, roles, attributes, and
the constructoraND, ALL, andSAME-AS. The SAME-AS constructor is used to require that
the result of following two chains of attributes will lead to the same individual: for instance
the description

(AND COURSE (SAME-AS (INSTRUCTOR) (PRINCIPLE-TEXT AUTHOR)))

might denote “the set of courses where the instructor is the author of the principle textbook”,
or in predicate calculus, the set of individualsuch that

COURSE(z) A [INSTRUCTOR(z) = AUTHOR(PRINCIPLE-TEXT(x))]

Some additional examples 6foreCLASsIC descriptions are shown in Figure 3, and for
readers unfamiliar with description logics, Appendix A gives a brief overview of the seman-
tics for the language. More detailed descriptions can be found elsewhere (Borgida & Patel-
Schneider, 1994).
An important operation in description logics is determiningsidsumptiomelationship
holds between two concepts. Roughly speaking, con€gpsubsumes conceft; if
C1 is more general thatt;. (See Appendix A for more discussion.) Cohen and Hirsh
(Cohen & Hirsh, 1994a) and Frazier and Pitt (Frazier & Pitt, 1996) have investigated the
learnability of COorRECLASSIC and similar description logics in a setting in which examples
are concepts, marked as positive if and only if they are subsumed by the target concept.
Cohen and Hirsh showed th@brECLASSIC is not pac-learnable in this model, but that
a version ofCoreCrLassIC allowing only restricted use of SAME-AS is pac-learnable.
A later paper (Cohen & Hirsh, 1994b) presented additional formal results for a more ex-
pressive description logic, and experimental results for a number of learning problems.
Frazier and Pitt (Frazier & Pitt, 1996) showed thatrECLASSIC is not exactly learnable
from membership queries alone, but is exactly learnable from membership and equivalence
gueries. They also demonstrated that the more expressivedogissic is learnable from
membership and equivalence queries.

4.1.2. A representation-independent negative resuklthough previous results iden-
tify several cases in which pac-learnit@reECLASSIC is difficult, the question of the
pac-predictability ofCORECLASSIC in representation independent models has, until now,
remained opef.However, the following result is a corollary of Theorem 2.
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TuEOREM 3 Under the cryptographic assumptions of Theoref@reECLASSIC iS not
polynomially predictable in the model in which examples are concepts labeled by their
subsumption relationship with the target concept.

Proof: An important tool in the analysis dforRECLASSIC is the notion of aconcept

graph (Borgida & Patel-Schneider, 1994). A concept graph is a directed rooted graph in
which the arcs are labeled by roles and attributes and the nodes are labeled by primitives.
SAME-AS restrictions are represented as multiple paths to a node. Figure 3 contains two
examples of concept graphs; in each case, the leftmost node in the Figure is the root of
the graph. Notice that, at least superficially, concept graphs resemble finite automata: they
are both rooted directed graphs with labeled nodes and edges. A concept graph is said
to be well-formedif certain other conditions are met, including a restriction that states
that for every node of the graph and every possible arc labidere will be at most one
outgoing edge labeled Notice that well-formedness makes concept graphs resemble (at
least superficiallyyleterministidinite automata.

It should perhaps be noted that without the SAME-AS constfioRECLASSIC concept
graphs are always trees, rather than arbitrary graphs. Most of the complexities in description
logic learnability arise from the graph-like nature of descriptions; learning algorithms for
tractable description logics are often fairly simple to implement if the SAME-AS construct
is disallowed.

A detailed description of the semantics@ORrRECLASSIC concept graphs is beyond the
scope of this paper. For our purposes, the following two facts are critical.

e Forevery DFAM over the alphabet there is a well-formed concept graphover the
primitive alphabef acc}, role alphabef and attribute alphabét such that; . .. a,, €
L(M) ifand only if the concept (ALLay (ALL a5 ...(ALL a, acg...))subsumes;.
Furthermore(s can be constructed froM in polynomial time (Cohen & Hirsh, 1994a,
Proposition 1).

e The language o€orECLASSIC and concept graphs are equivalent up to polynomial
factors: that is, for everfZORECLASSIC conceptD, there is a semantically equiva-
lent well-formed concept graph of size polynomialli| that can be constructed in
polynomial time, and for every well-formed concept graghthere is a semantically
equivalentCorECLASSIC description of size polynomial ifiG | that can be constructed
in polynomial time (Cohen & Hirsh, 1994a, Theorem 1).

From this it is clear that prediction-preserving reducibilities exist fi$hi* to Core-
Crassic concept graphs t€oreCLAssIC. Specifically, one can map example DFAs
to concept graphs and thence @RECLASSIC concepts, and one can map a string
s=aj...a, toconcepts of the form (ALlz; (ALL as ... (ALL a, aco. ]

Recall that we have shown the hardness of the dual DFA problem for a restricted case:
three-letter alphabets and acyclic, leveled automata. Similar restrictions can be applied to
CoRreCuLAssIC to show thatitis hard to learn learn (in the polynomial predictability model)
if there are only three attributes, and if concept graphs must be acyclic.



HARDNESS RESULTS FOR LEARNING FIRST-ORDER REPRESENTATIONS 71

4.1.3. Another recent negative resultAnother recent negative result on learning
CoreCLassIc is due to Frazier and Pitt (Frazier & Pitt, 1996). They consider a different
learning model in which concepts are learned from individuals. To motivate this model, we
note that description logics are often used in conjunction with a large knowledge base of
“assertions”, or facts about individuals. This knowledge base can be visualized as a large
graph in which the nodes correspond to individuals (which are atomic entities) and the arcs
correspond to roles (binary relationships) that relate the individuals. The knowledge base
thus corresponds roughly to a concept graph, except that it is typically far larger, and has
no distinguished root node.

Frazier and Pitt considered a model where individuals in the knowledge base are examples.
Roughly speaking, an individudl will be labeled positive for a target conceftif C
subsumes the concept graph obtained by making the node of the knowledge base graph
corresponding td the root. In Frazier and Pitt's model, the knowledge base is also assumed
to be extremely large—potentially exponential in the size of the target concept. Under these
assumptions, learning @orRECLASSIC concept is as hard as learning polynomial sized
circuits, and hence is cryptographically hard.

The Frazier and Pitt model of learning from individuals and a large knowledge base is
rather different from the model of learning from concepts, and hence their result is not
directly comparable to ours. One important difference is that in learning from subsumed
concepts, the training examples all are of polynomial size; however, in learning from
individuals, there is an exponential amount of information about each individual that is
potentially relevant to a learning problem. In particular, the restrictions associated with
any path from that individual to any other node in the (exponentially large) knowledge base
could potentially be included in the target concept.

Frazier and Pitt's hardness result also requires a polynomial number of attributes, whereas
our result requires only a constant number of attributes. However the Frazier and Pitt result
requires weaker cryptographic assumptions.

4.1.4. A positive result for the dual DFA problemFrazier and Pitt (Frazier & Pitt,
1996) also showed thé&tLassic (a generalization o€ ORECLASSIC) is exactly learnable
from membership and equivalence queries. This result, together with the observations
above, suggests th&P"™ might also be learnable from membership and equivalence
queries. This is the case; in fa@P"™ can be shown to be learnable from membership
gueries alone.

Define amembership querto be a query to an oracle in which the oracle is supplied
with an instancé/, and answers “positive” if/ is a member of the target conceptand
“negative” otherwise. We have the following result.

THEOREM 4 SPFA s learnable from membership queries.

Proof: LetX = {o1,...,01} be the alphabet, and consider the following algorithm,
which uses a series of queries to find the letters of the target string in left-to-right order.

1. Leth be the empty string.

2. Issuek queries using the minimal DFAs accepting the langudge&:*, .. ., hopX*.
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3. Ifthere is exactly one “positive” answer from these queries; letho;, whereo; was
the letter associated with the sole positive example, and go to Step 2.

4. If none of the queries is answered “positive”, then outpanhd halt.

To establish the correctness of this procedure, observe first that at Stgpig,afproper

prefix of the target string, then exactly one of the queried DFAs can aceeph this case

the action associated with Step 3 will be performed—after whialill be one letter longer,

but still a prefix ofs. Now observe that at Step 2 /if= s, then none of the queried DFAs

will be positive examples, so the action of Step 4 will be correctly performed. Finally note

thath is initially a prefix of the target string, and remains one throughout the execution of

the algorithm; thus at Step 2, it is always true that either s or h is a proper prefix of.
Hence this algorithm must converge to the target string. It is also easy to show that it

requires at mog&:| - |s| queries. [ |

4.2. Determinate arity-two function-free Prolog clauses

Another well-studied problem is the learnability of logic programs (Page & Frisch, 1992,
DZeroski et al., 1992, Cohen & Page, 1995). A special case that has received much atten-
tion is the learnability of determinate non-recursive function-free bounded-arity one-clause
programs. We will denote this language belowaa® et LP, wherea is the bound on

arity. Again, we will assume that the reader is familiar with this representation; however
Appendix B contains a brief overview of the necessary background on logic programs.

In previous work, @éroski, Muggleton and Russell £Broski et al., 1992) showed that
for any constant;, constant deptlu-DetLP programs are pac-learnable. Later, Kietz
(Kietz, 1993) showed tha-DetLP programs of arbitrary depth are not pac-learnable,
and Cohen (Cohen, 1993) showed thdPet LP log-depth programs are not polynomially
predictable. To date, however, the polynomial predictability of arbitrary-deqe: LP
programs has remained an open question.

Kietz considered a learning model similar to the one considered by Cohen and Hirsh:
the target concept is&Det LP non-recursive function-free clause, and the examples are
non-recursive ground clauses which are labeled as positive iff the§-sumbsumedsee
Appendix B for a definition) by the target clause. We have the following result for this
model.

COROLLARY 1 Under the cryptographic assumptions of Theorem2ZDetLP non-
recursive function-free clauses are not polynomially predictable in the model of Kietz.

Proof: Kietz showed that there are functiorig andgs such that the following hold:
fx maps a DFAM to a ground clausejx maps a string to a function-free clause; and
s € L(M) iff gi(s) 0-subsumegy (M) (Kietz, 1993, Lemma 13).

Briefly, fx andgs are as follows. To computéx (M), generate one unary predicate
symbolacc one binary predicate symbp), for each letter in X and a constant,, for
each state; of M. fx(M) is the clause with the heatfa(c,,), and a body containing
one literal of the forny, (¢, ¢;) for every transitiord(¢;, a) = ¢; in M and one literal of
the formace(qy) for every accepting statg.. To computeyk (a; .. .a,), generater + 1
variablesXy, ..., X,. Thenggk(a; ...a,) is the clause
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dfa(Xo):pa, (Xo, X1), -+, Pa, (Xn-1, Xn), acc(Xy)

Kietz used this construction to reduce the DFA intersection problem to a consistency
problem, thus demonstrating thz¢DetLP non-recursive function-free clauses are not
pac-learnable. However, the construction also constitutes a prediction-preserving reduc-
tion from the dual DFA problem to the language2eD et LP non-recursive function-free
clauses.

5. Automatic programming and related problems

Another well-studied problem in artificial intelligence is automatic programming from
examples€.g, (Summers, 1977, Biermann, 1978).) Here the goal is to learn a program,
typically in a functional language such as LISP, from examples of the form) wherex

is an input to the target program ands the associated output.

Below we will formalize a simple version of this problem. We will consider learning a
program that is the composition offunctions from a designated set. This relatively “easy”
case is the functional equivalent oflines of “straight-line” code—code that includes no
loops or branches, and additionally operates on a single variable. As a final restriction, we
will require that the output of the target function be binary by requiring the target function
to be of the form

Ax).plon(0n-1(---01(z)--+)))

wheretherange of(z) is{0, 1}. (The other functions;,. . . ,0,, will map strings to strings.)

Later, we will wish to augment our formalism to model variants of this problem in which
programtraces are also available to the learner. First, however, we will define more precisely
the problem of learning straight-line code from input/output pairs, as introduced informally
above.

5.1. Aformalization of learning straight-line code

Define anoperator sef{O, P) to be a two sets of function@ = {o01,...,0,} andP =
{p1,...,prp} such that each; is a function from{0,1}"’ to {0,1}"’ and eaclp; is a
function from{0, 1}"7 to {0, 1}. The numben; is thedomain widthof the operator set,
andko + kp is its cardinality. We will useOP,,, ., to denote the set of all operator sets
of domain width at most; and cardinality at most,. For any operator s€0, P), we
define AP[(O, P)] be the set of all concepts with characteristic functions of the form

0;, ©...00;, 0Pk
where eachy;; is in O andpy, is in P. We will use AP[OP,,, »,| to denote the set

{AP[(O, P)] : (O, P) € OP,, n,}- Notice that this is a set of languages, parameterized
by the operator® and predicate®’.
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The size of a concepf = o0;, o...00;, op in AP[{O, P)] is defined to ber, the
number of operators used.

To motivate the slightly awkward notation introduced above, notice that for some operator
sets(O, P), the classAP[(O, P)] is easily learnable—for example, if everyis the identity
function then the problem is trivial. However, one would really like to ask questions about
the existence of “operator-independent” learning algorithms—algorithms that work for any
given setsO and P. With the definitions given above, we can formalize this question
succinctly as follows:

Is there an algorithniPAcPREDICT that polynomially predicts any concept class
AP[(O, P)] € AP|OP., .nol, givenO, P, and access to oracles for the functions
inO andP ?

If the answer to this question is affirmative then we will say tHR[OP,,, .., ] is uni-
formly predictable Uniform pac-learnabilityis defined analogously. Thus we have reduced
the question of operator-independent learnability to a set of (closely related) questions, posed
in the usual pac-learning model.

5.2.  Automatic programming from input-output pairs

Our firstresult pertains to automatic programming from input-output pairs. The result shows
that even with a small fixed set of operators, and even in the case of straight-line code, this
problem can be hard. This result is a little surprising, given that most of the research issues
arising in automatic programming seem to relate to problems such as inducing loops and
conditional statements, not to difficulties associated with learning straight-line code.

THEOREM 5 Forngp > 4, AP[OP,, ».] is not uniformly predictable, under the crypto-
graphic assumptions of Theorem 2.

Proof: We will construct a particular operator S€?, P) that is hard to predict.
Theorem 2 gives a prediction-preserving reduction from circuits of degth to

DFA
p1(n),pr(n)

via two functionsg'°s™ and f°¢”, whereg'°e™ maps boolean formulae to stringgos "
maps assignments to DFAs, apdand pr are both polynomials im. We will use this
reduction to reduce circuits tdP[(O, P)] for a specific(O, P) pair withno = 4 andn;
polynomial inn, thus showing that thiglP[(O, P)] is not predictable.

Letn; = n + logp;(n), and choose some systematic way of numbering the states in
a DFA such that the start state has numbee.@,(breadth first). In this way, if; is an
assignment ta variablesy bits can be used to encode a state in the GFA™ (). We
will write the encoding of thé-th state inf'°¢ " (n) asc(n)c(i) wherec(n) is the encoding
of n andc(7) is the encoding of. We can now define the instance mapping of the new
reduction ag'ap(n) = ¢(n)c(0).

Now letO = {0g, 01,0, } and P = {pqc. }, Wwhere the functiong,.., oo, 01, ando, are
defined as follows. Fat € {0, 1, x}, defineo, (c(n)c(i)) = ¢(n)c(j) wherej is the index
of the state infl°8"(n) that is reached by traversing the edge labeldém statei. Also
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definepa..(c(n)c(i)) to be 1 if thei-th state off'°e™(n) is accepting and 0 if theth state
of fleen(n) is rejecting. For a formula € Bﬁ,*: we define the concept mapping

gAP(b) = 0qy ©...00q, ©Pacc

whereg'°s"(b) = aj ... a,.

Notice that these particular operat@’sand P correspond very closely to the arcs in the
automata that are the range 8. In particular, ifc = ¢(n)c(i) encodes a statg in
an automatonV/,, = f1°8™(n), thenos(c) is the encoding of the state iW,, reached by
following the arc labeled, oy (c) is the encoding of the state i, reached by following
the arc labeled, ando, (¢) is the encoding of the state ivf,, reached by following the arc
labeledx. Also, the predicatg,.. maps exactly those strings that encode accepting states
of M, to 1, and the rejecting states to 0. This means that the stying «,, is accepted by

floen(n) iff
(0ay © -+ 004, ©Pace)(c(n)ec(0)) =1

This property, together with the arguments of Theorem 2, shows that the reduction given
above preserves membership as required by the definition of prediction-preserving re-
ducibility.

The remainder of arguments needed to prove the theorem are straightforward. Since
fleg™ can be computed in polynomial time then so pan., oy, 01, ando,, so it is possible
to simulate the oracles faP and P. (Recall thatf'°™ does not depend on the target
concept.) Thus if there were a prediction algorithm f#P[(O, P)], one could use it to
find ane-good predictor for any log-depth circuit. ]

As another possible proof method, the arguments used in Section 6 of Frazier and Pitt
(Frazier & Pitt, 1996) (which shows the hardness of learrihgissic from individuals)
could also be easily adapted to show tH®[OP,,, ] is not uniformly predictable; in
fact, their construction can be adapted to show that there exist®,aR) pair such that
predicting polynomial-sized circuits is reducible to predictit@[(O, P)]. This result is
again incomparable to ours. Itis stronger in that it is based on a reduction from polynomial-
size circuits, rather than log-depth circuits, so weaker cryptographic assumptions can be
made; however, the construction requires an operator set of size polynomial in the size of
the target circuit, whereas in our construction the operator set contains a fixed number of
operators and predicates (three and one, respectively).

There is also no obvious way to extend the Frazier and Pitt result to the problem of learning
from partial traces discussed below.

5.3.  Programming by demonstration

Another variant of the automatic programming problem is the problem of learning programs
from traces. Here the assumption is that the learner can observe (perhaps only partially)
the actions taken by a working copy of the target program.

Programming from traces is closely related to the currently active research gres of
gramming by demonstratiq@€ypher, 1993). Here the operations used in the target program
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are (typically) operations on a graphical user interface, and the “teacher” from whom traces
are obtained is a human user.

In a formal learning model it is natural to model these traces with an oracle. However, in
a programming by demonstration context, what a “trace” is depends on the system being
used. We will thus consider different oracles, corresponding to different assumptions about
what is observable to a programming by demonstration system.

5.3.1. Observable operators.One plausible assumption is that one can observe the
sequence of operators, ..., a, used by the teacher. (For instance, a trace might be a
sequence of EMACS keystrokes, each of which is an operator.) In the situation considered
above, where the target “program” consists of straight-line code, this information is suffi-
cient to identify the target concept. This simple but useful learning mechanism, called a
“macro recorder”, is well-understood and embedded in many existing user interfaces. We
will not consider it further in this paper.

5.3.2. Observable intermediate valuesAnother reasonable assumption is that one
can observe the intermediate values derived by the teacher but not the operators. This
might be the case if the operators appearing in the learned prograbstractionsof the
actions actually taken by the user.

For example, consider the problem of learning a sequence of commands that converts an
entry in a mailing list from one format to another. The user’s actions might be primitive
editor commands, such &rward-one-characterback-one-wordinsert-newling and so
on. However, the mailing list conversion problem might be more appropriately modeled
with abstract operators such fmsward-to-the-beginning-of-sentendeack-to-beginning-
of-postal-codeand so on. Designing such abstract operator sets and learning “programs”
containing such abstract operators is an important emphasis of at least some programming by
demonstration research efforts. One difficulty in learning programs with abstract operators
is that the abstract operators are not observable. In learning an editor macro, for instance,
one might be able to observe that a user moved the cursor from gotot point ps in
a document, but it might not be obvious whether this action corresponds to the operator
forward-to-end-of-lineor to the operatoforward-to-end-of-postal-code

One can model this situation with an oracle TRAZE{hich, when called with the input
2 while learning the target concept

0, ©...00;, Opk

returns a sequence of strin@s, . . ., s,) wheres; is thej-th intermediate value constructed

by the target function. (Thatis; = (o;, o...00;,)(x).) Letus now consider the problem

of learning from examples and the TRACE oracle. While this problem is certainly more
complex than recording a macro, it is easy to show that the TRACE oracle is enough to
allow efficient learnability in the pac sense.

THEOREM 6 AP[OP,, ».] is uniformly pac-learnable from examples and the TRACE
oracle. Furthermore, the prediction algorithm runs in time polynomiatin®

Proof:
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Let (O, P) be in OP,, .. We note that the cardinality ofC € AP[(O, P)] :
|C| < nr} is bounded byio ™7+, and hence the VC-dimension (Blumer et al., 1989)
of AP[(O, P)] is bounded byny + 1) log no. To complete the proof we need only show
that one can find a hypothesis consistent with angxamples in time polynomial im,
nr, nr, andno.

Letxy,...,x,, be the examples. First, invoke the TRACE oracle for each example
to get the sequenc@;i, .. ., sin). Now, for eachj : 1 < j < n, look for someo; € O
such thatvi : 1 < i < m, 0j(s;;-1) = s;;. This can be done with a linear search
throughO with mnonr calls to the oracle fo©. Also look for somep; € P such that
Vi1 < i< m,pr(si) agrees with the label of,—i.e., px(s:n) = 1 if x; is a positive
examples angy (s;,) = 0if x; is a negative example. Again, this can be done with a linear
search withmn calls to the oracle fo6:. The hypothesis

010...00p, 0Pk

will be consistent with the examples. ]

In passing we note that learnability can also be shown in the exact identification model
of learning from equivalence queries—a model which is perhaps more appropriate in this
setting.

5.3.3. Partially observable intermediate valuesln some circumstances, it may not
be appropriate to assume that one has access to the intermediate values computed by the
target function. A slightly weaker assumption is to assume that some but not all aspects
of the intermediate states are observable. This assumption is perhaps representative of the
case in which the intermediate states include a “user goal” which cannot be observed by the
learner. Another plausible case in which this assumption might be appropriate is if the state
of the system being acted on by the user is too large to transmit to the learner, and hence
for efficiency reasons only a partial description of these states is available; for instance, it
might be impractical to transmit to the learner the entire state of an editor.

These situations can be modeled as follows. 4f {0, 1}", then let HIDE, (s) denote the
set of all stringss’ € {0, 1, 7}" that can be derived by changing upitelements of from
“0” or “1"to “ 7”. For example,

HIDE, (1101) = {?101,1701,1171,110?, 1101}

We now define the oracle PTRAGE) to return some sequencgk, . . ., h,,) such that for
allj:1<j<mn,h; € HIDEx((0s, o...00;)(x)). In other words, the oracle is allowed

to edit the correct intermediate values by changing uplids of each value to the symbol

?. Learning from a PTRACE oracle and examples is one possible formalization of learning
from partially observable intermediate values.

Notice that while we are assuming that the elements in the PTRACE result from “hiding”
at mostk bits of the intermediate values, we impose no constraints on whitits are
“hidden”. In effect our model assumes that these bits are hidden by an adversary. However,
in the constructions below the adversary follows a very simple strategy—the bits hidden
are always the lowest order bits of a string.
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Recall thatin the model of learning from input/output pairs, the trace is completely hidden;
thus Theorem 5 shows that if all bits in atrace are hidden, then learning can beltearfbr(
no > 4, uniformly predictingAP[OP,,, ».| from examples and PTRAGE is difficult.)
This result can be strengthened to show that hiding even a few bits of each intermediate
value makes learning hard.

THEOREM 7 For ng > 4 andk > log(lognr), AP[OP,, no] IS NOt uniformly pre-
dictable from examples and the PTRAGHacle, under the cryptographic assumptions of
Theorem 2.

Proof: The argument follows the argument of Theorem 5, in whighn-depth circuits
are reduced to a learning problem #P[OP,,, ».,]. Recall that in this reduction, an
assignment) to a set of» boolean variables was first mapped the DR#¢ "y (which is a
leveled DFA of widthlog n) and then to an encoding of the initial state of this DFA. The
operator and predicate s&bsand P encoded the transitions within DFAs in the range of
flog n,

In this theorem we will use an analogous technique; however, we will encode & state
in flee™ () in three sections: first, an encodingipfwhich require<)(n) bits; second, an
encoding of the deptt of the state, which requirgg(log n) bits; and finally, an encoding
of whereg lies in thed-th level of f1°¢" (1), which require<) (log log n) bits.

The arguments of Theorem 5 show how examples are converted, and also how the oracles
for O and P can be simulated. To prove the theorem it is only necessary to show how the
PTRACE oracle can be emulated.

To emulate the oracle for PTRACE(onz = f!°8™(p), simply constructf'°e"(n) and
choose a random path to an accept state {§f positive) or a reject state (if is negative).
Representing these states with the encoding above gives a sequence of intermediate values
s1,...,5,. Of course, these need not agree with the actual vafes. , s} taken by the
automata in accepting the target string; however, they will agree in alekisptthose
O(loglogn) bits needed to encode the position within a level. To construct a legal output
for PTRACE, therefore, it is only necessary to “hide” these bits by replacing then?with
Thus if exactly these bits are “hidden” the resulting sequénce. ., h,, is a legal output
for PTRACE. ]

This theorem shows that allowing an adversary to hide even atiny part of each intermediate
value in a trace makes learning difficult. Carrying this line of investigation a little further,
one can show that even hiding a snw@hstannumber of bits in each element of the trace
can make learning as hard as learning boolean functions in disjunctive normal form (DNF),
an open problem in computational learning theory.

THEOREM 8 Fornp > 4 andk > 2, AP[OP,, ».] is not uniformly predictable from
examples and the PTRA¢Bracle unless DNF is polynomially predictable.

Proof: Inthe proof of Theorem 7, the key insight is that the dual DFA problem (for leveled
width w automata) can be reduced to the problem of automatic programming from traces,
where three operatots and one predicatg,, are available, and the number of bits hidden

by PTRACE is logarithmic inv, the maximal automata width. In other words, predicting

SEPFAM) can be reduced to a prediction problet®[(O, P)] € AP[OP poty(n;)no=4ls
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Figure 4. The instance mapping for the reduction from DNRBPFA(3)
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where the learning is done from examples and a PTRAGForacle. Thus to prove the

theorem it is only necessary to show a prediction-preserving reducibility from DNF over
n variables tQSL(BF(/Z(;li, the dual DFA problem for leveled automata with level width 4 or
less. We will describe this reduction below.

LetTy,...,Ts be monomials, and let = v;_,T; be an polynomial-sized DNF formula
of sizent overn variables. Assume without loss of generality that the number of terms
is equal to the number of variables (By padding we can make these quantities equal).

We define the concept mappingnr to be
gonE(TL VT V...V Ty) = ¢%(Ty) * ¢°(Ts) % ... % g%(T},) *

whereg? : B?L’* — {0, 1,*}"™ is the concept mapping used in Theorem 2. For example, if
n =4,

gDNF(T1T3 V X9T3 V x3T7) = 105k * *10% * k10 *

Recall thatf°(n) maps an assignmentto a DFA that accepts exactly those strings that
encode monomials satisfied gy For an assignment, we define the instance mapping
fo~r(n) to consist of copies off°(n), together with a linear sequence of “success” states.
These copies will be connected so that if the automata reaches the accept state of any copy
of f°(n), it will always jump to a “success” state; however if the automata reaches the
reject state of a copy of°(n), it will always proceed to the start state of the next copy.

The automata accepts if it eventually reaches the “success” sequence. Such an automaton
is shown in Figure 4. Below we will define it more formally.

e The states of pnr(7) includen copies of each statgin the state set of°(), where
f°(n) is the instance mapping used in Theorem 2.

We will denote the-th copy of the start staig asqq;, thei-th copy of the accepting
stateq! asq?, thei-th copy of the maximal-depth rejecting stafeasq!’, and thei-th
copy of an arbitrary statgasgq;.

e If gandq’ are connected by an arc labeleth f°(n), then fori : 1 < i < n, ¢; andq/
are also connected by an arc labeleith fonr(n). These arcs complete thecopies

of f2(n).

e The states of fpnr(n) also include n(n — 1) states named
T12y -3 n2s -+ 1ns - - -, Tnn, and two additional states’ andrl’. (These are the
states of the linear sequence of “success states” mentioned above.)

e Fori: 2 < i < n,there are arcs labeled 0, 1, andfom r, ; to 1 ;41. These arcs
complete the “success sequence”.

e The statey, is the start state, and the staféis the sole accepting state.
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e Fori:1< i< n,thereare arcs labeled 0, 1, anfiom qiT tor; ;+1, and arcs labeled
0, 1, andx from ¢ to o ;+1. Thus if thei-th copy of f°(n) succeeds, the automaton
will jump to the “success sequence” gfs; if the i-th copy fails, then the automaton
will go on to the next copy.

e There are arcs labeled 0, 1, ardrom r,, ,, to r7, arcs labeled 0, 1, andfrom ¢’
to 7, and arcs labeled 0, 1, andfrom ¢ to »I'. Thus if any of the firstx — 1
copies succeed, the automaton will jump to the correct point in the “success sequence”;
further the automaton will succeed if the success sequence is reached, or if the final
copy succeeds.

Clearly the size of this construction is polynomial, it can be computed in polynomial time,
and the level width of the DFA is bounded by 3. The arguments for the correctness of the
mapping parallel the arguments used in Theorem 2. ]

To summarize the results of this section, we have investigated an extension of the problem
of recording a macro, in which the goal is to learn a linear sequence of operators taken from
a known set. We showed that this learning problem is trivial if the operators are observable,
and tractable if the operators are hidden and the intermediate states of the computation
are observable. However, if the intermediate states are hidden, then the problem becomes
intractable. More surprisingly, the problem is hard even if the intermediate states are only
partially hidden—hiding even two bits of each intermediate value makes learning as hard
as learning DNF, and hiding(log log n) bits makes learning cryptographically hard.

6. Conclusions

In this paper we analyzed a simple instance of a learning problem involving structured
examples; specifically, we analyzed a dual version of the problem of learning DFAS, in
which examples are DFAs, concepts are strings, and a string denotes the set of DFAs that
acceptit. The dual DFA learning problem is a formalization of a problem in which concepts
are relatively simple, but examples are allowed to have a non-trivial structure: namely, the
structure of a rooted directed graph. We showed that the “dual DFA problem” is as hard
as learning log-depth boolean circuits, even if example DFAs are restricted to be over a
three-letter alphabet and also acyclic, leveled, and of logarithmic level width.

Corollaries of this result answer two open questions in the learnability of first-order
representations. First, under cryptographic assumptions, the descriptiofClagisic is
not learnable in the model proposed by Cohen and Hirsh (Cohen & Hirsh, 1994a). Second,
under cryptographic assumptions, arity-two “determinate” function-free Prolog clauses are
not polynomially predictable in the model proposed by Kietz (Kietz, 1993).

The dual DFA result also has implications for the problem of learning straight-line pro-
grams (without branches or loops) from input/output pairs or traces—a trace being a se-
guence revealing the intermediate values required to evaluate the target function on an
examplexz. We motivated a particular formalization of this problem and showed that
learning from input/output pairs is cryptographically hard, but that learning from traces is
tractable. As an intermediate between these two models, we then proposed a model of
learning frompartial traces In particular we considered learning from examples and the
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oracle PTRACE, which can be thought of as returning a complete trace that has been edited
by an adversary who can “hide” at mdstits of every intermediate value. We showed
that learning from partial traces is cryptographically hard even if ahlpg log n) bits of

each value are hidden. Furthermore, learning from partial traces is as hard as learning DNF
even if only two bits of each value are hidden. These results may have implications for the
research area of “programming by demonstration” (Cypher, 1993).

We will conclude with some further remarks on the implications of these results, and
more generally, on the role of negative formal results in computer science. The computer
science community has three main goals: to identify problems that are worthy of study, to
understand these problems, and to engineer solutions to them. The last two goals are often
closely related, since better solutions often arise from better understanding. While negative
formal results seldom immediately suggest a new engineering solution to a problem, they
can and often do lead to progress in our collective understanding of a problem.

With respect to the results of this paper, previous formal results have provided consider-
able insight into the computational complexity of many types of first-order learning—one
exception being the case of learning logic program clauses over binary determinate predi-
cates. This is an important special case for both practical and formal reasons. Practically,
it is related to widely used representations such as description logics and functional pro-
gramming languages. Formally, while the language is known not be properly learnable
(Kietz, 1993), recent positive results have shown that some interesting subclasses can be
learned using novel representation schemes for hypothesesafH@tal., 1997).

The formal results suggest that determinate Prolog clauses may have different learnability
properties in the arity-two case than in the more general case, in which predicates may
have arity three or more; in particular, it raises the possibility that a large subset of this
practically important special case can be efficiently learned, if an appropriate representation
for hypotheses is used. If this were the case, it might have important implications for the
design of future first-order learning systems (which should arguably be extended to deal
appropriately with the special case) as well as future knowledge representations systems
(which should arguably be extended to support the representations used as hypotheses of
the learners.)

However, the hardness result of this paper gives a strong upper bound on what sort
of arity-two clauses can be learned; specifically, it implies that the assumption of binary
determinate predicates alone is not enough to guarantee learnability. In addition, the result
clarifies our understanding of the problem in several important respects. In particular, the
proofs indicate what sort of additional restrictions might lead to further positive learnability
results. For instance, to obtain a positive result, it would clearly not be sufficient to restrict
the number of available predicates to an arbitrary constant. However, we observe that in
the proofs, it is necessary to make an adversarial choice of both the transition function and
state labelings of the example DFAs. Interestingly, prior results in DFA learning show that
while DFAs are hard to learn given an adversarial choice of target concepts, learning is
sometimes possible in only slightly less adversarial settings; as an example, consider the
distributions of “typical” DFAs considered by Freuetl al(Freund et al., 1993), in which
an adversary determines the transition function of the target DFA, but the labeling of states
is determined stochastically. We leave as an open question the complexity of the dual DFA
learning problem in an analogous setting.
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Appendix A

Semantics of CORECLASSIC

Below we will briefly review the semantics 6foRECLASSIC, as they pertain to the results
of this paper. Readers are referred to Borgida and Patel-Schneider (Borgida & Patel-
Schneider, 1994) for a fuller discussion, or to Cohen and Hirsh (Cohen & Hirsh, 1994a,
Cohen & Hirsh, 1994b) or Frazier and Pitt (Frazier & Pitt, 1996) for a discussion in the
context of learnability problems.

Concepts inCoreCLASSIC describe subsets of a domdirof “individuals”. Concepts
are built from a alphabet gfrimitive class symbols, each of which corresponds to a subset
of I; role symbols-, each of which corresponds to a subsef of I; attribute symbols,
each of which corresponds to a function frdnto 7; and the operators AND, ALL, and
SAME-AS.

For a primitivep, let ext(p) denote the subset dfthat corresponds tp; for a roler,
let r(x,y) be the corresponding binary predicate; and for an attribulet a(x) be the
corresponding function. £orECLASSIC concept is defined inductively as follows.

e |If pis a primitive class symbol themis a concept denotingzt(p).

e If ris arole or attribute and’ is a concept, then (ALl C) is a concept, denoting
the set of alle € I such thaty € I, r(z,y) = y € ext(C), whereext(C) is the set
denoted by the concept.

o Ifay,...,ag,by,...,0 are attribute symbols, then (SAME-AS(...ax) (b1 ...0))
is a concept denoting the set af € I such thatag(---as(ai(z)) ) =

(- ba(ba(@)) ).
e IfCy,...,C, areconceptsthen (AND ... C,) is a concept denotinG);__, exzt(C;).

An important relationship in description logicsssibsumption ConceptC; subsumes
Cy if ext(Ch) 2 ext(C2) regardless of the extensions of the primitive concepts, roles and
attributes used i@, andCs.

Forexample the conce@t = (AND politician lawyer) would notsubsume the con-
ceptCy = (AND congressman lawyer (SAME-AS mistress aide)) even if it hap-
pened to be the case thatt(politician) D ext(congressman) and hencext(Cy) 2
ext(Cy). This is because fof; to subsume’s, it must be thatezt(Cy) O ext(Cy) re-
gardless of how the primitive concepts are defined, and it it clearly possible to define the
“politician” and “congressman” so thafrt(politician) 2 ext(congressman). How-
ever,C] = (AND congressman lawyer) would subsume’s, since every element of
(1 is necessarily a member 6k, regardless of the definition of the primitive roles and
concepts.
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Appendix B

Semantics of logic programs

In the interests of simplicity, the definitions below only coincide with the usual ones for the
case of non-recursive function-free single-clause Prolog programs. For a more complete
description of logic programming see one of the standard texgs (LIoyd, 1987)).

Logic programs are written over an alphabetofistant symbo]gredicate symbolsand
variables A function-free literalis writtenp(X1, ..., Xi) wherep is a predicate symbol
andXy, ..., X are variables. Aactis writtenp(t4, ..., t;) wherep is a predicate symbol
andtq, ..., t; are constant symbols. The number of argumeénts a literal (or fact) is
called itsarity.

A ground clausés writtena:-by, . . ., b,, wherea and they;’s are all facts. Aunction-free
clauseis writtenC:-Dq, ..., D,,, whereC and theD;’s are all function-free literals. The
fact (or literal) to the left of the “:-” symbol is theeadof the clause and the facts (literals)
to the right of the “:-” symbol are theodyof the clause.

A substitutionis a partial function mapping variables to constant symbols or variables. If
0 is a substitution and! is a literal, we will use4f to denote the result of replacing each
variableX in A with the constant symbol to whick is mapped by.

The function-free claus@:-Dy, . .., D, is said tof-subsuméhe ground clause-b, . . .,
b, ifthere is some substitutighsuchthatCé = aandvi : 1 <i <n,D;0 € {b1,..., by }.

The following restrictions (which assume the literals in the body of a clause to be ordered)
are modified from Muggleton and Feng (Muggleton & Feng, 1992)::4D1 A.. . A D, is
afunction-free clause, then thigut variablesof the literal D, are those variables appearing
in D; that also appear in the clauée-D; A ... A D;_1; all other variables appearing in
D; are callecbutput variables A literal D; is determinatgwith respect to a ground clause
a:-by,...,by,,)ifforevery possible substitutiamsuch thatC:-D; A...A D;_; 8-subsumes
a:-by A ... A by, there is at most one substitutiérso thatD;c0 € {b,...,b,}. Less
formally, a literal is determinate if its output variables have only one possible binding—that
is, if the predicate associated with the literal denotes a function, rather than an arbitrary
relation.

A function-free claus€':-D; A ... A D,, is determinatewith respect to a ground clause
a:-by, ..., by, if every literal D; in the body of the clause is determinate with respect to
the ground clause. ID is a distribution over ground clauses, a function-free clause is
determinatgwith respect tdD) if it is determinate with respect to every ground clause with
non-zero weight undep.

Finally, define thelepthof a variable appearing in a function-free cladseD; A. . .AD,,
as follows. Variables appearing in the head of a clause have depth zero. Otherwixe, let
be the first literal containing the variahlé, and letd be the maximal depth of the input
variables ofD;; then the depth oK is d + 1. The depth of a clause is the maximal depth
of any variable in the clause.
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Notes

1. To clarify this remark, a typical learning problem includes a set of possible cor€epts. , C,, and a set of
possible instancesy, . .., z,. Conceptually, one can think of these sets as a large 0,1 matrix in which the
columns correspond to instances, the rows correspond to concepts, and each row encodes the characteristic
function for a concept. For every such learning problem there is a dual learning problem which is obtained
by considering the transpose of this matrix.

2. More precisely, the prediction problem is intractable if one or more of the following are intractable: solving
the quadratic residue problem, inverting the RSA encryption function, or factoring Blum integers (Kearns &
Valiant, 1989).

3. Infact, under the additional cryptographic assumption that solving the' < subset sum is hard, log-depth
circuits are hard to pac-predict even if examples are drawn from a uniform distribution (Kharitonov, 1992).

4. Assuming that examples are concepts is equivalent to assuming that examples are represented by detailed (but
polynomial-sized) descriptions of themselve€iorECLAsSIC. This “single-representation trick” is formally
convenient, as it avoids introducing a second language for describing instances, and is also sometimes used in
experimental Al systems (Dietterich et al., 1982).

5. Anearly “proof” thatCorRECLASSIC was hard to pac-predict turned out to be erroneous (Cohen & Hirsh, 1992,
Cohen & Hirsh, 1995).

In this paper we follow the convention thgt o g)(z) = f(g(z)).

In previous work, we have used a similar formalization to analyze inductive logic programming learnability
problems (Cohen, 1995); in these cases, logic languages are parameterized by a set of available “background
predicates”.

8. Notice thatifPAcPRrREDICT is a uniform prediction algorithm, thdPacPREDICT must run in time polynomial
in ny, sincen; is the size of the examples used BycPrEDICT. However,PACPREDICT neednotrun in
time polynomial inno.
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