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Abstract. Learning from “structured examples” is necessary in a number of settings, including inductive logic
programming. Here we analyze a simple learning problem in which examples have non-trivial structure: specif-
ically, a learning problem in which concepts are strings over a fixed alphabet, examples are deterministic finite
automata (DFAs), and a string represents the set of all DFAs that accept it. We show that solving this “dual”
DFA learning problem is hard, under cryptographic assumptions. This result implies the hardness of several other
more natural learning problems, including learning the description logicClassic from subconcepts, and learning
arity-two “determinate” function-free Prolog clauses from ground clauses. The result also implies the hardness
of two formal problems related to the area of “programming by demonstration”: learning straightline programs
over a fixed operator set from input-output pairs, and learning straightline programs from input-output pairs and
“partial traces”.

Keywords: computational learning theory, learning deterministic finite automata, inductive logic programming

1. Introduction

In a number of settings it is necessary to learn from “structured” examples:i.e., ex-
amples that cannot be easily encoded as feature vectors. Examples of such settings in-
clude multiple-instance learning (Dietterich et al., 1997), learning knowledge representa-
tion languages (Cohen & Hirsh, 1994b), and inductive logic programming (Quinlan, 1990,
De Raedt, 1995, Muggleton & De Raedt, 1994). In this paper we will analyze a simple in-
stance of a learning problem in which examples have a non-trivial structure—specifically,
a learning problem in which the examples are directed graphs.

More formally, we consider a learning problem in which the examples are determin-
istic finite automata (DFAs), the concepts are strings over a fixed alphabet, and a string
s denotes the set of all DFAs that accept it. This problem is, in a very natural sense,
the dual of the well-investigated problem of learning DFAs from strings1 (Angluin, 1987,
Kearns & Valiant, 1989). Note that in this “dual” DFA learning problem, although the
examples have non-trivial structure, the concepts are very simple: a concept essentially tra-
verses a single path through the graph, and tests a single label associated with the endpoint
of this path.

We investigate thepolynomial predictability(Pitt & Warmuth, 1990) of this learning prob-
lem: in other words, we investigate the complexity of finding a hypothesis which is probably
approximately correct, without placing any restrictions on how the hypothesis is represented.
We show that solving the “dual DFA problem” in this representation-independent sense is
as hard as solving certain cryptographic problems that are widely assumed to be compu-
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tationally difficult, such as inverting the RSA encryption function. Moreover, this result
holds even if the class of example DFAs is highly restricted.

This result leads immediately to a number of similar hardness results for less artificial non-
propositional representations, including the resolution of two previously open problems.
As one corollary of the dual DFA result we show that the description logicClassic is not
polynomially predictable, again under cryptographic assumptions.Description logicsare
a family of representation languages that have been heavily investigated by the knowledge
representation community; for surveys of this work, see Borgida (Borgida, 1992), MacGre-
gor (MacGregor, 1991), or Woods and Schmolze (Woods & Schmolze, 1992). Previously,
Cohen and Hirsh (Cohen & Hirsh, 1994a) showed that the description logicClassic is not
pac-learnable from examples, and Frazier and Pitt (Frazier & Pitt, 1996) showed thatClas-

sic is not pac-learnable from membership queries alone. Both of these negative results,
however, pertain only to learners that are restricted to output a hypothesis in theClassic

language; the question of the learnability ofClassic and related description logics from
random examples in a representation independent sense has until now remained open.

Another well-studied problem is the learnability of logic programs (Page & Frisch, 1992,
Dz̆eroski et al., 1992, Cohen & Page, 1995). In this paper we show that arity-two “deter-
minate” function-free Prolog clauses are not polynomially predictable, under cryptographic
assumptions. Again, although Kietz (Kietz, 1993) showed earlier that this language is not
pac-learnable, its learnability in the polynomial predictability model has remained open.

Finally, the dual DFA result gives some insight into the problem of learning simple
programs from examples and traces. We show that learning straight-line code (without
loops or branches) from input/output pairs is hard, even if there are only three possible
actions to take at each step of the program. We then show that this problem becomes
tractable if the learner also has access to a “trace” that reveals the intermediate values
computed by the target program after performing each individual action. However, learning
from traces is shown to be cryptographically hard if an adversary is allowed to hide even
O(log log n) bits of each intermediate value. Further, learning from traces is shown to be as
hard as learning DNF if an adversary is allowed to hide onlytwo bits of each intermediate
value. These results are motivated by problems from the research area of “programming
by demonstration” (Cypher, 1993).

In the remainder of the paper, we will first present some preliminary definitions, and
then the hardness results for the dual DFA problem. We will then discuss the technical
implications of this result with respect to problems in first-order learning and automatic
programming. We will conclude with a summary, and a more general discussion of the
consequence of the results.

2. Preliminaries

This paper uses the model ofpac-learnability, as introduced by Valiant (Valiant, 1984).
Let X be a set, called thedomain. Define aconceptC overX to be a subset ofX, and
a languageL to be a set of concepts. Associated withL is some scheme for representing
the concepts inL. In general, we will be casual about the distinction between a concept
and its representation; when there is a risk of confusion we will write the set denoted by a
representationC (i.e., the extension ofC) asext(C). We will assume asizeor complexity
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measureon representationsC ∈ L, and also a size measure on instancesx ∈ X. The size
of C ∈ L (respectivelyx ∈ X) will be denoted||C|| (or ||x||). Typically these measures will
be polynomially related to the number of bits needed to encode a concept (or instance).

If P is a probability distribution, asample ofC drawn fromX according toP is a pair of
multisetsS+, S− drawn according toP , S+ containing only the positive examples ofC,
andS− containing the negative ones. We define a sample to benI -boundedif it contains
no example larger thannI . We will not assume thatnI is known to the learning algorithms.

Informally, pac-learnability requires that a learning algorithmPacLearn be “probably
approximately correct”;i.e., thatPacLearn outputs an accurate hypothesis from a given
languageL most of the time, whenever the target concept is succinctly expressible inL.
Formally, we define a languageL to bepac-learnableiff there is an algorithmPacLearn

and a polynomial functionm( 1
ε , 1

δ , nI , nT ) so that for everynT > 0, everyC ∈ L of
size less thannT , every0 < ε < 1, every0 < δ < 1, and every probability distribution
P , PacLearn has the following behavior: when run on anI -bounded sampleS+, S−

of C drawn according toP of size|S+| + |S−| > m( 1
ε , 1

δ , nI , nT ), PacLearn outputs
a hypothesisH ∈ L such thatProb(P (H4C) > ε) < δ, where4 denotes symmetric
difference, and furthermore,PacLearn runs in time polynomial in1ε , 1

δ , nI , nT , and the
size of the sample. The probability above is taken over the possible samplesS+ andS−

and (ifPacLearn is a randomized algorithm) over any coin flips made byPacLearn.
The functionm( 1

ε , 1
δ , nI , nT ) is called thesample complexityof PacLearn. A hypoth-

esisH such thatProb(P (H4C) > ε) < δ is calledε-good with respect to the target
C.

The definition of pac-learnability requires that the hypothesisH of the learner be ex-
pressed in the languageL. Since this is not always strictly necessary, it is often desirable
to relax this requirement (particularly when proving negative results.) We will say thatL is
polynomially predictableif there is an algorithmPacPredict that satisfies all the require-
ments for a pac-learning algorithm forL, except thatPacPredict outputs a polynomial
time evaluable hypothesisH which is perhapsnot in the target languageL. Negative results
in the polynomial predictability model are sometimes called “representation independent”
hardness results.

One important analytic tool used in this paper isprediction-preserving reducibility, as
described by Pitt and Warmuth (Pitt & Warmuth, 1990). IfL1 is a language over domainX1

andL2 is a language over domainX2, then we say thatpredictingL1 reduces to predicting
L2, writtenL1 ≤ L2, iff there is a functionf : X1 → X2, henceforth called theinstance
mapping, and a functiong : L1 → L2, henceforth called theconcept mapping, so that the
following all hold:

1. x ∈ C if and only if f(x) ∈ g(C)—i.e., concept membership is preserved by the
mappings;

2. the size complexity ofg(C) is polynomial in the size complexity ofC—i.e., the size of
concepts is preserved within a polynomial factor; and

3. f(x) can be computed in polynomial time.

Intuitively, g(C1) returns a conceptC2 ∈ L2 that will “emulate”C1 (i.e., make the same
decisions about concept membership) on examples that have been “preprocessed” with
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the functionf . Pitt and Warmuth (Pitt & Warmuth, 1990) showed that ifL1 ≤ L2 and
L2 is polynomially predictable, thenL1 is also polynomially predictable. Conversely, if
L1 ≤ L2 andL1 is not polynomially predictable, then neither isL2.

3. Hardness of the dual DFA problem

A well-studied problem in computational learning theory is the learnability of DFAs from
strings (Angluin, 1987, Kearns & Valiant, 1989). We will now consider a dual version of
this problem, in which the concepts are strings and the examples are DFAs. Let us consider
the domain of DFAs over a fixed alphabetΣ, and the concept classSDFA of stringss ∈ Σ∗,
with semantics defined as follows: ifM is a DFA ands is a string inΣ∗, thenM ∈ ext(s)
iff s is accepted byM . In other words, a string denotes the class of DFAs that accept it.

Let us first consider the learnability of this language in the pac-learning model. Using a
construction from Cohen and Hirsh (Cohen & Hirsh, 1994a) it can be easily shown that the
dual DFA learning problem is hard in the pac-learnability model.

Theorem 1 The languageSDFA is not pac-learnable unless RP=NP.

Proof: We only sketch the argument, as it closely parallels (part of) the argument used
in Theorem 3 of Cohen and Hirsh (Cohen & Hirsh, 1994a). By the results of Pitt and
Valiant (Pitt & Valiant, 1988), a language is pac-learnable only if there is a polynomial-
time algorithm for the correspondingconsistency problem—in this case, the problem of
finding a consistent hypothesis inSDFA given a set of positive and negative example DFAs.
We will reduce 3SAT (Hopcroft & Ullman, 1979) to the consistency problem for dual DFAs,
thereby showing that the consistency problem is NP-hard.

Assume that there is an algorithmA that solves the consistency problem, and letφ =∧n
i=1(li1 ∨ li2 ∨ li3) be a 3CNF sentence overn variables, where each literallij is either

a variablexij or its negation. Without loss of generality, assume that the literalsli1 , li2 ,
andli3 are in strictly increasing alphabetical order. Now construct fromφ a set ofn DFAs
M1, . . . , Mn whereMi is the minimal DFA accepting the language

(0 + 1)i1−1s(li1)(0 + 1)n−i1 +
(0 + 1)i2−1s(li2)(0 + 1)n−i2 +
(0 + 1)i3−1s(li3)(0 + 1)n−i3

Wheres(l) is 1 if l = xk ands(l) is 0 if l = xk. The DFAsM1, . . . , Mn, are then presented
to A as positive examples. Now, if the binary strings of lengthn accepted by these DFAs
are interpreted as assignments to the variables that appear inφ, it is easily verified thatMi

accepts exactly the assignments that satisfy thei-th clause ofφ. Thus any concept (string)
s that covers all the positive examples must satisfy all the literals ofφ, and therefore satisfy
φ itself, and hence if a polynomial time algorithmA exists it can be used to solve instances
of 3SAT.

Proposition 1 shows that learning is hard when the learner is required to output a hypothesis
in the target languageSDFA. Now let us consider the more interesting question of whether
a pac hypothesis can be found in some other representation—i.e., the question of whether
this language is polynomially predictable.
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Table 1.Examples of formulae inBdn,∗ for various values ofd

d Bdn,∗
0 x1 ∧ x3

0 x2 ∧ x4

1 (x2 ∧ x4) ∨ (x1 ∧ x3)
1 (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)
2 ((x2 ∧ x4) ∨ (x1 ∧ x3)) ∧ ((x4 ∧ x2) ∨ (x3 ∧ x1))

The principle technical result of this paper is the following theorem, which shows that
the “dual DFA problem” is as hard as learning log-depth boolean circuits, even if example
DFAs are restricted to be over a three-letter alphabet. In fact, in the proof, we will show
that this result holds even for a rather restricted class of DFAs, namely those that are also
acyclic, leveled, and of logarithmic level width (as defined below).

Theorem 2 If |Σ| ≥ 3 then the languageSDFA is not polynomially predictable under
cryptographic assumptions.2

The remainder of this section is a proof of this result. The proof is based on a prediction-
preserving reducibility from a certain class of boolean formulae, which we define below, to
the dual DFA learning problem. Given this reduction, existing hardness results for boolean
formulae can be used to establish the theorem itself.

Given the boolean variablesx1, . . . , xn, define the class of boolean formulaeBd
n,∗ induc-

tively as follows. (The reason for the somewhat cumbersome notation will become clear
shortly.)

• B0
n,∗ is the class of monomials overx1, . . . , xn.

• if d > 0 andd is odd, then

Bd
n,∗ ≡ {b1 ∨ b2 : b1 ∈ Bd−1

n,∗ andb2 ∈ Bd−1
n,∗ }

• if d > 0 andd is even, then

Bd
n,∗ ≡ {b1 ∧ b2 : b1 ∈ Bd−1

n,∗ andb2 ∈ Bd−1
n,∗ }

In other words,Bd
n,∗ is the class of balanced alternating depth-d boolean formulae overn

variables with monomials as leaves. Table 1 contains some examples of formulae inBd
n,∗.

We will now define some restrictions on DFAs. LetM be a DFA with start stateq0 and
transition functionδ. DefineLEVEL(d, M) to be the set of states inM that can be reached
with input strings of lengthd. Thelevel widthof a DFAM is defined to be the maximum
cardinality over alld of the setLEVEL(d, M). A DFA is leveledif LEVEL(d1, M) and
LEVEL(d2, M) are disjoint for alld1 6= d2. Note that leveled DFAs are always acyclic.

We defineLDFA(w) to be the set of leveled DFAs of level width at mostw. By way of
example, Figure 1 shows two leveled DFAs of width 2, and Figure 4 shows a leveled DFA
of width 3.
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Figure 1. The general construction used forf0(η), and a specific example.

We will also adopt the following notation: ifL is a language over the domainX, then
LnI ,nT denotes the set of concepts{C ∈ L : ||C|| ≤ nT } over the restricted domain
{x ∈ X : ||x|| ≤ nI}; that is,LnI ,nT is the set of small (size≤ nT ) concepts over the
domain of small (size≤ nI ) instances. Also letLnI ,∗ denote the set

⋃
j LnI ,j . Thus

SLDFA(w)
nI ,nT denotes the class of all strings of length at mostnT over the domain of width-w

leveled acyclic DFAs of size at mostnI . The size measure we will use for instances (DFAs)
is simply the number of states.

We will now show thatBd
n,∗ ≤ S

LDFA(d+2)
pI(n,d),pT (n,d) where the functionspI(∗, ∗) andpT (∗, ∗)

are both polynomials inn and2d. The lemma below establishes a slightly stronger result
by induction ond.

Lemma 1 Assume|Σ| ≥ 3. Then for alld > 0 and alln > 2,

Bd
n,∗ ≤ SLDFA(d+2)

nI ,nT

wherenI = (d + 2)(n + 2)2d andnT = (n + 2)2d. Further, in every example DFA there
is exactly one accepting state, which appears at the maximal depth, and exactly two states
total at the maximal depth.

Proof: The proof is by induction ond. Without loss of generality letΣ = {0, 1, ?}.
(The symbol “?” will be used as a sort of a wildcard in our construction, and should not
be confused with the regular expression “star” operator.) For eachd we will produce an
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instance mappingfd and a concept mappinggd that preserve membership, as required by
the definition of prediction-preserving reducibilities, and also satisfy the other conditions
of the lemma. We will focus on the bounds on level width (ofd + 2) and string length (of
(n + 2)2d), since the bound on instance size is implied by these bounds.

Base case.Let η = a1 . . . an be an assignment tox1, . . . , xn. (I.e., ai = 1 if xi is true
andai = 0 if xi is false.) Letai denote the negation ofai. (I.e., 0 = 1 and1 = 0.) Recall
that the instance mappingf here must map an assignmentη to a DFA, and definef0(η) to
be a DFA with the following structure.

1. Recalling thatn is the number of variables involved in the assignmentη, there are2n+1
states: the start stateqT

0 , n states namedqT
1 , . . . , qT

n , andn states namedqF
1 , . . . , qF

n .
The only accepting state isqT

n .

2. Fori : 1 ≤ i ≤ n,

• there is an arc labeledai from qT
i−1 to qF

i ,

• there are two arcs labeledai and? from qT
i−1 to qT

i , and

• if i > 1, then there are three arcs labeledai, ai, and? from qF
i−1 to qF

i .

See Figure 1 for examples of this construction.
Now, we will define the corresponding concept mappingg0. Recalling thatg0 must map a

monomial to a string, letb ∈ B0
n,∗ be a monomial overx1, . . . , xn and defineσi as follows:

σi ≡

 1 if xi ∈ b
0 if xi ∈ b
? else

We defineg0(b) to be the stringσ1 . . . σn. For example, whenn = 4 then

g0(x2x4) = ?1?0

Let us consider now the size and level width bounds. Clearly,f0(η) is leveled, and the
width of f0(η) is exactly2 = 0 + 2; alsog0(b) is of sizen < (n + 2)20. It is also obvious
thatf0 is computable in polynomial time, and that there are two states of maximal depth,
exactly one of which is accepting, and no other accepting states in the automaton.

It remains to be shown that membership is preserved. It is not too hard to see that the DFA
f0(η) accepts the stringg0(b) exactly whenη satisfiesb. To argue this formally, we will
introduce the following notation. For a strings and a DFAM , let M(s) denote the state
reached byM after reading in the strings, and letM0

η = f0(η). Consider the monomialb
as a subset of the literals{x1, x1, . . . , xn, xn}, and letb|j denoteb ∩ {x1, x1, . . . , xj , xj}.
By induction one can easily show that for allj, M0

η (σ1 . . . σj) must be eitherqT
j or qF

j ,
and thatM0

η (σ1 . . . σj) = qT
j iff η satisfiesb|j . Thus the lemma holds for the base case of

d = 0.
To summarize the argument above, we have so far shown that learning problem for

monomials can be reduced to the dual DFA learning problem. To accomplish this reduction,
it was necessary to show that an assignmentη can be converted into a DFA which accepts
exactly those monomials that are satisfied byη (for a suitable encoding of monomials). As
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Figure 2. The constructions used forfd(η) for d > 0

Figure 1 shows, this computation is easy to do with a DFA. With the encoding we chose, the
DFA can simply scan through the literals in the monomial, one by one; it is only necessary
for the automaton to “remember” if any literal in the monomial has been falsified byη.

The inductive step. Let us consider first the case in whichd is odd—and hence for a
formulab ∈ Bd

n,∗, b = b1 ∨ b2. By induction there exists an instance mappingfd−1 and a
concept mappinggd−1 that satisfy the conditions of the lemma; alsob1 andb2 are both in
Bd−1

n,∗ .
We now definefd andgd as follows. For an assignmentη, fd(η) is an automaton with

the following structure.
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1. Let m be the depth offd−1(η). We will useqT
0 to denote the start state offd−1(η),

qT
m to denote the maximal-depth accepting state, andqF

m to denote the maximal-depth
rejecting state. (Note that by induction,qT

m andqF
m are unique.)

The states of the automaton include each stateq in fd−1(η); a copyq̂ of each stateq of
fd−1(η); m statesr1, . . . , rm; and two additional statesrT andrF .

The start state isqT
0 . The sole accepting state isrT .

2. If there is an arc labeleda in fd−1(η) between statesqi andqj , then there is an arc
labeleda in fd(η) between statesqi andqj , and also between statesq̂i andq̂j .

3. Fori : 1 ≤ i < m there are arcs labeled0, 1 and? from stateri to stateri+1.

4. There are arcs labeled0, 1 and? between all of following pairs of states:qT
m andr1,

qF
m andq̂T

0 , rm andrT , q̂T
m andrT , andq̂F

m andrF .

Whend is even, then conditions 1 through 3 are the same, but condition 4 is amended to
require arcs labeled0, 1 and? between these pairs of states:qT

m andq̂T
0 , qF

m andr1, rm and
rF , q̂T

m andrT , andq̂F
m andrF .

See Figure 2 for examples of the construction. Clearly this DFA can be constructed in
polynomial time, if the size bounds of the theorem hold.

To define the concept mappinggd, let α = gd−1(b1) andβ = gd−1(b2). We define
gd(b1 ∨ b2) (for oddd) or gd(b1 ∧ b2) (for evend) to be the stringα?β?. For example,
whenn = 4, then the following are examples of the mappinggd. (The underlining is for
clarity, and shows the recursive structure of the strings.)

g0(x2x4) = ?1?0?

g1(x2x4 ∨ x2x4) = ?1?0 ? ?0?1?

g1(x3x4 ∨ x3x4) = ??10 ? ??01?

g2((x2x4 ∨ x2x4) ∧ (x3x4 ∨ x3x4)) = ?1?0 ? ?0?1? ? ??10 ? ??01? ?

Below we will argue that this construction correctly implements boolean AND and OR
for functions inBd

n,∗; that is, we will argue that the DFAfd(η) for oddd accepts exactly
the formulae of the formb1 ∨ b2 satisfied byη, and thatfd(η) for evend accepts exactly
the formulae of the formb1 ∧ b2 satisfied byη. By induction we can assume that the DFA
fd−1(η) accepts exactly those formulae satisfied byη. Again, the basic idea is simple.
The constructed DFA scans the encoding ofb1, and then the encoding ofb2. In each case
it is only necessary for the automaton to “remember” which of the subformulaeb1 andb2

are satisfied byη to correctly perform the computation; and by induction, copies of the
automaton forfd−1(η) can be used to determine ifη satisfies the subexpressionsb1 andb2.

More formally, we wish to show that for any assignmentη and anyb ∈ Bd
n,∗, η satisfies

b iff fd(η) acceptsgd(b). Assume that this is true ford− 1, let Md
η be the machinefd(η),

and letM(s) denote the state that the DFAM is in after reading in the strings. We can
now argue as follows.

Case 1. Assumed is odd. If η satisfiesb = b1 ∨ b2, eitherη satisfiesb1 or b2 or both.
For the following, please refer to Figure 2. Ifη satisfiesb1 then by the inductive
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hypothesisMd−1
η (gd−1(b1)) is the accepting stateqT

m; referring to Figure 2, clearly
Md

η (gd(b)) = rT , and hencegd(b) is accepted byMd
η . If η satisfiesb2 but notb1 then

Md−1
η (gd−1(b1)) is the rejecting stateqF

m, butMd−1
η (gd−1(b2)) is the accepting state

qT
m. Again,Md

η (gd(b)) = rT , following the pathqT
0 , . . . , qF

m, q̂T
0 , . . . , q̂T

m, rT .

Conversely, supposeη does not satisfyb = b1 ∨ b2. Thenη satisfies neitherb1 nor b2.
By inductionMd−1

η rejects bothgd−1(b1) andgd−1(b2), and hence the automatonMd
η

will, on reading the stringgd(b), visit the statesqT
0 ,. . . , qF

m, q̂T
0 , . . . , q̂F

m, and finally
rF , rejecting the string.

Case 2. Assumed is even. The argument is analogous to Case 1. Ifη satisfiesb = b1∧ b2,
thenMd−1

η acceptsgd−1(b1) andgd−1(b2). HenceMd
η will, on reading the string

gd(b), visit the statesqT
0 ,. . . , qT

m, q̂T
0 , . . . , q̂T

m, and finallyrT , accepting the string. Ifη
does not satisfyb, thenMd−1

η rejects eithergd−1(b1) or gd−1(b2). In either caseMd
η

finally reaches the staterF , rejecting the stringgd(b).

Finally let us consider the size and level width bounds. Inspection of the construction
shows that the level width offd(η) is bounded by one plus the level width offd−1(η). By
induction, this can be bounded by((d− 1) + 2) + 1 = d + 2. For the size bound ongd(b),
let LEN(d) denote the length ofgd(b) for b ∈ Bd

n,∗. We claim that for alld

LEN(d) ≡ n2d +
d∑

i=1

2i

If true, this claim clearly satisfies the size bound stated in the lemma, since
∑d

i=1 2i < (n+
2)2d. The base case for the claim is immediate, asLEN(0) = n. The inductive case can
be easily verified by substitution, using the fact thatLEN(d) = 2LEN(d− 1) + 2:

LEN(d) = 2 · (LEN(d− 1) + 1)

= 2 · (n2d−1 +
d−1∑
i=1

2i + 1)

= n2d +
d−1∑
i=1

2i+1 + 2

= n2d +
d∑

i=1

2i

This completes the proof of the lemma.

Lemma 1 gives a polynomial reduction fromBlog n
n,∗ to the dual DFA problem. To

complete the proof of Theorem 2, it is only necessary to show thatBlog n
n,∗ is crypto-

graphically hard. This result follows easily from known results on circuit complexity
(Boppana & Sipser, 1990); however for completeness, we will sketch the argument.

Consider the language of boolean circuits using AND, OR and unary NOT gates with
fan-in two and unbounded fan-out. Any boolean circuit can be converted to a boolean



HARDNESS RESULTS FOR LEARNING FIRST-ORDER REPRESENTATIONS 67

formula by replicating portions of the circuit; note that if this is done, a gate at level
d need be replicated at most2d times. This means that circuits of depthlog n can be
converted to boolean formulae of depthlog n with only a polynomial increase in size—
specifically the size is increased by a factor ofn. Also note that negations appearing in
a boolean formula can be pushed to the inputs by repeated application of De Morgan’s
laws, without any increase in size. Finally, a boolean formula that contains only AND
and OR operators internally can be forced to strictly alternate AND and OR operators by
padding non-alternating subformulae. (For example, AND(AND(w,x),OR(y,z)) would be
replaced by AND(OR(AND(w,x),AND(w,x)),OR(y,z)).) Note that padding will at most
double the depth of the formula. Thus log-depth circuits can be represented as log-depth
strictly alternating boolean formulae—a strict subset ofBlog n

n,∗ .
Thus we have the following proposition.

Proposition 1 For every boolean circuitC of depthlog n overn variables, there is an
equivalent formulaC ′ in B2 log n

n,∗ .

By Lemma 1 the size ofC ′ is bounded by(n+2)22 log n = (n+2)n2. Thus together with
the reduction of Lemma 1 this proposition shows that the language of log-depth circuits is
prediction-preserving reducible to

SLDFA(2 log n+2)
(2 log n+2)(n+2)n2,(n+2)n2

which is polynomial inn. The expressive power of depth-bounded boolean circuits, as well
as their learnability, has been well studied; in particular it is known that log-depth circuits
are hard to predict under cryptographic assumptions (Kearns & Valiant, 1989, Theorem 4).3

This completes the proof of Theorem 2. Note that the construction actually shows the
dual DFA problem to be cryptographically hard even for a rather restricted class of DFAs:
the examples used in the construction are all acyclic, leveled, and of logarithmic level width.

In passing, we note that for the hardness result above, it would be sufficient to consider a
further restriction ofBd

n,∗, in which the leaves are single variables rather than monomials.
The constructions and the proof for this simpler class of boolean formulae would be essen-
tially identical to the proof above; we have chosen the slightly more complex classBd

n,∗ for
this reduction because it will simplify the proof of Theorem 8, below.

4. The dual DFA result and first-order learnability

The dual DFA problem is an interesting but somewhat artificial problem. In the introduction,
we motivated analysis of the dual DFA problem based on its broad similarity to problems
such as relational learning and inductive logic programming; like these problems, the dual
DFA examples have non-trivial structure (namely, a graph-like structure.)

In this section we will discuss some more concrete relationships between the dual DFA
problem and certain learnability problems for first-order languages. In particular, we will
show that the dual DFA learning problem can be easily reduced to two previously open
learning problems, one involving a restricted class of logic programs, and one involving
description logics. The reductions show these learning problems to be hard, under crypto-
graphic assumptions.
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(AND WOMAN

(ALL DAUGHTER

(AND THEORYPHD

UNEMPLOYED))

(ALL SON

(AND MARRIED

(ALL SPOUSE

DOCTOR))))

“The set of women whose daughters are all
unemployed theory PhDs, and all of whose
sons are married to doctors.”

(AND MORTGAGEAPPLICATION

(SAME-AS (GUARANTOR)

(APPLICANT SPOUSE

MOTHER)))

“The set of mortgage applications that are
guaranteed by the applicant’s mother-in-law.”
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Figure 3. ExampleCoreClassic concepts, and equivalent concept graphs

It should be emphasized that although the dual DFA problems is closely connected
with first-order learning, the dual nature of the problem makes our results incompara-
ble to results obtained in previously studied graph-learning problems (Angluin, 1988,
Ergün et al., 1995)—in these problems, thehypothesisspace, rather than the instance space,
is a set of graphs.

4.1. Description logics with equality

4.1.1. Background. Description logicsor terminological logicsare a family of knowl-
edge representation and reasoning systems that have found applications in several diverse
areas, ranging from database interfaces (Beck et al., 1989) to software information bases
(Devanbu et al., 1991) to financial management (Mays et al., 1987) to hardware configu-
ration (Wright et al., 1993). Most of the applications of description logics have not in-
volved learning; however, the learnability of description logics has also been analyzed
(Cohen & Hirsh, 1994a, Cohen & Hirsh, 1994b, Frazier & Pitt, 1996). In this section we
will consider the pac-predictability ofCoreClassic, the simple description logic analyzed
by Cohen and Hirsh (Cohen & Hirsh, 1994a).

Briefly, description logics are to used to reason aboutdescriptions, which describe sets
of atomic elements calledindividuals. Individuals can be organized intoprimitive classes,
which denote sets of individuals, and are related through binary relations calledroles (or
attributeswhen the relation is functional). For example, the individualsDR-JOHNSON and
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CS-101 might be related by theTEACHES role, andCS-101 might be an instance of the
primitive classCOURSE. Descriptionsare composite terms that denote sets of individuals,
and are built from primitive classes (such asPERSON), and restrictions on the properties an
individual may have, such as the kinds or number of role fillers. For instance the description

(AND PERSON (ALL TEACHES (AND GRADUATE-LEVEL COURSE)))

might denote “the set of people that teach only graduate-level courses”, or in predicate
calculus, the set of individualsx that satisfy

PERSON(x) ∧ ∀y[TEACHES(x, y)⇒ (GRADUATE-LEVEL(y) ∧ COURSE(y))]

CoreClassic is a description logic containing primitive concepts, roles, attributes, and
the constructorsAND, ALL, andSAME-AS. TheSAME-AS constructor is used to require that
the result of following two chains of attributes will lead to the same individual: for instance
the description

(AND COURSE (SAME-AS (INSTRUCTOR) (PRINCIPLE-TEXT AUTHOR)))

might denote “the set of courses where the instructor is the author of the principle textbook”,
or in predicate calculus, the set of individualsx such that

COURSE(x) ∧ [INSTRUCTOR(x) = AUTHOR(PRINCIPLE-TEXT(x))]

Some additional examples ofCoreClassic descriptions are shown in Figure 3, and for
readers unfamiliar with description logics, Appendix A gives a brief overview of the seman-
tics for the language. More detailed descriptions can be found elsewhere (Borgida & Patel-
Schneider, 1994).

An important operation in description logics is determining if asubsumptionrelationship
holds between two concepts. Roughly speaking, conceptC1 subsumes conceptC2 if
C1 is more general thanC2. (See Appendix A for more discussion.) Cohen and Hirsh
(Cohen & Hirsh, 1994a) and Frazier and Pitt (Frazier & Pitt, 1996) have investigated the
learnability ofCoreClassic and similar description logics in a setting in which examples
are concepts, marked as positive if and only if they are subsumed by the target concept.4

Cohen and Hirsh showed thatCoreClassic is not pac-learnable in this model, but that
a version ofCoreClassic allowing only restricted use of SAME-AS is pac-learnable.
A later paper (Cohen & Hirsh, 1994b) presented additional formal results for a more ex-
pressive description logic, and experimental results for a number of learning problems.
Frazier and Pitt (Frazier & Pitt, 1996) showed thatCoreClassic is not exactly learnable
from membership queries alone, but is exactly learnable from membership and equivalence
queries. They also demonstrated that the more expressive logicClassic is learnable from
membership and equivalence queries.

4.1.2. A representation-independent negative result.Although previous results iden-
tify several cases in which pac-learningCoreClassic is difficult, the question of the
pac-predictability ofCoreClassic in representation independent models has, until now,
remained open.5 However, the following result is a corollary of Theorem 2.
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Theorem 3 Under the cryptographic assumptions of Theorem 2,CoreClassic is not
polynomially predictable in the model in which examples are concepts labeled by their
subsumption relationship with the target concept.

Proof: An important tool in the analysis ofCoreClassic is the notion of aconcept
graph (Borgida & Patel-Schneider, 1994). A concept graph is a directed rooted graph in
which the arcs are labeled by roles and attributes and the nodes are labeled by primitives.
SAME-AS restrictions are represented as multiple paths to a node. Figure 3 contains two
examples of concept graphs; in each case, the leftmost node in the Figure is the root of
the graph. Notice that, at least superficially, concept graphs resemble finite automata: they
are both rooted directed graphs with labeled nodes and edges. A concept graph is said
to be well-formedif certain other conditions are met, including a restriction that states
that for every node of the graph and every possible arc labela, there will be at most one
outgoing edge labeleda. Notice that well-formedness makes concept graphs resemble (at
least superficially)deterministicfinite automata.

It should perhaps be noted that without the SAME-AS construct,CoreClassic concept
graphs are always trees, rather than arbitrary graphs. Most of the complexities in description
logic learnability arise from the graph-like nature of descriptions; learning algorithms for
tractable description logics are often fairly simple to implement if the SAME-AS construct
is disallowed.

A detailed description of the semantics ofCoreClassic concept graphs is beyond the
scope of this paper. For our purposes, the following two facts are critical.

• For every DFAM over the alphabetΣ there is a well-formed concept graphG over the
primitive alphabet{acc}, role alphabet∅ and attribute alphabetΣ such thata1 . . . an ∈
L(M) if and only if the concept (ALLa1 (ALL a2 . . . (ALL an acc) . . . )) subsumesG.
Furthermore,G can be constructed fromM in polynomial time (Cohen & Hirsh, 1994a,
Proposition 1).

• The language ofCoreClassic and concept graphs are equivalent up to polynomial
factors: that is, for everyCoreClassic conceptD, there is a semantically equiva-
lent well-formed concept graph of size polynomial in||D|| that can be constructed in
polynomial time, and for every well-formed concept graphG, there is a semantically
equivalentCoreClassic description of size polynomial in||G|| that can be constructed
in polynomial time (Cohen & Hirsh, 1994a, Theorem 1).

From this it is clear that prediction-preserving reducibilities exist fromSDFA to Core-

Classic concept graphs toCoreClassic. Specifically, one can map example DFAs
to concept graphs and thence toCoreClassic concepts, and one can map a string
s = a1 . . . an to concepts of the form (ALLa1 (ALL a2 . . . (ALL an acc).

Recall that we have shown the hardness of the dual DFA problem for a restricted case:
three-letter alphabets and acyclic, leveled automata. Similar restrictions can be applied to
CoreClassic to show that it is hard to learn learn (in the polynomial predictability model)
if there are only three attributes, and if concept graphs must be acyclic.
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4.1.3. Another recent negative result.Another recent negative result on learning
CoreClassic is due to Frazier and Pitt (Frazier & Pitt, 1996). They consider a different
learning model in which concepts are learned from individuals. To motivate this model, we
note that description logics are often used in conjunction with a large knowledge base of
“assertions”, or facts about individuals. This knowledge base can be visualized as a large
graph in which the nodes correspond to individuals (which are atomic entities) and the arcs
correspond to roles (binary relationships) that relate the individuals. The knowledge base
thus corresponds roughly to a concept graph, except that it is typically far larger, and has
no distinguished root node.

Frazier and Pitt considered a model where individuals in the knowledge base are examples.
Roughly speaking, an individualI will be labeled positive for a target conceptC if C
subsumes the concept graph obtained by making the node of the knowledge base graph
corresponding toI the root. In Frazier and Pitt’s model, the knowledge base is also assumed
to be extremely large—potentially exponential in the size of the target concept. Under these
assumptions, learning aCoreClassic concept is as hard as learning polynomial sized
circuits, and hence is cryptographically hard.

The Frazier and Pitt model of learning from individuals and a large knowledge base is
rather different from the model of learning from concepts, and hence their result is not
directly comparable to ours. One important difference is that in learning from subsumed
concepts, the training examples all are of polynomial size; however, in learning from
individuals, there is an exponential amount of information about each individual that is
potentially relevant to a learning problem. In particular, the restrictions associated with
any path from that individual to any other node in the (exponentially large) knowledge base
could potentially be included in the target concept.

Frazier and Pitt’s hardness result also requires a polynomial number of attributes, whereas
our result requires only a constant number of attributes. However the Frazier and Pitt result
requires weaker cryptographic assumptions.

4.1.4. A positive result for the dual DFA problem.Frazier and Pitt (Frazier & Pitt,
1996) also showed thatClassic (a generalization ofCoreClassic) is exactly learnable
from membership and equivalence queries. This result, together with the observations
above, suggests thatSDFA might also be learnable from membership and equivalence
queries. This is the case; in fact,SDFA can be shown to be learnable from membership
queries alone.

Define amembership queryto be a query to an oracle in which the oracle is supplied
with an instanceM , and answers “positive” ifM is a member of the target concepts, and
“negative” otherwise. We have the following result.

Theorem 4 SDFA is learnable from membership queries.

Proof: Let Σ = {σ1, . . . , σk} be the alphabet, and consider the following algorithm,
which uses a series of queries to find the letters of the target string in left-to-right order.

1. Leth be the empty string.

2. Issuek queries using the minimal DFAs accepting the languageshσ1Σ∗, . . . , hσkΣ∗.
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3. If there is exactly one “positive” answer from these queries, leth = hσi, whereσi was
the letter associated with the sole positive example, and go to Step 2.

4. If none of the queries is answered “positive”, then outputh and halt.

To establish the correctness of this procedure, observe first that at Step 2, ifh is a proper
prefix of the target strings, then exactly one of the queried DFAs can accepts. In this case
the action associated with Step 3 will be performed—after whichh will be one letter longer,
but still a prefix ofs. Now observe that at Step 2, ifh = s, then none of the queried DFAs
will be positive examples, so the action of Step 4 will be correctly performed. Finally note
thath is initially a prefix of the target strings, and remains one throughout the execution of
the algorithm; thus at Step 2, it is always true that eitherh = s or h is a proper prefix ofs.

Hence this algorithm must converge to the target string. It is also easy to show that it
requires at most|Σ| · |s| queries.

4.2. Determinate arity-two function-free Prolog clauses

Another well-studied problem is the learnability of logic programs (Page & Frisch, 1992,
Dz̆eroski et al., 1992, Cohen & Page, 1995). A special case that has received much atten-
tion is the learnability of determinate non-recursive function-free bounded-arity one-clause
programs. We will denote this language below asa-DetLP, wherea is the bound on
arity. Again, we will assume that the reader is familiar with this representation; however
Appendix B contains a brief overview of the necessary background on logic programs.

In previous work, D˘zeroski, Muggleton and Russell (D˘zeroski et al., 1992) showed that
for any constanta, constant deptha-DetLP programs are pac-learnable. Later, Kietz
(Kietz, 1993) showed that2-DetLP programs of arbitrary depth are not pac-learnable,
and Cohen (Cohen, 1993) showed that3-DetLP log-depth programs are not polynomially
predictable. To date, however, the polynomial predictability of arbitrary-depth2-DetLP
programs has remained an open question.

Kietz considered a learning model similar to the one considered by Cohen and Hirsh:
the target concept is a2-DetLP non-recursive function-free clause, and the examples are
non-recursive ground clauses which are labeled as positive iff they areθ-subsumed(see
Appendix B for a definition) by the target clause. We have the following result for this
model.

Corollary 1 Under the cryptographic assumptions of Theorem 2,2-DetLP non-
recursive function-free clauses are not polynomially predictable in the model of Kietz.

Proof: Kietz showed that there are functionsfK andgG such that the following hold:
fK maps a DFAM to a ground clause;gK maps a strings to a function-free clause; and
s ∈ L(M) iff gK(s) θ-subsumesfK(M) (Kietz, 1993, Lemma 13).

Briefly, fK andgG are as follows. To computefK(M), generate one unary predicate
symbolacc, one binary predicate symbolpa for each lettera in Σ and a constantcqi for
each stateqi of M . fK(M) is the clause with the headdfa(cq0 ), and a body containing
one literal of the formpa(qi , qj ) for every transitionδ(qi, a) = qj in M and one literal of
the formacc(qk ) for every accepting stateqk. To computegK(a1 . . . an), generaten + 1
variablesX0, . . . , Xn. ThengK(a1 . . . an) is the clause
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dfa(X0):-pa1(X0, X1), . . . , pan(Xn−1, Xn), acc(Xn)

Kietz used this construction to reduce the DFA intersection problem to a consistency
problem, thus demonstrating that2-DetLP non-recursive function-free clauses are not
pac-learnable. However, the construction also constitutes a prediction-preserving reduc-
tion from the dual DFA problem to the language of2-DetLP non-recursive function-free
clauses.

5. Automatic programming and related problems

Another well-studied problem in artificial intelligence is automatic programming from
examples (e.g., (Summers, 1977, Biermann, 1978).) Here the goal is to learn a program,
typically in a functional language such as LISP, from examples of the form(x, y) wherex
is an input to the target program andy is the associated output.

Below we will formalize a simple version of this problem. We will consider learning a
program that is the composition ofn functions from a designated set. This relatively “easy”
case is the functional equivalent ofn lines of “straight-line” code—code that includes no
loops or branches, and additionally operates on a single variable. As a final restriction, we
will require that the output of the target function be binary by requiring the target function
to be of the form

λ(x).p(on(on−1(· · · o1(x) · · ·)))

where the range ofp(x) is{0, 1}. (The other functionso1,. . . ,on will map strings to strings.)
Later, we will wish to augment our formalism to model variants of this problem in which

program traces are also available to the learner. First, however, we will define more precisely
the problem of learning straight-line code from input/output pairs, as introduced informally
above.

5.1. A formalization of learning straight-line code

Define anoperator set〈O, P 〉 to be a two sets of functionsO = {o1, . . . , okO} andP =
{p1, . . . , pkP } such that eachoi is a function from{0, 1}nI to {0, 1}nI and eachpi is a
function from{0, 1}nI to {0, 1}. The numbernI is thedomain widthof the operator set,
andkO + kP is its cardinality. We will useOPnI ,nO to denote the set of all operator sets
of domain width at mostnI and cardinality at mostnO. For any operator set〈O, P 〉, we
defineAP[〈O, P 〉] be the set of all concepts with characteristic functions of the form6

oi1 ◦ . . . ◦ oin ◦ pk

where eachoij is in O and pk is in P . We will useAP[OPnI ,nO ] to denote the set
{AP[〈O, P 〉] : 〈O, P 〉 ∈ OPnI ,nO}. Notice that this is a set of languages, parameterized
by the operatorsO and predicatesP .
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The size of a conceptC = oi1 ◦ . . . ◦ oin ◦ pk in AP[〈O, P 〉] is defined to ben, the
number of operators used.

To motivate the slightly awkward notation introduced above, notice that for some operator
sets〈O, P 〉, the classAP[〈O, P 〉] is easily learnable—for example, if everyoi is the identity
function then the problem is trivial. However, one would really like to ask questions about
the existence of “operator-independent” learning algorithms—algorithms that work for any
given setsO andP . With the definitions given above, we can formalize this question
succinctly as follows:

Is there an algorithmPacPredict that polynomially predicts any concept class
AP[〈O, P 〉] ∈ AP [OPnI ,nO ], givenO, P , and access to oracles for the functions
in O andP ?

If the answer to this question is affirmative then we will say thatAP[OPnI ,nO ] is uni-
formly predictable. Uniform pac-learnabilityis defined analogously. Thus we have reduced
the question of operator-independent learnability to a set of (closely related) questions, posed
in the usual pac-learning model.7

5.2. Automatic programming from input-output pairs

Our first result pertains to automatic programming from input-output pairs. The result shows
that even with a small fixed set of operators, and even in the case of straight-line code, this
problem can be hard. This result is a little surprising, given that most of the research issues
arising in automatic programming seem to relate to problems such as inducing loops and
conditional statements, not to difficulties associated with learning straight-line code.

Theorem 5 For nO ≥ 4,AP[OPnI ,nO ] is not uniformly predictable, under the crypto-
graphic assumptions of Theorem 2.

Proof: We will construct a particular operator set〈O, P 〉 that is hard to predict.
Theorem 2 gives a prediction-preserving reduction from circuits of depthlog n to

SDFA
pI(n),pT (n)

via two functionsglog n andf log n, whereglog n maps boolean formulae to strings,f log n

maps assignments to DFAs, andpI andpT are both polynomials inn. We will use this
reduction to reduce circuits toAP[〈O, P 〉] for a specific〈O, P 〉 pair withnO = 4 andnI

polynomial inn, thus showing that thisAP[〈O, P 〉] is not predictable.
Let nI = n + log pI(n), and choose some systematic way of numbering the states in

a DFA such that the start state has number 0 (e.g., breadth first). In this way, ifη is an
assignment ton variables,nI bits can be used to encode a state in the DFAf log n(η). We
will write the encoding of thei-th state inf log n(η) asc(η)c(i) wherec(η) is the encoding
of η andc(i) is the encoding ofi. We can now define the instance mapping of the new
reduction asfAP(η) ≡ c(η)c(0).

Now letO = {o0, o1, o?} andP = {pacc}, where the functionspacc , o0, o1, ando? are
defined as follows. Fora ∈ {0, 1, ?}, defineoa(c(η)c(i)) ≡ c(η)c(j) wherej is the index
of the state inf log n(η) that is reached by traversing the edge labeleda from statei. Also
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definepacc(c(η)c(i)) to be 1 if thei-th state off log n(η) is accepting and 0 if thei-th state
of f log n(η) is rejecting. For a formulab ∈ Bd

n,∗, we define the concept mapping

gAP(b) ≡ oa1 ◦ . . . ◦ oan ◦ pacc

whereglog n(b) = a1 . . . an.
Notice that these particular operatorsO andP correspond very closely to the arcs in the

automata that are the range off log n. In particular, ifc = c(η)c(i) encodes a stateqi in
an automatonMη = f log n(η), theno1(c) is the encoding of the state inMη reached by
following the arc labeled1, o0(c) is the encoding of the state inMη reached by following
the arc labeled0, ando?(c) is the encoding of the state inMη reached by following the arc
labeled?. Also, the predicatepacc maps exactly those strings that encode accepting states
of Mη to 1, and the rejecting states to 0. This means that the stringa1 . . . an is accepted by
f log n(η) iff

(oa1 ◦ . . . ◦ oan ◦ pacc)(c(η)c(0)) = 1

This property, together with the arguments of Theorem 2, shows that the reduction given
above preserves membership as required by the definition of prediction-preserving re-
ducibility.

The remainder of arguments needed to prove the theorem are straightforward. Since
f log n can be computed in polynomial time then so canpacc , o0, o1, ando?, so it is possible
to simulate the oracles forO andP . (Recall thatf log n does not depend on the target
concept.) Thus if there were a prediction algorithm forAP[〈O, P 〉], one could use it to
find anε-good predictor for any log-depth circuit.

As another possible proof method, the arguments used in Section 6 of Frazier and Pitt
(Frazier & Pitt, 1996) (which shows the hardness of learningClassic from individuals)
could also be easily adapted to show thatAP[OPnI ,nO ] is not uniformly predictable; in
fact, their construction can be adapted to show that there exists an〈O, P 〉 pair such that
predicting polynomial-sized circuits is reducible to predictingAP[〈O, P 〉]. This result is
again incomparable to ours. It is stronger in that it is based on a reduction from polynomial-
size circuits, rather than log-depth circuits, so weaker cryptographic assumptions can be
made; however, the construction requires an operator set of size polynomial in the size of
the target circuit, whereas in our construction the operator set contains a fixed number of
operators and predicates (three and one, respectively).

There is also no obvious way to extend the Frazier and Pitt result to the problem of learning
from partial traces discussed below.

5.3. Programming by demonstration

Another variant of the automatic programming problem is the problem of learning programs
from traces. Here the assumption is that the learner can observe (perhaps only partially)
the actions taken by a working copy of the target program.

Programming from traces is closely related to the currently active research area ofpro-
gramming by demonstration(Cypher, 1993). Here the operations used in the target program
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are (typically) operations on a graphical user interface, and the “teacher” from whom traces
are obtained is a human user.

In a formal learning model it is natural to model these traces with an oracle. However, in
a programming by demonstration context, what a “trace” is depends on the system being
used. We will thus consider different oracles, corresponding to different assumptions about
what is observable to a programming by demonstration system.

5.3.1. Observable operators.One plausible assumption is that one can observe the
sequence of operatorsa1, . . . , an used by the teacher. (For instance, a trace might be a
sequence of EMACS keystrokes, each of which is an operator.) In the situation considered
above, where the target “program” consists of straight-line code, this information is suffi-
cient to identify the target concept. This simple but useful learning mechanism, called a
“macro recorder”, is well-understood and embedded in many existing user interfaces. We
will not consider it further in this paper.

5.3.2. Observable intermediate values.Another reasonable assumption is that one
can observe the intermediate values derived by the teacher but not the operators. This
might be the case if the operators appearing in the learned program areabstractionsof the
actions actually taken by the user.

For example, consider the problem of learning a sequence of commands that converts an
entry in a mailing list from one format to another. The user’s actions might be primitive
editor commands, such asforward-one-character, back-one-word, insert-newline, and so
on. However, the mailing list conversion problem might be more appropriately modeled
with abstract operators such asforward-to-the-beginning-of-sentence, back-to-beginning-
of-postal-code, and so on. Designing such abstract operator sets and learning “programs”
containing such abstract operators is an important emphasis of at least some programming by
demonstration research efforts. One difficulty in learning programs with abstract operators
is that the abstract operators are not observable. In learning an editor macro, for instance,
one might be able to observe that a user moved the cursor from pointp1 to point p2 in
a document, but it might not be obvious whether this action corresponds to the operator
forward-to-end-of-lineor to the operatorforward-to-end-of-postal-code.

One can model this situation with an oracle TRACE(x) which, when called with the input
x while learning the target concept

oi1 ◦ . . . ◦ oin ◦ pk

returns a sequence of strings〈s1, . . . , sn〉wheresj is thej-th intermediate value constructed
by the target function. (That is,sj = (oi1 ◦ . . . ◦ oij )(x).) Let us now consider the problem
of learning from examples and the TRACE oracle. While this problem is certainly more
complex than recording a macro, it is easy to show that the TRACE oracle is enough to
allow efficient learnability in the pac sense.

Theorem 6 AP[OPnI ,nO ] is uniformly pac-learnable from examples and the TRACE
oracle. Furthermore, the prediction algorithm runs in time polynomial innO.8

Proof:
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Let 〈O, P 〉 be in OPnI ,nO . We note that the cardinality of{C ∈ AP [〈O, P 〉] :
||C|| < nT } is bounded bynO

(nT+1), and hence the VC-dimension (Blumer et al., 1989)
of AP[〈O, P 〉] is bounded by(nT + 1) log nO. To complete the proof we need only show
that one can find a hypothesis consistent with anym examples in time polynomial inm,
nI , nT , andnO.

Let x1, . . . , xm be the examples. First, invoke the TRACE oracle for each examplexi

to get the sequence〈si1, . . . , sin〉. Now, for eachj : 1 ≤ j ≤ n, look for someoj ∈ O
such that∀i : 1 ≤ i ≤ m, oj(si,j−1) = si,j . This can be done with a linear search
throughO with mnOnT calls to the oracle forO. Also look for somepj ∈ P such that
∀i : 1 ≤ i ≤ m, pk(sin) agrees with the label ofxi—i.e., pk(sin) = 1 if xi is a positive
examples andpk(sin) = 0 if xi is a negative example. Again, this can be done with a linear
search withmnO calls to the oracle forG. The hypothesis

o1 ◦ . . . ◦ on ◦ pk

will be consistent with the examples.

In passing we note that learnability can also be shown in the exact identification model
of learning from equivalence queries—a model which is perhaps more appropriate in this
setting.

5.3.3. Partially observable intermediate values.In some circumstances, it may not
be appropriate to assume that one has access to the intermediate values computed by the
target function. A slightly weaker assumption is to assume that some but not all aspects
of the intermediate states are observable. This assumption is perhaps representative of the
case in which the intermediate states include a “user goal” which cannot be observed by the
learner. Another plausible case in which this assumption might be appropriate is if the state
of the system being acted on by the user is too large to transmit to the learner, and hence
for efficiency reasons only a partial description of these states is available; for instance, it
might be impractical to transmit to the learner the entire state of an editor.

These situations can be modeled as follows. Ifs ∈ {0, 1}n, then let HIDEk(s) denote the
set of all stringss′ ∈ {0, 1, ?}n that can be derived by changing up tok elements ofs from
“0” or “1” to “ ?”. For example,

HIDE1(1101) = {?101, 1?01, 11?1, 110?, 1101}

We now define the oracle PTRACEk(x) to return some sequence〈h1, . . . , hn〉 such that for
all j : 1 ≤ j ≤ n, hj ∈ HIDEk((oi1 ◦ . . . ◦ oij )(x)). In other words, the oracle is allowed
to edit the correct intermediate values by changing up tok bits of each value to the symbol
?. Learning from a PTRACE oracle and examples is one possible formalization of learning
from partially observable intermediate values.

Notice that while we are assuming that the elements in the PTRACE result from “hiding”
at mostk bits of the intermediate values, we impose no constraints on whichk bits are
“hidden”. In effect our model assumes that these bits are hidden by an adversary. However,
in the constructions below the adversary follows a very simple strategy—the bits hidden
are always the lowest order bits of a string.
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Recall that in the model of learning from input/output pairs, the trace is completely hidden;
thus Theorem 5 shows that if all bits in a trace are hidden, then learning can be hard. (I.e., for
nO ≥ 4, uniformly predictingAP[OPnI ,nO ] from examples and PTRACEnI is difficult.)
This result can be strengthened to show that hiding even a few bits of each intermediate
value makes learning hard.

Theorem 7 For nO ≥ 4 and k ≥ log(log nI), AP[OPnI ,nO ] is not uniformly pre-
dictable from examples and the PTRACEk oracle, under the cryptographic assumptions of
Theorem 2.

Proof: The argument follows the argument of Theorem 5, in whichlog n-depth circuits
are reduced to a learning problem inAP[OPnI ,nO ]. Recall that in this reduction, an
assignmentη to a set ofn boolean variables was first mapped the DFAf log nη (which is a
leveled DFA of widthlog n) and then to an encoding of the initial state of this DFA. The
operator and predicate setsO andP encoded the transitions within DFAs in the range of
f log n.

In this theorem we will use an analogous technique; however, we will encode a stateq
in f log n(η) in three sections: first, an encoding ofη, which requiresO(n) bits; second, an
encoding of the depthd of the state, which requiresO(log n) bits; and finally, an encoding
of whereq lies in thed-th level off log n(η), which requiresO(log log n) bits.

The arguments of Theorem 5 show how examples are converted, and also how the oracles
for O andP can be simulated. To prove the theorem it is only necessary to show how the
PTRACE oracle can be emulated.

To emulate the oracle for PTRACE(x) onx = f log n(η), simply constructf log n(η) and
choose a random path to an accept state (ifx is positive) or a reject state (ifx is negative).
Representing these states with the encoding above gives a sequence of intermediate values
s1, . . . , sn. Of course, these need not agree with the actual valuess∗1, . . . , s

∗
n taken by the

automata in accepting the target string; however, they will agree in all bitsexceptthose
O(log log n) bits needed to encode the position within a level. To construct a legal output
for PTRACE, therefore, it is only necessary to “hide” these bits by replacing them with?.
Thus if exactly these bits are “hidden” the resulting sequenceh1, . . . , hn is a legal output
for PTRACE.

This theorem shows that allowing an adversary to hide even a tiny part of each intermediate
value in a trace makes learning difficult. Carrying this line of investigation a little further,
one can show that even hiding a smallconstantnumber of bits in each element of the trace
can make learning as hard as learning boolean functions in disjunctive normal form (DNF),
an open problem in computational learning theory.

Theorem 8 For nO ≥ 4 andk ≥ 2, AP[OPnI ,nO ] is not uniformly predictable from
examples and the PTRACEk oracle unless DNF is polynomially predictable.

Proof: In the proof of Theorem 7, the key insight is that the dual DFA problem (for leveled
width w automata) can be reduced to the problem of automatic programming from traces,
where three operatorsoj and one predicatepk are available, and the number of bits hidden
by PTRACE is logarithmic inw, the maximal automata width. In other words, predicting
SLDFA(w)

nI ,∗ can be reduced to a prediction problemAP[〈O, P 〉] ∈ AP[OPpoly(nI),nO=4],
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Figure 4. The instance mapping for the reduction from DNF toSLDFA(3)
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where the learning is done from examples and a PTRACElog w oracle. Thus to prove the
theorem it is only necessary to show a prediction-preserving reducibility from DNF over
n variables toSLDFA(4)

poly(n),∗, the dual DFA problem for leveled automata with level width 4 or
less. We will describe this reduction below.

Let T1, . . . , Ts be monomials, and letφ = ∨s
i=1Ti be an polynomial-sized DNF formula

of sizenT overn variables. Assume without loss of generality that the number of termss
is equal to the number of variablesn. (By padding we can make these quantities equal).
We define the concept mappinggDNF to be

gDNF(T1 ∨ T2 ∨ . . . ∨ Tn) = g0(T1) ? g0(T2) ? . . . ? g0(Tn) ?

whereg0 : B0
n,∗ → {0, 1, ?}n is the concept mapping used in Theorem 2. For example, if

n = 4,

gDNF(x1x2 ∨ x2x3 ∨ x3x4) = 10?? ? ?10? ? ??10 ?

Recall thatf0(η) maps an assignmentη to a DFA that accepts exactly those strings that
encode monomials satisfied byη. For an assignmentη, we define the instance mapping
fDNF(η) to consist ofn copies off0(η), together with a linear sequence of “success” states.
These copies will be connected so that if the automata reaches the accept state of any copy
of f0(η), it will always jump to a “success” state; however if the automata reaches the
reject state of a copy off0(η), it will always proceed to the start state of the next copy.
The automata accepts if it eventually reaches the “success” sequence. Such an automaton
is shown in Figure 4. Below we will define it more formally.

• The states offDNF(η) includen copies of each stateq in the state set off0(η), where
f0(η) is the instance mapping used in Theorem 2.

We will denote thei-th copy of the start stateq0 asq0i, thei-th copy of the accepting
stateqT

n asqT
i , thei-th copy of the maximal-depth rejecting stateqF

n asqF
i , and thei-th

copy of an arbitrary stateq asqi.

• If q andq′ are connected by an arc labeleda in f0(η), then fori : 1 ≤ i ≤ n, qi andq′i
are also connected by an arc labeleda in fDNF(η). These arcs complete then copies
of f0(η).

• The states of fDNF(η) also include n(n − 1) states named
r12, . . . , rn2, . . . , r1n, . . . , rnn, and two additional statesrT

∗ andrF
∗ . (These are the

states of the linear sequence of “success states” mentioned above.)

• For i : 2 ≤ i < n, there are arcs labeled 0, 1, and? from rn,i to r1,i+1. These arcs
complete the “success sequence”.

• The stateq01 is the start state, and the staterT
∗ is the sole accepting state.
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• For i : 1 ≤ i < n, there are arcs labeled 0, 1, and? from qT
i to r1,i+1, and arcs labeled

0, 1, and? from qF
i to q0,i+1. Thus if thei-th copy off0(η) succeeds, the automaton

will jump to the “success sequence” ofri’s; if the i-th copy fails, then the automaton
will go on to the next copy.

• There are arcs labeled 0, 1, and? from rn,n to rT
∗ , arcs labeled 0, 1, and? from qT

n

to rT
∗ , and arcs labeled 0, 1, and? from qF

n to rF
∗ . Thus if any of the firstn − 1

copies succeed, the automaton will jump to the correct point in the “success sequence”;
further the automaton will succeed if the success sequence is reached, or if the final
copy succeeds.

Clearly the size of this construction is polynomial, it can be computed in polynomial time,
and the level width of the DFA is bounded by 3. The arguments for the correctness of the
mapping parallel the arguments used in Theorem 2.

To summarize the results of this section, we have investigated an extension of the problem
of recording a macro, in which the goal is to learn a linear sequence of operators taken from
a known set. We showed that this learning problem is trivial if the operators are observable,
and tractable if the operators are hidden and the intermediate states of the computation
are observable. However, if the intermediate states are hidden, then the problem becomes
intractable. More surprisingly, the problem is hard even if the intermediate states are only
partially hidden—hiding even two bits of each intermediate value makes learning as hard
as learning DNF, and hidingO(log log n) bits makes learning cryptographically hard.

6. Conclusions

In this paper we analyzed a simple instance of a learning problem involving structured
examples; specifically, we analyzed a dual version of the problem of learning DFAs, in
which examples are DFAs, concepts are strings, and a string denotes the set of DFAs that
accept it. The dual DFA learning problem is a formalization of a problem in which concepts
are relatively simple, but examples are allowed to have a non-trivial structure: namely, the
structure of a rooted directed graph. We showed that the “dual DFA problem” is as hard
as learning log-depth boolean circuits, even if example DFAs are restricted to be over a
three-letter alphabet and also acyclic, leveled, and of logarithmic level width.

Corollaries of this result answer two open questions in the learnability of first-order
representations. First, under cryptographic assumptions, the description logicClassic is
not learnable in the model proposed by Cohen and Hirsh (Cohen & Hirsh, 1994a). Second,
under cryptographic assumptions, arity-two “determinate” function-free Prolog clauses are
not polynomially predictable in the model proposed by Kietz (Kietz, 1993).

The dual DFA result also has implications for the problem of learning straight-line pro-
grams (without branches or loops) from input/output pairs or traces—a trace being a se-
quence revealing the intermediate values required to evaluate the target function on an
examplex. We motivated a particular formalization of this problem and showed that
learning from input/output pairs is cryptographically hard, but that learning from traces is
tractable. As an intermediate between these two models, we then proposed a model of
learning frompartial traces. In particular we considered learning from examples and the
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oracle PTRACEk, which can be thought of as returning a complete trace that has been edited
by an adversary who can “hide” at mostk bits of every intermediate value. We showed
that learning from partial traces is cryptographically hard even if onlyO(log log n) bits of
each value are hidden. Furthermore, learning from partial traces is as hard as learning DNF
even if only two bits of each value are hidden. These results may have implications for the
research area of “programming by demonstration” (Cypher, 1993).

We will conclude with some further remarks on the implications of these results, and
more generally, on the role of negative formal results in computer science. The computer
science community has three main goals: to identify problems that are worthy of study, to
understand these problems, and to engineer solutions to them. The last two goals are often
closely related, since better solutions often arise from better understanding. While negative
formal results seldom immediately suggest a new engineering solution to a problem, they
can and often do lead to progress in our collective understanding of a problem.

With respect to the results of this paper, previous formal results have provided consider-
able insight into the computational complexity of many types of first-order learning—one
exception being the case of learning logic program clauses over binary determinate predi-
cates. This is an important special case for both practical and formal reasons. Practically,
it is related to widely used representations such as description logics and functional pro-
gramming languages. Formally, while the language is known not be properly learnable
(Kietz, 1993), recent positive results have shown that some interesting subclasses can be
learned using novel representation schemes for hypotheses (Horv´ath et al., 1997).

The formal results suggest that determinate Prolog clauses may have different learnability
properties in the arity-two case than in the more general case, in which predicates may
have arity three or more; in particular, it raises the possibility that a large subset of this
practically important special case can be efficiently learned, if an appropriate representation
for hypotheses is used. If this were the case, it might have important implications for the
design of future first-order learning systems (which should arguably be extended to deal
appropriately with the special case) as well as future knowledge representations systems
(which should arguably be extended to support the representations used as hypotheses of
the learners.)

However, the hardness result of this paper gives a strong upper bound on what sort
of arity-two clauses can be learned; specifically, it implies that the assumption of binary
determinate predicates alone is not enough to guarantee learnability. In addition, the result
clarifies our understanding of the problem in several important respects. In particular, the
proofs indicate what sort of additional restrictions might lead to further positive learnability
results. For instance, to obtain a positive result, it would clearly not be sufficient to restrict
the number of available predicates to an arbitrary constant. However, we observe that in
the proofs, it is necessary to make an adversarial choice of both the transition function and
state labelings of the example DFAs. Interestingly, prior results in DFA learning show that
while DFAs are hard to learn given an adversarial choice of target concepts, learning is
sometimes possible in only slightly less adversarial settings; as an example, consider the
distributions of “typical” DFAs considered by Freundet. al(Freund et al., 1993), in which
an adversary determines the transition function of the target DFA, but the labeling of states
is determined stochastically. We leave as an open question the complexity of the dual DFA
learning problem in an analogous setting.
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Appendix A

Semantics ofCoreClassic

Below we will briefly review the semantics ofCoreClassic, as they pertain to the results
of this paper. Readers are referred to Borgida and Patel-Schneider (Borgida & Patel-
Schneider, 1994) for a fuller discussion, or to Cohen and Hirsh (Cohen & Hirsh, 1994a,
Cohen & Hirsh, 1994b) or Frazier and Pitt (Frazier & Pitt, 1996) for a discussion in the
context of learnability problems.

Concepts inCoreClassic describe subsets of a domainI of “individuals”. Concepts
are built from a alphabet ofprimitive class symbolsp, each of which corresponds to a subset
of I; role symbolsr, each of which corresponds to a subset ofI × I; attribute symbolsa,
each of which corresponds to a function fromI to I; and the operators AND, ALL, and
SAME-AS.

For a primitivep, let ext(p) denote the subset ofI that corresponds top; for a roler,
let r(x, y) be the corresponding binary predicate; and for an attributea, let a(x) be the
corresponding function. ACoreClassic concept is defined inductively as follows.

• If p is a primitive class symbol thenp is a concept denotingext(p).

• If r is a role or attribute andC is a concept, then (ALLr C) is a concept, denoting
the set of allx ∈ I such that∀y ∈ I, r(x, y) ⇒ y ∈ ext(C), whereext(C) is the set
denoted by the conceptC.

• If a1, . . . , ak, b1, . . . , bl are attribute symbols, then (SAME-AS (a1 . . . ak) (b1 . . . bl))
is a concept denoting the set ofx ∈ I such that ak(· · · a2(a1(x)) · · ·) =
bl(· · · b2(b1(x)) · · ·).

• If C1, . . . , Cn are concepts then (ANDC1 . . . Cn) is a concept denoting
⋂n

i=1 ext(Ci).

An important relationship in description logics issubsumption. ConceptC1 subsumes
C2 if ext(C1) ⊇ ext(C2) regardless of the extensions of the primitive concepts, roles and
attributes used inC1 andC2.

For example the conceptC1 =(AND politician lawyer)would not subsume the con-
ceptC2 = (AND congressman lawyer (SAME-AS mistress aide)) even if it hap-
pened to be the case thatext(politician) ⊃ ext(congressman) and henceext(C1) ⊇
ext(C2). This is because forC1 to subsumeC2, it must be thatext(C1) ⊇ ext(C2) re-
gardless of how the primitive concepts are defined, and it it clearly possible to define the
“politician” and “congressman” so thatext(politician) 6⊃ ext(congressman). How-
ever,C ′1 = (AND congressman lawyer) would subsumeC2, since every element of
C ′1 is necessarily a member ofC2, regardless of the definition of the primitive roles and
concepts.
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Appendix B

Semantics of logic programs

In the interests of simplicity, the definitions below only coincide with the usual ones for the
case of non-recursive function-free single-clause Prolog programs. For a more complete
description of logic programming see one of the standard texts (e.g., (Lloyd, 1987)).

Logic programs are written over an alphabet ofconstant symbols, predicate symbols, and
variables. A function-free literalis writtenp(X1, . . . , Xk) wherep is a predicate symbol
andX1, . . . , Xk are variables. Afact is writtenp(t1, . . . , tk) wherep is a predicate symbol
andt1, . . . , tk are constant symbols. The number of argumentsk to a literal (or fact) is
called itsarity.

A ground clauseis writtena:-b1, . . . , bn, wherea and thebi’s are all facts. Afunction-free
clauseis writtenC:-D1, . . . , Dn, whereC and theDi’s are all function-free literals. The
fact (or literal) to the left of the “:-” symbol is theheadof the clause and the facts (literals)
to the right of the “:-” symbol are thebodyof the clause.

A substitutionis a partial function mapping variables to constant symbols or variables. If
θ is a substitution andA is a literal, we will useAθ to denote the result of replacing each
variableX in A with the constant symbol to whichX is mapped byθ.

The function-free clauseC:-D1, . . . , Dn is said toθ-subsumethe ground clausea:-b1, . . . ,
bm if there is some substitutionθ such thatCθ = aand∀i : 1 ≤ i ≤ n,Diθ ∈ {b1, . . . , bm}.

The following restrictions (which assume the literals in the body of a clause to be ordered)
are modified from Muggleton and Feng (Muggleton & Feng, 1992). IfC:-D1∧ . . .∧Dn is
a function-free clause, then theinput variablesof the literalDi are those variables appearing
in Di that also appear in the clauseC:-D1 ∧ . . . ∧ Di−1; all other variables appearing in
Di are calledoutput variables. A literal Di is determinate(with respect to a ground clause
a:-b1, . . . , bm) if for every possible substitutionσ such thatC:-D1∧ . . .∧Di−1 θ-subsumes
a:-b1 ∧ . . . ∧ bm, there is at most one substitutionθ so thatDiσθ ∈ {b1, . . . , bm}. Less
formally, a literal is determinate if its output variables have only one possible binding—that
is, if the predicate associated with the literal denotes a function, rather than an arbitrary
relation.

A function-free clauseC:-D1 ∧ . . . ∧Dn is determinatewith respect to a ground clause
a:-b1, . . . , bm if every literal Di in the body of the clause is determinate with respect to
the ground clause. IfD is a distribution over ground clauses, a function-free clause is
determinate(with respect toD) if it is determinate with respect to every ground clause with
non-zero weight underD.

Finally, define thedepthof a variable appearing in a function-free clauseC:-D1∧. . .∧Dn

as follows. Variables appearing in the head of a clause have depth zero. Otherwise, letDi

be the first literal containing the variableX, and letd be the maximal depth of the input
variables ofDi; then the depth ofX is d + 1. The depth of a clause is the maximal depth
of any variable in the clause.
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Notes

1. To clarify this remark, a typical learning problem includes a set of possible conceptsC1, . . . , Cn and a set of
possible instancesx1, . . . , xm. Conceptually, one can think of these sets as a large 0,1 matrix in which the
columns correspond to instances, the rows correspond to concepts, and each row encodes the characteristic
function for a concept. For every such learning problem there is a dual learning problem which is obtained
by considering the transpose of this matrix.

2. More precisely, the prediction problem is intractable if one or more of the following are intractable: solving
the quadratic residue problem, inverting the RSA encryption function, or factoring Blum integers (Kearns &
Valiant, 1989).

3. In fact, under the additional cryptographic assumption that solving then×n1+ε subset sum is hard, log-depth
circuits are hard to pac-predict even if examples are drawn from a uniform distribution (Kharitonov, 1992).

4. Assuming that examples are concepts is equivalent to assuming that examples are represented by detailed (but
polynomial-sized) descriptions of themselves inCoreClassic. This “single-representation trick” is formally
convenient, as it avoids introducing a second language for describing instances, and is also sometimes used in
experimental AI systems (Dietterich et al., 1982).

5. An early “proof” thatCoreClassicwas hard to pac-predict turned out to be erroneous (Cohen & Hirsh, 1992,
Cohen & Hirsh, 1995).

6. In this paper we follow the convention that(f ◦ g)(x) ≡ f(g(x)).

7. In previous work, we have used a similar formalization to analyze inductive logic programming learnability
problems (Cohen, 1995); in these cases, logic languages are parameterized by a set of available “background
predicates”.

8. Notice that ifPacPredict is a uniform prediction algorithm, thenPacPredictmust run in time polynomial
in nI , sincenI is the size of the examples used byPacPredict. However,PacPredict neednot run in
time polynomial innO .
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