
Machine Learning, 31, 201–222 (1998)
c© 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Training a Vision Guided Mobile Robot

GORDON WYETH wyeth@csee.uq.edu.au
Department of Computer Science and Electrical Engineering, The University of Queensland, Brisbane, QLD
4072, Australia

Editors: Henry Hexmoor and Maja Matari´c

Abstract. This paper presents the design, implementation and evaluation of a trainable vision guided mobile
robot. The robot, CORGI, has a CCD camera as its only sensor which it is trained to use for a variety of tasks. The
techniques used for training and the choice of natural light vision as the primary sensor makes the methodology
immediately applicable to tasks such as trash collection or fruit picking. For example, the robot is readily trained
to perform a ball finding task which involves avoiding obstacles and aligning with tennis balls. The robot is
able to move at speeds up to 0.8 ms−1 while performing this task, and has never had a collision in the trained
environment. It can process video and update the actuators at 11 Hz using a single $20 microprocessor to perform
all computation. Further results are shown to evaluate the system for generalization across unseen domains, fault
tolerance and dynamic environments.

Keywords: mobile robots, neural networks, machine vision, robot learning

1. Introduction

CORGI is a visually guided robot dog that has been trained to perceive and act in an
office environment. The techniques used for developing CORGI’s perception and action
are designed to be applicable to a wide variety of tasks: cleaning the house, collecting
trash from our parks and waterways, picking fruit from an orchard or collecting rocks
on interplanetary exploration missions. The generic nature of the techniques comes from
several factors.

• The robot is trained to perform perception and action, rather than programmed;

• the robot uses natural light vision which can be applied to many tasks in our vision
oriented world;

• the model used for control has been kept strictly minimalist, based on the belief that
simplicity should lead to a more generally applicable solution.

CORGI, the test bed for these techniques, is a completely autonomous robot that performs
the learned tasks in real time (meaning human-like reaction speed). All computation,
including vision, is carried out on a single, commonly available $20 microprocessor. The
robot is about 30 cm long and stands 15 cm tall, with its CCD camera mounted on a
manipulator at the front of the robot (Figure 1). These physical attributes give the robot the
appearance of a small dog - hence the name, CORGI.

Robot training implies that the robot uses supervized learning to gain competence in its
task. That is, a human operator controls the robot for a period of time to demonstrate
the desired behavior of the robot in typical situations. The robot’s learning task is not to
duplicate the human controller’s action, but to find the salient parts of the sensor to actuator

202 G. WYETH

Figure 1. CORGI is a demonstration of the methods for robot perception and control described in this paper. The
robot measures about 450 mm from nose to tail, and about 200 mm across the drive wheels. Its resemblance to a
small dog led to its name.

relationship in order to produce reasonable behavior in both learned and novel situations.
An operator can demonstrate only a very small proportion of the possible conditions that the
robot will encounter; the possible positions and orientations of the robot in the environment
are in no way discretized, and noisy sensor data implies that sensor readings will not be the
same at a given position and orientation anyway. Add to this problem that real environments
are dynamic and it becomes clear that the number of novel situations grossly exceeds the
number of practicable training examples.

This argument precludes the approach used to train the ALVINN system (Pomerleau,
1993) to steer along a variety of road surfaces by a human operator. ALVINN used raw
video as input and generated steering angles as output. In between was a single multilayer
neural network which was trained using the well known backpropagation algorithm (Hertz
et. al., 1991). Roads provide a much less diverse input than the environments which can
be envisaged for robot operation. Also, steering is a relatively simple behavior compared
to the complex behavior required of the robots described above.

The approach used in this paper is to split perception and action into distinct modules, with
careful attention to the interface in between. The difficult perception training task can be
performed off board the robot, reducing the processing power required for the robot. Then,
with the trained perception system running on board, the robot behavior can be trained in
real time, ensuring that the complex coordination of perception and action is achieved as
well as possible.

The key to making this system function successfully is choosing the interface. The in-
terface chosen is inspired by the vehicles described by (Braitenberg, 1984). Braitenberg
describes a series of vehicles that demonstrate how simple structures of nerve-like compo-
nents attached to sensors and actuators can create behavior that appears intelligent. The
first few of these vehicles are the most popularized, featuring in a popular science journal

TRAINING A VISION GUIDED ROBOT 203

Hate

Cowardice
Love

Curiosity

Figure 2. The four basic Braitenberg vehicles can demonstrate useful behavior towards a light source from very
simple connection schemes. The arcs at the front of the vehicles are sensors. The sensors connect to the drive
units through connections that may be crossed or uncrossed, excitory (+) or inhibitory (-). The labeled emotions
are terms Braitenberg uses to describe the reaction of the vehicles towards the light. The arrows display the motion
of the vehicles, with the width of the arrow indicating the speed.

(Dewdney, 1988) and even promoted as hobby projects (Cheeseman, 1988). Four of the
fundamental examples are shown in Figure 2.

The operation of these vehicles is, at once, both simple and profound. Consider these
vehicles to be operating on a plain with randomly placed lights. The arcs at the front of the
vehicle represent lights sensors that produce a signal based on the intensity of nearby light
sources. The boxes at the back represent propulsion units that drive the vehicle at a velocity
proportional to the signal that the actuator receives. In between sensors and actuators are
connections that may be inhibitory or excitory. These simple components provide each
vehicle with behavior representative of the labeled emotions, which is readily understood
from thinking out the expected reactions of each type of vehicle. For example, thehate
vehicle in Figure 2 will detect the light more strongly with its right sensor than its left
sensor. Due to the crossed excitory connections, the vehicle’s left motor will travel faster
than the right causing the vehicle to turn towards the light. Once facing the light the vehicle
accelerates towards it in a display of aggression, smashing the light on impact.

Systems based on weighted connections form the basis of neural network research, and as
such Braitenberg vehicles are readily shown to be trainable using techniques developed for
artificial neural networks. Trainable structures based on Braitenberg vehicles are therefore
suitable as the trainable action module of the robot. Trainability combined with simplicity
makes the Braitenberg vehicle model an excellent choice for a generic, low cost action
generation system.

The input to the action module defines the output of the perception module. That is, the
perception module should produce a pair of outputs that indicates the presence of the desired
object within symmetric sensor regions, as do the sensors of a Braitenberg vehicle. The

204 G. WYETH

perception module can also be trained using artificial neural network techniques, making a
complete trained system.

Perception is based on natural light vision using a CCD camera. While low cost ultrasound
or infra red sensors offer solutions in laboratory environments, vision is widely applicable
to real world tasks. For example, a garbage collection robot must be able to distinguish
between obstacles to be avoided and garbage to be collected; a fruit picking robot must be
able to distiguish between the leaf and the fruit. Trainable vision offers a generic solution
to sensing across a great number of situations. Because the vision system is trained, the
usual overheads associated with programming are avoided.

Vision can also offer economic benefits from a hardware perspective. A camera can act
as a single sensor to replace a variety of sensors, offering stock and manufacturing cost
reductions. Low resolution CCD cameras are currently available for as little as $8 per part
in quantity (Eccles, 1997), and the CORGI project illustrates a versatile interface to low
cost microcontrollers (Wyeth, 1997).

There is an obvious limit to the capabilities of any robot designed with this methodology.
The output is a function of immediate input; there is no storage of internal state. This lack
of memory limits the functionality of the robot to reactive behaviors, where action is readily
determined from immediate perception. Clearly a robot with this architecture cannot be
expected to learn how to store and recall landmarks, for example. For the tasks described
at the start of this paper, much of the required behavior is purely reactive, and that is the
level that the methodologies presented here seek to address.

The following section (Section 2) of this paper gives a brief description of the physical
implementation of the robot built to investigate the methodology. Section 3 then describes
the methods used to train perception networks sufficient to detect the environment and
the targets within the environment. Section 4 describes techniques for training the action
generation module. Action training is shown in simulation and on the robot. Descriptions
are given of training the robot to perform a variety of tasks, concluding with the finding of
tennis balls. Section 5 concludes with some thoughts on the limits of this methodology and
comparisons to related work.

2. Physical Implementation

CORGI is controlled by two DC motors arranged on either side of the robot in wheelchair
fashion. The motors are designed to move CORGI along at walking speed (0.8 ms−1)
with sufficient torque to accelerate at 0.1g (1 ms−2). These parameters allow the robot to
move around at human-like speeds. The motors do not provide feedback, and since they
are not stepping motors, the possibility of conventional kinematic control is precluded. The
manipulator is not used in the experiments described in this paper; it is fixed in position as
a camera stand.

The electronics of the robot are centered on the Motorola MC68HC16Z1 microcontroller.
The processor was chosen for its wide range of peripherals, low power requirements and
small DSP engine that acts at the heart of the neural network computation. Given the
reliance on up to date video for all control, a video grabber was custom designed to provide
direct access to video memory from the microcontroller (Wyeth, 1997). This grabber also
provides an electronic pan and zoom facility, allowing electronic foveation. The robot

TRAINING A VISION GUIDED ROBOT 205

also has serial and parallel communications capability, a keypad and LCD screen, a power
management system and sufficient on-board power for two hours of operation.

3. Learning to See

Development of the perception module involves training artificial neural networks (ANNs)
to recognize relevant featurds of the environment from a grayscale camera image. This
section describes the techniques used to train CORGI to recognize the obstacles that it must
avoid and the tennis balls that it must locate. Results are presented for the performance of
the networks developed using these techniques.

3.1. Training data

The training data for developing the neural networks were gathered from CORGI and
transmitted to a PC for storage and tagging. Using serial line communications, about 100
images per minute can be stored. The stored images need to be tagged to indicate the
location of the object of interest in the image. This was achieved on the PC using a mouse
to indicate the position of the object.

The tagging program provides a facility to equalize the number of training examples
in each class, and to present the data in an appropriate order. Having an equal number
of examples in each class ensures that the network does not become biased towards a
particular category simply by repeated exposure. Ordering of data prevents the network
from “forgetting” about one class as it learns about another. Of the algorithms developed for
this facility, the most successful and general algorithm was one dubbed the Consistent Mean
Output (CMO) algorithm. It is inspired by Pomerleau’s comments on his system for bias
reduction in the ALVINN system (Pomerleau, 1993). The CMO algorithm is applicable
to a wider variety of problems than the techniques described by Pomerleau. The only
assumption is that every output is equally likely, although the algorithm is easily modified
for any known output distribution.

The algorithm cycles through the raw data, randomly choosing one in N examples to
place in the training list. The value of N is chosen to reduce the likelihood of picking
examples from the same class consecutively, given that data is likely to come in clusters.
This parameter was set to five for the experiments described later. Patterns are chosen
randomly without replacement, until the data pool of patterns becomes empty. A running
average is maintained for each output of the network as each pattern is added to the training
list. In between random patterns, each pattern in the raw data set is tested to see if it will
bring the running averages closer to 1/M, where M is the number of outputs. If the pattern
passes this test, it is included in the training list. Note that all patterns are tested even if
they have already been chosen under the random selection scheme.

The CMO algorithm presents a training list that is well ordered and balanced. Significant
improvements in training performance and generalization ability have been achieved using
this technique. Specifically, in the obstacle detection example that follows (Section 3.5),
the percentage of unseen patterns that tested to within 0.1 of the correct output increased
from 59% to 89% using this technique.

206 G. WYETH

3.2. Training algorithm

The network was trained with the well known back-propagation algorithm used for multi-
layer perceptrons, as described in (Hertz et. al., 1991). This algorithm has various para-
meters that affect the ability of the network to learn the examples and to generalize to
new situations. For the experiments below, sensitivity to several parameters was assessed.
Convergence was found to be moderately sensitive to learning rate, with a value of 0.05
found to be most suitable. The network failed to converge without a momentum term in the
weight update rule, and converged best with a momentum rate of 0.95. Initial weight size
had little impact on the performance of the algorithm. Weights were randomly initialized
to between 0.1 and -0.1.

Another parameter not usually adjusted for backpropagation is the sigmoid squashing
constant,β. The sigmoid function is a common choice for the squashing function for
networks trained with backpropagation:

y =
1

1 + e−βx
(1)

Typically,β = 1, but due to the large dimensionality of the input vector in this application,
the function frequently saturated with this value. When the function is saturated, there is
little derivative for the gradient descent operation of backpropagation. Accordingly, several
values forβ were investigated. A value of 0.125 was found to be most suitable.

The final parameter that was investigated was the number of hidden units to assign to
the network. All experiments were conducted with a single layer of hidden units, with
the number of units varied between 5 and 20. It was found experimentally that networks
with 5 units performed worse than networks with 10 or 20 units, but that 10 and 20 unit
networks were similar in performance. The subsequent experiments were all investigated
with several network architectures, but in all cases the final architecture used a single layer
of 10 hidden units.

3.3. Input / output format

The input format used in all experiments was a 4096 point vector representing the64× 64
pixels of the input image. Preprocessing techniques were chosen based on their prior
existence, lack of complexity and wide applicability. Comparisons were made between
performance with raw images, histogram equalized images, normalized images and images
preprocessed with the Robert’s operator (which performs edge detection). Experiments
demonstrated significantly better performance for equalized images over raw images and
images preprocessed with the Robert’s operator. Equalized images were generally classified
as well as normalized images; equalization was chosen as the faster of the two algorithms,
with 20 ms per frame for equalization versus 35 ms per frame for normalization. Details
of the algorithm may be found in most image processing texts (for example (Sonka, 1993).

Each network has two outputs effectively labeledpresence-on-the-leftandpresence-on-
the-right. This allows the network to capture four states: total absence of the object (0,0),
presence of the object on the left (1,0), presence of the object on the right (0,1) and presence

TRAINING A VISION GUIDED ROBOT 207

of the object straight ahead (1,1). As such, the network interfaces well with the Braitenberg
vehicles that act as controllers.

The output was derived from the (x,y) coordinates produced from the tagging operation.
The x axis was broken into three bands to determine if the object was left, center or right. It
was also found necessary to define a limit on the y axis for the presence of objects. Objects
tagged as being present in pixel rows 55 to 64 were ignored for two reasons. First, objects
beyond the distance associated with pixel row 55 were too far from the robot to be relevant
to action. Second, objects at that distance were potentially quite small, only two or three
pixels high, which made classification difficult.

The chosen output format was amenable to the following performance measures. Per-
formance was measured by evaluating the number of classifications of the training set that
were outside 0.1 ofallowablevalues on both outputs (rejected outputs) and the number
of classifications that were within 0.1 ofcorrectvalues on both outputs (correct outputs).
Allowable values were 0 and 1, with the correct values depending on the tag. Two perfor-
mance indicators were generated from these numbers: a rejection rate (number rejected /
total number tested) and a reliability rate (number correct / total number tested).

3.4. Implementation on CORGI

After a training session on the PC, the weights were downloaded to CORGI for real time
operation. CORGI ran the feedforward operation of the network on the MC68HC16 DSP
unit. Most of the time in this operation was spent in calculating the 4096 point dot product
of the input vector with the unit’s weight vector. The MC68HC16 supports a Repeating
Multiply and Accumulate instruction, that performs the dot product at 12 cycles per point.
With the CPU clocked at 16 MHz, a single hidden unit’s activation was calculated in 3 ms.

To use this instruction, the data types of the weights and input points were converted
to a fixed point representation. Scaling of the weights was required to trade resolution
of the weight representation against possible saturation. Also the sigmoid function was
implemented in a fixed point representation by using a 354 point table lookup. In practice,
it was found that the output of the fixed point calculation was within 2 - 5% of thefloating
point calculations performed on the PC. The errors averaged out over time, and had little
impact on the performance of the robot.

With all of the robot’s ancillary functions operating, the robot ran two 40980 connection
perception networks at 11 Hz. This performance could be significantly improved by using
some of the low cost microcontrollers released lately. For example, the similarly priced
SH7032 from Hitachi’s Super-H series would provide an order of magnitude increase in
network performance, and even wider peripheral support (Hitachi, 1996).

3.5. Obstacle detection

CORGI was trained to recognize obstacles in an enclosed office space (shown in Figure
3). The obstacles included the walls, doors and barriers that make up the perimeter of
the area, providing a variety of different surfaces to detect. Lighting was provided from
overhead bulbs and a curtained window. The lighting from the window caused significant

208 G. WYETH

Figure 3. CORGI World – the environment in which CORGI was trained. In this environment CORGI experiences
wall obstacles of three different types, the walls, the doors and the barriers. The floor tiles are speckled, non-
uniform and reflect the fluorescent lights from overhead.

Figure 4. Some typical images from the training data gathered for obstacle detection.

variations in lighting depending on the time of day. The floor was covered with non-
uniform linoleum tiles that reflected pools of light from the fluorescent lights overhead.
Other features included door catches and power points. The images also contained tennis
balls, for use in the subsequent experiment. Some sample images captured by the robot are
shown in Figure 4.

Five thousand images were collected by driving the robot randomly around the area. The
images were tagged with a single point representing the closest obstacle in the image. Data

TRAINING A VISION GUIDED ROBOT 209

Figure 5. Photograph of the hallway outside the office where CORGI was trained. This area was similar to the
training environment, but had variations in floor color, wall color and lighting. The networks generalized well in
this area.

collection took one hour, and image tagging took nearly two hours. Three thousand of
these images were used in the training set, with 2000 images set aside for testing. Using the
parameters described above, a network was trained on a 100 MHz Pentium based computer
for 150 epochs, requiring 10.5 hours. Peak performance from the network was obtained in
epoch 120, with a reliability of 89% and a rejection rate of 19% using unseen data from the
training environment.

The network with peak performance was then tested on three new sets of data: sets of
100 images gathered from the same room with the blinds open, the hallway outside and a
working office environment. The hall and office are shown in Figures 5 and 6 respectively.

Table 1 summarizes the results of the experiment. The change of lighting conditions and
the move to the hallway had little effect on classification performance. The tests in the
cluttered office showed some degradation in performance around obstacles not seen at all
in the training set, particularly thin chair legs which were difficult for a human observer to
detect in a64 × 64 pixel image.

This experiment clearly demonstrates that an obstacle detection network trained in this
manner can be a useful sensor for a robot. Not only does it function well within the environ-
ment for which it was trained, it also operates in similar previously unseen environments.

3.6. Tennis ball detection

A tennis ball was placed at random locations in the enclosed office area while data was
being gathered. Of the 5000 images gathered 1845 contained taggable tennis balls. A ball
was tagged only if more than 50% of the tennis ball appeared in the image. Given the low

210 G. WYETH

Figure 6. The office area used in generalization experiments. The network generalized adequately in this en-
vironment, but had trouble with the legs of tables and chairs which were difficult to perceive with64 × 64
resolution.

Table 1. Performance of the obstacle avoidance network be-
yond the training environment. The network was tested in the
same room, the adjacent hallway, and a neighboring office with
furniture. The degradation in performance for the neighboring
office is mostly due to artifacts that are not visible with64×64
pixel resolution.

Robot Environment Reliability (%) Rejected (%)

Trained environment 89 19
New lighting 84 31
Hallway 80 31
Neighboring office 64 36

TRAINING A VISION GUIDED ROBOT 211

Table 2. Performance of the tennis ball detection network be-
yond the training environment.

Ball Position Reliability (%) Rejected (%)

Trained environment 82 12
New lighting 80 15
Hallway 78 21
Neighboring office 45 30
Ball carried by hand 81 18

number of images containing targets, a further 4000 images were captured, bringing the
total number of taggable tennis ball images to 4948. Of the 9000 images captured, 8500
were used for training with 500 set aside for testing. Total capture time came to two hours,
with four hours required for the tagging of balls.

The network trained for 75 epochs and took 21 hours. Peak performance was reached in
epoch 60, with a reliability of 82% and a rejection rate of 12%. The removal of balls tagged
above pixel row 55 was critical to the performance of this network. With these balls present
in the images, performance plummeted to 59% reliability with a 21% rejection rate. This
was most likely because balls at that distance covered between 10 to 20 pixels in the image
area, making them very difficult to detect.

The network generalized reasonably well for new environments. Table 2 shows the
results for testing in the surrounding environments. Performance degraded more than for
the obstacle network, with significant degradation in the cluttered office. The clutter in the
images caused many false sightings of balls. On the other hand, the network generalized
quite well for structured noise introduced into the image in the trained environment. For
example, the network could still detect a ball carried by hand, and chose a tennis ball over
shoes seen while testing.

4. Learning to Act

This section investigates techniques for teaching a robot to act appropriately to stimulus.
The action system was based on the proposed design of Braitenberg vehicles (Braitenberg,
1984) which use a single layer of neural units to perform behavior generation and arbitration.
Artificial neural network techniques to train these units were tested and then used in a series
of experiments that demonstrate the capabilities of the system.

4.1. Action training algorithms

Two algorithms were chosen for action training based on their simplicity and suitability
to the proposed robot architecture. The Widrow-Hoff rule (Widrow & Hoff, 1960) was
investigated for training robots based on linear units, and the Perceptron Learning Algorithm
(Rosenblatt, 1962) was investigated for training non-linear units. These algorithms were
relevant to the proposed single layer design of the action generation and arbitration system.

212 G. WYETH

The initial investigation of these systems was conducted in simulation. The simulator
was designed to represent a somewhat idealized version of CORGI. While motion was
calculated to be kinematically accurate, the effects of momentum and collision were ignored.
Similarly, while sensing was made geometrically accurate, the reduced reliability of the
sensor was ignored. This simulator provided an initial environment sufficient to judge
the broad requirements for a trainable action control system. Later sections describe the
implementation and experiments on CORGI.

4.1.1. Widrow-Hoff Rule The Widrow-Hoff rule (Widrow & Hoff, 1960) is based on
the principle of gradient descent of error, and can generally be stated:

∆wij = η(ζi − Vi)Vj (2)

whereη is the learning rate,ζi is the desired output,Vi is the actual output andVj is the
input. For the action training experiments, the input was the values from the simulated
sensors, and the output was the value passed to the simulated motors. The desired behavior
was obstacle avoidance.

The experiment was conducted by assigning small random values to a set of weights that
fully connected the obstacle sensors to the actuators. The simulated vehicle was driven
around the environment by means of key strokes. Each key stroke represented 100 ms of
time. Figure 7(a) shows the path that formed the training set. This path represents 2000
sensor-actuator pairs. The learning rule was applied with a learning rate of 0.01, with the
result shown in Figure 7(b). The vehicle started well, avoiding obstacles by veering away,
but failed when it encountered a head-on obstacle that stimulated both sensors at once. By
altering the terminating point of the training epoch a different behavior was developed. The
robot avoids head-on obstacles but fails to deal with obstacles on the right (Figure 7(c)).

This learning behavior can be explained by observing the error(ζ − V) during training.
Due to the fine grain nature of data collection, many like examples come in clusters. It
is the nature of the Widrow-Hoff rule to minimize the error for those examples. Despite
the low value given for the learning rate, the network will tend to erase the learning from
previous encounters as it minimizes the error for the current situation. This single mind-
edness explains the behavior described above. It is feature of machine learning that is well
documented, and is often described (originally by (Carpenter & Grossberg, 1987)) as the
stability-plasticity dilemma.

This problem can be overcome in the same manner that was described for the perception
module: store the training set and present it in random order. As shown in Figure 8,
this solution is technically sound, but the overheads in storage and computation make this
method unsuitable for an embedded design.

4.1.2. The Perceptron Learning AlgorithmThe Perceptron Learning Algorithm (PLA)
(Rosenblatt, 1962) is designed to train threshold units. Threshold units have two valued
outputs: 0 and 1. The units have an output of 0 until input activation reaches the threshold,
when they have an output of 1. The algorithm was implemented as:

∆wij =
{

2ηζiVj , if ζi 6= Vi;
0, otherwise.

(3)

TRAINING A VISION GUIDED ROBOT 213

Figure 7. (a) The path for training the vehicle. (b) The result of a test run. (c) By altering the termination point
for training, the behavior of the vehicle is significantly altered.

Figure 8. (a) This vehicle is also trained using the path shown in Figure 3.8(a), but with the order of presentation
randomized. (b) The vehicle works in environments other than the one for which it was trained.

214 G. WYETH

Figure 9. (a) The vehicle is trained using the perceptron learning algorithm in a single pass over the path shown.
(b) Initially, the vehicle failed at the first turn, but proceeded reasonably after that. (c) By retraining the vehicle
for that first turn, it was able to proceed about throughout the entire area.

with the meanings of the parameters and variables as before. The algorithm was run for
3000 sensor-actuator pairs over the path shown in Figure 9(a), using a learning rate of 0.5.
When the vehicle used the learned network to generate behavior it initially had a problem
at the first corner where it turned unexpectedly (Figure 9(b)). This is not unreasonable in
light of the nature of the training data; the vehicle had only seen this situation once before.
The behavior was “touched up” by retraining the robot through that corner. The resulting
behavior was a robust obstacle avoider as shown in Figure 9(c). This behavior also worked
well in previously unseen environments.

This training algorithm does not suffer from the stability-plasticity dilemma as greatly as
the Widrow-Hoff rule. The PLA only updates the weights if the output is on the wrong side
of the threshold, and often leaves the weights alone. This is in contrast to the Widrow-Hoff
rule which will continue to adjust the weights for even small errors. The ability of the
PLA to learn new behavior without corrupting older learned behavior is of great value for
behavior “shaping”, as (Dorrigo & Colombetti, 1995) refer to it.

TRAINING A VISION GUIDED ROBOT 215

4.2. Action Training Experiments

Further experiments with action training were conducted on the real robot. These exper-
iments were all conducted using the PLA and threshold units. The perception networks
described in the previous section were used as input. The outputs of the network were the
motor control signals. The value sent to each motor was used to control the duty cycle
of the PWM controller of the motor driver - effectively controlling the voltage supplied to
each motor. This does not imply accurate velocity or position control, as was seen with the
simulator.

This feature has implications for the architecture used to control the robot. If each motor
is controlled by a single threshold unit, the controller only has the ability to drive a motor
forward or to switch off the motor. It does not have any braking ability or reverse ability.
This means that the robot can not rapidly overcome its momentum to negotiate obstacles.
A possible solution is to use the threshold unit to have one state representing forward and
another representing backwards. This presents problems when trying to keep the robot
stationary, for instance for ball collection. A better solution is to associate two threshold
units with each motor: one unit for forward and one unit for reverse. This allows for a
wider variety of behavior to be learned.

The complete architecture of CORGI is shown in Figure 10. The64× 64 pixel equalized
input is used as input for both the obstacle detection and tennis ball detection network.
The outputs of the detection networks form the inputs of the action network. The action
network behaves like a Braitenberg vehicle, using left and right sensory information to
generate motor associations. The units in the action network are threshold units, with the
weighted connections and unit thresholds trained using PLA. The connections from the
threshold units to the motor units are fixed to produce the forward unit and backward unit
described above.

4.2.1. Wall Following The robot was trained to follow right hand walls around the
training area. The robot was driven around the area three times under joystick control,
representing about 200 sensor-actuator pairs. Only the obstacle sensor readings were used
as input for the network. The sensor-actuator pairs were presented to the learning algorithm
as they were gathered, allowing for real time learning at about 8 Hz. After training, the
joystick was removed and the robot left to follow the trained path. The robot followed the
path without incident, performing an anti-clockwise wall following operation.

Four different training sessions produced similar results. The robot never actually col-
lided with the wall during two hours of testing and always maintained an anti-clockwise
motion. The robot remained within 200 mm of the trained path, and did not stall at any
stage. The environment was modified by moving the adjustable partitions, with no notice-
able degradation of performance. When the robot was taken into the adjoining hallway,
performance remained the same even though the robot was not retrained.

As an experiment in fault tolerance, a bug was introduced into the motor driver code and
the robot retrained. The bug (inspired by a fault in an early version of the code) would
cause the left motor to go through stages of about 5-10 second duration where the motor
would be driven at half the written value to the controller. The robot performed reasonably
well, but it was noted that the robot would often run to the right of the trained path before

216 G. WYETH

Vision
Input

Obstacle
Detection
Network

Tennis Ball
Detection
Network

Right
Motor

Left
Motor

OR

TR

TL

OL

FR

BR

BL

FL

-

+

+

-

Figure 10. CORGI’s complete architecture. The two trained perception networks operate on the vision input
from the camera. The obstacle network produces two outputs:obstacle-on-the-right(OR) andobstacle-on-the-
left (OL). Similarly the tennis ball detection network produces a right (TR) and left (TL) output. These four
perception output units are totally connected to four threshold units: forward-right (FR), backward-right (BR),
backward-left (BL) and forward-left (FL). The threshold units are connected with fixed excitory and inhibitory
connections to the motors. The connections between the perception output units and the threshold units are trained
using PLA in real time.

moving back over to the left. The trained controller was nevertheless able to deal with the
problem, but in doing so introduced some bias towards turning to the right of the trained
path. When the motor was lagging, the robot would move to the left for the duration of the
fault.

4.2.2. A Game of ChaseThe robot was trained to chase tennis balls across the floor.
When there was no ball present the robot would remain still, but when it saw a tennis ball
it would move towards it until it collided. The collision would then push the ball away
causing the robot to chase it again. This lead to the robot playing an amusing game of chase
across the room.

Training was carried out in a similar fashion to before, but only the outputs from the tennis
ball network were used as input for the action network. The robot learned the behavior
well after only five or six games of chase, representing about one minute of actual training
time, and a short period of learning to “stay” when no ball was present. In total, about 600
sensor-actuator pairs were used in the training of the behavior.

The robot’s biggest problem was a lack of finesse that would sometimes cause the ball to
bounce too far and become lost from view. With no view of the ball the chasing behavior
halted. This is an illustration of the limitations applied by a reactive architecture. The
robot could not continue to chase the ball when it lost view of it, even though the robot
could conceivably tell the approximate location of the ball. It is not difficult to conceive
neural structures that might help in this situation — leaky integrators on the input sensors
perhaps — but it is difficult to propose a generalist architecture and accompanying training
algorithm.

TRAINING A VISION GUIDED ROBOT 217

Despite this difficulty, the robot was able to chase a ball across the room in a variety of
directions. Given the problems with keeping the ball in view, experiments were conducted
carrying the ball in the hand and leading the robot around the room. The robot would follow
the ball in the hand despite the noise introduced in the images by the hands and shoes that
appeared in the image area.

This experiment clearly shows the advantage of a fine grained sensor-actuation control
loop. The relatively high frequency of update (8 Hz when training, 11 Hz in feedforward)
allows the robot to learn to chase a dynamic object such as a tennis ball.

4.2.3. Finding the Ball The most comprehensive behavior taught to CORGI was to
roam the testing area avoiding the boundaries while looking for a tennis ball. When the
robot came into the presence of the ball it would align itself with the ball and stop until the
ball was removed. In principle, this behavior forms the basis of a wide variety of collection
tasks.

The robot learned the wandering, obstacle avoidance behavior in about two minutes.
Notably, the robot also learned the trainer’s preference for turning left when an obstacle
was approached head-on. Out of interest, a further two minutes was spent retraining the same
network to reverse this tendency and turn right at head-on obstacles, which it successfully
learned. Both of these networks were highly successful in that they did not once allow the
robot to collide with an obstacle or get stuck in a small corner. During many demonstrations
of this behavior, the robot has not once failed to avoid obstacles in the trained environment.

This behavior was then supplemented with a further two minutes of training to stop and
align with tennis balls. The final resulting behavior had all of the desired features, but
lacked precision in the alignment with the tennis ball. The ball would be well-aligned in a
left-right sense, but the robot would stop at varying distances from the ball. To overcome
this, the tennis ball perception network would require additional near-far outputs to perform
control on two axes. With the addition of these outputs it appears feasible to align the robot
sufficiently to perform a grasping operation with the manipulator.

This system is also moderately successful in previously unseen environments. The robot
operates well in the hallway without retraining. On occasion, the robot grazed the walls
as it negotiated some corners, and would sometimes drive past an apparently visible tennis
ball. The robot was then tested in the neighboring office, which contains many previously
unseen features. Without retraining, the robot could generally move about for three or four
minutes before either colliding heavily with an obstacle, or getting trapped in a corner or
under a table. Tennis ball detection became haphazard, with numerous false sightings of the
ball and other balls being ignored. With five minutes of retraining, the robot typically lasted
about fifteen minutes before having a fatal accident, but became notably more paranoid in
the open areas of the room. The robot often turned away from regions with no apparent
obstacle, and generally traveled at a lower speed. There was no noticeable improvement
in tennis ball gathering ability — the poor performance is apparently a function of the
perception network.

This experiment demonstrates that the action system can be taught to generate multiple
behaviors and arbitrate between them. Clearly there are two behaviors at work here: an
obstacle avoidance behavior, and a tennis ball detection behavior. Both behaviors act in
parallel, and dominate the action of the robot at the appropriate times. The overall behav-

218 G. WYETH

ior is highly reliable in the trained environment, with graceful degradation in a changing
environment.

5. Discussion

The aim of the research described in this paper was to develop a generic robotic solution
to the reactive domain of problems that characterize many mundane tasks well suited to
being “roboticized”. Tasks in this domain include garbage collection, crop picking and
object retrieval from hazardous environments. Tasks of this nature require a vision sense
to identify the key environmental components that form the basis of behavior. The tennis
ball collection task is a simple laboratory example of this class of problem. In this section
we review some limits to the solution developed and compare the solution to related work.

5.1. Limits to the Approach

The most obvious contention is that more complex environments may make training the
perception system impossible. Finding the limits in this respect is difficult, as features
vary from environment to environment. The chief impact of an increase in environmental
complexity is an increase in the size of the training set, and a consequent increase in training
time. For the problems presented here (which were not trivial) data collection and tagging
took just over a typical working day, about nine hours. Training took about one and a half
days of computer time. Even if these costs were increased by an order of magnitude, they
are insignificant when compared with typical costs for the development of a robot vision
and control system.

Clearly understood preprocessing techniques that are appropriate to the target may en-
hance the trainability of the system. For example, the tennis ball would have been far easier
to detect if chrominance information were available, and some preprocessing applied that
enhanced green.

As discussed earlier, there are limits to the applicability of the action generation system.
The system can only produce reactive behaviors as it cannot store internal state. These limits
have been explored by the robot, Herbert (Connell, 1991), where the apparently complex
operations involved in drink can collection were all generated by a combination of reactive
behaviors.

The ball finding experiment (Section 4.2.3) has shown that the system can learn multiple
behaviors and arbitrate between them. However it remains unclear whether a behavior can
be modified with respect to a certain sensor. For example, can this system be trained to find
a tennis ball, pick it up, and subsequently avoid tennis balls as it must now return home with
a full gripper? Assume that there is a sensor in the gripper that detects the presence of a
gripped tennis ball. The sensor provides a cue for the required change in behavior, allowing
the system to remain reactive as it does not rely on internal state. It is unclear whether the
system described here could be trained to perform such a task. Modification of behavior is
a useful tool that is used in Herbert to achieve its repertoire of tasks, and lack of this ability
would adversely affect the usefulness of this system.

TRAINING A VISION GUIDED ROBOT 219

Figure 11. (a) Weight diagrams for the ten hidden units in the obstacle perception network. There is no readily
apparent pattern to any of these units, and the method of obstacle detection remains unclear. (b) Weight diagrams
reproduced from (Pomerleau, 1993). The edges of the roads show quite clearly in the hidden units’ weights, giving
a clear indication of the method used by the network.

5.2. Related Work

As outlined in the introduction, the ALVINN system (Pomerleau, 1993) bears some simi-
larity to the perception system of CORGI. ALVINN not only perceives the current scene, it
also produces the steering command. CORGI separates perception and action. This allows
the difficult perception learning to be performed off-board, and more complex behavior to
be trained on-board in real time. The separation greatly reduces the processing require-
ments for the robot. The modularity of CORGI’s architecture recognizes the importance
of training behaviorin situ, but does not pay a price to attach trained behavior to trained
perception.

Pomerleau illustrates in ALVINN’s network that the hidden units clearly relate to certain
road features. Figure 11(a) shows the weights connected to each of the ten hidden units
in the obstacle detection network. There is no obvious feature that relates to obstacles
apparent in these diagrams. Figure 11(b) (reproduced from (Pomerleau, 1993)) shows how
clealy the edges of the road appear in ALVINN’s network.

There has been a recent explosion in the number of self-learning robot behavior sys-
tems being developed. Many of these are based on reinforcement learning (for example,
(Mahadeven & Connell, 1992), (Millan, 1996), (Donnart & Meyer, 1996)) and genetic
algorithms ((Harvey et. al., 1994), (Floreano & Mondada, 1996), (Meeden, 1996) are a
few.) with the study being centerd on unsupervized adaptation to an environment. These
systems provide reward for goal completion and punishment for inappropriate behavior
such as hitting obstacles. Given the lack of guiding information for the robot, these robots
take a lot longer to learn appropriate behavior. The complexity of the algorithms and the
long training times also means that most of these systems are developed in simulation. The
type of behaviors produced by these robots are generally no more complex than obstacle

220 G. WYETH

avoidance and phototaxis. The intention of these researchers is to show that robots can
adapt themselves, without the requirement for a teacher.

I argue that it is simpler and more practical to teach a robot behavior, as long as that robot
can generalize the behavior to new environments and behave reasonably in previously
unseen situations. CORGI has shown that the simplest of neural training techniques is
capable of achieving this goal. Few other researchers are investigating the use of simple
supervized training techniques. Nehmzow has used supervized training techniques to train
robots with many sensors and various behaviors (Nehmzow, 1995). These experiments were
conducted on a range of robots from small custom made robots, to a commercially available
Nomad 200 robot. These robots were equipped with typical robot sensors, ultrasound and
infrared proximity detectors, tactile sensors and heavily preprocessed vision. In these
experiments, where training of the control networks was performed using the Widrow-Hoff
rule, the robots were able to push boxes, learn routes and clean floors.

In contrast to the experiments performed with CORGI, the learning algorithm was run
with a much coarser time step, only updating every few seconds. With this arrangement,
the robot could learn a typical behavior in five to ten minutes. The fine grained nature of
CORGI’s operation allows more rapid reaction to dynamic objects, as shown in the tennis
ball chasing example. When training with such fine grain steps, the Widrow-Hoff rule
used by Nehmzow becomes inappropriate, hence the need for CORGI to use the Perceptron
Learning Algorithm. CORGI may be further contrasted to Nehmzow’s work by the split
of perception from action, with off-board training of vision, and rapid on-board training of
action.

NEURO-NAV (Meng & Kak, 1993) used neural networks for real time navigation of a
mobile robot, through real environments. It was designed to operate in a system of corridors
and junctions, and accept commands such as “proceed to the next junction and turn left”.
Neural networks were used to perform hallway following and landmark detection. To look
in a little detail at one of these systems, consider the hallway navigation network. It had a
64 × 60 pixel grayscale image as input, that was preprocessed through an edge detection
module and a Hough mapping. This served to greatly emphasize the join between walls and
floor along the perspective view of a corridor. A neural network with over 1500 connections
was trained using backpropagation on 72 examples, which appears to be a very low number
of examples for such a large network. This probably indicates that the task of the neural
network was trivial and probably better suited to a single layer network. The resulting
network produced 86% correct steering angles, 10% marginally incorrect steering angles
and rejected the remaining 4% of the unseen test images. It takes 2 seconds to generate a
steering angle from an image, using a 16 MIPS processor.

The slow refresh rate is typical of any system that uses a large amount of preprocessing.
Without dedicated vision hardware, useful preprocessing of images tends to be the time
performance bottleneck of a visual system. Moreover, the preprocessing performed by
this system is dedicated to the particular problem of hall following. CORGI’s trainable
perception system provides a greater degree of flexibility and offers a massive reduction in
computation time. NEURO-NAV’s interface to a higher level symbolic system is of some
interest as it provides a possibility for extensions to the system presented for CORGI.

TRAINING A VISION GUIDED ROBOT 221

5.3. Conclusions

CORGI is a visually guided robot that can be trained to perform a variety of tasks. The
robot performs apparently complex vision based tasks using only a $20 microprocessor for
all computation. The trainable vision system provides a general purpose sensor for a wide
variety of real world problems. For many such problems, vision may be the only answer,
and with falling camera prices will often be the most cost effective. Techniques have been
presented in this paper that make the training of large vision networks readily achievable.
The trainable action system provides robust, fault tolerant control of the robot suitable for
dynamic environments. The combination of these perception and action modules across a
minimalist interface provides a solution worthy of consideration for many reactive robot
designs.

References

Braitenberg, V. (1984).Vehicles: Experiments in Synthetic Psychology, MIT Press, Cambridge, MA.
Carpenter, G.A. & Grossberg, S. (1987) A Massively Parallel Architecture for a Self-Organising Neural Pattern

Recogntion Machine.Computer Vision, Graphics, and Image Processing, vol. 37, pp. 54-115.
Cheeseman, M. (1988) Build a Braitenberg Vehicle!Electronics Australia, vol. 50, no. 3, pp. 60-64.
Connell, J.H. (1990)Minimalist Mobile Robotics : a colony-style arhitecture for an artificial creature, Academic

Press Inc.
Dewdney A.K. (1987) Braitenberg memoirs: vehicles for probing behavior roam a drak plain marked with lights.

Scientific American, vol. 256, no. 3, March 1987.
Donnart, J-Y & Meyer, J-A (1996) Learning Reactive and Planning Rules in a Motivationally Autonomous Animat.

IEEE Transactions on Systems, Man and Cybernetics, vol. 26, no. 3, June 1996, pp. 381- 395.
Dorigo, M. & Colombetti, M. (1995) Robot Shaping: Developing autonomous agents through learning.Artificial

Intelligence, vol. 71, no. 2, pp. 321-370.
Eccles, M. (ed.) (1997) New video camera has $8 price tag.Electronics World, vol. 104, no. 1739, December

1997, pp. 973.
Floreano, D. & Mondada, F. (1996) Evolution of Homing Navigation in a Real Mobile Robot.IEEE Transactions

on Systems, Man and Cybernetics, vol. 26, no. 3, June 1996.
Harvey, I., Husbands, P. & Cliff, D. (1994) Seeing the Light: Artificial Evolution, Real Vision,From Animals

to Animats: Proceedings of the Third International Conference on Simulation of Adaptive behavior, The MIT
Press.

Hertz, J.A., Palmer, R.G. & Krogh A.S. (1991).Introduction to the theory of neural computation, Addison-Wesley.
Hitachi (1996), SH7604 Hardware User Manual, Available athttp://www.halsp.hitachi.com, Hitachi Web Site.
Mahadevan, S. & Connell, J. (1991) Automatic programming of behavior-based robots using reinforcement

learning.Artificial Intelligence, vol. 55, Elsevier, pp. 311-365.
Meeden, L.A. (1996) An Incremental Approach to Developing Intelligent Neural Network Controllers for Robots.

IEEE Transactions on Systems, Man and Cybernetics, vol. 26, no. 3.
Meng, M., & Kak, A.C. (1993) Mobile Robot Navigation Using Neural Networks and Nonmetrical Environment

Models,IEEE Control Systems, October 1993, pp. 30-39.
Millan, J.delR. (1995) Reinforcement learning of goal-directed obstacle-avoidance strategies in an autonomous

mobile robot.Robotics and Autonomous Systems, vol. 15, no. 3, 1995.
Nehmzow, U. (1995) Flexible control of mobile robots through autonomous competence acquisition.Measurement

and Control, vol. 28, pp. 48-54.
Pomerleau, D.A. (1993)Neural Network Perception for Mobile Robot Guidance, Kluwer Academic Publishers.
Rosenblatt, F. (1962)Principles of Neurodynamics, Spartan.
Sonka, M. (1993)Image processing, analysis and machine vision.London, Chapman and Hall Computing.
Widrow, B., & Hoff, M.E. (1960) Adaptive Switching Circuits.1960 IRE WESCON Convention Record, part 4,

pp. 96-104.

222 G. WYETH

Wyeth, G. F. (1997), Active Vision for Embedded Systems,Proc. Mechatronics and Machine Vision in Practice,
Toowoomba, Australia, IEEE Computer Society Press, September 1997, pp. 240-245.

Received September 1, 1997
Accepted December 30, 1997
Final Manuscript February 1, 1998

