
Machine Learning, 28, 169–210 (1997)
c© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Explanation-Based Learning and Reinforcement
Learning: A Unified View

THOMAS G. DIETTERICH tgd@cs.orst.edu

Department of Computer Science, Oregon State University, Corvallis, OR 97331-3202

NICHOLAS S. FLANN flann@nick.cs.usu.edu

Department of Computer Science, Utah State University, Logan, UT 84322-4205

Editor: Andrew Barto

Abstract. In speedup-learning problems, where full descriptions of operators are known, both explanation-
based learning (EBL) and reinforcement learning (RL) methods can be applied. This paper shows that both
methods involve fundamentally the same process of propagating information backward from the goal toward
the starting state. Most RL methods perform this propagation on a state-by-state basis, while EBL methods
compute the weakest preconditions of operators, and hence, perform this propagation on a region-by-region
basis. Barto, Bradtke, and Singh (1995) have observed that many algorithms for reinforcement learning can
be viewed as asynchronous dynamic programming. Based on this observation, this paper shows how to develop
dynamic programming versions of EBL, which we call region-based dynamic programming or Explanation-Based
Reinforcement Learning (EBRL). The paper compares batch and online versions of EBRL to batch and online
versions of point-based dynamic programming and to standard EBL. The results show that region-based dynamic
programming combines the strengths of EBL (fast learning and the ability to scale to large state spaces) with
the strengths of reinforcement learning algorithms (learning of optimal policies). Results are shown in chess
endgames and in synthetic maze tasks.
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1. Introduction

Speedup learning is a form of learning in which an inefficient problem solver is transformed
into an efficient one. It is often easy to specify and implement an inefficient problem solver
for a task, whereas implementing an efficient problem solver can be very difficult. For
example, in the game of chess, an inefficient problem solver can be implemented as an
exhaustive search algorithm that applies the rules of the game. An efficient problem solver
would need to transform those rules into a near-optimal policy for choosing moves in the
game. Similarly, the problem of job-shop scheduling can be solved by a simple problem
solver that generates and tests all possible schedules. An efficient problem solver must
exploit particular properties of the job shop and the job mix to find efficient search heuristics.
There are many important applications that could benefit from effective speedup learning
algorithms.
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1.1. Explanation-Based Learning

In the field of machine learning, the best-studied speedup learning method is Explanation-
Based Learning (EBL), as exemplified by the Prodigy (Minton, 1988) and SOAR (Laird,
Rosenbloom, & Newell, 1986) systems. EBL systems model problem solving as a process
of state-space search. The problem solver begins in a start state, and by applying operators
to the start state and succeeding states, the problem solver seeks to reach a goal state, where
the problem is solved. The problem solver in EBL systems is typically initialized with
one of the weak methods, such as means-ends analysis or heuristic search. It then applies
its weak methods to solve problems. The key step of EBL is to analyze a sequence of
operatorsS that solved a problem and compute the setP of similar problems such that the
same sequence of operatorsS would solve those problems as well. This setP of similar
problems is then captured as a control rule which states

If the current state is inP
Then apply the sequence of operatorsS.

This analytical process is sometimes called “goal regression,” because the goal is regressed
through the sequence of operators to computeP .

Consider for example, the LEX2 system (Mitchell, Keller, & Kedar-Cabelli, 1986), which
applies EBL to speed up symbolic integration. A state in LEX2 is an expression, such as∫

5x2dx. The goal is to transform this expression to one that does not contain the integral
sign. Two of the available operators are

Op1 :
∫
kf(x)dx = k

∫
f(x)dx, and

Op2 : If n 6= −1,
∫
xndx =

xn+1

n+ 1
.

The operator sequenceS = (Op1, Op2) solves this problem. Now, working backwards,
LEX2 can infer that any state in the setP = {

∫
kxndx ∧ n 6= −1} can be solved by this

same operator sequence.
Note that the process of computing the setP requires complete and correct models of

the effects of each of the operators available to the problem solver.1 Note also that the
computation of the setP can be performed very efficiently for some kinds of operator
representations as long as the setP can be represented intensionally.

A variation on EBL that is employed in LEX2 and SOAR is to learn a control rule for each
state along the sequence of operatorsS = (Op1, Op2, . . . , Opn) that solved a particular
problem. The result is a list of sets,(P1, P2, . . . , Pn). Each setPi describes those states
such that the sequence of operators(Opi, Opi+1, . . . , Opn) will reach a goal state. The
following collection of control rules is then created (one for each value ofi):

If the current state is inPi
Then apply operatorOpi.

This kind of control rule—which maps from a set of states to a single operator—will be the
focus of our attention in this paper.
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1.2. Reinforcement Learning

Substantial progress has recently been made in another area of machine learning: Reinforce-
ment Learning (RL). Like EBL, reinforcement learning systems also engage in state-space
search. However, unlike EBL, RL systems typically do not have models of their opera-
tors. Instead, they learn about their operators by applying them and observing their effects.
Another difference between RL and EBL is that RL systems seek to maximize a “reward”
rather than to reach a specified goal state. Each time an RL system applies an operatorOp to
move from a states to a resulting states′, it receives some real-valued reward,R(s,Op, s′).
These rewards are typically summed to define the cumulative reward (orreturn) received
by the RL system.2 The goal of RL is to learn a policy for choosing which operator to apply
in each state so that the return of the system is maximized. Formally, apolicy is a function
(denotedπ) that maps from states to operators. Hence, when a problem solver is pursuing
a particular policyπ in states, it applies the operatorπ(s).

Despite these differences between EBL and RL, RL methods can also be applied to solve
speedup learning problems. Given a speedup learning problem, we can define a reward
function as follows. For each operator,Op, we can provide a reward equal to the negative
of the cost (in CPU time) of applyingOp. When the problem solver reaches a goal state,
we can provide a fixed reward (e.g., zero) and terminate the search (i.e., the goal states are
absorbing states). With this reward function, the cumulative reward of a policy is equal
to the negative of the cost of solving the problem using that policy. Hence, the optimal
policy will be the policy that solves the problem most efficiently. Reinforcement learning
problems of this form are called stochastic shortest-path problems.

In the remainder of this paper, we will focus on the application of RL methods to speedup
learning problems under this kind of reward function. For the most part, we will be con-
cerned with deterministic operators, since most speedup learning problems involve only
such operators. We will define the return of a policy to be the cumulative reward. To study
the generality of our methods, however, we will also explore problems with stochastic op-
erators, in which case the return of a policy will be the expected cumulative reward. We
will assume that there exists a non-zero probability path from every starting state to a goal
state.

Given any policyπ, it is useful to compute a second function, called thevalue function
fπ, of the policy. The value function tells, for each states, what return will be received by
applying the policyπ in s and then continuing to followπ indefinitely. Many RL algorithms
work by learning the value function rather than directly learning a policy. This approach is
possible because there are dynamic programming algorithms (discussed below) for taking
fπ and incrementally modifying it to produce a value functionfπ

′
corresponding to a better

policy. By applying these improvements repeatedly, the value function will converge to the
optimal value function (denotedf∗).

Once the optimal value function has been computed, the optimal policy (denotedπ∗) can
be computed by a one-step lookahead search as follows. LetOp(s) be the state that results
(in the deterministic case) from applying operatorOp to states. Then,π∗(s) can be defined
as
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π∗(s) = argmax
Op

[R(s,Op,Op(s)) + f∗(Op(s))] .

The expressionR(s,Op,Op(s)) is the reward for applying operatorOp in states, and
f∗(Op(s)) is the return of pursuing the optimal policy starting in stateOp(s). In other
words, the optimal policy applies the operator that results in the highest return according to
the optimal value functionf∗ (plus the reward for applying the operator itself).

An important advantage of RL over EBL is that RL algorithms can be applied to domains
with stochastic operators. Specifically, letp(s′|Op, s) be the probability that if we apply
operatorOp in states we will move to states′. Then the value functionfπ gives the
expected valueof the policyπ:

fπ(s) =
∑
s′

p(s′|π(s), s)[R(s, π(s), s′) + fπ(s′)]

Barto, Bradtke & Singh (1995) have shown that many RL algorithms can be analyzed as
a form of asynchronous dynamic programming. The fundamental step in most dynamic
programming algorithms is called the “Bellman backup” (after Bellman, 1957). A Bellman
backup improves the estimated value of a statef(s) by performing a one-step lookahead
search and backing up the maximum resulting value:

f(s) := max
Op

∑
s′

p(s′|Op, s)[R(s,Op, s′) + f(s′)] (1)

It can be shown (for stochastic shortest-path problems) that regardless of the initial value
functionf , if Bellman backups are performed in every state infinitely often, then eventually,
f will converge to the optimal value functionf∗. Based on this result, a simple table-based
dynamic programming algorithm can work as follows: (a) represent the value functionf
as a large table with one cell for every state; (b) initializef to zero; (c) repeatedly choose a
states at random and perform a Bellman update ofs to compute a new value forf(s); (d)
repeat until convergence.

In the case where the operators are deterministic, the Bellman backup has the following
simpler form:

f(s) := max
Op

[R(s,Op,Op(s)) + f(Op(s))]

Different RL algorithms perform their Bellman backups in different orders. The standard
RL algorithms are online algorithms that interleave problem solving with learning. At
each states during problem solving, an online algorithm must decide whether to apply the
current best operator (as indicated by one-step lookahead using the current value function)
or to make an “exploratory” move (i.e., apply some other operator to “see what happens”).
In either case, the algorithm can also perform a Bellman backup on states. This takes
advantage of the fact that after computing the current best operator (through one-step
lookahead search), no further computation is needed to do the Bellman backup. Exploratory
moves are essential. Without them, it is easy to construct situations where the optimal policy
will not be found.
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A slight variation on this online approach is to perform “reverse trajectory” backups. With
reverse trajectory backups, no Bellman backups are performed during problem solving (but
the sequence of operators is stored). Once the goal state is reached, the Bellman backups are
performed in reverse order, starting with the last operator applied and working backwards
through the operator sequence. This can give more rapid learning, because thef values
being backed up are more up-to-date than in the standard online approach. However, this
may also introduce inefficiencies, because the value backed-up along the trajectory into
states may no longer be the highest value that could be obtained by a one-step lookahead
search froms. This can be avoided by repeating the one-step lookahead search at each state
s before performing the backup. Lin (1992) employed a somewhat more complex version
of reverse trajectory updates in a simulated robot problem.

A third way that Bellman backups can be applied is by an offline search technique known
as prioritized sweeping (Moore & Atkeson, 1993). The central idea is that whenever we
update the value of a states′, we apply all of the available operatorsin reverseto generate
a list of states (the predecessors ofs′) whose values might need to be updated to reflect the
(updated) value ofs′. We push this list of “update candidates” onto a priority queue, sorted
by the magnitude of the potential change to their values. At each iteration, we pop off the
stateswhose value has the potential for greatest change, and we perform a Bellman backup
on that state. (This requires performing a one-step lookahead search and computing the
backed-up value, as shown in Equation (1).) If this results in a change inf(s), we compute
the predecessors ofs, and push them onto the priority queue. We initialize the priority
queue with the predecessors of each of the goal states.

If the operators are deterministic, each of these three methods can be substantially sim-
plified. The key is to initialize the value of every state to be−∞ and maintain the invariant
that the estimated value of every state is always less than or equal to its true value. If this
is invariant holds, then for any states and operatorOp, we can perform a partial Bellman
backup without considering any of the other operators that might be applied tos:

f(s) := max{f(s), R(s,Op,Op(s)) + f(Op(s))}.

In essence, we are incrementally computing the one-step lookahead search and taking the
maximum. This was first discovered by Dijkstra (1959), so we will call this single-operator
backup a “Dijkstra backup.” If a Dijkstra backup leads to a change in the value off(s), we
will call it a “useful” backup.

Dijkstra backups can be performed either in the forward, online algorithm or in the reverse
trajectory algorithm. The deterministic version of prioritized sweeping is Dijkstra’s shortest
path algorithm (Cormen, Leiserson, & Rivest, 1990). This algorithm takes advantage of the
fact that when we compute a predecessorsof a states′, we can computeR(s,Op, s′)+f(s′),
and order the priority queue (in decreasing order) by these backed-up values. This ensures
that we will not consider backing up a value from a states′ to one of its predecessors until all
successors ofs′ that could possibly raise the value ofs′ have been processed. This in turn
means that a backup is performed at most once for each state-operator pair. Unfortunately,
this property does not carry over to the stochastic case.

This review of RL algorithms has focused on algorithms that employ dynamic program-
ming to learn a value function. There are many other approaches to RL (see Kaelbling,
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Littman & Moore, 1996, for a review). Some methods explicitly learn a policy (either with
or without learning a value function), which permits them to avoid the one-step lookahead
search needed to choose actions when only a value function is learned. Another important
algorithm isQ-learning (Watkins, 1989; Watkins & Dayan, 1992), which learns a value
functionQ(s, a) for state-action pairs. The functionQ(s, a) gives the expected return of
performing actiona in states and then following the optimal policy thereafter.

1.3. Relating EBL and RL

In the terminology of dynamic programming, the control rules learned in EBL represent a
(partial) policyπ that maps from states to operators. Notice, however, that EBL does not
compute any value function. As a consequence, EBL is not able to learn optimal policies,
whereas RL methods are able to learn optimal policies (at least in principle).

To illustrate this problem, consider again the rule learned by LEX2:

If the current state matches
∫
kxndx

andn 6= −1
Then applyOp1.

This policy is not optimal for the state
∫

0x1dx, because there are cheaper operators that
can apply. However, once a control rule has been learned, most EBL systems apply that
control rule to all future states where it applies.3 This means that these systems are very
sensitive to the quality of the initial operator sequence constructed to solve a new problem.
A poor operator sequence will lead to a poor policy.

Because EBL systems do not learn optimal policies, they do not have any need to perform
exploratory actions. Even if such actions were to discover a better path to the goal, EBL
systems would have difficulty detecting or exploiting this path.

EBL systems do possess an important advantage over table-based RL systems—they
can reason withregionsrather than withpoints. The central problem with point-based RL
algorithms is that they do not scale to large state spaces. The value functionf(s) is typically
represented by a large table with one entry for every possible state. The time required for
batch dynamic programming is proportional to the number of states, so a large state space
imposes severe time and space limitations on the applicability of dynamic programming
and RL.

Many researchers have investigated methods for introducing some form of “state gen-
eralization” or “state aggregation” that would allow RL algorithms to learn the policy for
many states based on experience with only a few states. Perhaps the most popular approach
is to represent the value function by some function approximation method, such as local
weighted regression (Atkeson, 1990) or a feed-forward neural network (Tesauro, 1992;
Sutton, 1988; Lin, 1992). A closely related line of research attempts to partition the state
space into regions having the same (or similar) values for the value function (Chapman &
Kaelbling, 1991; Moore, 1993; Bertsekas & Castanon, 1989; Sammut & Cribb, 1990). A
difficulty with all of these approaches is that they rely on first gathering experience (through
problem solving), inferring values for some of the states, and then discovering regularities in
those values. An added difficulty is that in most cases, the optimal value function cannot be
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exactly represented by the function approximation method. This can prevent the algorithms
from finding the optimal policy.

Explanation-based learning provides an alternative approach to state generalization. The
goal regression step of EBL is very closely related to the Bellman backup step of RL. A
Bellman backup propagates information about the value of a state backwards through an
operator to infer the value of another state. Goal regression propagates information about
the value of asetof states backwards through an operator to infer the value of anotherset
of states.

Unlike inductive approaches to state generalization, EBL chooses regions based on the
states where a specific operator (or a sequence of operators) is applicable. As with appli-
cations of EBL in concept learning, this provides a form ofjustified generalizationover
states. EBL does not need to gather experience over a region and then make an inductive
leap—it can commit to the region by analyzing the sequence of operators applied in a single
experience.

This ability to reason with regions has permitted EBL to be applied to problems with
infinite state spaces, such as traditional AI planning and scheduling domains, where point-
based RL would be inapplicable (Minton, 1988).

These observations concerning the relationship between EBL and RL suggest that it would
be interesting to investigate hybrid algorithms that could performregion-based backups.
These backups would combine the region-based reasoning of EBL with the value function
approach of RL. The resulting set of regions would provide anexactrepresentation of the
value function, rather than an approximate representation based on some state aggregation
scheme. We call these hybrid algorithmsExplanation-Based Reinforcement Learning(or
EBRL) algorithms.

Some researchers have previously explored region-based backups in RL tasks. Yee,
Saxena, Utgoff, and Barto (1990) described a system that performs online RL using a
kind of region-based backup. They organized the regions into trees of “concepts” with
exceptions, and developed methods that attempt to find large, useful regions. Their system
out-performed a non-learning problem solver that conducted 6-ply lookahead search in
tic-tac-toe.

The remainder of this paper describes online and batch EBRL algorithms and compares
them to standard online EBL and to online and batch RL (dynamic programming) algo-
rithms. We show that the EBRL algorithms outperform all of the other algorithms in both
batch and online settings in both deterministic and stochastic problems. To quantify and
predict the performance improvements, we define a parameter,ρ, to be the mean number
of states contained in an EBRL region. We show that the performance improvements can
be predicted directly from the value ofρ. Finally, we show how EBRL can be applied to
the reverse-enumeration of chess endgames to give deeper and more useful endgame tables
than batch RL can provide.

2. Methods

We begin by describing a simple robot maze domain that we will employ to illustrate
and evaluate our algorithms. Next, we describe the algorithms we are comparing: five
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algorithms for deterministic problems and two algorithms for stochastic problems. Finally,
we discuss criteria for evaluating the performance of RL algorithms.

2.1. Test Domain

Consider the simple maze problem shown in Figure 1. There are six goal states (marked
by G’s), and any state can be a starting state. The task is to construct an optimal policy for
moving from any state to a goal state. There are 16 available operators that can be divided
into three groups:

Single-step operators: north, south, east, andwest. These four operators take one step
in one of the four directions.

To-wall operators: north-to-wall, south-to-wall, east-to-wall, west-to-wall. These op-
erators move as far as possible in one of the four directions until they encounter a wall,
at which point they stop.

Wall-following operators: north-follow-east-wall, north-follow-west-wall, and so on.
These operators are only applicable next to a wall. The robot moves along the wall
until the wall ends. There are eight wall following operators, because an operator must
specify which direction it moves the robot and which wall it is following (e.g., “go
north following the east wall”).

These operators have different costs. The single-step operators cost 1 unit; the to-wall
operators cost 3 units; and the wall-following operators cost 5 units. The robot receives a
reward of 100 units when it reaches the goal. The goal is to find the policy that maximizes
the total reward received by the robot.

It is important to note that the to-wall and wall-following operators have what Christiansen
(1992) calls the “funnel” property—that is, they map many initial states into a single
resulting state. In this simple problem, on the average, each operator maps 5.11 states into
a single resulting state. The effectiveness of EBL and EBRL is significantly enhanced by
funnel operators, because even when the resulting state is a single state, goal regression
through a funnel operator yields asetof initial states. Without the funnel property, the only
way EBL (and EBRL) could reason with regions would be if the goal region contains many
states.

Figure 2 shows an optimal policy for this maze problem. A simple arrow in a cell indicates
a single-step operator; an arrow that is terminated by a perpendicular line indicates a to-wall
operator; and an arrow with a small segment perpendicular to its center is a wall-following
operator (and the small segment indicates which wall is being followed). The figure shows
that there are large regions of state space where the optimal policy recommends the same
operator, so we might hope that EBL and EBRL can find those regions easily.

Although this maze problem is very simple and involves maximizing only total reward to a
fixed goal state, the region-based (EBRL) methods described in this paper should also work
in the discounted reward and average reward cases. The key idea of EBRL is to analyze the
(known) models of the operators and the reward function to perform region-based backups.
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Figure 1. A Simple Maze Problem. “G” indicates a goal state.
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Figure 2. An optimal policy for the maze task. See text for explanation of symbols.
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1 Letf be the value function (represented as an array
2 with one element for each possible state initialized to−∞).
3 LetQ be a priority queue.
4 LetG be the set of goal states.
5 Letvg be the reward received when reaching goal stateg.
6 For eachg ∈ G, push(g, vg) onto the priority queueQ.
7 While notEmpty(Q) do
8 Let (s′, v′) := pop(Q).
9 For each operatorOp do begin
10 LetP := Op−1(s′) be the set of states such that
11 applyingOp results in states′.
12 For eachs ∈ P do begin
13 Letv := v′ − cost(Op) be the tentative backed-up value of states.
14 If v > f [s] then begin
15 f [s] := v
16 push(s, v) ontoQ.
17 end // if
18 end //s
19 end //Op
20 end // while

Table 1.TheOffline-Point-Dp algorithm for offline, point-based dynamic programming.

This idea applies to any RL problem, although the effectiveness of region-based backups
depends crucially on the nature of the operators and the reward function. Because each
region-based backup is equivalent to performing a set of point-based backups, we conjecture
that EBRL methods will converge to the optimal policy under the same conditions as point-
based dynamic programming methods.

2.2. Algorithms

We first describe five algorithms for deterministic problems. We then describe two algo-
rithms that we have implemented for stochastic problems.

2.2.1. Point-Based Offline Dynamic Programming(Offline-Point-Dp)

Table 1 describes the point-based dynamic programming algorithm,Offline-Point-Dp.
It conducts a uniform cost search working backward from the goal. There are two central
data structures: An arrayf representing the value function, and a priority queue,Q. This
version of offline DP requires an inverse operatorOp−1 for each operatorOp. Op−1(s′)
returns the set of all statess such thatOp(s) = s′.

The Dijkstra backup step is performed in lines 12–15, where we compute the backed-up
value of states, determine whether it is better than the best previous value fors, and update
f [s] if so. Note that the same state may be pushed onto the priority queue more than once.
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Figure 3. The value function forOffline-Point-Dp after one iteration.

Hence, the algorithm can be slightly optimized to include a test after line 8 to determine
whether the value of states′, f [s′], is still equal tov′. If not, then a better backed-up value
for s′ has been determined (and already popped off the priority queue!), so states′ does not
need to be further processed.

Figure 3 shows the value function after one iteration of the While loop at line 7. The
goal state at cellq16has been popped off the queue and expanded. The value 99 of cell
p16 reflects applying thenorth operator. The value of 97 in cellso16, n16, andm16all
reflect applying thenorth-to-wall operator. Note that during the loop in lines 9–19, other
operators, such aswest, west-to-wall, andwest-follow-north-wall, were all considered,
but the backed-up values where smaller than existing values for states such asq17.

Offline-Point-Dp converges to the optimal policy in time proportional to the number
of states times the number of operators.

2.2.2. Rectangle-based offline dynamic programming(Offline-Rect-Dp)

We now turn to the first of our explanation-based reinforcement learning algorithms,
Offline-Rect-Dp. Table 2 shows the algorithm for rectangle-based batch dynamic
programming. This is nearly identical to the point-based algorithm except that the value
function is represented by a collection of rectangles. The priority queue stores pairs of
the form (rectangle, value). Each inverse operatorOp−1 is able to take a rectangler′ and
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1 Letf be the value function (represented as a collection
2 of rectangles; each rectangle has an associated value and operator.)
3 LetQ be a priority queue.
4 LetG be a set of rectangles describing the goal states.
5 LetvG be the reward received when reaching a goal state.
6 For eachg ∈ G do begin
7 push(g, vG) onto the priority queueQ.
8 insert(g, vG, nil) into the collection representingf
9 end //g
10 While notEmpty(Q) do
11 Let(r′, v′) := pop(Q).
12 For each operatorOp do begin
13 LetP := Op−1(r′) be a disjoint set of rectangles such that
14 applyingOp to any state in those rectangles results in
15 a state in rectangler′.
16 For each rectangler ∈ P do begin
17 Letv := v′ − cost(Op) be the tentative backed-up value of rectangler.
18 If rectangler with valuev would increase the value
19 off for any state then begin
20 insert(r, v, Op) into the collection representingf
21 push(r, v) ontoQ.
22 end // if
23 end //r
24 end //Op
25 end // while

Table 2.TheOffline-Rect-Dp algorithm for offline, rectangle-based dynamic programming.

compute itspreimageas a disjointsetP of rectangles such that applyingOp to any state in
any of those rectangles will result in a state in rectangler.

The need for each inverse operator to return asetof rectangles can be seen in the example
shown in Figure 4, which shows the value function after one iteration of the While loop.
When the goal rectangle is given to the inverse operatornorth-to-wall−1, three rectangles
result: One rectangle from lower left cornerm16to upper right cornerq17, one rectangle
froma18toq18, and one rectangle fromm19toq21. Computing these rectangles efficiently
requires careful choice of algorithms. Horizontal walls can be stored in a kind of 2-d tree
so that range queries can be answered in time logarithmic in the number of horizontal walls
and linear in the number of relevant walls. The range query is constructed by defining a
rectangle that extends froma16to q21. By proper organization of the 2-d tree, the answers
to the query can be retrieved in top-to-bottom order. The first wall that intersects the query
rectangle is the wall separatingl16-17 from m16-17, and it is used to construct the first
rectangle. The query rectangle then shrinks toa18-q21. The second nearest wall is the wall
separatingl19-21 from m19-21, and it is used to construct the third rectangle. The query
rectangle then shrinks toa18-q18. This rectangle does not intersect any more walls, so it
defines the second rectangle. An analogous data structure is required for vertical walls.
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Figure 4. Value function after one iteration ofOffline-Rect-Dp.

The cost to evaluate this kind of iterated range query isO(m + logW ), wherem is the
number of resulting rectangles andW is the number of walls in the maze.

One additional factor complicates the computation of operator preimages. Consider the
rectanglea18-q18, and suppose we want to compute the preimage of this rectangle with
respect to the operatoreast-to-wall. This operator can only result in statesh18and i18,
because none of the other states in rectanglea18-q18has a wall on its east side. Hence, to
perform the preimage computation, we must first find the subrectangles ofa18-p18that have
an east wall. There is only one such rectangle in this case: rectangleh18-i18. We will call
such rectangles, “postimage rectangles,” because they are in the postimage of the operator
in question. All postimage rectangles can be obtained by a range query into the vertical
wall data structure mentioned above. Once we have these rectangles, we can compute their
preimages with respect toeast-to-wall. In this example, this produces two new rectangles:
i6-i16 andh12-h16.

Figure 5 shows the rectangles that have been constructed by the first Dijkstra backup of
Offline-Rect-Dp. Notice that the three light-grey rectangles produced by the preimage
of north-to-wall are hidden “beneath” the medium-gray rectangle (p16-p21) produced by
the preimage of thenorth operator (and also beneath the dark-gray goal rectangle,q16-
q21). In general, the value functionf ends up looking like a display of overlapping
rectangles on a workstation screen. We can imagine the observer looking down on the
maze world. Rectangles with higherf values occlude rectangles with lowerf values (ties
broken arbitrarily). During the learning process, new rectangles will be added to this data
structure.
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Figure 5. Five boxes created by the first iteration ofOffline-Rect-Dp. Darkest box is the goal box (value
100). Medium grey box has value 99; the goal can be reached by thenorth operator from these states. The light
grey boxes have the value 97; the goal can be reached by thenorth-to-wall operator from any of these states.

Algorithms for this problem have been studied in computational geometry. Bern (1990)
shows a data structure that requiresO(log3 n + c log2 n) time to insert a new rectangle
(wheren is the number of rectangles andc is the number of “visible” line segments cut
by the new rectangle). This data structure can also retrieve the top-most rectangle at a
given point inO(log3 n) time. As a side-effect, the algorithm can produce a set of disjoint
rectangles to describe the “visible” region of any rectangle. In our case, the number of
rectangles will ben/ρ, wheren is the total number of states in the state space. The number
of visible line segments cut cannot exceed2ρ. So the time to insert a new rectangle in our
algorithms grows asO(log3(n/ρ) + ρ log2(n/ρ)).

The fact that rectangles overlap suggests that a potential speedup in the algorithm could
be obtained after line 11 by replacingr′ by the set of disjoint sub-rectangles ofr′ that are
currently “visible.” If no such rectangles exist, thenr′ can be discarded.

It is important to note that although this algorithm is expressed in terms of rectangles,
the same approach is suitable to any problem where regions can be represented intension-
ally. For example, expressions in propositional logic are equivalent to hyperrectangles in
a high-dimensional space with one dimension for each proposition symbol. Expressions
in first-order logic provide an even more powerful representation for regions. The compu-
tational geometry algorithms referred to above do not apply to these higher-dimensional
representations, but theOffline-Rect-Dp algorithm works without modification as long
as a data structure can be implemented that represents a collection of regions with attached
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1 LetG = the goal states.
2 Letf be the value function (represented as an array).
3 Letpath be a LIFO queue.
4 Repeat forever
5 path := nil
6 s := random state.
7 whiles 6∈ G do
8 choose the operatorOp to apply
9 push(s,Op) ontopath
10 s :=Op(s)
11 end
12 s′ := s
13 whilepath not empty do
14 pop(s,Op) from path
15 letv := f(s′)− cost(Op)
16 if v > f(s) thenf(s) := v
17 s′ := s
18 end
19 end

Table 3.Simple Reinforcement Learning with Reverse Trajectory Updates:Online-Point-Dp

priorities and that can efficiently determine the region of highest priority that contains a
given point.

2.2.3. Reinforcement Learning(Online-Point-Dp)

We implemented a simple asynchronous dynamic programming algorithm for reinforcement
learning (with reverse trajectory updates) as shown in Table 3. This algorithm, which we
will call Online-Point-Dp, conducts an infinite sequence of trials. In each trial, problem
solving begins in a randomly-chosen state. Unless the problem solver chooses to make an
exploratory move, the problem solver computes the one-step lookahead greedy policy using
the current value function. That is, it applies all applicable operators, computes the value of
the state resulting from each, and picks the operator that takes it to the state with the highest
value after subtracting off the cost of the operator. Ties are broken randomly. The sequence
of states and operators is stored in the LIFO queuepath. Once the goal is reached, the
sequence is processed in reverse order performing Dijkstra backups (lines 13–18).

We implemented the following counter-based exploration policy: We maintain a counter
for each state that tells how many times we have visited that state. Suppose we have visited
a statet times. Then with probabilityt/16, we will follow the greedy policy when we enter
that state. Otherwise, we will choose an operator at random from among the operators
applicable in that state. The value 16 was chosen to be the number of operators. In practice,
performance is quite good well before we have visited every state 16 times.
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Table 4. Example Operator Sequence to Illustrate Path
Optimization

from state operator reward (or negative cost)

l19 east −1
l20 west −1
l19 south −1
k19 west −1
k18 north −1
l18 north-to-wall −3
q18 none (goal) 100

A feature of all three of our online algorithms is that they can recover from operator
sequences that visit the same state multiple times before reaching the goal. Consider, for
example, the sequence of operators (starting in state l19) shown in Table 4.

This sequence is suboptimal, because the second operator just undoes the effects of the
first operator. One might worry that the final backed-up reward for statel19 would be 92
(= 100− 8). However, there is no need to find and remove inefficiencies of this kind from
the sequence. They are handled automatically by the Dijkstra backup in lines 15–16. The
backups are performed in reverse order, so the backed-up value ofl18 is 97, j18 is 96, j19
is 95, l19 is 94, andl20 is 93. When we pop the last state-operator pair, (l19,east) off the
stack, we computev = 92, but then, in line 16, we look up the best known value for state
s = l19, and we find that it is 94, sof(l19) is not modified.

2.2.4. Explanation-Based Learning

Table 5 shows our implementation of theebl algorithm. As with theOnline-Point-Dp

algorithm, theebl procedure performs a series of trials. In each trial, problem solving
begins in a randomly-chosen state. Operators are applied to move from this starting state
to the goal. The sequence of operators and resulting states is pushed onto a LIFO queue
(this is slightly different thanrl, where preceding-state/operator pairs were pushed onto the
queue). During the learning phase (lines 14–23), rectangle-based backups are performed
by popping state–operator pairs off the queue.

Unlike all of the other algorithms in this paper,ebl does not construct a value function
f . Instead, it constructs a policyπ. The policy is represented as a collection of rectangles.
Conceptually, we can think of this collection as a FIFO queue. New rectangles are inserted
at the tail of the queue. To find the rectangle that covers a given states, we start searching
from the head of the queue. Hence, we will retrieve the rectangle coverings that was
inserted into the queueearliest. (In a good implementation,π would be implemented by
the more efficient data structure used in theOffline-Rect-Dp algorithm above.)

During problem solving,ebl performs no exploration. Instead, it obeys the current policy
π. Hence, in line 10, the operator to apply is chosen according toπ, if π recommends an
operator, or at random otherwise.

Theebl approach of applying the first learned policy rule for states in all future visits to
states, means that the quality of the learned policy is sensitive to the quality of the operator
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1 LetG = a set of rectangles containing the goal states.
2 Letπ be the policy function (represented as as a collection of rectangles;
3 each rectangles has an associated operator.)
4 Letpath be a LIFO queue.
5 For each rectangleg ∈ G, insertg into π.
6 Repeat forever begin
7 s := random state.
8 path := nil
9 whiles 6∈ G do // Forward search to goal.
10 choose the operatorOp to apply
11 s :=Op(s)
12 push(Op, s) ontopath
13 end
14 while path not empty do // Performs backups along path.
15 pop(Op, s′) from path
16 Letr′ := the first rectangle inπ coverings′

17 LetP := Op−1(r′) be a disjoint set of rectangles such that
18 applyingOp to any state in those rectangles results in
19 a state in rectangler′.
20 For eachr ∈ P do begin
21 insert(r,Op) into the collection representingπ
22 end //r
23 end //path
24 end

Table 5.Explanation-Based Learning

sequence chosen during the first visit to states. Another way of saying this is that the
quality of the learned policy inebl is determined by the quality of the initial policy. In
all of the other four algorithms, the initial policy is entirely random. To giveebl a better
initial policy, we modified the code in Table 5 to repeat the forward search in lines 9–13 ten
times and use the path with the best reward to carry out the backups in lines 14–23.

Like Online-Point-Dp, ourebl algorithm can optimize the operator sequence during
the backup phase. This is somewhat surprising, given thatebl does not construct a value
function or perform true Dijkstra backups. In fact,ebl discovers many more optimizations
along an operator sequence thanOnline-Point-Dp does (at least initially). To see how
this works, consider again the operator sequence in Table 4. Whenebl backs up the last
operator, it constructs a rectangle (a18-q18) that selects operatornorth-to-wall. When it
pops off the next operator-state pair (north, l18), it looks upl18 (at line 16) and retrieves the
entire rectanglea18-q18. It then computes the preimage of this rectangle as the rectangle
a18-q17. This rectangle is then added to the tail of theπ rectangle collection. Because the
rectanglea18-q18was inserted intoπ first, however, this new rectanglea18-p18will always
be invisible, so the policyπ in statek18will be to movenorth-to-wall directly instead of
taking one stepnorth first.

Continuing with this example, we pop the pair (west, k18) off the stack. The rectangle-
backup results in two rectanglesa19-g19andj19-q19. Some EBL systems would generate
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only the second rectangle, since it covers the statek19where the operatorwest was applied.
However, our implementation computes full preimages of each operator application, so these
two rectangles are added toπ.

Next, we pop the pair (south, k19). Whenebl looks upk19in π, it finds that it is covered
by the rectanglej19-q19, so it computes the preimage of that rectangle and produces two
rectangles: i19-l19 and n19-q19. These are inserted intoπ, but again, these are both
invisible, so they do not actually change the policy.

Next, we pop the pair (west, l19). Whenebl looks upl19, it again retrieves the rectangle
j19-q19. The backup throughwest results in the rectanglej20-q20, which is added toπ.

Finally, we pop the pair (east, l20). Whenebl looks upl20, it retrieves the rectangle
j20-q20, and computes the preimagej19-q19to insert intoπ. However, this rectangle will
be completely invisible. The resulting policyπ contains only four visible rectangles:

rectangle operator
a18-q18 north-to-wall
a19-g19 west
j19-q19 west
j20-q20 west

If we appliedπ to the same starting state,l19, it would solve the problem in two steps:
west, north-to-wall, which is the optimal action sequence.

The reasonebl is able to do so well is two-fold. First, the rectangle backups mean that
before we even get to statek18 (during the backup process), we already have a policy for
that state from a previous backup. This effectively excises any irrelevant inefficient steps
from the operator sequence. The second reason is that theebl method of placing new
rectangles at the tail of theπ data structure tends to place them properly with respect to
their values, even though backed-up values are not computed. This is because each operator
application incurs a cost, so rectangles constructed later (in the backup process) produce
lower rewards. When we look up the value ofπ for a given state, we retrieve the rectangle
that was constructed earliest, and—at least during a single trial—that rectangle will be the
one with the highest expected reward.

Unfortunately, whenebl is applied in subsequent trials,all new rectangles will be placed
behind the rectangles constructed in earlier trials, even if those new rectangles have better
values. So, within a single trial,ebl optimizes properly, but between trials, it does not.

2.2.5. Online Region-Based Dynamic Learning(Online-Rect-Dp)

Table 6 shows pseudo-code for our online EBRL algorithm,Online-Rect-Dp. It is
essentially the same as theebl algorithm, except that it learns a value function and a policy
rather than just a policy alone. The key change is to replace theπ data structure with thef
data structure that we presented in theOffline-Rect-Dp algorithm. New rectangles are
inserted intof according to their value (they are “above” all rectangles with a lower value
and “below” all rectangles with a higher value).
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1 LetG = a set of rectangles containing the goal states.
2 Letf be the value function (represented as as a collection of rectangles;

each rectangles has an associated value and operator).
3 Letpath be a LIFO queue.
4 For each rectangleg ∈ G, insertg into f .
5 Repeat forever begin
6 s := random state.
7 path := nil
8 whiles 6∈ G do // Forward search to goal.
9 choose the operatorOp to apply
10 s :=Op(s)
11 push(Op, s) ontopath
12 end
13 while path not empty do // Perform backups along path.
14 pop(Op, s′) from path
15 Letr′ := the best rectangle inf coverings′

16 LetP := Op−1(r′) be a disjoint set of rectangles such that
applyingOp to any state in those rectangles results in
a state in rectangler′.

17 Letv := f(s′)− Cost(Op) be the backed-up value of each state inP
18 For eachr ∈ P do begin
19 insert(r, v, Op) into the collection representingf
20 end //r
21 end //path
22 end

Table 6.Online region-based dynamic programming (Online-Rect-Dp)

This completes our description of the five algorithms for deterministic problems. Now we
consider versions of the two offline algorithms that can be applied to stochastic problems.

2.2.6. Stochastic Point-Based Offline Dynamic Programming(Stochastic-Offline-

Point-Dp)

Table 7 describes our implementation of prioritized sweeping for point-based dynamic
programming. The main loop pops a states off of the priority queueQ, performs a full
Bellman backup on that state (line 9), and then generates the predecessors ofs, computes
how much the values of those predecessors are likely to change, and pushes each of them
ontoQ.
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1 Letf be the value function (represented as an array
2 with one element for each possible state initialized to−∞).
3 LetQ be a priority queue.
4 LetG be the set of goal states.
5 LetvG be the reward received when reaching a goal state.
6 For eachg ∈ G, push(g, vG) onto the priority queueQ.
7 While notEmpty(Q) do
8 Let (s, δ) := pop(Q).
9 Letv := maxOp

∑
s′ p(s

′|Op, s)[f [s′]− cost(Op)] be the backed-up value of states.
10 Letδ := |v − f [s]| be the magnitude of the change in value.
11 Letf [s] := v.
12 For each operatorOp do begin
13 LetP := Op−1(s) be the set of states such that
14 applyingOp results in states.
15 For eachs′′ ∈ P do begin
16 push(s′′, δ · p(s|Op, s′′)) ontoQ
17 end //s′′

18 end //Op
19 end // while

Table 7. TheStochastic-Offline-Point-Dp algorithm for offline, point-based dynamic programming in
stochastic problems.

2.2.7. Stochastic Region-Based Offline Dynamic Programming(Stochastic-Offline-

Rect-Dp)

Table 8 describes an algorithm for prioritized sweeping for region-based dynamic program-
ming. It is essentially the same as the point-based algorithm except that the process of
performing stochastic region-based backups is much more complex in line 9.

Figure 6 illustrates the process of computing a region-based Bellman backup with stochas-
tic operators. The figure shows the effect of applying operatorOp to regionR. There are
two possible resulting regions. With probabiliy 0.2, the result isR1. With probability 0.8,
the result isR2. Let us focus on regionR1 first. If we intersect this region with the known
regions of highest value, we find two regions: one with value 10 and one with value 20. To
back up these values, we compute the preimages of these two regions, intersect them with
R, and multiply their values by 0.2 (the probability of reaching these regions). The result is
that we subdivideR into two preimage regions (labeled 2 and 4 in the figure). The process
for regionR2 is analogous, and it results in subdividingR into two rectangles labeled 6.4
and 9.6. We now compute the cross-product of these regions to produce the four rectangles
shown at the bottom of the figure. The states in the upper left rectangle have expected value
10.4, which is 4 + 6.4, because with probability 0.2, operatorOp will result in a region of
value 20 and with probability 0.8, it will result in a region of value 8.

Each of these rectangles can be inserted into the data structure representing the value
function. If a different operatorOp′ results in regions of higher value, those regions will
“hide” these regions.
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1 Letf be the value function (represented as set of rectangles).
2 It initially contains one rectangle covering the entire space with value−∞.
3 LetQ be a priority queue.
4 LetG be a list of regions describing the goal states.
5 LetvG be the reward received when reaching a goal state.
6 For eachg ∈ G, push(g, vG) onto the priority queueQ.
7 While notEmpty(Q) do
8 Let (r, δ) := pop(Q).
9 LetR = {〈r1, v1〉, 〈r2, v2〉, . . . , 〈rk, vk〉} be a list of region/value pairs such that

∀ s ∈ rk vk = maxOp
∑

s′ p(s
′|Op, s)[f [s′]− cost(Op)]

10 For each〈ri, vi〉 ∈ R
11 Letδ := |vi − f(ri)| be the magnitude of the change in value.
12 Insert regionri into f with valuevi.
13 For each operatorOp do begin
14 LetP = Op−1(ri) be a disjoint set of rectangles such that
15 applyingOp to any state inP results in a state inri.
16 For each regionr ∈ P do begin
17 push(r, δ · p(ri|Op, r)) ontoQ
18 end //r
19 end //Op
20 end //〈ri, vi〉
21 end // while

Table 8. TheStochastic-Offline-Rect-Dp algorithm for offline, region-based dynamic programming in
stochastic problems.

Obviously, there is a great potential for the original regionR to be shattered into many
small regions with distinct estimated values. Notice that the resulting set of rectangles for
R is determined by the size and complexity of the rectangles resulting from applyingOp to
R. This is sensitive to the exact order in which the backups are performed. For example, it
could be the case that after performing this backup for regionR, a new high-value rectangle
is found that would completely coverR2. If we waited to perform the backup onR until
this time, thenR would only be subdivided into two regions (resulting fromR1).

We implemented this algorithm and found that in general, the rectangles were shattered
into very small regions. Hence, we developed the following alternative approach. First, con-
vert the stochastic operators into deterministic ones by taking only the highest-probability
outcome from each operator. Next, apply theOffline-Rect-Dp algorithm to this de-
terministic problem to produce a set of rectangles. Then, perform synchronous dynamic
programming as shown in Table 9 with the stochastic operators. By doing the updates
synchronously, the rectangles being created within one iteration do not cause additional
shattering in that same iteration. This approach produced larger rectangles, so the results
we report below employed this method.

It should be noted that both of the algorithms (from Figure 8 and Figure 9) converge to
the optimal policy. The difference is that the second procedure is able to represent the value
function using larger rectangles.

We turn now to a discussion of the criteria for evaluating and comparing these algorithms.
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Figure 6. Performing a region-based Bellman backup with stochastic operatorOp.

1 Letf be the value function (represented as set of rectangles).
2 Repeat forever
3 Letfnew be a new value function (represented as a set of rectangles), initially empty.
3 For each visible rectangler in the data structure representingf .
4 Let{〈r1, v1〉, 〈r2, v2〉, . . . , 〈rk, vk〉} be a list of region/value pairs such that
5 ∀ s ∈ rk vk = maxOp

∑
s′ p(s

′|Op, s)[f [s′]− cost(Op)]
6 Insert each〈rj , vj〉 into fnew.
7 end // forr
8 f := fnew
9 end // repeat forever

Table 9.Synchronous region-based dynamic programming.

2.3. Evaluation Criteria for Speedup Learning

Speedup learning involves a tradeoff between the cost of learning and the quality of per-
formance. If we perform no learning, then performance is usually poor. If we spend a
large amount of CPU time in learning, then performance can eventually become optimal.
Given this tradeoff, the principal way that we will assess speedup learning algorithms is by
plotting the quality of their performance as a function of the amount of learning that has
been performed.
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We will measure quality in three ways:

1. Expected cumulative reward. In each problem, there is a set of possible start states.
To measure performance quality, we will take the expected cumulative reward obtained
by the problem solver averaged over each of these possible start states.

2. Deviation from optimal value function. Another measure of quality is to count the
number of states in the state space where the difference between the current estimated
value and the value under the optimal policy is greater than some threshold. We will
use a threshold of 1, which is the cost of a single move. Several authors have noted that
the greedy policy may be optimal even when the value function has not yet converged
on the optimal value function. Nonetheless, measurements of the accuracy of the value
function are very inexpensive to take, so we will use them as well. To compute a value
for states where no value has yet been learned (i.e., no backups have been performed),
we will use the mean of the values of all states where a valuehasbeen learned.

3. Policy coverage. The coverage of a policy is the percentage of states for which the
current value function has a non-default value. In the maze problems, for example,
the value of each state is initialized to−1. The optimal value function has values in
the range [88,100]. The coverage of the policy is the number of states for which the
value is not equal to−1. Once a state has a non-default value, this means that we have
learnedsomethingabout what action to choose in that state. This is usually better than
applying the default initial policy to that state.

We will measure learning time in two ways:

1. Number of backups. This applies to both point-based and region-based algorithms
and to both batch and online algorithms. However, while a point-based backup requires
essentially constant time, region-based backups may require longer times (depending
on how the regions are represented).

2. Number of training trials. Online algorithms are trained through a series of trials. A
trial consists of choosing one of the start states at random and asking the problem solver
to get from the chosen start state to a goal state.

Because of the prototype nature of our implementations, we will not measure CPU time,
because this could be substantially improved through more painstaking coding. Instead,
we will apply results from symbolic computing and computational geometry to establish
the cost of each backup and each operator application in a trial.

3. Experiments and Results

3.1. Batch Algorithms for Deterministic Problems

We begin by comparing the two batch algorithms,Offline-Point-Dp andOffline-

Rect-Dp on our simple maze problem. Table 10 summarizes the performance of these
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Table 10.Performance of batch algorithms.

Algorithm Dijkstra Backups Useful Dijkstra Backups

Offline-Point-Dp 3,156 513
Offline-Rect-Dp 452 88

Table 11.Dijkstra backups as a function of the number of states in the problem.

Number of Offline-Point-Dp Offline-Rect-Dp

states Total backups Useful backups Total backups Useful backups
327 3,156 513 452 88

2,500 20,932 3,352 2,989 608
10,000 83,968 13,998 12,525 2,494

two algorithms. The number of Dijkstra backups is equal to the number of times line 13
of Offline-Point-Dp and line 17 ofOffline-Rect-Dp are executed. The number
of useful Dijkstra backups is the number of times lines 15-16 ofOffline-Point-Dp and
lines 20-21 ofOffline-Rect-Dp are executed. The backups that were useful resulted
in improved values for some state.

In the finalf structure forOffline-Rect-Dp, 88 rectangles were stored, but only 71 of
them had any visible states. The value ofρ, the average number of states in each rectangle,
was 5.27.

Figure 7 compares the coverage of the two algorithms as a function of the number of useful
Dijkstra backups. We can see thatOffline-Rect-Dp attains coverage much faster than
Offline-Point-Dp, as we would expect. This is very important in domains (such as
chess), where full execution of either algorithm is impossible, because the state space is
too large. In such cases, before resources are exhausted,Offline-Rect-Dp can achieve
much higher coverage thanOffline-Point-Dp.

To understand the scaling behavior of these algorithms, we performed the following two
experiments. First, we constructed two random mazes of size 50 by 50 and 100 by 100 with
approximately the same value forρ as our example maze. We then measured the number
of Dijkstra backups. One would expect that the number of backups would be proportional
to the number of statesn for Offline-Point-Dp and proportional to the number of
abstract statesn/ρ for batch-dp. Table 11 and Figure 8 show that this is indeed the case.
Offline-Rect-Dp maintains a constant factor advantage of roughly a factor of 7 in the
number of backups it performs (and a factor of 5.6—roughlyρ—in the number of backups
that result in visible rectangles).

The second experiment we conducted was to convert our example problem from a 17-row,
22-column maze into a 170-row, 220-column maze by subdividing each original state into
100 new states. This gave a value forρ of 145.53. Table 12 shows that the cost of running
Offline-Rect-Dp increased by only a factor of 3, while the cost of runningOffline-

Point-Dp increased by a factor of 77 (for useful backups) and 95 (for total backups). For
the new problem,Offline-Rect-Dp computes 220 times fewer backups (and about 143
times fewer visible backups).

Here is a summary of our observations:
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Figure 7. Coverage of batch algorithms as a function of the number of useful Dijkstra backups.

Table 12.Comparison of performance on the 170-row, 220-column ver-
sion of the original maze.

Algorithm Dijkstra Backups Useful Dijkstra Backups

Offline-Point-Dp 300,840 39,725
Offline-Rect-Dp 1,367 277

1. Offline-Rect-Dp makes roughly 5 times as many Dijkstra Backups as it makes
useful Dijkstra Backups in this domain.

2. Offline-Point-Dp makes roughly 6 times as many Dijkstra Backups as it makes
useful Dijkstra Backups in this domain.

3. The ratio ofOffline-Rect-Dp useful backups toOffline-Point-Dp useful back-
ups is very close toρ.

4. The ratio ofOffline-Rect-Dp total backups toOffline-Point-Dp total backups
was roughly 1.3 to 1.5 timesρ.

From this, we can see that theρ parameter is critical for predicting the relative number
of backups made byOffline-Rect-Dp andOffline-Point-Dp.
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Figure 8. Total number of Dijkstra backups as a function of the number of states. The number of walls was chosen
to keepρ approximately constant (ρ374 = 5.27; ρ2500 = 5.24; ρ10000 = 5.20)

The other key factor affecting performance is the cost of performing each backup. For
Offline-Point-Dp, the process of performing a backup involves several steps (see Ta-
ble 1, lines 8–19). The steps involve popping a state-value pair(s′, v′) off the queue,
applying all operators (in reverse) to generate the preimage of that state, considering each
states in the preimage, computing the backed-up valuev of s, and (if the value is an im-
provement), updating the value ofs and pushing the state-value pair(s, v) onto the priority
queue. LetBp be the branching factor ofOffline-Point-Dp (i.e., the total number of
states in the preimages of all operators applied in reverse to a single states′). The time
required for these steps can be summarized as follows:

Step Cost

pop(s′, v′) fromQ O(log |Q|)
generate all predecessor states O(Bp)
compute their backed-up values O(Bp)
push them onto theQ if necessary O(Bp log |Q|)

Experimentally,|Q| scales asn, the number of states, so we estimate the sum of these
costs isO(Bp logn). For our example maze problem, theOffline-Point-Dp branching
factor is 8.44 (minimum 4, maximum 80).
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ForOffline-Rect-Dp, the backup process is basically the same (see Table 2), but there
are added costs for dealing with rectangles. As withOffline-Point-Dp, the dominant
cost is the cost of inserting new rectangles into the priority queue and inserting them into
the f data structure. LetBr be the branching factor forOffline-Rect-Dp (i.e., the
total number of preimage rectangles of all operators applied in reverse to a single rectangle
r′). Assuming we employ the overlapping rectangle data structure of Bern (1990), these
costs areO(Br logn/ρ) andO(Br(log3 n/ρ+ ρ log2 n/ρ)) respectively. The latter value
dominates, so we estimate the cost of processing each state inOffline-Rect-Dp as
O(Br(log3 n/ρ+ρ log2 n/ρ)). For our example maze problem, the mean branching factor
for Offline-Rect-Dp is 6.37 (minimum 4, maximum 26).

3.2. Batch Algorithms for Stochastic Problems

We now consider what happens when we change the operators in the maze problem so
that they are stochastic. We introduced the following form of stochasticity: When an
operator is selected for execution, with some probability a different operator is executed
instead. Specifically, with probability 0.8, the selected operator is in fact executed, but
with probability 0.2, one of the other two operators having a direction perpendicular to the
chosen operator is executed instead. For example, if thenorth operator is chosen, then with
probability 0.8, it is executed. With probability 0.1, theeast operator is executed instead,
and with probability 0.1 thewest operator is executed instead. Similarly, if thenorth-to-
wall operator is chosen, then the actual operator executed isnorth-to-wall (probability 0.8),
east-to-wall (probability 0.1), orwest-to-wall (probability 0.1). It rarely makes sense to
substitute a different wall following operator, so we removed the wall-following operators
from the problem.

To evaluate the algorithms, we measured the number of states whose value is more than
1.0 away from the optimal value function. Figure 9 shows the results. We see that the
region-based dynamic programming procedure converges to the optimal value function
much more quickly than the point-based method as a function of the number of Bellman
backups. The final value ofρ in this problem is 1.24 (corresponding to 301 final regions),
which shows that in stochastic domains, the effectiveness of region-based methods is much
lower than in deterministic domains.

The stochastic substitution of operators moving at right angles to the desired operator
creates a large amount of fragmentation of the regions. This results partly from the fact that
the domain features (e.g., row and column) important for moving vertically are different
from those for moving horizontally. In many applications, it is unlikely that stochastic
operators would have this property. Rather, it is likely that errors in the execution of
operators would leave most of the same features irrelevant. For example, no matter what
errors are introduced when you steer your car, they have no effect on the location of your
office or the type of vehicle you are driving.

A way of exploring this within our simple maze problem is to insist that the operators
randomly substituted for the selected operator are operators that move in the opposite
direction from the selected operator. Hence, when thenorth operator is selected, the
operator actually executed isnorth (with probability 0.8) orsouth (with probability 0.2),
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Figure 9. Value function error during dynamic programming—point-based methods versus region-based methods.
Randomly-perturbed operators move in a direction perpendicular to the selected operator

and so on. Figure 10 shows the results. Region-based dynamic programming has a more
substantial advantage here. The final value ofρ is 2.49 (154 regions).

On the other hand, if we modify the operators so that the distance moved is stochastic,
which is a form of randomness typically found in robotic applications, the effectiveness of
region-based backups is destroyed. This form of randomness destroys the funnel property
of the operators, and this causes all of the regions to shrink to single states.

From this, we can conclude that the effectiveness of region-based methods depends on
the nature of the stochastic behavior of the operators. In some domains, region-based
backups will still be worthwhile. However, we have also seen that to make region-based
backups work well, we needed to perform backups synchronously. Additional research
would be needed to make stochastic region-based backups effective in online settings where
synchronous updates are infeasible.

3.3. Online Algorithms

To compare the three online algorithms (Online-Point-Dp, ebl, andebrl), we per-
formed 30 runs of each. Each run consisted of a series of trials. Each trial consisted of
a forward search (with exploration) from a random starting state to the goal followed by
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Figure 10.Value function error during dynamic programming—point-based methods versus region-based meth-
ods. Randomly-perturbed operators move in the direction opposite to the selected operator.

a series of Dijkstra backups along the solution path. After each trial, we measured the
average undiscounted reward that would be received by starting the problem solver in every
possible start state and following the current policy. We also measured the deviation of the
current value function from the optimal value function. The results are plotted in Figures 11
and 12.

From these figures, we can see thatOnline-Rect-Dp reaches optimal performance
much faster than eitherebl or Online-Point-Dp. Furthermore, we can see that the
performance ofebl converges to a rather poor performance level. This is a consequence
of the fact thatebl can never replace a bad learned rule with a better one (i.e., it can never
replace a rectangle of low value with a rectangle of higher value, because it does not learn
a value function). The wide error bars onebl reflect its sensitivity to the solutions paths
found in the first few trials. Some runs—with good early trials—perform much better than
other runs—with very bad early trials.

3.4. Offline-Rect-Dp and Offline-Point-Dp in chess endgames

To demonstrate the generality of the approach, we apply the batch methods to develop
optimal policies for playing chess endgames. Chess is considerably more complex than the
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synthetic maze task for a number of reasons. First, this domain involves counter-planning,
because we have two agents with opposing goals. One player is trying to maximize its
return, the other trying to minimize it. Second, although played on a two dimensional grid,
applying EBRL to chess involves reasoning about multi-dimensional regions, because each
abstract state has multiple objects. Finally, “state generalization” methods, referred to in
Section 1.3, are very difficult apply because of the complexity of manually constructing an
accurate generalization vocabulary (Quinlan, 1983; Bratko & Michie, 1980).

To incorporate the counter-planning nature of chess, we must extend the state to be a
tuple describing the board position and the side that has the next move. We will refer the
maximizing player asmaxand the minimizing opponent asmin. The value of a state,f(s, p)
is the value of the board positions for the maximizing side (p is the player who makes the
next move). For goal states, the value off(b, p) is defined:

f(s,min) := −∞
f(s,max) := +∞

Dijkstra backups are slightly more complex. For a state wheremaxis to move, the backups
are the same as before:
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f(s,max) := max
Op
{f(Op(s),min)− cost(Op)}

However, for a state wheremin is to move, the backups require minimization instead of
maximization:

f(s,min) := min
Op
{f(Op(s),max) + cost(Op)}

Because of these minimizing backups and opposing goals, dynamic programming algo-
rithms for counter-planning are more complicated than for ordinary planning. InOffline-

Point-Dp, a state is pushed onto the priority queue whenever a better value forf(s) is
discovered. In counter-planning domains, if this value represents a loss, the losing player
will want to wait until all possible successor moves have been backed up. Only then has
the state been determined to be a loss ands can be pushed onto the priority queue. Because
of the need to wait for all possible successor moves to determine correct values off(s),
on-line algorithms are ineffective. In this study we implemented only the batch algorithms:
Offline-Point-Dp andOffline-Rect-Dp.

Offline-Point-Dp has been applied successfully in deriving optimal policies for play-
ing both chess and checkers endgames. In chess, Thompson (1986) has determined many
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100-move or greater forced wins for five- and six-piece endings. In checkers, endgame
databases up to seven pieces have significantly contributed to a program’s expertise and
earned it the right to play against the world champion (Schaeffer, 1991). However, since
the size of the tables needed to store these policies grows exponentially with the number of
pieces,Offline-Point-Dp has effectively reached its limit of usefulness in these appli-
cations. A potential advantage ofOffline-Rect-Dp is to permit deeper searches before
exhausting available memory for storing the value function.

3.4.1. Offline-Point-Dp in chess endgames

TheOffline-Point-Dp algorithm given in Table 1 must be modified for chess and other
counter-planning domains. The main idea is still the same—the search begins with the
goal states and works backwards systematically. To accommodate the two players, the
backwards search is divided into maximizing and minimizing phases.

The modifiedOffline-Point-Dp algorithm is given in Table 13. There are two queues,
one calledQmax for storing states wheremaxis to move, the other calledQmin for storing
states wheremin is to move. The process begins by both queues being initialized with their
respective goals. Then processing alternates between the two queues until both are empty.

In addition to the value function,f(s, p), each state〈s, p〉 has an associated function
g(s, p),which represents the number of legal moves for playerp starting in states that have
not yet been backed up. Initially,g(s, p) is set to the number of legal moves that playerp
can make ins. This function is used to determine if the value off(s, p) is indeed a loss.

The maximizing phase of the algorithm is illustrated in lines 11–25. During this phase,
the backing up of values is the same as in the standard algorithm. The only difference is
following the value function update. If the value determined is not a loss formaxthen the
state is pushed onto the queue. However, if the value currently represents a loss, then the
state is not pushed onto the queue until all forward operators have been considered (i.e.,
g(s,max) = 0). When the queue,Qmin, is empty,Offline-Point-Dp performs the
minimizing phase by backing up all states onQmax. This step is illustrated in lines 26–40,
and it is the exact dual of the maximizing stage. The algorithm terminates when both queues
become empty. With thecost(Op) of bothminandmax’s operators being equal to 1,f(s, p)
represents the length of the shortest path to a win or the longest path to a loss.

3.4.2. Offline-Rect-Dp in chess endgames

For chess and checkers, the algorithm forOffline-Rect-Dp, given in Table 2, must
also be modified to employ two backup phases. However, instead of manipulating two-
dimensional rectangles, our counter-planning version ofOffline-Rect-Dp handles
higher-dimensional rectangular regions. Each such region contains a two-dimensional
rectangle for each playing piece on the board. To store and retrieve these regions, a multi-
dimensional rectangle tree is employed (Edelsbrunner, 1983) that provides a retrieval com-
plexity ofO(log2d(2d) + N), whered is the number of pieces in the region andN is the
number of regions retrieved.
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1 Letf be the value function (represented as an array
with one element for each possible state and player).

2 f [s,min] initialized to+∞; f [s,max] initialized to−∞ for all s.
3 Letg be the “outgoing move count” (represented as an array
4 with one element for each possible board position and player).
5 For each〈s, p〉 initialize g(s, p) to be the number of

moves available to playerp in states.
6 LetQmin andQmax be priority queues.
7 LetGmin andGmax be the set of goal states.
8 For eachg ∈ Gmin, push(g,−∞) ontoQmin and setf [g,min] := −∞.
9 For eachg ∈ Gmax, push(g,+∞) ontoQmax and setf [g,max] := +∞.
10 While notEmpty(Qmin) ∧ notEmpty(Qmax) do begin
11 While notEmpty(Qmin) do
12 Let(s′, v′) := pop(Qmin).
13 For each operatorOpmax do begin
14 LetP := Op−1

max(s
′) be the pre-image of states′ for operatorOpmax.

15 For eachs ∈ P do begin
16 g[s,max] := g[s,max]− 1
17 Letv := v′ − cost(Opmax) be the tentative backed-up value of states.
18 If v > f [s,max] then begin
19 f [s,max] := v
20 If f [s,max] > 0 push(s, v) ontoQmax
21 end // if
22 else ifg[s,max] = 0 push(s, v) ontoQmax
23 end // Fors
24 end // ForOp
25 end // while
26 While notEmpty(Qmax) do
27 Let(s′, v′) := pop(Qmax).
28 For each operatorOpmin do begin
29 LetP := Op−1

min(s′).
30 For eachs ∈ P do begin
31 g[s,min] := g[s,min]− 1
32 Letv := v′ + cost(Opmin) be the tentative backed-up value of states.
33 If v < f [s,min] then begin
34 f [s,min] := v
35 If f [s,min] < 0 push(s, v) ontoQmin
36 end // ifv
37 else ifg[s,max] = 0 push(s, v) ontoQmin
38 end //s
39 end //Op
40 end // while
41 end // while

Table 13. The Offline-Point-Dp algorithm for off-line, point-based dynamic programming for counter-
planning domains.

The modifiedOffline-Rect-Dp algorithm is given in Table 14 and begins by inserting
the goal regions onto the minimizer’s and maximizer’s region queues,Qmin andQmax.
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1 Letf be the value function (represented as a collection of rectangles;
each rectangle has an associated value).

2 LetQmin andQmax be priority queues.
3 LetGmin andGmax be the set of rectangles describing the goal states.
4 For eachr ∈ Gmin, push(r,−∞) ontoQmin and insert(r,−∞, nil) into f(min).
5 For eachr ∈ Gmax, push(r,+∞) ontoQmax and insert(r,+∞, nil) into f(max)
6 While notEmpty(Qmin) ∧ notEmpty(Qmax)
7 While notEmpty(Qmin) do
8 Let (r′, v′) := pop(Qmin).
9 For each operatorOpmax do begin
10 LetP := Op−1

max(r
′)

11 For each rectangler ∈ P do begin
12 Letv := v′ + cost(Opmax) be the backed-up value ofr.
13 Intersectr each rectanglerj ∈ f such thatrj ∩ r 6= ∅
14 Gather all of the resulting subregions ofr into a setU .
15 For eachui ∈ U do begin
16 Letf(ui) be the maximum value of the rectangles intersected to formui.
17 Letg(ui) be the number of rectangles that were intersected to formui.
18 If g(ui) = the total number of possible outgoing moves forui
19 push(ui, f(ui)) ontoQmax.
20 end // ifg
21 end // forui
22 insert(r, v, Op) into the collection representingf
23 end //r
24 end //Op
25 end // while
26 While notEmpty(Qmax) do
27 Let(r′, v′) := pop(Qmax).
28 For each operatorOpmin do begin
29 LetP := Op−1

min(r′)
30 For each rectangler ∈ P do begin
31 Letv := v′ − cost(Opmin) be the backed-up value ofr.
32 Intersectr each rectanglerj ∈ f such thatrj ∩ r 6= ∅
33 Gather all of the resulting subregions ofr into a setU .
34 For eachui ∈ U do begin
35 Letf(ui) be the minimum value of the rectangles intersected to formui.
36 Letg(ui) be the number of rectangles that were intersected to formui.
37 If g(ui) = the total number of possible outgoing moves forui
38 push(ui, f(ui)) ontoQmin.
39 end // ifg
40 end // forui
41 insert(r, v, Op) into the collection representingf
42 end //r
43 end //Op
44 end // while
45 end // while

Table 14. TheOffline-Rect-Dp algorithm for off-line, rectangle-based dynamic programming for counter-
planning domains.
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Figure 13.An example of three abstract Dijkstra backups deriving amax-to-play, loss-in-2-ply pattern for the king
versus king-and-rook chess endgame. The loss pattern appears at upper left, and it describes a set of 15 checkmate
states formax’s king (the square piece). Note that each piece is bounded within a rectangle. To derive this
loss, preimages ofmin-to-play, win-in-1-ply patterns (illustrated in the middle row) are progressively intersected,
reducing the set ofmax’s king’s non-backed-up forward operators to∅. The bottom row illustrates the provided
min-to-play, win-in-1-ply goal patterns, wheremax’s king is immediately captured.

Then it enters a maximizing phase. This process is illustrated in Figure 13 for the king
versus king-and-rook endgame.

The trickiest part of the algorithm is to determine when all outgoing moves from a region
have been backed-up so that a new region can be entered into the appropriate priority
queue. Preimage regions are computed as in the maze task. To backup for the maximizing
player, we generate all regionsr, such thatr = Op−1

max(r
′), r′ ∈ Qmin. Next, we need

to determine whether there is any subregion ofr for which all outgoing moves have been
backed up. To do this, we identify every regionrj in f that has a non-empty intersection
with r. We intersect all such regionsrj with r, which partitionsr into a set of subregions
(these subregions can be cached to save subsequent recomputation). For each subregion,ri,
the number of outgoing moves that have been backed up is equal to the number of regions
that were intersected to createri. If this number is equal to the total number of outgoing
moves forri, then it represents a new loss region, sori is pushed ontomax’s queue,Qmax.
Finally, eachr is entered intof . Note that each backed-up regionr must be entered into
f even if it is completely “hidden” by existing regions with better values—otherwise, we
can’t compute the number of outgoing moves that have been backed up.
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Figure 14. Coverage of batch algorithms as a function of the number of useful Dijkstra Backups for KRK chess
endgame.

OnceQmin is empty, the algorithm shifts into the minimizing phase by backing up each
of the new regions onQmax. The algorithm terminates when both queues are empty.

3.4.3. Experiment and results

We studied these two algorithms applied to the king versus king-and-rook (KRK) ending
in chess. While this ending is one of the simplest, it is difficult to play well, even for
experts, and it can involve up to 42-ply of forced moves to win. The value function is
derived for the maximizing side, the player with the single king. The minimizing player
has both a king and a rook. The initial goal states describemin-to-play, win-in-one-ply
positions wheremax’s king is immediately captured. There are 18,704 possible goal states
for Offline-Point-Dp and three goal regions forOffline-Rect-Dp that are initially
pushed ontoQmin.

The results of runningOffline-Rect-Dp andOffline-Point-Dp for the entire
KRK chess endgame are shown in Figure 14. A useful Dijkstra backup is one that either
leads to a change in value for a region (when a shorter path to a win was identified) or
reduces the number of remaining forward operators.
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From Figure 14, it is clear thatOffline-Point-Dp requires approximately 50 times
more backups thanOffline-Rect-Dp (706,584 versus 13,619). One factor that can
account for this difference is the representation of the goal states. ForOffline-Point-

Dp, 18,704 states must be initially backed up to identify the 54 lost-in-2-ply positions.
This accounts for the initial flat period of the graph where 114,251 backups are required to
achieve a coverage of 54.Offline-Rect-Dp, on the other hand, must only backup three
general regions, which enables rapid progress to be made, with only 254 backups needed
to reach the same coverage.

A further reason why the region-based abstraction is so effective in this domain is because
of the “funnel” property of the rook moves. Whenever a region is backed up through a rook
move, a more general region is generated. This tends to counter the specialization effect of
forming loss-regions, where repeated region intersections reduce generality.

Another feature of the graphs is their “staircase” form, where each graph alternates
between a steep and shallow slope. The steeper regions are generated during the minimizing
phase where most backups result in a new win. The shallower regions are generated when
the maximizing side is backing up and new loss states are only generated when the set of
forward operators is reduced to∅.

Similar results have been generated for other, more complicated endings in chess and in
checkers (see Flann, 1992, for more details).

4. Discussion

Our current stock of algorithms for reinforcement learning and explanation-based learning
suffer from many problems. The algorithms and experiments presented above provide
partial solutions to some of these problems.

4.1. Implications for Reinforcement Learning

Let us begin by considering the problems confronting RL methods. Point-based dynamic
programming algorithms (i.e., algorithms that store the value function as a large table)
learn slowly and do not scale to large state spaces. The results in this paper show that
region-based methods (Offline-Rect-Dp andOnline-Rect-Dp) learn faster than
point-based methods (Offline-Point-Dp and Online-Point-Dp) in deterministic
and stochastic 2-D maze tasks and in chess endgames. The region-based methods achieve
better coverage, better mean reward, and better approximation to the true value function in
less time than the point-based methods. Region-based methods can be applied in infinite
state spaces, so they provide one way of scaling up RL to solve very large problems where
the state space cannot be enumerated.

Reinforcement learning algorithms that employ function approximation to represent the
value function also learn slowly in many applications (e.g., Zhang & Dietterich, 1995).
A possible reason for this is that general function approximators do not incorporate any
domain-specific knowledge about the shape of the value function. Region-based methods
can exploit prior knowledge (in the form of operator models and the reward function)
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to learn the value for an entire region from a single trial. Furthermore, the value function
computed by region-based backups is exact, unlike the value function computed by function
approximators based on state aggregation.

The effectiveness of region-based backups is limited by three factors. First, region-based
backups require correct operator models. This is not a problem for speedup learning tasks,
where the operators manipulate data structures inside the computer. However, in robotic
and manufacturing applications where the operators manipulate an external environment,
correct operator models are difficult to obtain.

The second factor isρ—the average number of points in each region in the final value
function. If the point-based state space containsn states, then the region-based state
space containsn/ρ states. Experimentally, we observed that the number of useful Dijkstra
backups performed by the region-based methods is reduced from the number performed by
point-based methods by a factor ofρ.

The third key factor is the cost of reasoning with regions. For rectangles in two dimensions,
this cost is roughlyO(log3(n/ρ) + ρ log2(n/ρ)), which is quite reasonable. For higher
dimensions, Edelsbrunner’s (1983) rectangle-tree data structure requiresO(log2d(2d) +
N) to retrieveN rectangles ind-dimensions. However, in discrete-valued spaces with
many dimensions, the costs may be prohibitive (Tambe, Newell, & Rosenbloom, 1990).
These high costs are the primary cause of the so-called “Utility Problem” of explanation-
based learning (Minton, 1990; Subramanian & Feldman, 1990). Some researchers have
explored algorithms that combine region-based policies with a default policy (Minton,
1988). This has the advantage of reducing the number of rectangles that need to be stored
and manipulated (but at the cost of eliminating the ability to learn an optimal policy).

4.2. Implications for Explanation-Based Learning

The results and perspective of this paper also provide partial solutions to many long-standing
problems in explanation-based learning. In their seminal (1986) paper, Mitchell, Keller, and
Kedar-Cabelli described three aspects of what they called the “imperfect theory problem”:
the intractable theory problem, the incomplete theory problem, and the inconsistent theory
problem. Let us consider each of these in turn.

4.2.1. The Intractable Theory Problem

The intractable theory problem arises when the domain theory makes it expensive to find
a “correct” explanation to which explanation-based generalization (goal regression) can be
applied. This can arise for many reasons. In problems, such as those discussed in this
paper, where optimal problem-solving solutions are desired, an EBL approach will only
work if it is applied to an optimal operator sequence. Finding such sequences starting with
a weak-method problem solver is usually intractable, so this makes it impossible to apply
EBL to such problems.

The present paper has shown that EBL can be applied to these problems if we learn a
value function instead of a policy. By learning a value function, a problem solving system
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can start with very poor problem-solving sequences and improve them incrementally. If
Bellman (or Dijkstra) backups are performed in every state enough times, then the value
function will converge to the optimal value function, and a one-step lookahead policy will
converge to the optimal policy.

This is particularly relevant in the chess domain, where standard EBL methods are very
difficult to apply. Our experiments have shown that region-based dynamic programming
can be extremely valuable in chess endgame problems.

Another case in which the intractable theory problem arises is when the operators in the
domain are stochastic. A traditional EBL system would observe one particular operator
sequence and perform region-based backups along that sequence to learn control rules.
In future problem solving trials, if a future state matched one of the learned rules, then
the EBL system would try to apply the same operator sequence. However, if the initial
observed sequence of states had very low probability, the resulting control rules would not
yield an optimal policy. More fundamentally, EBL methods based on logical proofs lack
the machinery to prove statements about the probability that a particular operator sequence
will reach the goal (or about the expected return that will be received). For this reason, few
people have attempted to apply EBL in stochastic domains.

The present paper has shown, however, that if we shift from learning a policy to learning
a value function and if we shift from simple Dijkstra-style backups to performing Bellman
backups, then stochastic domains can be handled within the same framework as deter-
ministic domains. Hence, dynamic programming provides a solution to this form of the
intractable theory problem.

However, we have seen that region-based methods are less effective in stochastic domains
than in deterministic ones, because the regions are formed by the cross-product of the
preimages of all alternative outcomes of an action. If care is not taken during the dynamic
programming process, the preimages can become very small, which destroys the benefits
of the region-based methods. Nonetheless, in our experiments with stochastic operators,
the region-based methods still had a sizable advantage over point-based methods.

There is one aspect of the intractable theory problem that region-based methods cannot
address. If the search space is immense, so that it is very difficult to find any operator
sequences that reach a goal state, then dynamic programming methods (either point-based or
region-based) do not have much benefit. To solve such difficult problems, other techniques,
particularly those based on introducing abstractions, must be applied.

4.2.2. The Incomplete Theory Problem

The incomplete theory problem arises when the problem solver does not have a complete
model of its operators (or the reward function). Region-based methods cannot be applied
without complete models. If operator models are incorrect, then the resulting policy will not
be optimal. For example, if operators are missing preconditions, then preimages computed
during backups will be too large. If operators are missing effects, then the post-images will
be too large, so backups will be performed on inappropriate states.

The unified perspective of this paper suggests a solution: model-free RL algorithms such
as Q-learning or adaptive real-time dynamic programming (ARTDP, Barto et al., 1995)
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can be applied in cases where nothing is known about the operators. Hence, a hybrid
approach in which region-based methods are applied to states where models are available
and model-free methods are applied to states where models are not available should be able
to overcome the “incomplete theory problem.”

More generally, a problem solver can observe the results of its interactions with the
environment to learn the missing pieces of the domain theory. The results for ARTDP show
that as long as the domain theory eventually converges to the correct theory, the learned
policy will converge to the optimal policy.

4.2.3. The Inconsistent Theory Problem

The inconsistent theory problem arises when the domain theory permits the construction of
multiple, mutually inconsisent, explanations. This can arise because of errors in formalizing
the operators and their effects, but the primary source of this problem is the use of domain
theories expressed in some form of non-monotonic or default logic. The ideas in this paper
do not provide any insights or solutions to this problem.

5. Conclusion

We have shown that the fundamental step in Explanation-Based Learning—computing the
preimage of a region with respect to an operator—is closely related to the Dijkstra backup
step of dynamic programming and RL algorithms. Based on this insight, we designed and
implemented batch and online algorithms that perform region-based backups. We compared
these to standard batch and online algorithms that perform point-based backups and showed
that the region-based methods give a substantial improvement in performance.

We also compared these algorithms to standard explanation-based learning and showed
that they learn optimal value functions in cases where EBL does not. Indeed, the simple
step of representing the value as part of the regions computed by EBL makes it easy for
EBL algorithms to find optimal policies.

Finally, we have shown how RL algorithms can address many of the open problems raised
by work in explanation-based learning. Reinforcement learning methods can be applied
in cases where EBL would be impossible because of incomplete or intractable domain
theories.

This analysis moves us one step closer to building a unified theory of speedup learning
for problem-solving systems. It provides one possible approach to improving the speed
and scalability of RL algorithms, and it provides solutions to many of the long-standing
problems of EBL.
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Notes

1. Such operator models are also called thedomain theory.

2. More generally, the return may be defined in many different ways including expected cumulative reward,
expected cumulative discounted reward, and expected reward per unit time. See Puterman (1994) for a
rigorous presentation.

3. This is an oversimplification of some EBL systems, but the central point applies: no existing EBL system can
guarantee that it learns optimal policies. Instead, various ad hoc methods have been developed to ameliorate
this problem.
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