Machine Learning, 27, 69-96 (1997)
© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Exactly Learning Automata of Small Cover Time

DANA RON ¥ danar@theory.lcs.mit.edu
Laboratory of Computer Science, MIT, Cambridge, MA 02139

RONITT RUBINFELD ** ronitt@cs.cornell.edu
Computer Science Department, Cornell University, Ithaca, NY 14853

Editor: Philip M. Long

Abstract. We present algorithms for exactly learning unknown environments that can be described by determin-
istic finite automata. The learner performs a walk on the target automaton, where at each step it observes the output
of the state it is at, and chooses a labeled edge to traverse to the next state. The learner has no means of a reset,
and does not have access to a teacher that answers equivalence queries and gives the learner counterexamples to
its hypotheses. We present two algorithms: The first is for the case in which the outputs observed by the learner
are always correct, and the second is for the case in which the outputs might be corrupted by random noise. The
running times of both algorithms are polynomial in the cover time of the underlying graph of the target automaton.

Keywords: learning automata, exact learning, learning with noise

1. Introduction

In this paper we study the problem of actively learning an environment which is described
by a deterministic finite state automaton (DFA). The learner can be viewed as a robot
performing a walk on the target automatdfy beginning at the start state 8f. At each

step it observes the output of the state it is at, and chooses a labeled edge to traverse to
the next state. The learner does not have a means of a reset (returning to the start state of
M). In particular, we investigatexact learning algorithms which do not have access to

a teacher that can answer equivalence queries and give the learner counterexamples to its
hypotheses. We also study the case in which the environment is noisy, in the sense that
there is some fixed probabilitythat the learner observes an incorrect output of the state it

is at.

Angluin (1981) has shown that the general problem of exactly learning finite automata by
performing a walk on the target automaton, but without access to an equivalence oracle, is
hard in the information theoretic sense (even when the learner has means of areset). This is
due to the existence of a subclass of automata, which are often referrecoimbimation-
lock automatd. The central property of combination lock automata which is used in
Angluin’s hardness result is that they have hard-to-reach states: In particular, there is a
single accepting state which is reachable only when the learner performs a particular walk
of lengthn (called the “combination”), where is the number of states in the automaton.

* Supported by a National Science Foundation Postdoctoral Research Fellowship, Grant No. DMS-9508963
** Supported by ONR Young Investigator Award N00014-93-1-0590 and grant No. 92-00226 from the United
States - Israel Binational Science Foundation (BSF), Jerusalem, Israel.

70 D. RON AND R. RUBINFELD

All other walks resultin an all zero sequence of outputs. Therefore, for every exact learning
algorithm, there will be some combination lock automaton on which the algorithm requires
exponential time (if the algorithm is randomized then it will require exponential expected
time).

Thus, a natural question that arises is whether exact learning of automata remains hard
when we assume the underlying graph of the target automaton has certain combinatorial
properties such as smalbver time The cover time ofM is defined to be the smallest
integert such that for every statgin M, a random walk of length starting fromg visits
every state i/ with probability at least /2. An automaton with low cover time cannot
have hard-to-reach states since a random walk whose length is of the order of the cover
time is likely to reach all states.

Itis known that a graph has polynomial cover time exactly when the probability assigned
by the stationary distribution to each edgeat least an inverse polynomial in the size of the
graph (this can be inferred from results of Motwani and Raghavan (1995).) Several natural
classes of directed graphs are known to have this property. One important such class is the
class of graphs in which the indegree of each node is equal to the outdegree (Aleliunas,
Karp, Lipton, & Lovasz, 1979). This class includes the underlying graphs of permutation
automata and automata that simulate undirected environments by replacing each undirected
edge between statesq’, by two oppositely directed edges frafito ¢’ and fromgq’ to ¢
(the labels of the directed edges can be arbitrary).

It is necessary that the learning algorithm be given an upper bound on the cover time of
the target automaton (which is in turn a bound on the number of states): It is impossible
for the learning algorithm to even approximate the cover time of an unknown automaton in
an efficient manner, due to the difficulty of distinguishing a combination lock automaton
(which has exponential cover time) from the one state automaton with self-loops (which
has cover time 1).

In this paper, we show that automata that have polynomial cover time can be exactly
learned in polynomial time. For both the noise-free and the noisy settings described previ-
ously we present probabilistic learning algorithms for which the following holds. With high
probability, after performing a single walk on the target automaton, the algorithm constructs
a hypothesis automaton which can be used to correctly predict the outputs of the states on
any path starting from the state at which the hypothesis was completed. Both algorithms
run in time polynomial in the cover time d@ff. In the noisy setting we allow the running
time of the algorithm to depend polynomiallyifia, wherex is a lower bound ot /2 — .

We restrict our attention to the case in which each edge is labeled eitlenriyy 1, and
the output of each state is eithieor 1. Our results are easily extendible to larger alphabets.

In our algorithms we apply ideas from the no-reset learning algorithm of Rivest and
Schapire (1993), which in turn uses Angluin’s algorithm (Angluin, 1987) as a subroutine.
Angluin’s algorithm is an algorithm for exactly learning automata from a teacher that can
answer both membership queries and equivalence queries. Note that having a teacher
which answers membership queries is equivalent to having the means of a reset. We use as
a subroutine of our algorithm a variant of Angluin’s algorithm which is similar to the one
described in (Angluin, 1981). In this procedure (for learning with means of a reset) lies the
first key to overcoming the need for a teacher which answers equivalence queries. At the

EXACTLY LEARNING AUTOMATA OF SMALL COVER TIME 71

start of the procedure, the learner performs a single random walk whose length is of the
order of the cover time of the target automaton. It then proceeds by performing additional
walks (starting from the start state) which are determined by the initial random walk. Using
a simple argument (similar to an argument used in (Angluin, 1981)), we show that all that
is needed for the procedure to terminate (in polynomial time) with a hypothesis automaton
which is equivalent to the target automaton, is that each state of the target automaton is
passed in the initial walk.

As in (Rivest & Schapire, 1993), we usdnaming sequend® overcome the absence of
a reset. Informally, a homing sequence is a sequence such that whenever it is executed,
the corresponding output sequence observed uniquely determines the final state reached.
As was shown in (Rivest & Schapire, 1993), if a homing sequence is known, learning
algorithms that use a reset can be easily converted into learning algorithms that do not use
a reset. The idea is that if a homing sequence is executed at two different stages in an
algorithm that does not use a reset (from two, possibly different, unknown states) and the
output sequence observed is the same, then we know that at both stages we have reached
the same state. Thus executing a homing sequence essentially plays the role of performing
a reset. The problem that remains is how to construct a homing sequence when such a
sequence is not known. Here we are able to construct a homing sequence without the aid
of a teacher, while Rivest and Schapire’s learner needs a teacher to answer its equivalence
queries in order to construct a homing sequence. The rough idea is that by performing a
random walk (whose length is bounded by the cover time) prior to each execution of the
current “candidate” homing sequence, and by repeating each step in the subroutine that
learns with a reset enough times, we can discover if the current candidate is not a true
homing sequence and improve it. We thus “pay” for the absence of a teacher by giving an
algorithm whose running time depends on the cover tim&/ofind hence the algorithm is
efficient only if the cover time is polynomial in the number of statedfin

In the noisy setting the learning problem becomes harder since the outputs observed may
be erroneous. If the learner has means of a reset then the problem can easily be solved
(Sakakibara, 1991) by running the noise-free algorithm and repeating each walk a large
enough number of times so that the majority output observed is the correct output. However,
when the learner does not have means of a reset then we encounter several difficulties. One
major difficulty is that it is not clear how the learner can orient itself since when executing
a homing sequence, with high probability it does not observe the correct output sequence.
In order to overcome this difficulty, we adapt a “looping” idea presented by Dean, Angluin,
Basye, Engelson, Kaelbling, Kokkevis, and Maron (1995). Dean et al. study a similar
setting in which the noise rate is not fixed but is a function of the current state, and present
a learning algorithm for this problem. However, they assume that the algorithm is either
given a distinguishing sequence for the target automaton, or can generate one efficiently
with high probability?. It is known (and there are simple examples illustrating it) that some
automata danot have a distinguishing sequence, and this remains true if we restrict our
attention to automata with small cover time.

A natural question that arises is whether our results can be improved if we only require
that the learner learn the target automadpproximately When the learner has means of
a reset it may be natural to assume that while we allow the learner to actively explore its

72 D. RON AND R. RUBINFELD

environment, its goal is to perform well with respect to some underlying distribution on
walks (each starting from the starting state). This model is equivalent to PAC learning with
membership queries. Since Angluin’s algorithm (Angluin, 1987) can be modified to a PAC
learning algorithm with membership queries, DFAs are efficiently learnable in this model.
However, when the learner does not have means of a reset, and thus performs a single walk
on M, we know of no natural notion of approximately correct learning.

In recent work of Freund, Kearns, Mansour, Ron, Rubinfeld, and Schapire (1995) our
results have been improved as follows. Freund et al. consider the problem of learning
probabilistic output automataTlhese are finite automata whose transition function is deter-
ministic, but whose output function is probabilistic. Namely, for any given string, whenever
performing the walk corresponding to the string from a certain state, we reach the same
state. However, similarly to the model studied by Dean et al. (1992), the output observed
each time is determined by the probabilistic process of flipping a coin with a bias that
depends on the state reached. In the case when the biases at each state grerdither
for some0 < 5 < 1/2, this is essentially the problem of learning deterministic automata
in the presence of noise, for which we give an algorithm in this paper. In (Freund et al.,
1996), a learning algorithm is given that runs in time polynomial in the cover time of the
target automaton, with no restrictions on the biases at each state.

Repeated games against computationally bounded opponents Another motivation

for this work is thegame theoreticaproblem of finding an optimal strategy when playing
repeated games against a computationally bounded opponent. In this scenario there are
two players. We refer to one as tptayer, and to the second as tlepponent At each

step the player and the opponent each choose an action from a predefined set of actions
according to some strategy. A strategy is a (possibly probabilistic) mapping from the history
of play to the next action. The player then receives a payoff which is determined by the
pair of actions played, using a fixed game matrix. The goal of the player is to maximize
its average (expected) payoff. In particular, we are interested in finding good strategies of
play for the player when the opponent’s strategy can be computed by a computationally
bounded machine such as a DFA. Namely, starting from the starting state, the opponent
outputs the action labeling the state it is at, and the action played by the player determines
the opponent’s next state

Itis known (Gilboa & Samet, 1989) that there exist optimal strategies in which the player
simply forces the opponent DFA(to follow a cycle along the nodes @f’'s underlying
graph. If M is known to the player, then it is not hard to prove that the player can find
an optimal cycle strategy efficiently using dynamic programming. Howevéd, i not
known to the player, then Forthow and Whang (1994) show, using the same combination-
lock automata argument of Angluin (1981), that it is hard to find an optimal strategy in
the case of a general gameClearly, if a class of automata can be learned exactly and
efficiently without reset, then an optimal cycle strategy can be found efficiently. However,
it is important that the learning algorithm not use any additional source of information
regarding the target automaton (such as counterexamples to its hypotheses), otherwise the
learning algorithm cannot be used in the game playing scenario.

EXACTLY LEARNING AUTOMATA OF SMALL COVER TIME 73

Other Related Work

Several researchers have considered the problem of learning iDRAs limit In this

setting the learner is presented with an infinite sequence of examples labeled according to
an unknown DFA and is required to output hypotheses that converge in the limit (of the
number of examples) to the target DFA. We refer the reader to a survey by Angluin and
Smith (1983). Here we briefly survey the known efficient learning algorithms for DFAs.

We start with the problem of exactly learning DFAs. In addition to the work of Angluin
(1981,1987) and Rivest and Schapire (1993) that were discussed previously, the following
is also known: Rivest and Schapire (1994) show how permutation automata can be exactly
learned efficiently without means of a reset and without making equivalence queries. Since
permutation automata have the property that the indegree and outdegree of each node is
equal, the underlying automata has small cover time and thus our result can be viewed
as a generalization. Angluin (1990) proves that the problem of exactly learning DFAs
from equivalence queries alone is hard. Ibarra and Jiang (1988) show that the subkelass of
bounded regular languages can be exactly learned from a polynomial number of equivalence
queries.

Bender and Slonim (1994) study the related problem of exactly learning directed graphs
(which do no have any outputs associated with their nodes). They show that this task can be
performed efficiently by two cooperating robots where each robot performs a single walk
on the target graph. In contrast they show that this task cannot be performed efficiently
by one robot which perform a single walk even if the robot may use a constant number of
pebbles to mark states it passes. They also show how their algorithm can be modified and
made more efficient if the graph has high conductance (Sinclair, & Jerrum, 1989), where
conductance is a measure of the expansion properties of the graph.

Bergando and Varricchio (1994) show that automata with multiplicity can be exactly
learned from multiplicity and equivalence queries. In particular this implies the learnability
of probabilistic automata, in which each input string may correspond to many paths, each
assigned a probability which is the product of the probabilities on the edges in the path.
These automata can be exactly learned when given access to an equivalence oracle and an
oracle which for any given string returns the probability that this string reaches an accepting
State.

As for non-exact (approximate) learning, without the aid of queries, Kearns and Valiant
(1994) show that under certain number theoretical assumptions, the problem of PAC learning
DFAs is hard when only given access to random examples. Learning algorithms for several
special classes of automata have been studied in this setting: Li and Vazirani (1988) give
several examples of regular languages that can be learned efficiently, including 1-letter
languages. In (Engi, Ravikumar, & Rubinfeld, 1995) a learning algorithm is given for
languages accepted by width-2 branching programs that are read-once and leveled (a special
case of DFAs). Schapire and Warmuth (1990) have shown (see alsm(Rgvikumar, &
Rubinfeld, 1995)) that the problem of learning width-3 (read-once and leveled) branching
programsis as hard as learning DNF, and they also observe that learning width-5 (read-once
and leveled) branching programs is hard under certain number theoretical assumptions. In
(Freund et al., 1993) it is shown how to learn typical automata (automata in which the

74 D. RON AND R. RUBINFELD

underlying graph is arbitrary, but the accept/reject labels on the states are chosen randomly)
by passive learning (the edge traversed by the robot is chosen randomly) in a type of mistake
bound model.

In addition to the work of Dean et al. (1995) which was previously mentioned, the
following works consider the case when the labels of the examples are assumed to be noisy.
In (Ron & Rubinfeld, 1995), an algorithm is given for PAC-learning DFAs with membership
queries in the presence of persistent noise. In (Frazier, Goldman, Mishra, & Pitt, 1994), an
algorithm is given for learning DFAs by blurry concepts.

2. Preliminaries
2.1. Basic Definitions

Let M be the deterministic finite state automaton (DFA) we would like to ledrhis a
4-tuple(Q, 7, q0,v) whereQ is afinite set ofs states : @ x {0,1} — @ is thetransition
function, o € @ is thestarting state, andy : @ — {0, 1}, is theoutputfunction. The
transition function;r, can be extended to be defined@nx {0,1}* in the usual manner.
Theoutputof a statey is y(g). Theoutputassociated with string € {0, 1}* is defined as
the output of the state reached byi.e., the output of-(¢o,), and is denoted by/ (u).
Unless stated otherwise, all strings referred to are over the alpf@ligt

The cover timeof M, denoted byC' (M) is defined as follows. For every states Q,
with probability at least /2, a random walk of lengtld’(A{) on the underlying graph of
M, starting ay, passes througéverystate inM.

For two stringss; ands,, let s; - so denote the concatenation of with s,. For a string
s and an integem let s™ denotem concatenations of. For two sets of strings; andSs

let S; 0.5, dof {s1-52 | s1 € S1,s2 € S2}. Let the empty string be denoted Ry A set
of stringssS is said to beprefix closedf for every strings € .S, all prefixes ofs (including

A ands itself), are inS. A suffix closedset of strings is defined similarly. For a string
$ = 81...5, and for0 < ¢ < ¢, thelength/ prefixof s is s; ... sy, (where the lengtlo
prefix is defined to ba).

2.2. The Learning Models
2.2.1. The noise free model

The problem we study is that of exactly learning a deterministic finite state automaton when
the learning algorithm has no means of resetting the automaton. The learning algorithm
can be viewed as performing a “walk” on the automaton starting.aAt each step, the
algorithm is at some statg and can observe's output. The algorithm then chooses a
symbolo € {0,1}, upon which it moves to the stat€q,). In the course of this walk

it constructs a hypothesis DFA. The algorithm kesctly learnedhe target DFA if its
hypothesis can be used to correctly predict the sequence of outputs corresporatigg to
given walk on the target DFA starting from the current state that it is at. The learning

EXACTLY LEARNING AUTOMATA OF SMALL COVER TIME 75

algorithm is arexactlearning algorithm, if for every givei > 0, with probability at least
1 — 6, it exactly learns the target DFA. An exact learning algorithreffgientif it runs in
time polynomial inn andlog(1/6). We assume that the algorithm is given an upper bound
on the cover time of\/. We also assume, without loss of generality, thats irreducible.
Namely, every pair of stategandq’ in Q are distinguished by some stringso that the
output of the state reaches when executirsgarting fromgq differs from the output of the
state reached when performing the same walk starting §fom

We also consider the easier setting in which the learning algorithm has a means of resetting
the machine and performing a new walk starting from the start state. We require that for
any given$ > 0, after performing a polynomial (in andlog(1/6)) number of walks, each
of polynomial length, it output a hypothesﬁ, which is equivalent tal/, i.e., for every
string s, J\/J\(s) = M(s).

2.2.2. The noisy model

Our assumptions on the noise follow ttlassificationnoise model introduced by Angluin

and Laird (1988). We assume that for some fixed noiserrate1/2, at each step, with
probability1 — n the algorithm observes the (correct) output of the state it has reached, and
with probabilityn it observes an incorrect output. The observed output of agta@ched

by the algorithm is thus an independent random variable whief{g$ with probability

1 —n, and~(q) with probabilityr. We do not assume thatis known, but we assume that
some lower boundy, on1/2 — 7, is known to the algorithm.

As in the noise free model, the algorithm performs a single walk on the targetADFA
and is required to exactly leafT as defined above, where the predictions based on its final
hypothesis must all agree with the correct outputd/ofSince the task of learning becomes
harder as) approache$/2, anda approaches, we allow the running algorithm to depend
polynomially onl/«, as well as om andlog(1/4).

3. Exact Learning with Reset

In this section we describe a simple variant of Angluin’s algorithm (Angluin, 1987) for
learning deterministic finite automata. The algorithm works in the setting where the learner
has means of a reset. The analysis is similar to that in (Angluin, 1981) and shows that if the
target automaton/ has cover time”' (1) then with high probability, the algorithm exactly
learns the target automaton by performitignC'(M)) walks, each of lengti®(C(M)).
We name the algorithrExact-Learn-with-Reset, and it is used as a subroutine in the
learning algorithm that has no means of a reset, which is described in Section 4.

In this algorithm and in those described in the following sections we assume for simplicity
that the algorithms actually kno@(1/) andn. If only upper bound€’, (M) > C(M) and
np > n are known, then the algorithms can simply use these bounds instead of the exact
values. The running times of the resulting algorithms are bounded by the running times of
the original algorithms (which kno& (M) andn) where each occurrence ©{ M) should
be replaced by, (M) and each occurrence afby .

76 D. RON AND R. RUBINFELD

Algorithm Exact-Learn-with-Reset(6)

letr be random string of lengthh = C' (M) log(1/6);

let R, be the set of all prefixes of Ry — R10{0,1};

initialize the tablel: R «— Ry |J R2, S — {A}, query all strings inkR o S tofillin T
whileT" is not consistent do:

P wDnh PR

o ifexistry,r; € Ry, s.t. rowr(r;) = rowr(r;) but for somes € {0, 1}, rowr(ri-o) #
rowr(rj-o) then:
(A) lets, € Sbesuchthal'(r;-o,si) # T(rj-o,sk);
(B) updateT: S «— S|J{o-sk}, fill new entries in table by performing corresponding
walks onMM;

e /[*else table is consistent */

5. if existsr; € Ry for which there is na-; € R: such thatrowr (r;) = rowr(r;) (T is not
closed), then return tb (rerun algorithm)’

Figure 1. Algorithm Exact-Learn-with-reset

Following Angluin, the algorithm constructs &bservation TableAn observation table
is a table whose rows are labeled by a prefix closed set of stritygmnd whose columns
are labeled by a suffix closed set of strin§s,An entry in the table corresponding to a row
labeled by the string;, and a column labeled by the striag, is M (r;-s;). We also refer
to M (r;-s;) as thebehaviorof r; ons;. An observation tabl& induces gatrtition of the
strings inR, according to their behavior on suffixes$h Strings that reach the same state
are in the same equivalence class of the partition. The aim is to refine the partition such that
onlystrings reaching the same state will be in the same equivalence class, in which case we
show that if the seR has a certain property then we can construct an automaton based on
the partition which is equivalent to the target automaton.

More formally, for an observation tabiféand a string; € R, letrowr(r;) denote the row
inT labeled by;. Namely, ifS = {s1, ..., s¢}, thenrowr(r;) = (T(ri, s1), ..., T(rs, 8t))-
We say that two strings;, r; € R belong to the samequivalence clasaccording tdl’,
if rowr(r;) = rowr(r;). Given an observation tablg, we say thafl” is consistentf the
following condition holds. For every pair of strings, r; € R such that-; andr; are in
the same equivalence classyjfo, ;-0 € R for o € {0, 1}, thenr;-o andr;-o belong to
the same equivalence class as well. We sayfhatclosedif for every stringr; € R such
that for somer € {0,1}, ;-0 ¢ R, there exists a string; € R such that-; andr; belong
to the same equivalence class accordin@ tand for every € {0,1},r;-0 € R.

Given a closed and consistent talfle we define the following automatony/” =
{QT, 7T ¢f', 4T}, where each equivalence class corresponds to a staté'in

QT def {rowr(r;) | r: € R,¥Yo € {0,1},r;-0 € R};

EXACTLY LEARNING AUTOMATA OF SMALL COVER TIME 77

o 7L (rowr(r;),o) def rowr(ri-o);

o & def rowr (A\);

o L (rowr(r;)) def T(ri, N);

It is not hard to verify (see (Angluin, 1987)) that” is consistent witi” in the sense that
for everyr; € R, and for everys; € S, MT (r;-s;) = T(r4, s5).

The idea of the algorithm is as follows — first we use a random walk to construct a set
Ry of strings that with high probability reach every statelih Namely, R, is such that
for every statey in M, there exists a string in R; such that if we take a walk oA/
corresponding te and starting fromy,, then we end up at state Given R, we extend it
to a setR of strings that traverse every edgelih We then show how to use to construct
an observation table that has an equivalence class for each state.

Letr € {0,1}™ be a random string of lengtfi(M) log(1/6) (whereé is the confidence
parameter given to the algorithm). LBy = {r; | r; is a prefix ofr}, Ry = Ry o {o} for
o € {0,1}, andR = Ry |J R2. The learning algorithm initialize$ to include only the
empty string, and fills in the (single columned) table by performing the walks correspond-
ing to the strings imR. Let us first observe that from the definition@{ /), the probability
that a random walk of lengt&’(1/) log(1/6) does not pass through some staté)iris at
most(1/2)°e(1/8) = §. Therefore, with probability at least— 6, for every statey € Q,
there exists a string; € Ry, such that-(¢o, ;) = ¢. Assume that this is in fact the case.
It directly follows thatT" is always closed. Hence, the learning algorithm must only ensure
thatT" be consistent. This is done as follows. If there exists a pair of stripngs € R such
thatrowr(r;) = rowr(r;), but for somes € {0, 1}, rowr(r;-o) # rowr(r;-o), then a
stringo - s, is added taS, wheres;, € S is such thatl'(r;-o, si) # T'(r;-0o, sx), and the
new entries irfl" are filled in. The pseudo-code for the algorithm appears in Figure 1.

It is clear that the@nconsistency resolvingrocess (stage 4 in the algorithm given in
Figure 1) ends after at most— 1 steps. This is true since every string added tefines
the partition induced by". On the other hand, the number of equivalence classes cannot
exceedh, since for every pair of strings, ; € R such thatowr(r;) # rowr(r;), r; and
r; reach two different states iw/. Hence, after addin@ (nC (M) log(1/6)) entries to the
table, each corresponding to a string of lengttC (M) log(1/6) + n), the algorithm has
constructed a consistent table. We further make the following claim:

LeEmMMA 1 If for every statey € Q, there exists a string; € Ry such thatr(qo, ;) = ¢,
thenMT = M.

Proof: Inorderto provethat/” = M, we show that there exists a mappingQ — Q7
which has the following properties:

1. ¢lq) =aqd;
2. Vg€ Q,Vo €{0,1}, ¢(7(q,0)) = 7 (¢(q), 0);
3. VgeQ, v(q) =" (¢(q))

78 D. RON AND R. RUBINFELD

Since we have assumed (without loss of generality) &t irreducible,¢ is an (output
preserving) isomorphism betwedd and M ™. Clearly, the existence of such a function
suffices to prove equivalence betwekfT andM since by the above properties, for every
s €{0,1}*,

Y(7(q0,5)) = ¥ (d(7(qo, 5)))
Y (7" (¢(q0), 9))
= 77" (g5 ,5)) - (1)

Let ¢ be defined as follows: for each € Q, ¢(q) = T'(r;), wherer; € R is such
that7(qo,7;) = ¢. From the assumption in the statement of the lemma we have that for
every statey € Q, there exists a string; € R; such that(qo,r;) = ¢. By definition of
deterministic finite automata, if far; # r; in R, 7(go,7:) = 7(go,7;), then necessarily
T(r;) = T(r;). It follows that¢ is well defined. We next show thatsatisfies the three
properties defined above.

¢ has the first property since(qo, A\) = qo, andgd’ def T(\). ¢ has the third property
sincer™(T(r;)) < T(r,A) = M(r;) = v(r(qo,7:)). It remains to prove the second
property. Letr; € Ry be such that (¢o, ;) = ¢. From the assumption in the statement of
the lemma, we know there exists such a string. Thg) = T(r;). By definition of M7,
(T (r;),0) = T(r;-0). Sincer(qo,r;) = q, we have that (¢, o) = 7(qo,7;-0), and by
definition ofp, ¢(7(q,0)) = T(r;-0) = 71 (T(r;),0). [|

We thus have the following theorem.

THEOREM 1 For every target automaton/, with probability at leastl — §, Algorithm
Exact-Learn-with-Reset outputs a hypothesis DFA which is equivalentMo Further-
more, the running time of the algorithm is

0 (n(C(M))2 log? (1/5)) .

4. Exact Learning without Reset

Inthis section we describe an efficient exact learning algorithm (as defined in Subsection 2.2)
for automata whose cover time is polynomial in their size. This algorithm closely follows
Rivest and Schapire’s learning algorithm (Rivest & Schapire, 1993). However, we use
new techniques that exploit the small cover time of the automaton in place of relying on
a teacher who supplies us with counterexamples to incorrect hypotheses. We name the
algorithmExact-Learn, and its pseudo-code appears in Figure 3.

The main problem encountered when the learner does not have means of a reset is that it
cannot simply orient itself whenever needed by returning to the starting state. We thus need
an alternative way by which the learner can orient itself. As in (Rivest & Schapire, 1993),
we overcome the absence of a reset by the uséofrang sequenced homing sequence is
a sequence such that whenever it is executed, the corresponding output sequence observed
uniquely determines the final state reached. More formally:

EXACTLY LEARNING AUTOMATA OF SMALL COVER TIME 79

Definition. For a state; and sequence= s; ...s; € {0,1}, let

a(s) € A@)V(r(g,51)) .. (7(g,5)) -

A homing sequence h € {0,1}*, is a sequence of symbols such that for every pair of
statesy;, go € Q, if ql<h> = QQ<h>, thenT(ql, h) = 7'((]2, h)

It is not hard to verify ¢f. Kohavi, 1978)) thaeveryDFA has a homing sequence of
length at most quadratic in its size. Moreover, given the DFA, such a homing sequence can
be found efficiently.

4.1. Learning When a Homing Sequence is Known

Assume we had a homing sequenhasf length at most.? for our target DFAM (we remove

this assumption shortly). Then we could run the algoritexact-Learn-Given-Homing-
Sequence whose pseudo-code appear is Figure 2. This algorithm creates at wmgies

of the algorithmExact-Learn-with-Reset, FLR1,..., ELR», each corresponding to

a different output sequeneé which may be observed whénis executed. At each stage,

the algorithm walks according tg observes the output sequengend then performs the

next walk E L R, would have performed (starting frogg), from the current state reached.
Sinceh is a homing sequence, for any given output sequeheghenever is executed and

7 is observed, we have reached the same state. We refer to this stateffeadiieestarting

state of ELR,. Thus, each copy' LR, constructs its own observation tablg,, where

the entries are filled by performing walks which all start from the effective starting state
of ELR,. The algorithm terminates when one of these copies completes, The completed
copy’s hypothesis automaton can then be used to predict correctly the outcome of any
walk. If, as described in the pseudo-cod&ghct-Learn-Given-Homing-Sequence (see
Figure 2), we run each copy @&Xxact-Learn-with-Reset with the confidence parameter
6/n, then by Theorem 1 and the fact that there are at masipies ofExact-Learn-with-

Reset, with probability at least — 6 the hypothesis of the completed copy is correct. The
running time of the algorithritxact-Learn-Given-Homing-Sequence is bounded by the
running time of each copy, multiplied by the number of copies executed and the length of

the homing sequence, and is ttﬂs(n‘* (C(M))? log? (n/é)).

4.2. Learning When a Homing Sequence is Unknown

If a homing sequence is unknown, consider the case in which we guess a sefguédrice

is nota homing sequence and run the algoritBract-Learn-Given-Homing-Sequence
with h instead of a true homing sequence. Sihds not a homing sequence, there exist
(at least) two stateg # ¢, such that for some pair of states ¢}, a walk starting at;
reacheg;; upon executing and a walk starting af, reacheg, upon executing, but the
output sequence in both casestie same Let this output sequence ke Hence,ELR,
has more than one effective starting state and when we similate,, some of the walks

80 D. RON AND R. RUBINFELD

Algorithm Exact-Learn-Given-Homing-Sequencef)

e while no copy ofExact-Learn-with-Resethas completed do:

1. perform the walk corresponding kg and letr be the corresponding output sequence;

2. ifthere does not exist a cogyL R of Exact-Learn-with-Rese{(§/n), then create such|a
new copy;

3. simulate the next step @ LR to fill in an entry inT. by performing the corresponding
walk starting at the current state;

if the observation tabl&. of E LR is consistent and closed théi. R, has completed;

5. if T is consistent but not closed, then disc&rd R, ;

Figure 2. Algorithm Exact-Learn-Given-Homing-Sequence

performed to fill in entries i, might be performed starting from , and some might be
performed starting fron,.

The first of two possible consequences of such an event is that the observatidf,table
becomes consistent and closed, but the hypottédis is incorrect Namely, there exists
some walk starting from the current state whose outcome is predicted incorredty by
The second possible consequence is Thajust grows without becoming consistent, and
the number of equivalence classes in the partition inducetl.dyecome larger than. In
what follows we describe how to modifgxact-Learn-Given-Homing-Sequence when
we do not have a homing sequence so as to detect that a copy has more than one effective
starting state and thus avoid the above two consequences. Furthermore, the procedure for
detection helps us “improve? by extending it so that after at mast— 1 such extensions
it becomes a homing sequence, where initially: \.

Let Q. be the set of effective starting statesiaf Namely

Qr = {g : € Q, 3¢ st.7(¢,h) = gandg'(h) = 7} .

If for eachqg € Q it holds that for every statg in @ there exists a row iff; labeled by a
string that reacheg when starting frong, then the following is true. By the time we add at
mostn — 1 columns tdl,, for each pair of stateg andgs in @, there must exist at least
one entry inT; which distinguishes between the two states. This is true since otherwise,
following Lemma 14, andgs would be equivalent, in contradiction to our assumption that
M is irreducible. If we discover one such entry, then we have evidencettbat, has
more than one effective starting state and theretaeenot a homing sequence. Moreover,
we can concatenate the string corresponding to this entryaod restart the algorithm with

the extended.” After at mostn — 1 such extensiong, must become a homing sequence.

EXACTLY LEARNING AUTOMATA OF SMALL COVER TIME 81

Algorithm Exact-Learn(6)

N — 2C(M)1n (4n/$);

h «— X

while no copy oExact-Learn-with-Reset-Ris completed do:

(A) choose uniformly a length € [0, ..., C(M)], and perform a random walk of length
(B) perform the walk corresponding tg and letr be the corresponding output sequence;

(C) if there does not exist a cOfy LRR,. of Exact-Learn-with-Reset-R(N,6/(2n?)), then
create such a new copy;

(D) simulate the next step @ L RR . tofillin any entry inT: by performing the corresponding
walk w starting at the current state;

(E) if it is the first execution ofw, then fill in the corresponding entry if, with the (final)
output observed;

(F) elseifthe output of the state reached is different from the output of the previous state reached
when performingo then do:

i. h+— h-w,

ii. discard all existing copies dExact-Learn-with-Reset-R and go ta3; /* restart algo-
rithm with extended: */

(G) ifthe observationtabl&, of ELRR is consistentand closed théil RR . has completed;
(H) if T is consistent but not closed, then disc&#fil RR ;

Figure 3. Algorithm Exact-Learn. Algorithm Exact-Learn-with-Reset-Ris a variant ofExact-Learn-with-
Resetin which given an integelN, each walk to fill in an entry in the table is repeat®dtimes and only if a
single output is observed, then this output is entered.

4.2.1. Detecting Distinguishing Entries

We next show how to detect entries which distinguish between two effective starting states.
Let Exact-Learn-with-Reset-R be a variant oExact-Learn-with-Reset, in which each

walk to fill in an entry in the table isspeatedV consecutive times for a giveN. If all N

walks give the same output then the entry is filled with that output. Otherwise, we have found
a distinguishing entry. Thus, in the algoritHBxact-Learn, instead of simulating copies

E LR, of Exact-Learn-with-Reset, as inExact-Learn-Given-Homing-Sequence, we
simulate copie?LRR, of Exact-Learn-with-Reset-R with a parametetV that is set
subsequently and with Confidenggz—. If for some copy we find that its observation table
includes a distinguishing entry, then as described previously, we extdrydthe string
corresponding to this entry and restart the algorithm with the heW/e continue in this

way until one copy terminates. In order to ensure that we never fill in a distinguishing entry
without identifying it as one, we need to ensure that for every eftrys;) we need to

fill, if (r;,s;) is a distinguishing entry iff’; then the following holds: For some pair of

82 D. RON AND R. RUBINFELD

effective starting stateg; andgs, which are distinguished bfy;, s,), at least one of th&/
executions of; -s; starts fromg; and at least one starts frogp.

To this end we do the following. Each time before executingve randomly choose
alength0 < ¢ < C(M), and perform a random walk of length The idea behind this
random walk is that for every state there is some non-negligible probability of reaching it
upon performing the random walk. More precisely: For a distinguishing €nfrg,) in
T, consider theV executions of, whose outcome was and which were followed by
performing the walk correspondingtps;. For a statg € Q, let B(q) be the set of states
from whichgq is reached upon executirigi.e.,

Blg) ¥ {q : ¢ €Q, (¢, h)=q}.

For a giveny € @, the probability that we did not reagtafter any one of thé&/ executions

of h in which = was observed, equals the probability that following all preceding random
walks, we did not reach a state BYq). This probability is bounded as follows. Assume
that instead of choosing a random length and performing a random walk of that length, we
first randomly choose a stringf lengthC' (M), then choose a random lengtrand finally
perform a walk corresponding to the lengdtiprefix of ¢. Clearly the distribution on the
states reached at the end of this walk is equivalent to the distribution on the states reached by
the original randomized procedure. For each of the random sttjniys probability that it
passes a state i(q) is at least 1/2. Given that it passes a statB(n), the probability that

the randomly chosen prefix ends on that state is at le&@%t)/). Together, the probability

that we reach a given stateq) is at leasti /2C(M). Thus, for a given statge€ Q, the
probability thatq is not reached in any of the correspondiligexecutions of. is bounded

from above by

4.2.2. Bounding the Error and the Running Time of the Algorithm

It remains to setV so that the total error probability &xact-Learn is at most, and then
to bound the algorithm’s running time. We have two types of events we want to avoid so as
to ensure that the algorithm constructs a correct hypothesis. We shall bound the probability
that each type of event occurs 8)2. The first type of event is that for some copY. RR .
and for one of its effective starting statgghere exists a statg in Q such that no row iff;
is labeled by a string which reachgavhen starting frong. In the course of the algorithm,
h takes on at most values. For each value there are at mosffective starting states for
all existing copiesE LRR,. (even though a single state may be an effective starting state
of more than one copy). Since we simulate each copy with error parafijéger?), then
with probability at least — §/2, the above type of event does not occur. In such a case, it
follows from Lemma 1 that wheh finally turns into a homing sequence (after at most1
extensions), and some taliie becomes consistent, thédi”~ is a correct hypothesis.

The second type of bad event is that when filling an entry in some #hleve do not
detect that it is a distinguishing entry. For each valuk obnsider the first entry to be filled

EXACTLY LEARNING AUTOMATA OF SMALL COVER TIME 83

(in some tablel’;) that is a distinguishing entry. Sinéetakes at most values, there are
at mostn. such first entriek

For each such entry, there exists at least one pair of effective starting states which it
distinguishes. LeN = 2C(M)In(4n/6). Then by Equation (2), for a given distinguishing
entry, the probability that we did not reach both of the states in the pair of effective starting
states it distinguishes is at mast2n. It follows that with probability at least — 6/2,
for each first distinguishing entry, we perform the walk corresponding to that entry starting
from each of the two effective starting states it distinguishes. Therefore, with probability
1 —6/2 we always detect the first distinguishing entry for every valué,adnd thus do
not output a hypothesis of a co@yL RR, which corresponds to more than one effective
starting state.

The running time of the algorithm is bounded by the product of the number of phases of
the algorithm (one for each value Y which isn, and the running time of each phase. The
running time of each phase is the product of:

e the number of copies dExact-Learn-with-Reset-R in each phase (which is at most
n),

e the number of entries added to each table (whiah(isC (M) log(2n?/6))),

e the number of times the walk corresponding to each entry is repeated (which is
N = O(C(M)log(n/6)),

e the sum of:

— the maximum length of each walk to fill in an entry (which is
O(C(M)log(2n?/6)),

— the maximum length ok (which isO(n2C/(M)log(2n?/6))),

— and the maximum length of the random walk performed prior to the execution of
h (which isC(M)).

The total running time is henae (n5 (C(M))*log® (n/&)).
We have thus proven that:

THEOREM 2 Algorithm Exact-Learn is an exact learning algorithm for DFAs, and its
running time isO (n5 (C(M))* log (n/é)).

As mentioned previously, Rivest and Schapire (1993) give an exact learning algorithm
that runs in time polynomial in andlog(1/6) and does not depend on any other parameter
related to the target automaton. However, they rely on a teacher that gives the learner
counterexamples to the incorrect hypotheses output by the learner. It is interesting to note
that the (tempting) idea to simply run Rivest and Schapire’s algorithm but instead of making
equivalence queries try and randomly guess a counterexample whenever the learner has a
hypothesis, does not work even in the case of automata that have small cover time. Rivest
and Zuckerman (1992) construct a pair of automata which both have small cover time, but
for which the probability of randomly guessing a sequence which distinguishes between
the automata is exponentially small. These automata are described in Appendix A.

84 D. RON AND R. RUBINFELD

5. Exact Learning in the Presence of Noise

In this section we describe how to modify the learning algorithm described in Section 4 in
order to overcome a noisy environment. We name the new algoBttant-Noisy-Learn,

and its pseudo-code appears in Figure 6. We start by showing how to compute a good
estimate of the noise rate. We then show how to use this estimate to learn the target DFA
when a homing sequence is known, and finally describe a learning algorithm which is not
given a homing sequence.

5.1. Estimating the Noise Rate

According to our learning model, the algorithm is given only an upper bdyad- a on

the noise ratey. Since we need a good approximatipof », we first show that) can be
efficiently approximated (with high probability) within a small additive error. This is done
by running ProcedurEstimate-Noise-Rate whose pseudo-code appears in Figure 4, and
which is analyzed in the following lemma. A very similar procedure was described in (Ron
& Rubinfeld, 1995).

LeEmMA 2 For any givend’ > 0, andu > 0, after time polynomial idog(1/6), 1/ u,
n, and1/«, ProcedureEstimate-Noise-Rate outputs an approximation of n, such that
with probability at leastl — &', |17 — n| < p.

Proof: Before going into the details of the procedure we describe the idea it is based on.
Consider a pair of stateg andg,. For a stringz, andi € {0, 1}, let theobservedehavior
of ¢; on z be the output observed by the learner after executing the walk corresponding
to z starting fromg;, and let theactual behavior ofg; on z be the (correct) output of the
state reached. lf; = ¢, then foreverystringz, 7(q1, 2) = 7(g2, z). Thus, the observed
difference in the behavior af, and ¢, on any set of strings is entirely due to the noise
process. lfj; # g2, then the difference in their observed behavior on a set of stéinigs
due to the difference in their actual behavior Bras well as the noise. Thus in order to
estimate the noise rate, we look for strings that seem to reach the same state and deduce
the noise rate from the difference in their observed behavior. More precisely, this is done
as follows.

Lett be an arbitrary string of length, whereL is set subsequently. Suppdde executed
n + 1times. Forl < i < n + 1, letq(*) be the state reached after performingxactly
i — 1 times and leb(? = ogi) . ..o(Li) be the sequence of outputs corresponding to the
i*h execution oft. Clearly, for some pair of indices # j, ¢ = ¢\9). For every pair
1<i<j<n+lletd? = L3} o o). Thus,d? is the fraction of indices in
which the sequences? ando'?) differ, or equivalently, it is the fraction of strings among
all prefixes oft on which there is an observed difference in behavior betw&eandq(?) .
The key observation is thatjf?) = ¢(%) then the expected value @¥ is 27(1 — 7), while
if ¢ £ ¢ itis at least as large. More precisely, if the fraction of prefixes @i which
¢'" andq¥) actually differ is¢, then the expected observed difference in behavior between
the states is

EXACTLY LEARNING AUTOMATA OF SMALL COVER TIME 85

Procedure Estimate-Noise-Rate{’,)

1 L (1/w)*(1/a) log(n/6);

2. lett be an arbitrary string of length;

3. perform the walk corresponding t6+!;

4. leto" = oy) e o(L“ be the sequence of outputs corresponding tothexecution oft; (i.e.
the complete output sequence corresponding t§10 is o{" ... o{", ... 0" . (1))

5. Vi,j,1<i<j<n+1letd? — L3 F ol gl

6. letdmin < min; ; dv;

7. if dmin > 1/2thengoto J;

8. let7) be the solution t@l,in = 27(1 — 7)) s.t. /) < 1/2;

9. returny;

Figure 4. ProceduréEstimate-Noise-Rate

(1—¢)-2nd—n)+o-(L—n)?+n*) = 2n(1—n)+¢(1—2n)*. ©)

We therefore defing,,;,, to be the minimum value over all’’’s, and let, < 1/2
be the solution of the quadratic equati?f(l — 1) = din. Since we have less than
n? pairs, if L = Q((1/p)?(1/a)?log(n /")), then by Hoeffding’s inequality (Hoeffding,
1963), with probability at least — &', for every pairi,j, |[d¥ — E[dY]| < au, and
henceld,,;, — 2n(1 — n)| < 2au. It directly follows (see (Ron & Rubinfeld, 1995)) that
1 —nl < p. u

We thus assume from here on that we have a good approximatiohy. In particular
we assume tha} is at mostw/8C(M) away fromn.

5.2. Learning When a Homing Sequence is Known

As in the noise free case, we first assume that the algorithm has means of a reset. With this
assumption, we define a slight modificationEact-Learn-with-Reset, namedExact-
Noisy-Learn-with-Reset. Given a large enough integ@f this procedure simply repeats
each walk to fill in an entry in the tabl§¥ times, and fills the corresponding entry with the
majority observed label. Thus, with high probability, for an appropriate choic¥ ahe
majority observed label is in fact the correct label of the state reached.

Next we assume that the algorithm has no means of a reset, but instead has a homing
sequencé. Clearly, in a single execution @&f, with high probability the output sequence
will be erroneous. We thus adapt a technique that was used in (Dean et al., 1992). The idea
is to construct a new “robust” homing sequence out,a$uch that we see many samples

86 D. RON AND R. RUBINFELD

of each bit of the output of, and can thus infer the correct output/oby majority vote:
Assume we executk for m consecutive times where >> n and is set subsequently. In
order to gain some intuition, consider first a directed gréptvhose set of vertices @,

and in which there is an edge frogn to ¢» if and only if g5 is reached fromy; upon the
execution ofh. Then,m executions ofi on M correspond to a walk of lengthx on H.
Clearly, if m > n, then after at most steps this walk will start following a (simple) cycle
on H. If we now return tolM, them executions of pass the same states which are on the
cycle inH, and hence follow a cycle on the underlying grapid6f It should be noted that

if |h| > 1, the cycle inM is simple.

We now show how to use the existence of this cycle in order to estimate the output
sequence corresponding to the last’() execution ofh. Let the state from which we start
the m*™ execution ofh be denoted by (™. The idea is that since the executions of
h follow a cycle, then in particular (assuming is large enough)h is executed starting
from ¢ many times. Assume we were able to identify each occurreneg”of (or
equivalently, to find the length of the simple cycle &f). Then we could use all these
executions (whose outputs are noisy) to infer by majority vote (with high probability) the
correct output sequence which corresponds to the executibrstafrting fromg(™), and
which reaches the current state.

More formally: Forl < i < m, letq() be the state reached after #i& execution ofr,
and leto® = of) . Ol(;b)l be the (noisy) output sequence corresponding to this execution.
For each possible length< v < n, let

b?) déf L(m - TL)/UJ . (4)

Then there exists some (minimadgriod p, wherel < p < n, such that for every <
k <b,, ¢™ = qm=*P)_In other words, every executions of: it was executed starting
from ¢(™) (andp is simply the length of the simple cycle #). Thus, if we knowp, then
we can compute with high probability the correct output sequence corresponding to the
last execution of, (which started frong(")) by considering all previous executions which
started fromy(™): Foreveryl < j < |h|weletr; = 1if 1/b, Y07 | og.m_k”) > 1/2,ando
otherwise. It follows that with high probability, for an appropriate choice:pthe sequence
7 = m ... 7 iS thecorrect output sequence corresponding to the last execution of
In this case we could proceed asHract-Learn-Given-Homing-Sequence, simulating
copies ofExact-Noisy-Learn-with-Reset, instead of copies dixact-Learn-with-Reset.
How do we find the periog? Let q](.’) be the state reached afteexecutions ofh,
followed by the lengthy prefix of h. By definition ofp, for everyk, &/, and for everyj,

qlgm_’“’) = q§m_k/p) (the states reached at step numbers that differ by multipleaief the

same). Let/j@) be an|h| dimensional vector which is defined as follows. Fot j < |h|,

by
P8 =1/by > 0" (5)
k=1

whereb, was defined in Equation (4). When= p, then for each < j < |A/, it holds

that for everyk, the outputs;&m’k”) are generated from the same state. Since the noise is

EXACTLY LEARNING AUTOMATA OF SMALL COVER TIME 87

added independently, we have that for an appropriate choi®g a@fith high probability,
for everyj, wj(.p) is either withine of 1 — 7, or within e of n, for some small additive error
e. In particular we shall choose to ensure that < «/2n. Under our assumption that
Ih — n| < a/8C(M) < a/2n, we have that either

i—a/m < P < j+a/n (6)

or
(L—i)—a/n < ¢ < 1-i)-a/n Y]
Whenw # p, thenthere are two possibilities. Iffor eachnd for everyk, k’,ﬂy(q§m7k”)) =
7(q§m’k/”)) (even thoughém’k”) might differ fromqj(.m’k,”)), then the following is still

true. Define;rj(.”) to bel if %(-U) is greater thari /2, and0 if it is at most1/2. Then, with

high probability,7(*) = 7r§“> e 71"(;:‘) is the correct output sequence corresponding to the

last execution of.. In such a case; effectively behaves as a period. Otherwise jlée

an index for which the above does not hold, andAgt= |{ | 'y(q](-m_kv)) = 0}, and

K = |{k | 7(q§m_k”)) = 1}|. We claim that bothk, /b, and K /b, are at least /p

which is at least /n. This is true since - p must be a period as well, and hence for every

k andk’ which are multiples op, q§m’k”) = qﬁ’”’kl”). Let3 = K;/b,. Then

E[W]”) = B(1—n) + (1= B ®
E[z/;§“)} can be written in two equivalent forms:

E[WS"] = pA-n)+n-08-n

=n+(1-29)8 9)
and
EWM = 1-1-8)1—n)+ (18
= (1-n)—-00-2n91-7) (10)

Sincep > 1/n, then by Equation (9),

B[] > n+ (1 - 29)~ . (11)

1

n
On the other hand, sincg <
Equation (10),

1 — 1/n (which implies thatl — 5 > 1/n), then by

B < (1—n) — (1 - 2i)~

n .

(12)

Sincel — 2n > 2«, and since we are assuming thiat- | < «/8C (M) < «/2n

88 D. RON AND R. RUBINFELD

. B«) o 3o
— E: 1—-n)—— . 1
i+ < BT < a-i) -5 (13)
Thus, ifq/;§”) is at mostw/2n away from its expected value for evefythen
i+a/n < ¢ < (1-0)—a/n. (14)

Since we have shown (see Equations (6) and (7)) that with high probabﬁiﬁ)yis within

a/n either fromyj or from 1 —7), we are able to detect whether or ma$ the minimal period

p (or at least effectively behaves as such). Consequently we can compute the correct output
sequence corresponding to the homing sequénc&he pseudo-code for the procedure
described above appears in Figure 5. Note that we did not actually use the factighat

a homing sequence and hence this procedure can be used to compute the correct output
sequence corresponding to any given sequence.

Procedure Execute-Homing-Sequencé|

1. m « 100 (n/a)®log(nC(M)/6);
choose uniformly a lengthe [0, ..., C(M)], and then perform a random walk of length
perform the walk corresponding 16", and forl < i < m, let o” be the output sequence
corresponding to thé" execution of;

Moy (m—kv)

4. foreachlength < v < n,and forevery < j < |h|, Ietw;.“ =1/m. ob

o1 O , where|
my = |m/v];

5. letv be such that for everyeither|(”) — 7| < a/n, or [\ — (1 —7)| < a/n; if there is no
suchw, then return to (1);

for1 < j < |hl, letm; = 1if ¢ > 1/2, and0 otherwise;

returnm;

Figure 5. Procedurdexecute-Homing-Sequence

5.3. Learning When a Homing Sequence is Unknown

It remains to treat the case in which a homing sequence is not known. Similarly to the noise
free case, for a (correct) output sequenamrresponding to a candidate homing sequence
h, let Q. be all stateg € @ which can be reached from some state following an execution
of h, and where the corresponding outputris That is, there exists a stagé € @ such
that7(¢’, h) = g andq’(h) = 7. For a state; € Q, let B(q) be the set of stateg’ such
thatr(¢”, h™™) = ¢. Let(r;, s;) be an entry in the table correspondingrtéor which there
existqr, g2 € Qr, such thaty(r(q1,7i-s;)) # v(7(g2,7i-s;)). As we have argued in the
noise free case, if there is no such entry for any of the possible output sequeticesh

is a homing sequence. Let

EXACTLY LEARNING AUTOMATA OF SMALL COVER TIME 89

Qr=1{a|q€Qxr, ((q,ri-s;)) =1},

and letQ? be defined analogously. As in the noise free case, the walk corresponding to a
given entry is repeatedy times, and a random walk of a lengtlthosen uniformly in the
range[0,...,C(M)] is performed prior to then executions ofi. Let 5, be the fraction

of times that a state € Q. is reached and let, (= 1 — 3;) be defined analogously. By

the same argument used in the noise free case (in the discussion preceding Equation (2)),
E[61] > 1/(2C(M)), andE[G] > 1/(2C(M)). By applying a Chernoff bound we have

that for each € {0,1},

S FYE P . a9

Letw = r; - s;, and letf(w) be as defined ikExact-Noisy-Learn. That s, f(w) is the
fraction of 1's observed, among alV repetitions of the walk executed to fill in the (dis-
tinguishing) entry(r;, s;). Then, similarly to the calculations performed in Equations (8)
through (14),

Blf)] 2 0+ (1= 2) 1550 (16)
R 3a
> +8(J(M) a7)
and
Blf)] < (1=n) = (=20 3500 (18)
< (1777)*% (19)

On the other hand, ifr;, s;) is not a distinguishing entry thefa| f (w)] equals either) or

1 —mn, and is hence withia,/8C (M) either fromsj or from1 — 7). If we chooseV so as to
ensure (with high probability) thaf (w) — E[f(w)]| < a/8C(M), then we can determine
when an entry is a distinguishing entry and exténly the string corresponding to this
entry.

5.3.1. Bounding the Error and Running Time of the Algorithm

We start by bounding the error of the algorithm. We have the followityges of events we

need to prevent from occurring, and we shall bound the probability that each type occurs by
6/5. Whenever bounding the probability that a bad event occurs, we assume that no other
bad event has occurred previously.

1. Our estimation 7 of 7, is not good enough. If we call the procedur&stimate-
Noise-Rate with the confidence paramet&r= ¢ /5 and with the estimation parameter
= a/8C (M), we know by Lemma 4, that with probability atledst 6/5, |1 —n| <
a/8C(M).

90 D. RON AND R. RUBINFELD

Algorithm Exact-Noisy-Learn(6)

1. N« 100 ((%)2 1og2(nO(M)/6));

7} < Estimate-Noise-Raté) /5, a/8C(M));
h — \;
while no copy oExact-Noisy-Learn-with-Resetis completed do:

N

(A) w < Execute-Homing-Sequendg);

(B) if a copy ENLR, of Exact-Noisy-Learn-with-Rese{N, §/(5n%)) does not exist, then
create such a new copy;

(C) simulate the next step &N LR, by performing the corresponding wailk; let 6; (w) be
the output of the state reached, where the number of times) has been executed.

(D) if i = N then letf(w) = (1/N) 3.~ | 6i(w). if
n+a/AC(M) < f(w) < (1—17)—a/4C(M)

then do:
i. h—h-w;
ii. discard all existing copies dExact-Noisy-Learn-with-Resef and go to 4;
[* restart algorithm with extendeld */

(otherwise, the value of the entry is set to be the majority observed lakéNof; R+);

(E) ifthe observation tabl&, of ENLR, is consistent and closed then outpguf’~;
I* ENLR, has completed */

(F) if T% is consistent but not closed, then disc&i&/ LR;

Figure 6. Algorithm Exact-Noisy-Learn. Algorithm Exact-Noisy-Learn-with-Reset is a variant ofExact-
Learn-with-Reset in which given an integeN, each walk to fill in an entry in the table is repeat¥dimes and
the majority valued is entered.

2. Forsome copy EN LR, and for one of its effective starting states g, there exists
a state ¢’ in @ such that no row in T is labeled by a string which reaches ¢’
when starting from ¢. As in the noise-free case, in the course of the algorithtakes
on at most values. For each value there are at mostfective starting states for all
existing copiesE NLR,.. Since we simulate each copy with the paraméfébn?),
then with probability at least — 6/5, the above type of event does not occur.

3. For some candidate homing sequence h, the first distinguishing entry to be filled
is not detected. In order to ensure that this event does not occur with probability larger
thané /5, we do the following. We first ensure that with probability at Ieas® /10, for
each such entry, and for some pair of effective starting states which are distinguished
by this entry, the fraction of times we execute the corresponding walk starting from

EXACTLY LEARNING AUTOMATA OF SMALL COVER TIME 91

each of these states is at leagtC(M). We then ensure that with probability at least

1 — 4/10 the fraction ofl’s observed does not differ from its expectation by more
thana/8C(M). As we have argued at the opening of this subsection, in such a case,
distinguishing entries are always detected.

We start with the former requirement. By Equation (15), if
N =Q(C(M)log(n/d)),

then the probability that a given distinguishing entry is not detected is atdyibst.
The probability that this event occurs for ahyis at mosty/10. As for the second
requirement, by Hoeffding’s inequality, it suffices that

N=0Q <(¥)210g(n/6)>

4. For some table and some non-distinguishing entry in the table, the majority
observed outputis incorrect, or the entry is thought to be distinguishing. To avoid
the latter type of error (which also means that we avoid the former) we need to ensure
that for all entries (in all tables) the fraction B observed when filling each entry does
not differ by more thai/8C (M) from its expected value (which is eithegor (1 —17)).
We construct at most? tables, each of siz@ (nC(M) log(5n?/§)). Thus we simply
need to seiV to be larger than our previous bound by a facto@og(nC'(M)/§)) in
order to ensure that this type of event does not occur with probability greatef than
We thus require that

N=0Q ((@)2 1og2(nC(M)/5)>

5. For some execution of a candidate sequence h (where execution here will ac-
tually denote the m consecutive executions of h), the output computed for h is
incorrect. The maximum length of is O(n?C(M) log(5n2/6)), and the number of
values taken by when computingpj(”) isn. h takes on at most values, and for each
value,h is executed at most|T'| N times wheréT'| denotes the maximum size of each
table and i) (nC (M) log(5n2/6)). By Hoeffding’s inequality, if

mQ((Z)2log nC(M)J\/(;log(n/é)) ’ (20)

then with probability at least — 6/5, every 1/)](.”) is at mosta/2n away from its
expected value. From the discussion following Equation (13) this suffices for the
correct computation of the output sequence correspondihg to

92 D. RON AND R. RUBINFELD

The running time of the algorithm is bounded by the sum of:
1. the running time of Procedukestimate-Noise-Rate

2. the number of phases of the algorithm (one for each valig which isn, multiplied
by the running time of each phase.

The running time of Procedufestimate-Noise-Rate is
O(Ln*) = O ((C(M))*>n*a*log(n/6))
(whereL is defined in Figure 4). The running time of each phase is the product of:

e the number of copies dExact-Noisy-Learn-with-Reset in each phase (which is at
mostn),

e the number of entries added to each table (whiah [&C (M) log(5n?/96))),
e the number of times the walk corresponding to each entry is repeated (which is
2
v =0 ((<42) g ucan/))
e the sum of:

— the maximum length of each walk to fill in an entry (which is
O (C(M)log(5n2/6))),
- the maximum length of (which isO (n?C(M) log(5n?/6))) timesm,
— and the maximum length of the random walk performed prior to the execution of
h™ (which isC'(M)).
We have thus proven the following theorem:

THEOREM 3 Algorithm Exact-Noisy-Learn is an exact learning algorithm in the pres-
ence of noise for DFAs, and its running time is:

) (7”L2(C’(M))2cf4 log(n/8) +n” (C(M))* a2 10g5(C(M)/a6)>

Acknowledgments

We wish to thank Michael Kearns and Rob Schapire for conversations that stimulated this
line of research. Dana Ron would like to thank the Eshkol Fellowship for its support. Part
of this work was done while the authors were visiting AT&T Bell Laboratories.

EXACTLY LEARNING AUTOMATA OF SMALL COVER TIME 93

Appendix A

Rivest and Zuckerman’s example

We describe below a pair of automata, constructed by Rivest and Zuckerman (1992), which
have the following properties. Both automata have small cover time (ordelogfr), but
the probability that a random string distinguishes between the two is exponentially small.
The automata are depicted in Figure A.1.

The first automaton)/, is defined as follows. It has = 3k states that are ordered in
k + 1 columns wheré: is odd. Each state is denoted 4y, j|, where0 < i < k is the
column the state belongs to, ahdk j < 3 is its height in the column. The starting state,
q[0, 1] is the only state in colum@. In columnl there are two stateg|1, 1] andq[1, 2], and
in all other columns there are three states. All states have dugxaept for the statglk, 1]
which has output. The transition functionz (-, -), is defined as follows. Fdr < ¢ < k,

7(q[i,7],0) = q[i + 1,maz(1,i — 1)],

and

0/1

0/1

Figure A.1.Automata)M; and M2 described in the Appendix

94 D. RON AND R. RUBINFELD

7(qli,7],1) = q[i + 1,min(3,i + 1)] .

All transition from the last column are tdo0, 1], i.e., fore € {0,1}, 7 (¢[k, j], o) = ¢[0, 1].

The second automatoti/,, is defined the same ad,, except for the outgoing edges
of ¢[0, 1], which are switched. Namely, i3, 7 (¢[0, 1],0) = ¢[1, 2], andr (¢[0,1],1) =
q[1,1].

The underlying graphs af/; and M, have a strongynchronizingoroperty: any walk
performed in parallel on the two graphs, in which there are either two consegstaawo
consecutivd’s (where the latter does not include the first two symbols), will end up in the
same state on both graphs. Therefore ahiy way to distinguish between the automata is
that after any outgoing edge [0, 1] is traversed, to perform a walk corresponding to the

sequencélo) “* . The probability this sequence is chosen on a random walk of polynomial
length is clearly exponentially small.

Notes

1. Combination-lock automata hawestatesg;, . . ., g, for which the output label of;,1 < i <n —1is0
and the output label af,, is 1. The start state ig . For eachy;, 1 < i < n — 1, there is one outgoing edge
labeled by0, and one labeled by, where one of these outgoing edges goeg tand the other goes g ;.

The statey,, has an outgoing edge directedgpand another directed to itself. The sequence of inputs that
cause the automaton to traverse the state sequence , g, in order is called the “combination”. The single
accepting state is reachable only when the learner performs a walk which corresponds to the combination. All
other walks result in an all zero sequence of outputs.

2. We refer here to the stationary distribution as determined by the Markov chain corresponding to the graph in
which for each state, all outgoing edges are assigned equal probability.

3. Adistinguishing sequence is a sequence of input symbols with the following property. If the automaton is at
some unknown starting state and is given the sequence as input, then the output sequence observed determines
this unknown starting state.

4. There is a slight difference between the learning scenario and the game playing scenario since in the latter,
the player sees the action chosen by the opponent only after choosing its action. However, our algorithms can
easily be modified to adapt to this difference.

5. For certain games, suchasnny matchingwhere the player gets positive payoff if and only if it matches the
opponent’s action), the combination-lock argument cannot be applied. When the underlying game is penny
matching, Fortnow and Whang (1994) describe an algorithm that finds an optimal strategy efficiently, using
ideas from Rivest and Schapire’s (1993) learning algorithm (but without actually learning the automaton).

6. Though we assume that with high probability the event that the table is not closed does not occur, we add this
last statement for completeness. We could of course solve this situation as in Angluin’s algorithm, but we
choose this solution for the sake of brevity.

7. Asin (Rivest, & Schapire, 1993), we actually need not discard all copies and restart the algorithm, but we
may only discard the copy in which the disagreement was found, and constragaptivehoming sequence
which results in a more efficient algorithm. For sake of simplicity of this presentation, we continue with the
use of thepresethoming sequence.

8. Note that each such entry is uniquely determined by the cutrehi initial random walks which label the
rows of the corresponding tables, and the random walks executed prior to the previous executions of

EXACTLY LEARNING AUTOMATA OF SMALL COVER TIME 95

References

Aleliunas, R., & Karp, R. M., & Lipton, R. J., & Lo&$z, L., & Rackoff, C. (1979). Random walks, universal
traversal sequences, and the complexity of maze problenfyoteedings of the Twentieth Annual Symposium
on Foundations of Computer Scien@p. 218-223).

Angluin D. (1981). A note on the number of queries needed to identify regular languafesmation and
Control, 51,76-87.

Angluin D. (1987). Learning regular sets from queries and counterexamplésrmation and Computatign
75,87-106.

Angluin D. (1990). Negative results for equivalence queriachine Learning5,121-150.

Angluin, D., & and Laird, P. (1988). Learning from noisy example&chine Learning2,343-370.

Angluin. D., & Smith, C. H. (1983). Inductive inference: Theory and meth@itsmputing Survey45,237-269.

Bender, M., & Slonim, D. (1994). The power of team exploration: Two robots can learn unlabeled directed
graphs. IrProceedings of the Thirty Fifth Annual Symposium on Foundations of Computer Sgipn@®—85).

Bergando, F., & Varricchio, S. (1994). Learning behaviors of automata from multiplicity and equivalnece queries.
In Algorithms and complexity, Proceedings of the 2nd Italian conferguue54—62). To appear in Siam J. of
Computing.

Dean, T., & Angluin, D., & Basye, K., & Engelson, S., & Kaelbling, L., & Kokkevis, D., & Maron, O. (1995).
Inferring finite automata with stochastic output functions and an application to map leavaeine Learning
18,81-108.

Erglin, F., & Ravikumar, S., & Rubinfeld, R. (1995). On learning bounded-width branching programs. In
Proceedings of the Eighth Annual ACM Conference on Computational Learning T{pgor$61—-368).

Fortnow, L., & Whang, D. (1994). Optimality and domination in repeated games with bounded play&he In
25th Annual ACM Symposium on Theory of Computipg. 741-749).

Frazier, M., & Goldman, S., & Mishra, N., & Pitt, L. (1994). Learning from a consistently ignorant teacher. In
Proceedings of the Seventh Annual ACM Conference on Computational Learning {yeo828-339). To
appear in Journal of Computer Systems Science.

Freund, Y., & Kearns, M., & Mansour, Y., & Ron, D., & Rubinfeld, R., & Schapire, R. (1995). Efficient algorithms
for learning to play repeated games against computationally bounded adversafescdedings of the Thirty
Seventh Annual Symposium on Foundations of Computer S¢gm882—-341).

Freund, Y., & Kearns, M., & Ron, D., & Rubinfeld, R., & Schapire, R., & Sellie, R. (1993). Efficient learning of
typical finite automata from random walks. Broceedings of the 24th Annual ACM Symposium on Theory of
Computing(pp. 315-324).

Gilboa, I., & and Samet, D. (1989). Bounded versus unbounded rationality: The tyranny of the Geales
and Economic Behavipf,213-221.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random varialdesnal of the American
Statistical Associatiorb8,13-30.

Ibarra, O., & Jiang, T. (1988). Learning regular languaages from counterexamplesckedings of the 1988
Workshop on Computational Learning Theofgp. 371-385).

Kearns, M. & Valiant, L. (1994). Cryptographic limitations on learning Boolean formulae and finite automata.
Journal of the Association for Computing Machineft,67-95.

Kohavi, Z. (1978).Switching and Finite Automata TheorylcGraw-Hill, second edition.

Li, M., & Vazirani, U. (1988). On the learnability of finite automata. Pnoceedings of the 1988 Workshop on
Computational Learning Theorypp. 359-370).

Motwani, R., & Raghavan, P. (1995Randomized AlgorithmsCambridge University Press, first edition.

Rivest, R., & Schapire, R. (1993). Inference of finite automata using homing sequeinéesnation and
Computation 103,299-347.

Rivest, R., & Schapire, R. (1994). Diversity-based inference of finite autordatanal of the Association for
Computing Machinery43,555-589.

Rivest, R., & Zuckermann, D. (1992). Private communication.

Ron, D., & Rubinfeld, R. (1995). Learning fallible finite state autom&achine Learning18,149-185.

Sakakibara, Y. (1991). On learning from queries and couterexamples in the presence oflmf@saation
Processing Letters37,279-284.

Schapire, R., & Warmuth, M. (1990). Presented at COLT90 rump session, 1990.

96 D. RON AND R. RUBINFELD

Sinclair, A., & Jerrum, M. (1989) Approximate counting, uniform generation, and rapidly mixing Markov chains.
Information and Computatiqrd2,93-13.

Received September 15, 1995
Accepted April 4, 1996
Final Manuscript October 3, 1996

