
Machine Learning, 28, 211–255 (1997)
c© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Malicious Omissions and Errors in Answers to
Membership Queries

DANA ANGLUIN angluin@cs.yale.edu

MĀRTIŅŠ KRIĶIS krikis@cs.yale.edu

Department of Computer Science, Yale University, P.O. Box 208285, New Haven, CT 06520

ROBERT H. SLOAN sloan@eecs.uic.edu

Dept. of Electrical Eng. and Computer Science, 851 S. Morgan St. Rm 1120, University of Illinois at Chicago,
Chicago, IL 60607

GYÖRGY TURÁN u11557@uicvm.uic.edu

Dept. of Math., Stat., and Comp. Sci., 851 S. Morgan St. Rm 322, University of Illinois at Chicago, Chicago, IL
60607, Automata Theory Research Group Hungarian Academy of Sciences, Szeged

Editor: David Haussler

Abstract. We consider two issues in polynomial-time exact learning of concepts using membership and equiva-
lence queries: (1) errors or omissions in answers to membership queries, and (2) learning finite variants of concepts
drawn from a learnable class.

To study (1), we introduce two new kinds of membership queries: limited membership queries and malicious
membership queries. Each is allowed to give incorrect responses on a maliciously chosen set of strings in the
domain. Instead of answering correctly about a string, a limited membership query may give a special “I don’t
know” answer, while a malicious membership query may give the wrong answer. A new parameterL is used to
bound the length of an encoding of the set of strings that receive such incorrect answers. Equivalence queries
are answered correctly, and learning algorithms are allowed time polynomial in the usual parameters andL. Any
class of concepts learnable in polynomial time using equivalence and malicious membership queries is learnable
in polynomial time using equivalence and limited membership queries; the converse is an open problem. For
the classes of monotone monomials and monotonek-term DNF formulas, we present polynomial-time learning
algorithms using limited membership queries alone. We present polynomial-time learning algorithms for the
class of monotone DNF formulas using equivalence and limited membership queries, and using equivalence and
malicious membership queries.

To study (2), we consider classes of concepts that are polynomially closed under finite exceptions and a
natural operation to add exception tables to a class of concepts. Applying this operation, we obtain the class
of monotone DNF formulas with finite exceptions. We give a polynomial-time algorithm to learn the class
of monotone DNF formulas with finite exceptions using equivalence and membership queries. We also give a
general transformation showing that any class of concepts that is polynomially closed under finite exceptions and is
learnable in polynomial time using standard membership and equivalence queries is also polynomial-time learnable
using malicious membership and equivalence queries. Corollaries include the polynomial-time learnability of the
following classes using malicious membership and equivalence queries: deterministic finite acceptors, boolean
decision trees, and monotone DNF formulas with finite exceptions.

Keywords: Concept learning, queries, errors

1. Introduction

There is an impressive and growing number of polynomial-time algorithms, many of them
quite beautiful and ingenious, to learn various interesting classes of concepts using equiva-

212 D. ANGLUIN, ET AL.

lence and membership queries. To apply such algorithms in practice, researchers need to
overcome a number of problems.

One significant issue is the problem of omissions and errors in answers to queries. Previous
learning algorithms in the equivalence and membership query model are guaranteed to
perform well assuming that queries are answered correctly, but there is often no guarantee
that the performance of the algorithm will “degrade gracefully” if that assumption is not
exactly satisfied.

Lang and Baum (1992) report that this problem derailed their attempt to apply Baum’s
algorithm for learning neural nets from examples and membership queries (Baum, 1991) to
the problem of recognizing hand-written digits. The attempt failed because the membership
questions posed by the algorithm were too difficult for people to answer reliably. The
algorithm typically asked membership queries on, say, a random-looking blur midway
between a “5” and a “7,” and the humans being queried gave very inconsistent responses.
Studies in cognitive psychology indicate that this is the norm; people are typically quite
inconsistent in deciding where the precise boundary of a concept lies. (See, e.g., Anderson
(1980).)

1.1. Omissions and Limited Membership Queries

This motivated us to introduce the limited membership query. A limited membership query
may be answered either correctly, or with an omission, that is, a special value signifying “I
don’t know.” The answers are persistent; that is, repeated queries about the same example
are given the same answer. The choice of the set of strings on which to give answers of
“I don’t know” is assumed to be made by a malicious adversary. We introduce a new
parameterL to quantify the “amount” of omission—it is a bound on the table-size of the
set of strings on which the adversary answers “I don’t know.” (The table-size of a set of
strings is the number of strings in the set plus the sum of their lengths.) A polynomial-time
learning algorithm is permitted time polynomial in the usual parameters andL.

For this model, we define a hypothesis to be “nonstrictly” correct if it agrees with the
target concept on all examples except possibly ones for which a limited membership query
was answered “I don’t know.” Thus, domain elements answered with “I don’t know” are
allowed to be classified arbitrarily by the final hypothesis of a learning algorithm. This
corresponds to the intuition that since a person could not be sure of the classification of a
“blur between 5 and 7”, it does not matter how the final hypothesis classifies it.

We give a polynomial-time learning algorithm using just limited membership queries
for the class of monotone monomials and a lower bound on the query complexity of this
problem. We also give a polynomial-time learning algorithm in this model for the class of
k-term monotone DNF formulas.

We also consider combining limited membership queries with equivalence queries. We
assume that the answers to equivalence queries remain correct, that is, any counterexample
given is truly a counterexample to the hypothesis of the learning algorithm. In the nonstrict
model, the equivalence query is answered “yes” if the hypothesis is nonstrictly correct;
otherwise a counterexample must be returned from among examples not answered with “I
don’t know.” In the strict model, equivalence queries remain as usual, that is, an equivalence
query is answered with “yes” if the hypothesis is exactly equivalent to the target concept;

MALICIOUS OMISSIONS AND ERRORS 213

otherwise an arbitrary counterexample is returned (including possibly an example previously
answered with “I don’t know.”)

We show that the same classes of concepts can be learned in polynomial time using limited
membership queries and equivalence queries in the nonstrict and strict models. We give
a polynomial-time algorithm to learn monotone DNF formulas using limited membership
queries and equivalence queries in the nonstrict model.

1.2. Malicious Membership Queries and Errors

In the case of limited membership queries, the answers that are not omissions are guaranteed
to be correct. We also consider the situation in which the answers to membership queries
may be wrong. In a malicious membership query, the answer given may be correct, or
it may be an error. As in the case of limited membership queries, we use the parameter
L to bound the table-size of the set of strings whose malicious membership queries are
answered erroneously, the choice of that set of strings is assumed to be made by a malicious
adversary, and the answers to queries are persistent. We assume that equivalence queries
remain correct, which corresponds to the strict model introduced above. That is, the final
hypothesis of the learning algorithm must be exactly equivalent to the target concept.

We give a polynomial-time algorithm to learn monotone DNF formulas using malicious
membership queries and equivalence queries. It is not difficult to see that any concept
class learnable in polynomial time using malicious membership queries and equivalence
queries is learnable in polynomial time using limited membership queries and equivalence
queries, but the converse direction is an interesting open question. We exhibit a class
of concepts for which the query complexity for equivalence and malicious membership
queries is not bounded by any polynomial in the query complexity for equivalence and
limited membership queries, but both complexities are exponential in the number of strings
that receive incorrect answers.

1.3. Finite Exceptions

A related issue is the assumption that the target concept is drawn from a particular class
of concepts, for example, monotone DNF formulas. Even if the target concept is “nearly”
a monotone DNF formula, there is typically no guarantee that the learning algorithm will
do anything reasonable. We approach this question by considering finite variants of the
concepts in a given class, using the table-size of the set of exceptions as a measure of “how
different” the target concept is from one in the specified class.

We define what it means for a concept class to be polynomially closed under finite
exceptions. Some concept classes, for example, DFA’s and decision trees, are polynomially
closed under finite exceptions, while others, like monotone DNF formulas, are not. For the
latter, we define a natural operation of adding exception tables to the concept class to make
it polynomially closed under exceptions. We give a polynomial-time learning algorithm
for the resulting class of monotone DNF formulas with finite exceptions, using equivalence
queries and standard membership queries.

We then give a general transformation that shows that any class of concepts that is poly-
nomially closed under exceptions and polynomial-time learnable using equivalence que-

214 D. ANGLUIN, ET AL.

ries and standard membership queries is also polynomial-time learnable using equivalence
queries and malicious membership queries. Corollaries include polynomial-time learning
algorithms using equivalence queries and malicious membership queries for the concept
classes of DFA’s, decision trees, and monotone DNF formulas with finite exceptions.

The notion of a finite variant of a concept, that is, a concept with a finite set of excep-
tions, is a unifying theme between the models of learning with equivalence and malicious
membership queries and of learning a concept class with finite exceptions. Our model of
errors in membership queries can be viewed as combining an equivalence oracle for the
target concept and a membership oracle for a finite variant of the target concept. In the case
of learning a concept class with finite exceptions, the equivalence and membership oracles
present the same finite variant of a concept in the base class. In both cases, the goal is to
identify exactly the concept presented by the equivalence oracle.

1.4. Related Work

There is a considerable body of literature on errors in examples in the PAC model, starting
with the first error-tolerant algorithm in the PAC model, given by Valiant (1985). In this case
the goal is PAC-identification of the target concept, despite the corruption of the examples
by one or another kind of error, for example, random or malicious misclassification errors,
random or malicious attribute errors, or malicious errors (in which both attributes and
classification may be arbitrarily changed).

There has been not as much work on omissions and errors in learning models in which
membership queries are available, and the issues are not as well understood. One relevant
distinction is whether the omissions of errors in answers to membership queries are persistent
or not. They arepersistentif repeated queries to the same domain element always return the
same answer. In general, the case of persistent omissions or errors is more difficult, since
non-persistent omissions or errors can yield extra information, and can always be made
persistent simply by caching and using the first answer for each domain point queried.

1.5. Non-persistent Errors in Queries

Sakakibara defines one model of non-persistent errors, in which each answer to a query
may be wrong with some probability, and repeated queries constitute independent events
(Sakakibara, 1991). He gives a general technique of repeating each query sufficiently often
to establish the correct answer with high probability. This yields a uniform transforma-
tion of existing query algorithms. The method also works for both of Bultman’s models
(Bultman, 1991). This could be a reasonable model of a situation in which the answers to
queries were being transmitted through a medium subject to random independent errors;
then the technique of repeating the query is eminently sensible.

A related model is considered by Dean et al. (1995) for the case of a robot learning a
finite-state map of its environment using faulty sensors and reliable effectors. This model
assumes that observation errors are independent as long as there is a nonempty action
sequence separating the observations. This means that there is no simple way to “repeat
the same query”, since a nonempty action sequence may take the robot to another state,
and no reset operation is available. A polynomial-time learning algorithm is given for the

MALICIOUS OMISSIONS AND ERRORS 215

situation in which the environment has a known distinguishing sequence. It achieves exact
identification with high probability.

1.6. Persistent Errors in Membership Queries

The method of “repeating the query” is insufficient for the more difficult case of persis-
tent omissions or errors in membership queries. In this case, we must exploit the error-
correcting properties of groups of “related” queries. In an explicit and very interesting
application of the ideas of error-correcting algorithms, Ron and Rubinfeld use the criterion
of PAC-identification with respect to the uniform distribution, and give a polynomial-time
randomized algorithm using membership queries to learn DFA’s with high rates of random
persistent errors in the answers to the membership queries (Ron & Rubinfeld, 1995).

Algorithms that use membership queries to estimate probabilities (in the spirit of the
statistical queries defined by Kearns (1993)) are generally not too sensitive to small rates
of random persistent errors in the answers to queries. For example, Goldman, Kearns, and
Schapire give polynomial-time algorithms for exactly learning read-once majority formulas
and read-once positive NAND formulas of depthO(logn) with high probability using
membership queries with high rates of persistent random noise or modest rates of persistent
malicious noise (Goldman, Kearns & Schapire, 1993). As another example, Kushilevitz
and Mansour’s algorithm that uses membership queries and exactly learns logarithmic-
depth decision trees with high probability in polynomial time seems likely to be robust
under nontrivial rates of persistent random noise in the answers to queries (Kushilevitz
& Mansour, 1993).

However, learning algorithms for other classes of concepts using equivalence and mem-
bership queries may depend more strongly on the correctness of the answers to individual
queries; in these cases, there is no guarantee of a learning algorithm for the class that can
tolerate omissions or errors in the answers to membership queries.

One model that addressed these questions was introduced by Angluin and Slonim: equi-
valence queries are assumed to be answered correctly, while membership queries are either
answered correctly or with “I don’t know” and the answers are persistent. The “I don’t
know” answers are determined by independent coin flips the first time each query is made
(Angluin & Slonim, 1994). They give a polynomial-time algorithm to learn monotone
DNF formulas with high probability in this setting. They also show that a variant of this
algorithm can deal with one-sided errors, assuming that no negative point is classified as
positive. Goldman and Mathias also consider this model (Goldman & Mathias, 1992). Our
current models and results differ in that the omissions and errors are chosen by a malicious
adversary instead of a random process, and the rate of incorrect answers that can be tolerated
is consequently much lower.

Frazier et al. (1994) have introduced a model of omissions in answers to membership
queries, called learning from a consistently ignorant teacher. The basic idea is to require
that if the teacher gives answers to certain queries that would imply a particular answer to
another query, the teacher cannot answer the latter query with “I don’t know.” For example,
in the domain of monotone DNF formulas, if the teacher classifies a particular point as
positive, then the teacher cannot answer “I don’t know” about any of the ancestors of the
point. The goal of the learner is to learn exactly the ternary classification of points into

216 D. ANGLUIN, ET AL.

positive, negative, and “I don’t know” that is presented by the teacher. Such a ternary
classification may be represented by theagreementof a set of binary-valued concepts; the
agreement classifies a point as positive (respectively, negative) if all the concepts in the set
classify it as positive (respectively, negative), otherwise, the agreement classifies the point
as “I don’t know.” Efficient learning algorithms are given in this model for monomials
with at least one positive example, concepts represented as the agreement of a constant
number of monotone DNF formulas,k-term DNF formulas, DFA’s, or decision trees, and
concepts represented by an agreement of boxes with samplable intersection. Compared
to our model, this model has a different measure of the representational complexity of a
concept with omissions, which allows a much higher rate of omissions to be compactly
represented. It also differs in requiring the learner to reproduce exactly the “I don’t know”
labels of the teacher, whereas in our (nonstrict) model of omissions such examples can be
classified arbitrarily.

2. Preliminaries

2.1. Concepts and Concept Classes

Our definitions for concepts and concept classes are a bit non-standard. We have explicitly
introduced the domains of concepts in order to try to unify the treatment of fixed-length
and variable-length domains. We takeΣ andΓ to be two finite alphabets. Examples are
represented by finite strings overΣ and concepts are represented by finite strings overΓ.

A conceptconsists of a pair(X, f), whereX ⊆ Σ∗, andf mapsX to {0, 1}. The setX
is thedomainof the concept. Thepositive examplesof (X, f) are thosew ∈ X such that
f(w) = 1, and thenegative examplesof (X, f) are thosew ∈ X such thatf(w) = 0. Note
that strings not in the domain of the concept are neither positive nor negative examples of
it.

A concept classis a triple(R,Dom, µ), whereR is a subset ofΓ∗, Domis a map fromR
to subsets ofΣ∗, and for eachr ∈ R, µ(r) is a function fromDom(r) to {0, 1}. R is the
set of legal representations of concepts. For eachr ∈ R, theconcept represented byr is
(Dom(r), µ(r)).

A concept(X, f) is represented bya concept class(R,Dom, µ) if and only if for some
r ∈ R, (X, f) is the concept represented byr. Thesizeof a concept(X, f) represented by
(R,Dom, µ) is defined to be the length of the shortest stringr ∈ R such thatr represents
(X, f). The size of(X, f) is denoted by|(X, f)|; note that it depends on the concept class
chosen.

The concept classes we consider in this paper are boolean formulas and syntactically
restricted subclasses of them, boolean decision trees, and DFA’s. The representations are
more or less standard, except each concept representation specifies the relevant domain. For
DFA’s, the domain of every concept is the setΣ∗ itself. For boolean formulas and decision
trees, we assume thatΣ = {0, 1}, and each concept representation specifies a domain of
the form{0, 1}n.

For each finite setS of strings fromΣ∗, we define itstable-size, denoted||S||, as the sum
of the lengths of the strings inS and the number of strings inS. Note that||S|| = 0 if and

MALICIOUS OMISSIONS AND ERRORS 217

only if S = g�� . The table-size of a set of strings is related in a straightforward way to an
encoding of a list of the strings; see Section 5.

2.2. Queries

For a learning problem we assume that there is an unknown target conceptr drawn from
a known concept class(R,Dom, µ). Information about the target concept is available to
the learning algorithm as the answers to two types of queries: equivalence queries and
membership queries.

In an equivalence query, the algorithm gives as input a conceptr′ ∈ R with the same
domain as the target, and the answer depends on whetherµ(r) = µ(r′). If so, the answer
is “yes”, and the learning algorithm has succeeded in its goal of exact identification of the
target concept. Otherwise, the answer is acounterexample, any stringw ∈ Dom(r) on
which the functionsµ(r) andµ(r′) differ. We denote an equivalence query on a hypothesis
h by EQ(h).

The label for a counterexamplev = EQ(r′) is the value ofµ(r) on v, giving its classi-
fication by the target concept. Since the hypothesized conceptr′ and the target conceptr
differ on the classification of the counterexamplev, the label ofv is also the complement
of the value ofµ(r′) on v. Positive counterexamplesare those with label1 andnegative
counterexamplesare those with label0.

In a membership query, the learning algorithm gives as input a stringw ∈ Dom(r), and
the answer is either 0, 1, or⊥. If the answer is equal to the value ofµ(r) onw, then the
answer iscorrect. If the answer is equal to⊥, we say that the answer is anomissionor a
“Don’t know” . If the answer is 0 or 1 but not equal to the value ofµ(r) onw, then the
answer is anerror or a lie.

In astandard membership query, denotedMQ, all the answers are required to be correct.
In a limited membership query, denotedLMQ, each answer is required to be correct or an
omission. In amalicious membership query, denotedMMQ, each answer is required to be
correct or an error (no omissions). Note that an answer of 0 or 1 to a limited membership
query is always correct, but this is not true for answers to malicious membership queries.

The answers to malicious and limited membership queries are also restricted as follows.

1. They arepersistent; that is, different membership queries with the same input stringw
receive the same answer. Note that non-persistent queries may reveal some information;
in case two different queries to the same string receive different answers, the learning
algorithm knows that there has been an error on this string, though this will not in
general determine the correct classification of the string. Every algorithm designed to
work with persistent queries can be made to work with non-persistent ones by caching
the queries and always using the first answer for subsequent queries of the same string.

2. In addition, we bound the quantity of errors (or omissions) permitted in answers to
malicious (resp., limited) membership queries. One natural quantity to bound would be
the number of different strings whose membership queries can be answered incorrectly,
and this works well in fixed-length domains. However, in variable-length domains, we
wish to account for the lengths of the strings as well as their number.

218 D. ANGLUIN, ET AL.

Therefore, in general the algorithm is given a boundL on the table-size,||S||, of the
setS of strings whose malicious (resp., limited) membership queries are answered
erroneously (resp., with a⊥) during a single run. In the case of a fixed-length domain,
{0, 1}n, we may instead give a bound`on the number of different strings whoseMMQ’s
(resp.,LMQ’s) are answered incorrectly (resp., with a⊥). Note thatL = `(n+ 1) is
a bound on the table-size in this case.

Note that whenL = 0 or ` = 0 there can be no errors or omissions in the answers to
MMQ’s (or LMQ’s) and we have the usual model of standard membership queries as
a special case.

We assume that an on-line adversary controls the choice of counterexamples in answers to
equivalence queries and the choice of which elements of the domain will be answered with
errors (or⊥’s) in malicious (or limited) membership queries. When the learning algorithms
we consider are deterministic, the adversary may be viewed as choosing in advance the set
of strings for which it will give incorrect answers to membership queries, as well as all the
counterexamples it will give to equivalence queries.

In this paper we consider models in which the learning algorithm has access to the
following combinations of queries:

1. membership and equivalence queries,

2. limited membership queries alone,

3. limited membership queries and equivalence queries, and

4. malicious membership queries and equivalence queries.

Model (1) is just the usual model of a minimally adequate teacher (Angluin, 1987). In model
(2), the learning algorithm need only achievenonstrict identification. In other words, the
concept output by the learning algorithm must agree with the target concept on all points
not answered⊥ by the LMQ, but it may differ on points answered⊥. This corresponds to
our view that⊥ points form the borderline of the concept and that the classification of them
is irrelevant or meaningless.

For model (3) we consider bothnonstrictandstrict variants. In the nonstrict variant,
equivalence queries are modified so that if the queried concept and the target concept
differ only on points classified as⊥ by the LMQ, then the reply is “yes”. Otherwise, a
counterexample must be given from the set of points not classified as⊥ by the LMQ. In
this case, as in model (2), only nonstrict identification is required. In the strict variant of
model (3), as well as in model (4), equivalence queries are not modified, and the learning
algorithm is required to achieve the usual kind of exact identification, that is, the output
concept must agree with the target concept on every point in their common domain.

We extend the usual notion of polynomial-time learning to models (2-4) by allowing the
polynomial bound on the running time to depend on three parameters, that is,p(s, n, L).
Heres is the usual parameter bounding the length of the representation of the target concept,
n is the usual parameter bounding the length of the longest counterexample seen so far, and
L is a new parameter, bounding the table-size of the set of strings on which LMQ answers
⊥ or MMQ gives incorrect answers.

MALICIOUS OMISSIONS AND ERRORS 219

The definitions are extended in the usual way to cover randomized learning algorithms and
their expected running times, and also extended equivalence queries, in which the inputs to
equivalence queries and the final result of the algorithm are allowed to come from a concept
class different from (usually larger than) the concept class from which the target is drawn.

It is straightforward to transform any algorithm that uses malicious membership queries
into one that uses limited membership queries. Every⊥ answer can be replaced by a 0 or a 1
arbitrarily and given to the learner. Therefore learning with malicious membership queries
is at least as hard as learning with limited membership queries in the strict model. The
same applies to learning from equivalence and malicious membership queries and learning
from equivalence and limited membership queries in the strict model. Furthermore, in
Subsection 6.3 we show that the strict and the nonstrict models of learning from equivalence
and limited membership queries are in fact polynomial-time equivalent. Note that the most
general kind of membership queries is one in which both wrong and⊥ answers are possible,
but such queries are not harder than the malicious ones and therefore we consider only the
latter.

2.3. Monotone DNF Formulas

We assume a set of propositional variablesV and denote its elements byx1, x2, . . . , xn,
wheren is the cardinality ofV . A monotone DNF formula overV is a DNF formula over
V where no literal is negated. The domain of such a formula is{0, 1}n. For example, for
n = 20,

x1x4 ∨ x2x17x3 ∨ x9x5x12x3 ∨ x8

is a monotone DNF formula (with domain{0, 1}20). We assume that the target formula
h∗ has been minimized, that is, it contains no redundant terms. (Incidentally, there is an
efficient algorithm to minimize the number of terms of a monotone DNF formula.) For a
monotone DNF formulaf , let#(f) denote the number of terms inf . In the above example,
#(f) = 4.

We view the domain{0, 1}n of monotone DNF formulas (with or without exceptions)
as a lattice, with componentwise “or” and “and” as the lattice operations. The top element
is the vector of all 1’s, and the bottom element is the vector of all 0’s. The elements are
partially ordered by≤, wherev ≤ w if and only if v[i] ≤ w[i] for all 1 ≤ i ≤ n. Often we
refer to the examples as points of the hypercube{0, 1}n. For a pointv, all pointsw such that
w ≤ v are called thedescendantsof v. Those descendants that can be obtained by changing
exactly one coordinate ofv from a 1 to a 0 arecalled thechildrenof v. Theancestorsand
theparentsare defined similarly. Note thatv is both a descendant and ancestor of itself.

For convenience, we use a representation of monotone DNF formulas in which each term
is represented by the minimum vector, in the ordering≤, that satisfies the term. Thus,
vector 10011 (wheren = 5) denotes the termx1x4x5. In this representation, ifh is a
monotone DNF formula andv is a vector in the domain,v satisfiesh if and only if for some
termt of h, t ≤ v. That is, a monotone DNF formula is satisfied only by the ancestors of
its terms. In the other direction, we say that termt coverspoint v if and only if v satisfies
t. For the sake of simplicity we often use in our algorithms something called “the empty

220 D. ANGLUIN, ET AL.

DNF formula”. This is the formula with no terms, which is not satisfied by any point, and
is therefore the identically false formula.

For anyn-argument boolean functionf , we call pointx a local minimum pointof f if
f(x) = 1 but for every childy of x in the lattice,f(y) = 0. The local minimum points of
a minimized DNF formula represent its terms in our representation.

For twon-argument boolean functionsf1 andf2 we define the setErr(f1, f2) to be the
set of points where they differ. I.e.,Err(f1, f2) = {x | f1(x) 6= f2(x)}. The cardinality
of Err(f1, f2) is called thedistancebetweenf1 andf2 and is denoted byd(f1, f2).

3. Limited Membership Queries

In this section, we present results concerning learning with the help of limited membership
queries. We start with the description of a subroutine that is repeatedly used in all algorithms
for this model.

3.1. Delimiting A Term

Algorithm Delimit takes a positive point and finds a set of candidates for a term in
the target concept covering the point. This algorithm plays the role of the algorithms
called “Reduce” in other works on learning monotone DNF (Angluin & Slonim, 1994).
We choose a different name because those algorithms output a single monomial, whereas
Algorithm Delimit finds a set of points that must include a correct term.

0111

1111

1011 1101 1110

0000

0001 0100 10000010

0011 0101 0110 1001 1010 1100

+

- ? +

?- ?

?

-

?-

Figure 1. Example run of AlgorithmDelimit for target conceptx1x2. Boldface+’s, −’s and ?s indicate
responses 1, 0, and⊥, respectively, of theLMQ oracle.

Consider, for example, the situation in Figure 1 where the target concept isx1x2, and we
start with the known positive pointp = 1111. With complete information, we would begin
by querying each child ofp, updatingp to be the first positive child found. This process
would be repeated until eventually we hadp = 1100. After determining by membership
queries that every child ofp is negative, we could stop.

MALICIOUS OMISSIONS AND ERRORS 221

Delimit(p)
f

o�bits = 00 � � � 0
| {z }

n

hroot; DKi = Down(p; o�bits)
hP;DKi = Up(DK)
P = P [frootg
T = DK [frootg
Return hT; P i

g

Figure 2. Algorithm Delimit. offbits is a bit array used in recursive subroutineDown to improve efficiency;
root is a special positive point (with everything beneath it being negative or belonging toDK); DK is a certain
set of points withLMQ ⊥, created byDown and further thinned byUp; P is a certain set of positive points
aboveDK, a useful byproduct ofUp; T is the set of points among which the correct term of the target formula
must lie.

Because AlgorithmDelimit can make only limited membership queries, it may encoun-
ter the difficulty that some positive pointp has children that are all “Don’t know,” or a mix
of “No” and “Don’t know.” For instance, in the example in Figure 1, all queries of children
of 1101 return 0 or⊥. In this case, AlgorithmDelimit continues by querying all the
children ofall the “Don’t know” points. Should it ever get another 1 response to a limited
membership query, it replacesp by that point. What we have just described is the subroutine
Down of Delimit, which invokes itself recursively upon finding a new positive point.

Detailed code of algorithmDelimit and its subroutines is given in Figures 2, 3 and 5. In
our C-like pseudocode we often use aFor loop over a changing set of points; for example,
“For (eachb ∈ A)”. By this we mean that in each iteration of the loop the current point
(i.e.,b in this example) is marked, and that only unmarked points can be considered in the
next iterations. Furthermore, the loop condition is checked every time, that is, we check
for an existence of some unmarked point in the possibly changing set (A in this example).
If one exists, we mark it and do the body of the loop which may add new (unmarked)
points to the set or delete some existing points (either marked or unmarked). Points that
are deleted before marking are not processed. Furthermore, to ensure that the algorithms
are deterministic, we need that the current point is chosen according to some unambiguous
rule, i.e., there must not be any choice as to which unmarked point of the set will be marked
and processed next. Thus, we assume that there is some total order on all the elements in
the sample space and use this to unambiguously choose the current point. When the points
of the sample space correspond to assignments of 0 and 1 ton variables, the easiest total
order is created by treating each point as ann-bit number. In all our algorithms that learn
boolean formulas, we assume that this total order is used and always pick the point with the
lowest number.

Another thing worth explanation about our pseudocode is the use of〈·, ·, . . . , ·〉 on the
left side of assignments and as return values for subroutines. We do this to avoid confusing
global variables or things passed by reference. Thus, everything is passed by value (by
making a copy in the called subroutine) and everything that the calling routine needs is
returned to it explicitly. If many things need to be returned, then we put them in a tuple,

222 D. ANGLUIN, ET AL.

denoted by〈·, ·, . . . , ·〉, and return the tuple. The tuple is basically just a convenient notation
for a structure.

Down(p; o�bits)

f

DK = g��
C = f c : c is a child of p && c � o�bits g

While (C 6= g��)

f
a = maximal element of C with the lowest number

Delete a from C

If (LMQ(a) == 1)

Return Down(a; o�bits)

Else If (LMQ(a) == ?)

f
DK = DK [fag
C = C [f c : c is a child of a && c � o�bits g

g
Else If (a is a child of p)

f
i = bit where a and p di�er

o�bits[i] = 1

g
g
Return hp;DKi

g

Figure 3. SubroutineDown. p is the point it is called on;offbitsis a bit array used to improve efficiency;DK is
a set of points withLMQ⊥ and with all descendants⊥ or negative;C is a set of points that have to be processed
in the main loop.

The subroutineDown uses a variableoffbits to improve efficiency. If a query to a child
a of a known positive pointp gives a 0 response, then we know that in any descendant of
p, switching off the bit position that distinguishesa from p will lead to a negative point,
because this point will be a descendant ofa. Therefore, variableoffbitskeeps track of those
bit positions that must be 1, allowing subroutineDown to save some queries.

EventuallyDown is called on some positive pointp and finds a (possibly empty) set
DK of descendants ofp such that the limited membership oracle responded⊥ for every
point inDK, and all other proper descendants ofp are known to be negative. ThenDown

returns and pointp from then on is called theroot. Sinceroot is positive, and we know that
every descendant ofroot not in setDK is negative, a term of the monotone DNF must lie
somewhere in the setDK ∪ {root}. This set is outlined in Figure 4.

The next major part ofDelimit is the subroutineUp. Any point corresponding to a
term of the target concept must have only positive ancestors. SubroutineUp ensures that

MALICIOUS OMISSIONS AND ERRORS 223

0111

1111

1011 1101 1110

0000

0001 0100 10000010

0011 0101 0110 1001 1010 1100

+

- ? +

?- ?

?

-

?-

root

Figure 4. The set of candidate terms obtained by subroutineDown.

Up(DK)

f

P = g��
For (each a 2 DK)

f
A = fparents of ag
For (each b 2 A)

If (LMQ(b) == 0)

f
Delete all descendants of b from DK

Break /* Out of the For (each b 2 A) loop */

g
Else If (LMQ(b) == 1)

P = P [fbg
Else

A = A [fparents of bg
g
Return hP;DKi

g

Figure 5. SubroutineUp. DK is a set of points withLMQ ⊥ that has to be thinned;P is a set of minimal
ancestors withLMQ 1 of points inDK; A is a set of certain ancestors of the current pointa.

no point inDK has any ancestor withLMQ 0. Thus,Delimit gets a thinned set of
possible termsT . In the example of Figures 1 and 4, 0100 is deleted fromDK because
LMQ(0101) = 0. If LMQ(1010) = 0, then 1000 will also be deleted.

As a useful byproduct of subroutineUp, we get a setP , which consists of the minimal
ancestors withLMQ 1 of the points inDK (i.e., the minimal points in the lattice ordering
of the set of those ancestors of elements ofDK that haveLMQ 1). If there are no points
in DK, P contains theroot only.

224 D. ANGLUIN, ET AL.

We summarize our discussion in the following lemma. Recall that sinceDelimit is
deterministic, the adversary may be thought of as choosing in advance the answers to all
possible limited membership queries. We denote byLMQ(v) the value of this function on
the pointv.

Lemma 1 LetT andP be the outputs of running AlgorithmDelimit on a positive point
p when the target concept is a monotone DNF. Then

1. T contains a term of the target concept coveringp.

2. For everyt ∈ T , every point covered byt hasLMQ 1 or⊥.

3. For anyv such thatLMQ(v) = 1, and for anyt ∈ T that coversv, t covers some point
in P that is a descendant ofv.

Proof: Part 1 follows from the discussion above. Part 2 holds since every ancestor of the
root is positive (sinceroot itself is), and since the code inUp ensures this condition for
every other point inT . To see Part 3, supposev hasLMQ(v) = 1 andt is some point of
T that coversv. If t is root, thenroot itself is a point inP that is a descendant ofv. If
t is some other element ofT , thenUp has made an upward search fromt to find all the
minimal ancestors oft with LMQ 1 and placed them inP .

We are now ready to analyze the running time ofDelimit.

Lemma 2 For any monotone DNF target concept, AlgorithmDelimit makes at most
n` + n limited membership queries, where` is the number of⊥ responses received. In
general, any sequence ofs calls to AlgorithmDelimit for the same target concept makes
at mostn(`+ s) limited membership queries.

Proof: Every point queried byDelimit(p) is either a child ofp, or a child of a previously
queried point withLMQ 1, or else is within Hamming distance 1 of a⊥ point.

For the last case, each time we receive a⊥ response on a pointv, we could in principle
need to query all the children ofv in Down and then all the parents ofv in Up, except
that there is a parent or a child ofv that we must have queried before queryingv. This
leads to at mostn − 1 queries for each⊥ received, plus 1 for the⊥ query itself. As long
as the algorithm remembers the answers to all queries, this holds for any number of calls
to Delimit on the same concept.

For the first two cases, let us first note that they only happen in subroutineDown. Let
us call the point thatDown was called on thecurrent point, which can be eitherp or some
previously queried pointa with LMQ(a) = 1. WhenDown makes a query on a child
of the current point and receives a response of⊥, the query is already accounted for. If it
receives a response of 0, then a bit is turned on inoffbits, decreasing the Hamming distance
between the current point andoffbits. If it receives a response of 1, then a recursive call to
Down is made, and the Hamming distance between the (new) current point andoffbits is
also one less. Since the maximum Hamming distance between two points isn, there can
be at mostn queries of this kind in every call toDelimit.

The running time ofDelimit is polynomial in the number of queries it makes.

MALICIOUS OMISSIONS AND ERRORS 225

3.2. Learning Monotone Monomials from Limited Membership Queries Alone

We begin with a very simple application of AlgorithmDelimit to learn monotone mono-
mials from limited membership queries in the nonstrict model. This should elucidate the
basic ideas at the heart of the more complicated algorithm for learning arbitrary monotone
k-term DNF from limited membership queries that follows.

Theorem 1 Monotone monomials can be learned from no more thann`+n+ 1 limited
membership queries in the nonstrict model, where` is the number of⊥ responses received.

Proof: The method is to run AlgorithmDelimit starting with the all 1’s vector, and
then output any termt ∈ T that covers every point inP . (If eitherLMQ(11 · · · 1) = 0,
or LMQ(11 · · · 1) = ⊥ and the “down” phase of AlgorithmDelimit finds no positive
points, then we will output the empty DNF formula.)

First, observe that such a termtmust exist inT , since the true target monomial covers every
point inP and lies inT by point 1 of Lemma 1. The output termt covers every point with
LMQ 1 by point 3 of Lemma 1, since it covers every point inP . And by point 2 of Lemma 1,
it cannot cover any points withLMQ 0, since it is inT . The bound on the number of queries
follows from Lemma 2, which counts all of them except for the first query to11 · · · 1.

The running time again is polynomial in the number of queries made.
Another computationally somewhat more efficient way of learning monotone monomials

would be to runDelimit on the all 1’s vector, and then output the monomialm that is the
intersection of all the points inP . That is, the learner’s output would have a variable if and
only if that variable is in every term inP .

In this version, monomialm covers every point inP , so by point 3 of Lemma 1, it must
cover all pointsv such thatLMQ(v) = 1. On the other hand, sincem is the intersection
of positive points, it must either be the correct monotone monomial or an ancestor of the
correct monotone monomial, som cannot cover any negative points.

Now we present a lower bound for this problem.

Theorem 2 For any integerc, if the limited membership oracle gives
∑c
k=0

(
n
k

)
respon-

ses of⊥, then any learner can be forced to use at least
(
n
c+1

)
− 1 limited membership

queriesnot counting those answered⊥ to learn monotone monomials.

Proof: Let the target concept be defined by a monomial of lengthn− (c+ 1). It covers
no point with more than(c+ 1) 0-bits, and exactly one point with(c+ 1) 0-bits. Now let
us assume that all queries of a learning algorithm on points containingc or fewer 0-bits are
answered by⊥, and its first

(
n
c+1

)
−2queries of points with at least(c+1)0-bits are answered

by 0. After that there are at least two unqueried points with(c+1) 0-bits. The corresponding
two monomials are both consistent with the answers given so far and they differ on points that
did not receive a⊥ response. Hence the learning algorithm needs at least one more query.

226 D. ANGLUIN, ET AL.

Corollary 1 For any fixed constantc, if the limited membership oracle givesO(nc)
responses of⊥, then the learner can be forced to useΩ(nc+1) limited membership queries
to learn monotone monomials.

3.3. Learning Monotonek-term DNF from Limited Membership Queries Alone

We are now ready to present the algorithmOnlyLMQ, that learns monotonek-term DNF
in the nonstrict model from limited membership queries alone. The detailed code is given
in Figures 6 and 7.

FindPos(h)

f
S = fmaximal elements v 2 f0; 1gn s.t.h(v) == 0 g
For (each a 2 S)

If (LMQ(a) == 1)

Return a

Else If (LMQ(a) == ?)

S = S [fchildren of ag
Return \no"

g

Figure 6. SubroutineFindPos. S is the set of maximal points in the sample space that are not covered by the
current hypothesish.

Algorithm OnlyLMQ initializes its hypothesish to be the empty formula, and repeats
the following.

By searching down from each maximal point not covered by hypothesish, a pointq with
LMQ(q) = 1 that is not covered byh is found. This is done by the subroutineFindPos

of Algorithm OnlyLMQ. If no such point is found, thenh is correct and the algorithm
outputs it and halts.

Now the pointq is given to AlgorithmDelimit, which returns the setsT andP . If there
is a single term inT that covers all the positive points inP not already covered byh, then
this term is added toh and we repeat the mainFor loop by looking for another point with
LMQ 1 that is not covered by the current hypothesis.

Otherwise, we have to add more than one term toh to cover all the points inP , and we
begin a search for a set of terms to add. This search may disclose more positive points,
so this process itself may have to be iterated. We begin by initializingTermsto beT and
Posto be those points inP that are not covered byh. We record the fact that pointq has
already been delimited by placing it in the setDelimited. We then call AlgorithmDelimit

on every point inPosand for each call gather together the points fromP in NewPosas well
as add the terms fromT to Terms. When all points inPoshave been delimited, we add the
points gathered inNewPosto Posand try to cover the newly enlarged setPoswith anyj = 2
terms fromTerms. If we succeed, we put these terms inh; if we fail, we keep enlarging
Terms, gathering points inNewPos, then enlargingPos, incrementingj, and trying again in
the same manner to cover all points inPoswith j terms fromTerms.

MALICIOUS OMISSIONS AND ERRORS 227

OnlyLMQ()

f
h = \the empty DNF formula"

For (ever)
f

q = FindPos(h)

If (q == \no")
f

Output h

Return

g
hT; P i = Delimit(q)
Delimited = fqg
Terms = T

Pos = f r 2 P : h(r) == 0 g
For (j = 1; ; j++)

If (9t1; t2; : : : ; tj 2 Terms s.t.8p 2 Pos ((t1 _ : : : _ tj)(p) == 1))
f

Add the terms t1; : : : ; tj to h

Break /* Out of the For (j = 1; ; j++) loop */

g
Else

f

NewPos = g��
For (each p 2 Pos s.t. p 62 Delimited)
f

hT; P i = Delimit(p)
Delimited = Delimited [fpg
NewPos = NewPos [f r 2 P : h(r) == 0 g
Terms = Terms [T

g
Pos = Pos [NewPos

g
g

g

Figure 7. Algorithm OnlyLMQ, which learns monotonek-term DNF fromLMQ’s. Delimited is the set of
points that have been delimited in the current iteration of the main loop;Termsis the set of candidate terms;Pos
is a set of known positive instances that need to be covered by a certain number of points inTerms.

228 D. ANGLUIN, ET AL.

Theorem 3 AlgorithmOnlyLMQ learns monotonek-term DNF fromO(knk + n2`)
limited membership queries in the nonstrict model, where` is the number of⊥ responses it
receives.

Proof: We prove the theorem in three stages. First we argue that the algorithm eventually
terminates with a DNF hypothesish that correctly classifies all non-⊥ points. Next, in
Lemmas 3 through 6, we argue thath includes at mostk terms. In particular, Lemma 6
says that at all times through the run of the algorithm,h is at least as efficient—in terms of
positive instances covered per DNF term—as the target concept. Finally, we argue that the
query bound is correct.
* Algorithm Delimit terminates with a correct hypothesis. All the terms added to the
hypothesis are at some point in a setT output by AlgorithmDelimit. Therefore, by point
2 of Lemma 1, no term that we ever add to our hypothesis can err by classifying a point
with LMQ 0 as positive.

Furthermore, since point 1 of Lemma 1 guarantees that each time we call the subroutine
Delimit from a point we get at least one term inT covering that point, the algorithm must
eventually succeed in covering the setPoswith some number of terms and break out of the
“For (j = 1; ; j++)” loop. Since there are only a finite number of positive points, this
means that the algorithm eventually terminates with a hypothesis that correctly classifies
all non-⊥ points.
* Final hypothesis contains at mostk terms. The following lemmas provide the argument
that each hypothesis of AlgorithmOnlyLMQ contains at mostk terms.

Lemma 3 No term in the set Terms is ever implied by the current hypothesish inside of
the“For (j = 1; ; j++)” loop.

Proof: The hypothesish is constant during the execution of the loop. Every element of
TermsenteredTermsfrom the setT generated by calling AlgorithmDelimit with this
hypothesish. The first call toDelimit (the one made immediately before entering the
“For (j = 1; ; j++)” loop) is made on some pointq such thath(q) = 0, and therefore
no element ofT can be implied byh. All subsequent calls toDelimit are made on some
point r ∈ Pos. The setPos is constructed so thath(r) = 0, so again no points in the set
T returned byDelimit can be implied byh, becauseT contains only descendants ofr.

Lemma 4 Whenever AlgorithmOnlyLMQ attempts to cover the set of positive points
Pos with a disjunction ofj terms from Terms (line “If (∃t1, t2, . . . , tj ∈ Terms s.t.∀p ∈
Pos ((t1 ∨ . . . ∨ tj)(p) == 1))” in the code), the set Terms actually contains at leastj
distinct terms of the target concept.

Proof: The proof is by induction onj. For the base case,j = 1, the setTerms= T . Thus
the base case is provided by point 1 of Lemma 1, which says that there must must be a term
of the target concept inT at the end of the first call to AlgorithmDelimit.

For the inductive step, suppose that we are trying to coverPoswith j + 1 terms. Then
we know that we tried and failed to cover the previous version ofPoswith j terms. By the
inductive hypothesis, this implies that the previous version ofTermscontained at leastj

MALICIOUS OMISSIONS AND ERRORS 229

distinct terms of the target concept. If the previous version ofTermsin fact contained more
thanj distinct terms of the target concept, then we are done.

Otherwise, the previous version ofTermscontained exactlyj distinct terms of the target
concept, but nevertheless failed to cover all points inPos. That is, there was some pointp
in the previous version ofPosnot covered by any of those particularj terms. This pointp
cannot have been delimited before the attempt to coverPoswith j terms, because if it had,
the previous version ofTermswould have contained an element coveringp. Therefore, after
attempting and failing to coverPoswith j termsp is delimited. Now by point 1 of Lemma 1,
a term of the target concept coveringp is in the setT output by this call toDelimit, and
this point is added toTerms. ThusTermsnow contains at leastj + 1 distinct terms of the
target concept.

Lemma 5 Let h′ be the hypothesis that AlgorithmOnlyLMQ obtains when it updates
its hypothesish. Thenh′ covers all points withLMQ 1 that are covered by any term in
Terms.

Proof: Assume the contrary holds forh, Terms, andh′. Let t ∈ Terms be a term andx
be a point withLMQ 1 such thath′(x) = 0 andt(x) = 1.

Termt was added toTermsby some call to subroutineDelimit. At that call, according
to point 3 of Lemma 1, the setP must have contained a pointp such thatt coveredp andp
is a descendant ofx. Sinceh′(x) = 0, we knowh(x) = 0, soh(p) = 0. Therefore, after
the call to AlgorithmDelimit when the outputs hadt ∈ T andp ∈ P , pointp was added
to Pos. Thus sinceh′ is satisfied by all points inPos, it must be thath′(p) = 1 and thus
h′(x) = 1, a contradiction.

Lemma 6 Consider the hypothesish of AlgorithmOnlyLMQ at any point in the run of
it for a monotone DNF target conceptc. There is a monotone DNFd consisting of at least
#(h) distinct terms fromc such that{v : d(v) = LMQ(v) = 1} ⊆ {v : h(v) = 1}.

Proof: The proof is by induction on the number of times thath is enlarged by adding new
terms. The base case with an emptyh holds trivially. Let us now assume that the lemma
holds up to thek-th time we add new terms toh, and that it does not hold thek+ 1-st time.
Let us denoteh after these additions of terms byhk andhk+1, respectively. That is:

(1) there are#(hk) termst1, t2, . . . , t#(hk) in c such that they cover a subset of those
points withLMQ 1 that are covered byhk,

(2) for any way we take#(hk+1) terms fromc, there always is some pointw with LMQ 1
that is covered by these terms but not byhk+1.

Furthermore, let us assume that exactlyj terms were added tohk when makinghk+1, that
is,#(hk+1)−#(hk) = j. At the moment thesej terms were added, Lemma 4 guaranteed
the existence ofj termst′1, t

′
2, . . . , t

′
j from c in Terms. By Lemma 3 none oft′1, t

′
2, . . . , t

′
j

was implied byhk. Now suppose we take termst1, t2, . . . , t#(hk), t
′
1, t
′
2, . . . , t

′
j , which

are all inc, for a total of#(hk+1) terms. By our assumption there is a pointw, such that
LMQ(w) = 1, that is covered by these terms but not byhk+1. By the assumption,w
cannot be covered by any of thet1, t2, . . . , t#(hk), or it would be covered byhk and hence

230 D. ANGLUIN, ET AL.

hk+1. Therefore, it must be the case thatw is covered by some oft′1, t
′
2, . . . , t

′
j . But then,

by Lemma 5,hk+1 must coverw, a contradiction.

Lemma 6 implies that the hypothesish of Algorithm OnlyLMQ never contains more
thank terms, which is what we needed to show. What remains for the proof of Theorem 3
is to show that the number of limited membership queries isO(knk + n2`).
* Number of queries made. A monotonek-term DNF formula can have at mostnk maximal
negative points. This follows from the following observations. Ifv is a negative point and
t is a term, then there must be a variablexi in t such thatv[i] = 0, or elsev would satisfy
t. Thus, by setting to 0 at least one variable from each term, we can obtain exactly the
negative points. Maximal negative points are a subset of the points that can be obtained by
setting exactly one variable from each term to 0, which can be done in at mostnk ways.
Thus, each timeS is initialized in subroutineFindPos, it can have at mostnk elements.

FindPos is called at mostk + 1 times, since each time it is called (except the last), it
returns a new positive pointq which causes at least one term to be added toh.

Each call toFindPos performs at most oneLMQ for each of at mostnk elements
initially in S. After that, each element queried is a child of a point withLMQ ⊥, so the
number of such queries over all calls toFindPos is at mostn`. (We assumeFindPos

caches answers.) Thus, the number ofLMQ’s made byFindPos is at most(k+1)nk+n`.
The only otherLMQ’s are made in calls toDelimit, and by Lemma 2 the total number

of queries is bounded byn(` + s), wheres is the number of calls toDelimit. Delimit

is called at mostk times on pointsq returned byFindPos, and is called at most once for
each element that is ever added toPos. The elements added toPosare all returned inP
by Up, which means that they are all parents of points withLMQ ⊥. Hence, at mostn`
elements are ever added toPos, and the total numbers of calls toDelimit is bounded by
k + n`. This gives a bound ofn(`+ k + n`) for the number ofLMQ’s made in the calls
to Delimit. By adding the bound for the number onLMQ’s made in calls toFindPos,
we can easily get the desired bound ofO(knk + n2`) on the total number ofLMQ’s.

The running time of the algorithmOnlyLMQ is clearly polynomial in the number of
queries it makes.

3.4. Learning Monotone DNF from Equivalence and Limited Membership Queries

In this subsection, we give a very simple algorithm that learns monotone DNF with an
unbounded number of terms from equivalence and limited membership queries.

Theorem 4 Monotone DNF formulas can be learned fromn(m+`) limited membership
queries together withm + 1 equivalence queries in the nonstrict model, or together with
m + ` + 1 equivalence queries in the strict model, where` is the number of⊥ responses
received, andm is the number of terms in the target monotone DNF.

Proof: We modify Angluin’s algorithm for learning monotone DNF from ordinary mem-
bership and equivalence queries (Angluin, 1988), by using AlgorithmDelimit. The com-

MALICIOUS OMISSIONS AND ERRORS 231

EQToo()
f

h = \the empty DNF formula"
While ((v = EQ(h)) 6= \yes")

If (h(v) == 0)
f

hT; P i = Delimit(v)
Add terms of T to h

g
Else

For (each term t of h)
If (t(v) == 1)

Delete term t from h

Output h

g

Figure 8. Algorithm EQToo for learning monotone DNF fromEQ’s andLMQ’s. v is the current counterex-
ample.

plete code of the algorithm is given in Figure 8. Note that the same algorithm works for
both the nonstrict and strict models.

TheUp subroutine of AlgorithmDelimit guarantees that all terms we put inh are either
correct, or err only by classifying negative points withLMQ ⊥ as positive. Lemma 1
guarantees that each time we call AlgorithmDelimit we get a new term of the target
monotone DNF.

In the nonstrict model, terms that cover negative points withLMQ ⊥ do not matter, so
there is at most one call toDelimit and one equivalence query per term. In the strict
model we may add terms withLMQ ⊥ that cover negative points, and such terms must be
subsequently deleted in response to equivalence queries. There is at most one equivalence
query for each such term, provided that we modify the algorithm to remember deleted terms
and never add them again to the hypothesis. This implies the bounds for the number of
equivalence queries. The bound for the number ofLMQ’s then follows from Lemma 2.

The running time of the algorithm is polynomial in the number of queries it makes.

Note that polynomial learnability of monotone DNF from equivalence and limited mem-
bership queries is implied by the stronger result of Section 4. It is at least as difficult to learn
from a malicious membership oracle as it is from a limited membership oracle, as pointed
out in Subsection 2.2, so that algorithm for monotone DNF could be used here. The direct
algorithm does, however, give better bounds on the number of queries required.

232 D. ANGLUIN, ET AL.

4. Malicious Membership Queries

In this section, we present and analyze an algorithm that uses equivalence and malicious
membership queries to learn monotone DNF formulas. The key idea is to depend on
equivalence queries as much as possible, since they are correct.

4.1. The Algorithm

The algorithm keeps track of all the counterexamples and their labels received through
equivalence queries and consults them first, before asking a membership query. The pairs
of counterexamples and their labels are kept in a set namedCounterExamples. Obviously,
for a positive counterexamplev, if x ≥ v then it is not worth making a membership
query aboutx; it must be a positive point. Similarly, for a negative counterexamplev, if
x ≤ v thenx has to be a negative point of the target formula. For this reason we define
a subroutineCheckedMQ and use it instead of a membership query. The subroutine is
given in Figure 9.

CheckedMQ(x;CounterExamples)
f

If (9hv; 1i 2 CounterExamples s.t. x � v)
Return 1

If (9hv; 0i 2 CounterExamples s.t. x � v)
Return 0

Return MMQ(x)
g

Figure 9. SubroutineCheckedMQ.

As in (Angluin, 1988) and (Angluin & Slonim, 1994), our algorithm also uses a subrou-
tineReduce in order to move down in the lattice from a positive counterexample. All the
membership queries are done using the subroutineCheckedMQ, which possibly lets the
algorithm avoid some incorrect answers. The subroutineReduce is given in Figure 10.

Reduce(v;CounterExamples)
f

For (each child w of v)
If (CheckedMQ(w;CounterExamples) == 1)

Return Reduce(w;CounterExamples)
Return v

g

Figure 10.SubroutineReduce.

The algorithm for exactly identifying monotone DNF formulas using equivalence queries
and malicious membership queries is given in Figure 11.

MALICIOUS OMISSIONS AND ERRORS 233

LearnMonDNF()

f

CounterExamples = g��
h = \the empty DNF formula"
While ((v = EQ(h)) 6= \yes")

f
Add hv; (1� h(v))i to CounterExamples

If (h(v) == 0)

f
w = Reduce(v;CounterExamples)

Add term w to h

g
Else

For (each term t of h)
If (t(v) == 1)

Delete term t from h

g
Output h

g

Figure 11.The algorithm for learning monotone DNF fromEQ’s andMMQ’s.

The algorithm is based on a few simple ideas. A positive counterexample is reduced to a
point that is added as a term to the existing hypothesish, which is a monotone DNF. That
is, the new hypothesis classifies the latest counterexample and possibly some other points
as positive.

Negative counterexamples are used to detect inconsistencies between membership and
equivalence queries. They show that there have been errors in membership queries that
have caused wrong terms to be added to the hypothesis. The algorithm reacts by removing
all the terms that are inconsistent with the latest counterexample. These are the terms that
have the negative counterexample above them. A term is removed only when there is a
negative counterexample above it.

4.2. Analysis ofLearnMonDNF

Theorem 5 LearnMonDNF learns the class of monotone DNF formulas in polyno-
mial time using equivalence and malicious membership queries.

We need a definition and a simple lemma before proving the theorem.

Let h∗ be a monotone boolean function on{0, 1}n, and leth′ be an arbitrary boolean
function on{0, 1}n. LetC be any subset of{0, 1}n. Themonotone correction ofh′ withh∗

onC, denotedmc(h′, h∗, C), is the boolean functionh′′ defined for each stringx ∈ {0, 1}n
as follows.

234 D. ANGLUIN, ET AL.

h′′(x) def=

 1 if there existsy ∈ C such thaty ≤ x andh∗(y) = 1,
0 if there existsy ∈ C such thatx ≤ y andh∗(y) = 0,
h′(x) otherwise.

Note that sinceh∗ is monotone, the first two cases above cannot hold simultaneously.
It is also clear that if the value ofh′′(x) is determined by one of the first two cases,
h′′(x) = h∗(x). We prove a simple monotonicity property of the monotone correction
operation.

Lemma 7 Supposeh∗ is a monotone boolean function andh′ is an arbitrary boolean
function on{0, 1}n. LetC1 ⊆ C2 be two subsets of{0, 1}n. Leth1 = mc(h′, h∗, C1) and
h2 = mc(h′, h∗, C2). Then the set of points on whichh2 andh∗ differ is contained in the
set of points on whichh1 andh∗ differ. That is,Err(h2, h

∗) ⊆ Err(h1, h
∗).

Proof: Let x be an arbitrary point on whichh2(x) 6= h∗(x). Then it must be that
h2(x) = h′(x) and there does not exist any pointy ∈ C2 such thatx ≤ y andh∗(y) = 0
or y ≤ x andh∗(y) = 1. SinceC1 is contained inC2, there is no pointy ∈ C1 such
thatx ≤ y andh∗(y) = 0 or such thaty ≤ x andh∗(y) = 1. Thus,h1(x) = h′(x) and
h1(x) 6= h∗(x). Consequently,Err(h2, h

∗) ⊆ Err(h1, h
∗).

Now we start the proof of Theorem 5.
Proof: Leth∗ denote the target concept, an arbitrary monotone DNF formula over{0, 1}n
with m terms. Let` be a bound on the number of strings whoseMMQ’s are answered
incorrectly. Because equivalence queries are answered correctly, if the algorithm ever halts,
the hypothesis output is correct, so we may focus on proving a polynomial bound on the
running time.

SinceLearnMonDNF is deterministic and the target concepth∗ is fixed, we may
assume that the adversary chooses in advance how to answer all the queries, that is, chooses
a sequencey1, y2, . . . of counterexamples to equivalence queries and a setS of strings on
which to answerMMQ’s incorrectly. Note that|S| ≤ `.

In turn, these choices determine a particular computation ofLearnMonDNF which we
now focus on. It suffices to bound the length of this computation. In this computation the
answers toMMQ’s agree with the boolean functionh0 defined as follows.h0(x) = h∗(x)
for all stringsx 6∈ S andh0(x) = 1− h∗(x) for all stringsx ∈ S. Also, if CheckedMQ

is called with stringx and setC = CounterExamples, the answer agrees with the boolean
functionmc(h0, h

∗, C).
The setCounterExamplesonly changes when a new counterexample is received. There-

fore, the successive distinct sets of counterexamples in this computation can be denoted by

C0, C1, . . ., whereC0 = g�� andCi = Ci−1 ∪ {yi}, for i = 1, 2, If we also define

hi = mc(h0, h
∗, Ci)

for i = 1, 2, . . ., thenCheckedMQ answers according toh0 until the first counterexample
is received, then according toh1 until the second counterexample is received, and so on.

Clearly, sinceh0 disagrees withh∗ on at most̀ strings,d(h0, h
∗) ≤ `. Since the

setsC0, C1, . . . are monotonically nondecreasing, Lemma 7 shows thatErr(hi, h∗) ⊆
Err(hi−1, h

∗) for i = 1, 2,

MALICIOUS OMISSIONS AND ERRORS 235

We say that a counterexampleyi corrects a positive errorat pointx if hi−1(x) = 1 but
hi(x) = h∗(x) = 0. We say that a counterexampleyi corrects a negative errorat pointx if
hi−1(x) = 0 buthi(x) = h∗(x) = 1. Note that from the construction ofCheckedMQ it
follows that positive errors can be corrected only by negative counterexamples and negative
errors can be corrected only by positive counterexamples. Let there be`p positive and̀ n

negative errors corrected in the whole computation. Of course,`p + `n ≤ `.

Claim 1 If Reduce is called after counterexampleyi and before counterexampleyi+1,
it returns a local minimum point ofhi.

Proof: After yi is added toCounterExamples, CheckedMQ answers according tohi.
The claim follows from the construction ofReduce.

Claim 2 The following condition is preserved. At the(i+1)th equivalence queryEQ(h),
each term ofh is a positive point ofhi.

Proof: We prove the claim by induction.

Basis: The first EQ is made on an empty formula. Thus, the claim is vacuously true.

Induction step: Suppose the claim is true up to theith EQ. Leth′ be the hypothesis
h at theith EQ andh′′ be the hypothesish at the(i+ 1)th EQ. There are two cases to
consider.

Case 1:yi is a positive counterexample. Thenhi(x) = 1 if and only ifhi−1(x) = 1 or
x ≥ yi. Lettbe the term returned byReducewith parametersyi andCounterExamples.
Thenh′′ = h′∨t. Lett′′ be a term inh′′. Then eithert′′ is a term ofh′ or t′′ = t. If t′′ is
a term ofh′ thenhi−1(t′′) = 1 by the inductive assumption and thereforehi(t′′) = 1.
If t′′ = t thenhi(t′′) = 1 sincet was returned byReduce(yi,CounterExamples)
which usedCheckedMQ, which answered according tohi.

Case 2:yi is a negative counterexample. Thenhi(x) = 1 if and only if hi−1(x) = 1
andx 6≤ yi. Let t′′ be a term inh′′, which consists of all those termst′ of h′ such that
t′ 6≤ yi. Therefore,t′′ 6≤ yi and by the inductive assumptionhi−1(t′′) = 1. It follows
thathi(t′′) = 1.

Claim 3 Once a termx is deleted from hypothesish, it can never reappear in it.

Proof: Sincex was deleted, there must have been a negative counterexampleyi such
thatyi ≥ x. But then(yi, 0) belongs toCounterExamplesand the callCheckedMQ(x,
CounterExamples) can never return 1 again, which is necessary forx to be added toh.

We divide the run of the algorithm into non-overlappingstages. A new stage begins either
at the beginning of the run or with a new negative counterexample. Thus with each new
stageCounterExamplescontains one more negative counterexample and some (possibly
none) new positive counterexamples. The following claim establishes that the distance
d(hi, h∗) decreases with every new stage.

236 D. ANGLUIN, ET AL.

Claim 4 Every negative counterexample corrects at least one error. More formally, ifyi
is a negative counterexample, then there existsx ∈ {0, 1}n such thathi−1(x) = 1 and
hi(x) = h∗(x) = 0.

Proof: Let yi be a negative counterexample returned byEQ(h). Henceh(yi) = 1, and
there is some termx ≤ yi in h. By Claim 2,hi−1(x) = 1.

Sinceh∗(yi) = 0 andyi ≥ x it follows thath∗(x) = 0. By the definition ofhi it follows
thathi(x) = 0.

From Claim 4 it follows that there are at most`p negative counterexamples. Hence there
are at most̀p + 1 stages in the run of the algorithm.

We divide each stage of the algorithm into non-overlappingsubstages. A substage begins
either at the beginning of a stage or with a new positive counterexample that corrects an
error. Obviously there can be no more than`n positive counterexamples that correct errors
and hence no more thaǹp + `n + 1 substages in the whole run of the algorithm. The
distanced(hi, h∗) decreases with every new substage. If, however, functionshi andhj
belong to the same substage, they are equivalent and their local minima are the same. This
allows us to bound the total number of positive counterexamples.

Claim 5 Every new positive counterexample is reduced to a local minimum point of
h0, h1, . . . that has not been found earlier.

Proof: Let v be a positive counterexample thatReduce is started with. Lett be the point
Reduce(v,CounterExamples) returns. Assume, by way of contradiction, thatthas already
been found before. From Claim 3 it follows thatt is a term inh. Sincev ≥ t, it follows that
h(v) = 1. This is a contradiction to the assumption thatv is a positive counterexample.

We denote the set of local minimum points of a boolean functionf byLmp(f). We bound
the total number of different local minima of the functionsh0, h1,

Lemma 8 Let f and f ′ ben-argument boolean functions such thatErr(f, f ′) = {x}.
Then

(a) If f ′(x) = 1 then|Lmp(f ′)− Lmp(f)| ≤ 1.

(b) If f ′(x) = 0 then|Lmp(f ′)− Lmp(f)| ≤ n.

Proof:

(a) The only point that can be a local minimum off ′ and is not a local minimum off , is
x itself. The claim follows immediately.

(b) Any point which is a local minimum off ′ but not off is a parent ofx. Sincex has at
mostn parents, the claim follows.

MALICIOUS OMISSIONS AND ERRORS 237

Corollary 2 Letf andf ′ ben-argument boolean functions such thatErr(f, f ′) con-
tainsdp positive points off ′ anddn negative points off ′. Then

|Lmp(f ′)− Lmp(f)| ≤ ndn + dp.

Corollary 3 Let g0, g1, . . . , gr be the subsequence ofh0, h1, . . ., such that eachgi is
the first of all thehj ’s in its substage. LetErr(h∗, gi−1) − Err(h∗, gi) contain`p,i−1

positive and̀ n,i−1 negative points ofh∗ for all i = 1, 2, . . . , r. LetErr(h∗, gr) contain
`p,r positive and̀ n,r negative points ofh∗. Then the total number of different local minima
of functionsg0, g1, . . . , gr, h∗ is bounded above bym+ n

∑r
i=0 `n,i +

∑r
i=0 `p,i.

Proof: Note thatg0, g1, . . . , gr are the different functions inh0, h1, . . ., and that subroutine
CheckedMQ first answers according tog0, then according tog1 and so on. Obviously,
Err(h∗, gi) ⊆ Err(h∗, gi−1) andErr(gi−1, gi) = Err(h∗, gi−1) − Err(h∗, gi) for all
i = 1, 2, . . . , r. Also note that for eachi = 0, 1, . . . , r − 1, one of`p,i and`n,i is 0, but
`p,r and`n,r may both be positive.

We want to find
∣∣⋃r

i=0 Lmp(gi) ∪ Lmp(h∗)
∣∣, knowing that

∣∣Lmp(h∗)
∣∣ = m. Since

r⋃
i=0

Lmp(gi) ∪ Lmp(h∗)

⊆ Lmp(h∗) ∪
(
Lmp(gr)− Lmp(h∗)

)
∪
r−1⋃
i=0

(
Lmp(gi)− Lmp(gi+1)

)
,

from Corollary 2 it follows that∣∣∣∣∣
r⋃
i=0

Lmp(gi) ∪ Lmp(h∗)

∣∣∣∣∣ ≤ ∣∣Lmp(h∗)
∣∣ +

(
n`n,r + `p,r

)
+
r−1∑
i=0

(
n`n,i + `p,i

)
and the bound follows.

Since each error can be corrected at most once, it follows that
∑r
i=0 `n,i ≤ `n and∑r

i=0 `p,i ≤ `p. Hence the total number of the local minima and the total number of positive
counterexamples that can be found in a computation is bounded bym + n`n + `p. The
number of negative counterexamples in a complete run is bounded by the number of positive
errors. The total number of counterexamples is therefore bounded bym+ `nn+ `p+ `p ≤
m+ `(n+ 1) = O(m+ `n).

We now count the number of membership queries in a complete run of the algorithm.
Each positive counterexamplev may cause at mostn(n+1)/2 membership queries, before
Reduce(v,CounterExamples) returns. Therefore there can be at mostO(mn2 + `n3)
membership queries in a complete run of the algorithm.

It is also clear that the running time of the algorithm is polynomial inm, n and`. This
concludes the proof of Theorem 5.

ComparingLearnMonDNF with the algorithmEQToo of Theorem 4, we see that
LearnMonDNF is able to cope withMMQ’s instead of the more benignLMQ’s, but

238 D. ANGLUIN, ET AL.

at a cost of making more queries overall. In particular, it usesO(m + `n) equivalence
queries, versusm + ` + 1 for EQToo, andO(mn2 + `n3) membership queries, versus
mn+ `n for EQToo. It is open whether an algorithm to learn monotone DNF formulas
usingEQ’s andMMQ’s can attain query complexity closer to that ofEQToo.

5. Finite Exceptions

5.1. Exceptions

For a concept(X, f) and a finite setS ⊆ X, we definethe concept(X, f) with exceptions
S, denotedxcpt((X, f), S), as the concept(X, f ′) wheref ′(w) = f(w) for strings in
X − S, andf ′(w) = 1 − f(w) for strings inS. (Thusf andf ′ have the same domain,
and are equal except on the set of stringsS, which is a subset of their common domain.) It
is useful to note thatS is partitioned by(X, f) into into the set ofpositive exceptionsS+

that are classified as negative byf , and the set ofnegative exceptionsS− that are classified
as positive byf . When the domainX of a functionf is clearly understood and we do not
wish to mention it explicitly, we often just call this function itself a concept and we also
use a shorthand notation forxcpt((X, f), S), namely, we just writexcpt(f, S).

A concept class(R,Dom, µ) is closed under finite exceptionsprovided that for every
concept(X, f) represented by(R,Dom, µ) and every finite setS ⊆ X, the concept
xcpt((X, f), S) is also represented by(R,Dom, µ). If, in addition, there is a fixed poly-
nomial of two arguments such that the conceptxcpt((X, f), S) is of size bounded by this
polynomial in the size of(X, f) and||S||, we say that(R,Dom, µ) is polynomially closed
under finite exceptions.

This definition differs from a similar earlier definition (Board & Pitt, 1992) in that we do
not require the existence of a polynomial-time algorithm that produces the new concept
given the old concept and a list of exceptions. However, for the classes that we consider
there are such algorithms.

We define a natural operation of adding finite exception tables to a class of concepts to
produce another class of concepts that “embeds” the first and is polynomially closed under
finite exceptions.

We assumeΣ ⊆ Γ and|Γ| ≥ 2. We define a simple encodinge that takes a stringr from
Γ∗ and a finite set of stringsS ⊆ Σ∗ and produces a stringr′ in Γ∗ from whichr and the
elements ofS can easily be recovered, and is such that|r′| = 2(1+ |r|+ ||S||). The details
of the encoding are as follows.

Assume that 0 and 1 are distinct symbols inΓ. We define

eb(b1b2 . . . bj)
def= bbbb1bb2 . . . bbj ,

for b ∈ {0, 1} andb1, b2, . . . , bj ∈ Γ. Note that|eb(w)| = 2(1 + |w|) for every string
w ∈ Γ∗. We then define the encoding ofr andS as

r′ = e(r, S) def= e0(r)e1(s1)e0(s2) . . . ek mod 2(sk),

wheres1, s2, . . . , sk are the strings inS.

MALICIOUS OMISSIONS AND ERRORS 239

Given a concept class(R,Dom, µ), we define theclass obtained from it by adding ex-
ception tablesto be(R′,Dom′, µ′), whereR′ is the set of all strings of the forme(r, S)
such thatr ∈ R andS is a finite subset ofDom(r), and for eachr′ ∈ R′, the concept
represented byr′ = e(r, S) is the concept represented byr with exceptionsS, that is,
(Dom′(r′), µ′(r′)) = xcpt((Dom(r), µ(r)), S).

For example, adding exception tables to the monotone DNF formulas produces a concept
class which we termmonotone DNF formulas with finite exceptions. More detailed discus-
sion of classes obtained by adding exception tables and of polynomial closure under finite
exceptions can be found in Subsection 5.2.

5.2. Examples and Lemmas

Example: The class of regular languages represented by DFA’s is polynomially closed
under finite exceptions. Board and Pitt give an algorithm that takes as input a DFAM and
an exception setS, and produces a new DFA forxcpt(M,S) (Board & Pitt, 1992). The
DFA’s size is polynomial in the size ofM andS.

Example: Another example of a class that is polynomially closed under finite exceptions
is the class of boolean decision trees. This result is taken from (Board & Pitt, 1992) but
since the construction is not given there, we sketch it here.

Lemma 9 The class of boolean decision trees is polynomially closed under finite excep-
tions.

Proof: Let T be a decision tree onn variables. LetS be the exception set forT . We
construct the decision tree forxcpt(T, S) as follows. We treat each exception pointx ∈ S
individually. First we walk down from the root of the original treeT to see wherex
is located in it. If this leads us to a leaf with depthn (i.e., if all variables are tested
on this path), then we just reverse the value of the leaf, because this path is forx only.
However, if we find ourselves at a leaf with depth less thann, we have to add new internal
nodes to the tree. Denote the value of this leaf byb. We then continue the path that led
us to this leaf with a path in which all the remaining variables are tested. We end the
path by a leaf with value1 − b. For each new internal node on the path, we make the
other child (the one not on the path) a leaf, and give it the original valueb. Thus, each
counterexample adds at mostn new internal nodes to the tree. The size of the new tree,
measured as the number of internal nodes, is bounded by|T | + n × |S| = |T | + ||S||.

Example: One more interesting example is the class of DNF formulas.

Lemma 10 The class of DNF formulas is polynomially closed under finite exceptions.

Proof: Let f be anm-term DNF formula overn variables andS be an exception set
for it. Let S be partitioned into the sets of positive and negative exceptions (S+ andS−,
respectively), as described in Section 5.1. We construct a DNF formula forxcpt(f, S) from
the formula(f ∧ f−) ∨ f+, wheref− is a DNF formula which is true on all the points in

240 D. ANGLUIN, ET AL.

its domain except the ones inS−, andf+ is a DNF formula which is true exactly on the
points inS+. The domain for all these formulas is{0, 1}n.

Obtainingf+ is easy—straightforward disjunction of all thetermsin S+, where we make
terms from points by substituting the respective variable for a 1 value of a coordinate and its
negation for a 0 value. Obtainingf− is harder. First we make a decision tree corresponding
to f−. We put each point fromS− individually in the tree as a 0-valued leaf at the end of
a path of lengthn. All the remaining leaves get value 1. Then for each leaf with value
1 we make a term that will go intof− by following the path from this leaf to the root.
Obviouslyf− has at mostn × |S−| terms. Thus, after “multiplying” the terms out, the
formula (f ∧ f−) ∨ f+ will have at mostmn × |S−| + |S+| ≤ (mn + 1) × |S| terms.

Example: By duality it follows that the class of CNF formulas is polynomially closed
under finite exceptions.

Note that stronger bounds on the size of the new formula can be obtained by using the
result in (Zhuravlev & Kogan, 1985). We, however, chose to present a simpler argument.
Also note that the size bound is insufficient forstrong polynomial closure under exception
lists as defined in (Board & Pitt, 1992).

Example: As our final example we show that any class that is obtained by adding excep-
tion tables to another class is polynomially closed under finite exceptions.

Lemma 11 Let (R,Dom, µ) be any class of concepts. Then the concept class obtained
from it by adding exception tables is polynomially closed under finite exceptions.

Proof: Let (R′,Dom′, µ′) be the class obtained from(R,Dom, µ) by adding exception
tables, as defined in Section 5.1. Let(X ′, f ′) be any concept from(R′,Dom′, µ′) and
let r′ ∈ R′ be a shortest representation of(X ′, f ′). Then there exists a conceptr ∈ R
and a finite setS ⊆ Dom(r), such that(Dom′(r′), µ′(r′)) = xcpt((Dom(r), µ(r)), S)
and |r′| = 2(1 + |r| + ||S||). Let S′ ⊆ Dom′(r′) = Dom(r) be any finite set. Let

concepth′′ be defined ash′′
def= xcpt((Dom′(r′), µ′(r′)), S′). It is easy to see thath′′ =

xcpt((Dom(r), µ(r)), S 4 S′) and thush′′ is represented by somer′′ ∈ R′ with size
2(1 + |r|+ ||S 4 S′||) ≤ 2(1 + |r|+ ||S||+ ||S′||) = |r′|+ 2||S′||.

Corollary 4 The class of monotone DNF formulas with finite exceptions is polynomially
closed under finite exceptions.

5.3. Learning Monotone DNF Formulas With Finite Exceptions

In this section, we present an algorithm that learns the class of monotone DNF formulas

with finite exceptions. The target concept is a boolean function onn variablesh∗
def=

xcpt(h∗M , S
∗), whereh∗M is some monotone DNF formula andS∗ is a set of exceptions for

it. The domain of the target concept is{0, 1}n.
We assume that we have an upper bound on the cardinality ofS∗ and denote it byl (i.e.,
|S∗| ≤ l). If this bound is not known, we can start out by assuming it to be any positive

MALICIOUS OMISSIONS AND ERRORS 241

integer and doubling it whenever convergence is not achieved within the proper time bound,
which will be given later. We assume thath∗M is minimized and hasm terms.

Like LearnMonDNF, our current algorithm also has a setCounterExamplesthat stores
all labeled counterexamples received from equivalence queries. The purpose of it is slightly
different: it lets the algorithm conclude that some points cannot be classified byh∗M alone,
and, therefore, have to be included in the exception set.

The algorithm tries to find a suitable monotone DNF formula, which, coupled with a
proper exception set, would give the target concept. The equivalence queries are made on a
pair〈h, S〉 of a monotone DNF formulah and a set of exceptionsS. The algorithm focuses
only on buildingh, and setsS to be those elements of the setCounterExamplesthat are
currently misclassified byh. It uses a simple subroutineGetExceptions for buildingS.
The subroutine is given in Figure 12.

GetExceptions(h, CounterExamples)
f

S = g��
For (each hx; bi 2 CounterExamples)

If (h(x) 6= b)
Add x to S

Return S

g

Figure 12. SubroutineGetExceptions. h is the monotone DNF part of the current hypothesis;
CounterExamplesis the set of pairs of counterexamples and their labels seen so far;S is the set of those coun-
terexamples that are misclassified byh.

In order to classify the counterexamples received, the algorithm needs to evaluate the cur-
rent functionxcpt(h, S). This is done by another very simple subroutineTheFunction,
given in Figure 13.

TheFunction(h; S; x)
f

If (x 2 S)
Return 1� h(x)

Else

Return h(x)
g

Figure 13. SubroutineTheFunction. h is the monotone DNF part of the current hypothesis;S is the set of
exception points for it;x is the point that the current hypothesis is evaluated on.

As in (Angluin, 1988), (Angluin & Slonim, 1994), and Section 4, our algorithm also uses
a subroutineReduce to move down in the lattice from a positive counterexample. Its
goal is to reduce the positive counterexample to some point that can be added as a term to
the formulah. Then the new hypothesis would classify the counterexample and possibly
some other points as positive. However, this may not always be possible. There can be

242 D. ANGLUIN, ET AL.

overwhelming evidence that the candidate point is just a positive exception and thus should
not be added toh. More precisely, if there are more thanl negative counterexamples above
a term ofh, then they all have to be in the exception set, which is then too big. Therefore
the current subroutineReduce is somewhat more complex and checks whether a point
has enough evidence to be an undoubted exception point or not. The subroutine is given in
Figure 14.

Reduce(v;CounterExamples)
f

For (each child w of v)
If ((MQ(w) == 1) && (jf y � w : hy; 0i 2 CounterExamples gj � l))

Return Reduce(w;CounterExamples)
Return v

g

Figure 14.SubroutineReduce. CounterExamplesis the set of counterexamples and their labels seen so far;l is
the bound on the number of exception points, a globally known constant.

The algorithm for learning monotone DNF formulas with at mostl exceptions using
equivalence queries and membership queries is given in Figure 15.

The algorithm is based on the following ideas. Each positive counterexample is reduced
if possible to a new term to be added to the formula, as was explained above. In case this
is not possible, the algorithm benefits anyway by storing it in the setCounterExamples.

Negative counterexamples imply that there are not as many positive points in the target
concept as we thought. Sometimes more exception points are necessary for the hypothesis
to be correct. Other times some terms have to be removed from the formula. Deleting a
term happens only when there is enough evidence that a term is wrong, namely, when there
are more thanl negative counterexamples above it.

5.4. Correctness and Complexity of the Algorithm

Theorem 6 LearnMonDNFwithFX learns the class of monotone DNF formulas
with exceptions in polynomial time using equivalence and standard membership queries.

Proof: We begin the analysis with this simple claim.

Claim 6 Once a termt is deleted from hypothesish, it can never reappear in it.

Proof: A term t can be deleted only if there are more thanl negative counterexamples
above it. To reappear,tmust be returned byReduce. But every point returned byReduce

must have at mostl negative counterexamples above it at the time it is returned, soReduce

cannot returnt again.

The following lemma shows what pointsReduce can return.

Lemma 12 Reduce always returns either a local minimum ofh∗ or a parent of a positive
exception inS∗.

MALICIOUS OMISSIONS AND ERRORS 243

LearnMonDNFwithFX()
f

S = CounterExamples = g��
h = \the empty DNF formula"
While ((v = EQ(hh; Si)) 6= \yes")
f

Add hv; (1�TheFunction(h; S; v))i to CounterExamples

If (TheFunction(h; S; v) == 1)
For (each term t of h)

If (jfw � t : (w; 0) 2 CounterExamples gj > l)
Delete term t from h

For (each hx; 1i 2 CounterExamples)
If ((h(x) == 0) && (jf y � x : hy; 0i 2 CounterExamples gj � l))
f

w = Reduce(x;CounterExamples)
Add term w to h

g
S = GetExceptions(h;CounterExamples)

g
Output hh; Si

g

Figure 15. The algorithm for learning monotone DNF formulas with finite exceptions.CounterExamplesis the
set of counterexamples and their labels seen so far;l is the bound on the number of exception points, a globally
known constant;h is the monotone DNF part of the current hypothesis;S is the set of points inCounterExamples
misclassified byh.

Proof: First note thatReduce can only be called on pointsx such thath∗(x) = 1 and
can only return pointsw such thath∗(w) = 1. Let w be a point returned byReduce.
Assumew is not a local minimum point ofh∗. Then there is some childy of w such that
h∗(y) = 1, and the number of negative counterexamples abovey must exceedl (or else
Reduce would have been called recursively ony). Hence,y cannot be above any termt
of h∗M , since each termt can have at mostl negative counterexamples above it. Therefore,
y is a positive exception inS∗.

Now we are ready to bound the number of different points that can be returned by the
subroutineReduce.

Claim 7 The number of different points thatReduce can return is at mostm+(n+1)l.

Proof: By Lemma 12, the number of different points that can be returned byReduce is
at most the number of points that are local minima ofh∗ or parents of positive exceptions
in S∗. LetS∗ containlp positive exceptions andln negative exceptions, wherelp + ln ≤ l.
The formulah∗M hasm terms and thereforem local minima. By Lemma 8, the number of
local minima ofh∗ is at mostm+ lp +nln. Each positive exception has at mostn parents,
so the number of parents of positive exceptions is bounded bynlp. Thus, the number of

244 D. ANGLUIN, ET AL.

different pointsReduce can return, and the number of calls toReduce, is bounded by
m+ (n+ 1)lp + nln ≤ m+ (n+ 1)l.

All equivalence queries are asked about the current hypothesisxcpt(h, S). SinceS is
computed right before each equivalence query, the argument of an equivalence query is
always consistent with all the counterexamples seen to that point. Lethi andhj denote the
functionxcpt(h, S) at the time whenith andjth equivalence query is asked, respectively,
and leti < j. Letvi be the counterexample returned by theith equivalence query. Clearly,
the values ofhi(vi) andhj(vi) must be different. Thus, the functionxcpt(h, S) is different
for each equivalence query. This allows us to bound the total number of equivalence queries.

Claim 8 The number of equivalence queries before success is bounded byO(m2n2l3).

Proof: We examine howxcpt(h, S) changes. Eitherh itself changes, orh remains the same
andS changes; namely, it contains exactly one more point, the most recent counterexample.

By Claim 6, each term ofh can appear inh or disappear from it only once. Thus each
possible term can induce at most two changes in formulah—first by appearing in it and
then by disappearing. Thus,h can only change twice as many times as the number of terms
thatReduce can return. Therefore, by Claim 7, there can be at most2(m+ (n+ 1)l) + 1
different functionsh in a complete run of the algorithm.

We now count the number of timesS can change whileh remains the same. SetS grows
larger by one with each new counterexample. It contains some (possibly none) pointsx
such thath(x) = 1 and some (possibly none) pointsx such thath(x) = 0. We bound the
number of each of these separately.

Each pointx ∈ S such thath(x) = 1 is above some term ofh. No term can have more
thanl negative counterexamples above it. Therefore, the number of pointsx ∈ S such that
h(x) = 1 can be bounded byl times the boundm + (n + 1)l on the number of different
terms ofh, that is, byml + (n+ 1)l2.

Each pointx ∈ S such thath(x) = 0 is a positive counterexample, and thus is not
above any term inh. Such anx must have more thanl negative counterexamples above it.
Otherwise, the algorithm would have calledReduce onx and added a new termt ≤ x to
h. If x has more thanl negative counterexamples above it, then it cannot be above a term
in h∗M and thus has to be a positive exception inS∗. Hence we have a bound oflp on the
number of pointsx ∈ S such thath(x) = 0.

Altogether, we can bound the cardinality ofS by |S| ≤ ml + (n + 1)l2 + lp ≤ (m +
1)l+ (n+ 1)l2. Whileh stays the same, the number of possible different setsS is at most
(m+ 1)l + (n+ 1)l2 + 1.

Hence, the total number of equivalence queries in a complete run of the algorithm is
bounded by(2(m + (n + 1)l) + 1) × ((m + 1)l + (n + 1)l2 + 1) = O(m2n2l3).

We now count the total number of membership queries. Membership queries are made
only in Reduce, at mostn(n+ 1)/2 per call toReduce. Claim 7 bounds the number of
different points thatReduce can return bym+ (n+ 1)l. By Claim 6, the number of calls
to Reduce is bounded by the number of different points that it can return. Therefore, the
total number of membership queries is bounded byO(mn2 + n3l).

MALICIOUS OMISSIONS AND ERRORS 245

It is not difficult to see that the total running time of the algorithm is polynomial inn,m
andl. This concludes the proof of Theorem 6.

6. Comparison of the Models

In this section, we compare the models of learning discussed earlier, and give a relation be-
tween learning concepts with exceptions and learning with malicious membership queries.

6.1. Exceptions and Lies

In this subsection, we give a generic algorithm transformation. This transformation shows
that any class of concepts that is polynomially closed under finite exceptions and learnable
in polynomial time with equivalence and standard membership queries is also learnable in
polynomial time using equivalence and malicious membership queries.

Theorem 7 LetH be a class of concepts that is polynomially closed under finite excep-
tions and learnable in polynomial time with equivalence and standard membership queries.
ThenH is learnable in polynomial time with equivalence and malicious membership que-
ries.

Proof: LetH = (R,Dom, µ)be a target class of concepts that is polynomially closed under
finite exceptions. We assume thatLearn is an algorithm to learnH using equivalence (EQ)
and standard membership queries (MQ) in timepA(s, n), for some polynomialpA. Without
loss of generality,pA is non-decreasing in both arguments. We transform this algorithm
into algorithmLearnAnyway, which learns any concepth∗ ∈ H using equivalence and
malicious membership queries in time polynomial in|h∗|, n and the table-sizeL of the set
of strings on whichMMQ may lie.

As in Sections 4 and 5.3 the main idea is to keep track of all the counterexamples seen
and to use them to avoid unnecessary membership queries. For this purpose we use a set
CounterExamplesagain. As before it stores pairs of counterexamples and their labels. Now,
before asking a membership query about stringx, we scanCounterExamplesto see whether
it already containsx and a label for it. Ifx and the label are found, the algorithm knows
the answer and does not make the query. (For some concept classes, such as monotone
DNF formulas, it might be possible to infer the classification ofx according to the target
concepth∗ even thoughx and its label are not contained inCounterExamples. However,
this simple checking suffices for our algorithm and, what is more important, works in the
general case.)

Another idea is to keep track of the answers received from membership queries, and to
use them to conclude thatMMQ has lied. For this purposeLearnAnyway has a set
MembershipAnswers. This set stores pairs〈x, b〉 for which MMQ was called on string
x and returned answerb. After receiving a new counterexample from EQ, the algorithm
stores it inCounterExamplesand checks whether this counterexample is already contained
in MembershipAnswers. If it is present inMembershipAnswerswith the wrong label, the
algorithm discards everything except the setCounterExamplesand starts from scratch. If
this is not the case, the algorithm continues the simulation ofLearn, which we now
describe in detail.

246 D. ANGLUIN, ET AL.

NewMQ(x;CounterExamples;MembershipAnswers)
f

If (hx; bi 2 CounterExamples)
Return b

b =MMQ(x)
Add hx; bi to MembershipAnswers

Return b

g

Figure 16. SubroutineNewMQ. CounterExamplesis the set of counterexamples and their labels seen so far;
MembershipAnswersis the set of points queried usingMMQ and the corresponding answers.

The new algorithm simulatesLearn on the target concept, but modifiesLearn’s queries
as follows:

• Each membership queryMQ(x) of algorithm Learn is replaced by a subroutine
call NewMQ(x,CounterExamples,MembershipAnswers). The subroutine is given in
Figure 16.

• Each equivalence query ofLearn, x = EQ(h), as well as the output statement,
Output h, is replaced by the block of code given in Figure 17.

f
x = EQ(h)

If (x == \yes")

f
Output h

Return

g
Add hx; (1� h(x))i to CounterExamples

If (hx; h(x)i 2 MembershipAnswers)

f

MembershipAnswers = g��
Restart Simulation, retaining CounterExamples

g
g

Figure 17.The block of code replacing “x = EQ(h)” or “ Output h”. h is the current hypothesis;x is the current
counterexample;CounterExamplesis the set of counterexamples and their labels seen so far;MembershipAnswers
is the set of points queried usingMMQ and the corresponding answers.

Note that when the simulation is restarted, only the setCounterExamplesreflects any work
done so far. We now show thatLearnAnyway is correct and runs in time polynomial in
|h∗|, n, andL. We partition the run of the algorithm intostages, where a stage begins with
a new simulation ofLearn. First we show that a stage cannot last forever.

MALICIOUS OMISSIONS AND ERRORS 247

Claim 9 Every stage ends in time polynomial in|h∗|, n, andL.

Proof: Note thatH is polynomially closed under finite exceptions, which means that there
is a polynomialp(·, ·) such that for every concepth ∈ H and every finite setS ⊆ Dom(h)
there exists a concepth′ ∈ H equal toxcpt(h, S) such that size|h′| ≤ p(|h|, ||S||). Without
loss of generality we can assume thatp is non-decreasing in both arguments. We now prove
that each stage ends in time bounded bypA(p(|h∗|, L), n), where we count only the time
spent onLearnoperations (i.e., we do not count the simulation and bookkeeping overhead).

We prove this by contradiction. Assume that stagei goes over the limit. Let us look at
the situation right after the number of simulated steps ofLearn exceeds our stated time
bound. LetSi denote the set of strings theMMQ has lied about during this stage, up to
the time bound. Letn denote the length of the longest counterexample received during this
stage, up to the time bound.

None of the strings inSi can belong toCounterExamples. Assume by way of contradiction
otherwise. Letx ∈ Si be a string contained inCounterExampleswith some label. SetSi
contains exactly the strings that theMMQ lied on in this stage and time bound, so there was a
queryMMQ(x). It must have happened beforexwas added toCounterExamples. But then
at the momentxwas added toCounterExamplesit already belonged toMembershipAnswers
and an inconsistency had to be found. The stage had to end.

Therefore, consideringSi as an exception set, all the information received byLearn in
this stage and within the given time bound is consistent with the concepth′ = xcpt(h∗, Si) ∈
H. Learn either has to outputh′ in time bounded by

pL
(
p(|h∗|, ||Si||), n

)
≤ pL

(
p(|h∗|, L), n

)
,

or it has to receive a counterexamplex ∈ Si. In the former case,LearnAnyway

makes an equivalence queryEQ(h′) and receives a counterexamplex ∈ Si, since only
counterexamples fromSi are possible at that point. In either case, an element ofSi is
added toCounterExamplesby the above time bound, which we showed above was im-
possible. This is a contradiction to the assumption that stagei goes over this bound.

What remains is to show that there can be only a small number of stages. That is, we do
not restart the simulation too many times.

Claim 10 There are at mostL+ 1 stages in the run of the algorithmLearnAnyway.

Proof: At the beginning of each stage (except the first one) the algorithm discovers a new
string where theMMQ lies and from then onMMQ can never lie on this string again,
because it is added toCounterExamples. To be more precise,MMQ does not get a chance
to lie on this string because it is never asked about it again. LetS be the set of the strings
thatMMQ lies on. Since|S| ≤ ||S|| ≤ L, in stageL+ 1 theMMQ can lie on no strings
(i.e., it is not asked queries about any of the strings where it may lie). ThereforeLearn

has to converge to the target concepth∗.

The time spent on simulation and bookkeeping is clearly polynomial in|h∗|, n, andL.
Thus,LearnAnyway is a polynomial-time algorithm that uses equivalence and malicious

248 D. ANGLUIN, ET AL.

membership queries to learn the class of conceptsH = (R,Dom, µ). This concludes the
proof of Theorem 7.

As corollaries of Theorem 7 we have the following.

Corollary 5 The class of regular languages, represented by DFA’s, is learnable in
polynomial time with equivalence and malicious membership queries.

Proof: In (Board & Pitt, 1992) it was shown that this class of concepts is polynomially
closed under finite exceptions. In (Angluin, 1987) it was shown that it is learnable in
polynomial time using membership and equivalence queries.

Corollary 6 The class of boolean decision trees is learnable in polynomial time with
extended equivalence and malicious membership queries.

Proof: Lemma 9 shows that the class of boolean decision trees is polynomially closed
under finite exceptions. In (Bshouty, 1993) it was shown that it is learnable in polynomial
time using membership and extended equivalence queries.

Corollary 7 The class of monotone DNF formulas with finite exceptions is learnable
in polynomial time with equivalence and malicious membership queries.

Proof: Corollary 4 shows that the class of monotone DNF formulas with exceptions is
polynomially closed under finite exceptions. In Section 5.3 we gave an algorithm that learns
this class in polynomial time with membership and equivalence queries.

Note that we can also learn the class of monotone DNF formulas without any exceptions
with this generic algorithm, using extended equivalence and malicious membership queries,
since it is just a subclass of the class that allows exceptions. However, the algorithm is much
less efficient than the one described in Section 4.

6.2. Learning with and without “Don’t knows”

In this subsection, we digress from exceptions and malicious membership queries, and
focus again on limited membership queries and standard membership queries. We present
a lower bound result, the proof of which has ideas useful in further subsections.

We start by briefly describing a method for converting any algorithm for exact identifica-
tion from membership and equivalence queries to one that works for limited membership
queries. We can also show that in some cases an exponential blowup in the number of
queries is necessary.

Theorem 8 Every concept class that is learnable withm equivalence and membership
queries is learnable with2`(m−`+1)+`−1 equivalence and limited membership queries,
where` is the number of⊥ responses received.

Proof: Let AlgorithmA exactly identify concept classC from at mostm equivalence and
membership queries. We construct a learning algorithmA′ for equivalence and limited

MALICIOUS OMISSIONS AND ERRORS 249

membership queries as follows: For each instancex such thatLMQ(x) = ⊥, start running
two copies ofA in parallel, one assumingx is positive and the other assuming thatx is
negative. Furthermore, store all the queries and their answers in a global table, and do not
repeat a query that has already been made (possibly by another copy ofA). For each copy
ofA, if the answers that it has seen (including the guesses for the⊥ answers) are consistent
with some concept fromC, then it must output a final hypothesis after at mostm queries
(including the⊥ ones). Those copies that have answers inconsistent with any concept from
C may be stopped; this will take at mostm queries. For those copies that do obtain the
final hypothesis after at mostm queries (except for one, possibly), we may have to ask the
final equivalence query to see which one of them has the correct answer. But, obviously,
some copy ofA will make the correct guesses for the⊥ answers and therefore it will have
a correct final hypothesis after at mostm queries.

The exact bound can be proven by induction on the number` of ⊥ answers out of the
totalm of EQ’s andLMQ’s. The proof is easier if we think about the computation ofA′

as a tree. Every query thatA′ makes is a node in the tree. Each node is labeled by the
query made. Every⊥ answer is abranching node(i.e., such nodes have two children, one
that assumes the answer is 0 and the other that assumes it is 1). There is no branching on
equivalence queries orLMQ’s that return a 0 or a 1. All paths from the root to the leaves
have at mostm + 1 nodes on them (for the sake of simplicity, we will assume that a final
EQ is made, and allow for this in the formula). Of course, on each path there are at most`
branching nodes. Furthermore, on every root-to-leaf path, the labels of the branching nodes
(i.e., queries made) are all distinct.

We need to bound the total number of nodes in the tree, but for the branching nodes we
need count only how many different labels they have (since no query is repeated). That is,
we basically have to count the non-branching nodes and add`.

For convenience let us name these trees. If such a tree as described above has` branching
nodes and at mostm + 1 nodes on each path from the root to the leaves, we call it an
`-m-branching-tree. (Of course,̀ ≤ m for every valid`-m-branching-tree.) We call
` plus the number of the tree’s non-branching nodes thelabeled-node count, since if all
the non-branching nodes had different labels (which they may, if the tree corresponds to a
computation ofA′ and the labels are given with respect to theLMQ’s orEQ’s being done in
A′), then this would really be just the count of the labels. We now begin the inductive proof
that the labeled-node count of any`-m-branching-tree does not exceed2`(m− `+ 1) + `.

Base case,̀ = 0, m ≥ 0: If there are no branching nodes then there is only one path
from the root to the leaf in the tree, and since its length is bounded bym+ 1 the bound
holds.

Inductive assumption: Assume that for all̀ ′ ≤ ` and for allm ≥ `′ we have proved
the bound. That is, the labeled-node count of every`′-m-branching-tree (wherè′ ≤ `)
is bounded by2`

′
(m− `′ + 1) + `′.

Induction step: Now we prove the bound for̀+ 1 and everym ≥ `+ 1. That is, we
take an arbitrary(`+1)-m-branching-tree. We start from the root of the tree and follow
down the only path until we reach the first branching nodeb. Let the number of nodes
from the root tob, inclusively, bem∗. The left subtree ofb is an`0-(m−m∗)-branching-
tree, for somè 0 ≤ `. The right subtree ofb is an`1-(m − m∗)-branching-tree, for

250 D. ANGLUIN, ET AL.

somè 1 ≤ `. We need to further elaborate on the labels of the branching nodes in these
subtrees. None of these labels are the same as the label forb, since on every path all
labels have to be different. Let`∗0 be the number of branching nodes that have labels
not occurring in the right subtree and let`∗1 be the number of branching nodes that have
labels not occurring in the left subtree. Let`∗ be the labels that exist in both subtrees
of b. Obviously, we know that̀0 = `∗0 + `∗ and that̀ 1 = `∗1 + `∗. We also know that
`∗0 + `∗1 + `∗ = `.

The labeled-node count of the original(` + 1)-m-branching-tree can be expressed as
the labeled-node count of the left subtree ofb, plus the labeled-node count of the right
subtree ofb, plusm∗, and minus̀ ∗, the number of branching nodes that have been
counted in the labeled-node count of both subtrees.

If we use the inductive assumption for the labeled-node counts of the left and right
subtrees, we just have to verify that

2`
∗
0+`∗

(
(m−m∗)− (`∗0 + `∗) + 1

)
+ (`∗0 + `∗)

+ 2`
∗
1+`∗

(
(m−m∗)− (`∗1 + `∗) + 1

)
+ (`∗1 + `∗) +m∗ − `∗

≤ 2`+1
(
m− (`+ 1) + 1

)
+ (`+ 1).

Some simplifications on the left side of this inequality, lead us to

2`−`
∗
1
(
m− (`− `∗1) + 1

)
+ 2`−`

∗
0 (m− (`− `∗0) + 1) + `

− m∗(2`−`
∗
1 + 2`−`

∗
0 − 1),

and we have to verify that it does not exceed2`+1(m− `)+ `+1. We can increase the
left side by takingm∗ as small as possible, namely 1. Therefore, we now only need to
show that

2`−`
∗
1
(
m− (`− `∗1)

)
+ 2`−`

∗
0
(
m− (`− `∗0)

)
≤ 2`+1(m− `).

It is easy to prove that2`−k
(
m − (` − k)

)
≤ 2`(m − `), if k ≤ ` ≤ m. Since

`∗1 ≤ ` ≤ m and`∗0 ≤ ` ≤ m, we can apply the above formula to both terms of the left
side of the inequality that we are trying to prove. This completes the inductive proof.

The only difference between the number of queriesA′ makes and the labeled-node count
of a `-m-branching-tree that corresponds to its computation is that we can save the last
equivalence query for one of the copies ofA. This concludes the proof.

The next theorem shows that in some cases such an exponential blowup in the number of
queries is in fact necessary.

Theorem 9 There is a concept class learnable withm equivalence and membership
queries that requires2`(m − ` + 1) − 1 equivalence and limited membership queries,
where` is the number of⊥ responses received.

Proof: We construct a concept classC that is a variant of ADDRESSING (Maass & Tur´an,

1992). Let the instance space beX =
⋃2`

i=0Xi, where theXi’s are disjoint,X0 =

MALICIOUS OMISSIONS AND ERRORS 251

{1, . . . , `}, and|Xi| = m− `+ 1 for 1 ≤ i ≤ 2`. Since|X0| = `, each of its subsets can
be viewed as aǹ-bit number. A setc ⊆ X is in C if and only if it has the following form.
It contains exactly one elementx that is not inX0, and ifi denotes the number represented
by c ∩X0, then thatx is inXi.

Concept classC can be learned bỳmembership queries for the elements inX0 followed
by m − ` membership queries for the elements ofXi, wherei is the number represented
by the responses obtained in the first phase.

On the other hand, the following adversary strategy shows that at least2`(m − ` +
1) − 1 equivalence and limited membership queries are required to learnC. The limited
membership oracle responds⊥ to all instances inX0. Membership queries for other
elements are answered by “No.” Equivalence queries are answered by providing a negative
counterexample outsideX0.

Taking` = m in the proof of Theorem 9 gives us the original concept class ADDRESS-
ING, and an example wherem ⊥ responses increase the number of queries required from
m for ordinary membership queries to2m − 1 for limited membership and equivalence
queries.

Note that ADDRESSING also causes the incomplete membership query model (Angluin
& Slonim, 1994) to have an expected exponential blowup over ordinary membership que-
ries when the probability of a⊥ response is a constant. For constant probabilityp of ⊥,
the expected number of instances inX0 answered⊥ is pm. This will increase the num-
ber of queries required fromm for ordinary membership queries to2pm for incomplete
membership and equivalence queries.

If, instead of allowing equivalence queries only from the concept class, one allows ex-
tended equivalence queries withany set, then such a blowup cannot occur. This follows
from a result of Auer and Long (1994) showing that in this model membership queries can
speed up learning by only a constant factor.

6.3. Strict versus Nonstrict

Recall that in the nonstrict model the final hypothesis need only agree with the target concept
on pointsx such thatLMQ(x) 6= ⊥, while in the strict model, they must be exactly equal.

Every learning algorithm that works in the strict model can be run in the nonstrict model
without increasing its complexity. A relationship in the other direction can be established
by a method similar to the one used in the proof of Theorem 7 in subsection 6.1.

Every learning algorithm that works in the nonstrict model can be adapted to work in
the strict model as follows. First note that the problem that may occur when running
a nonstrict algorithm in the strict model is that it may receive as a counterexample to an
equivalence query a point that was previously classified as a “Don’t know” in a membership
query. In this case, the execution of the algorithm is interrupted. The algorithm is then
restarted, remembering the point and its classification for possible later use in answering
a membership query. Since each interruption corresponds to a new “Don’t know,” this
simulation essentially adds a multiplicative factor of` to the complexity of the learning
algorithm.

252 D. ANGLUIN, ET AL.

Hence, from the point of view of polynomial learnability, the strict and nonstrict models
usingEQ’s andLMQ’s are equivalent.

6.4. Lies versus Omissions

As noted in Subsections 2.2 and 3.4, learning withMMQ’s andEQ’s is at least as difficult
as withLMQ’s andEQ’s. To show that learning withMMQ’s andEQ’s is in fact more
difficult, we construct yet another variant of ADDRESSING parameterized bym and` as
follows. The universe consists of a setX0 of m elements, and a disjoint setX1 of

(
m
`

)
elements. We choose some fixed one-to-one correspondence between the elements inX1

and subsets ofX0 of cardinality`. The desired class contains conceptsY consisting of a
subset ofX0 of cardinality` together with the corresponding element ofX1. This concept
class can be learned usingm LMQ’s followed by at most2` EQ’s. On the other hand,
consider an adversary that answersMMQ’s with 0, andEQ’s with the element of the
queried concept fromX1 as the counterexample. ThenMMQ’s convey no information,
andEQ’s eliminate concepts one at a time, so at least

(
m
`

)
− 1 MMQ’s andEQ’s are

required to learn this concept class.
This example, with̀ = logm, shows that the number ofMMQ’s andEQ’s necessary

to learn a concept class cannot be bounded by any polynomial in the number ofLMQ’s
andEQ’s. On the other hand, since in this example the number ofLMQ’s andEQ’s is
exponential iǹ , it does not answer the question “Are there any concept classes polynomially
learnable fromEQ’s and LMQ’s that are not polynomially learnable fromEQ’s and
MMQ’s?”

7. Summary

Most of the results proven in this paper are summarized in Table 1. The remaining ones are
given below.

1. Strict and nonstrict models of learning from equivalence and limited membership que-
ries are polynomial-time equivalent. (Subsection 6.3.)

2. Polynomial-time learnability from equivalence and malicious membership queries im-
plies polynomial-time learnability from equivalence and limited membership queries.
(Subsection 2.2.)

3. Learning monotone monomials in the nonstrict model from limited membership queries
alone may requireΩ(nc+1) queries whenO(nc) omissions are given. (Corollary 1.)

4. Any class of concepts that is polynomially closed under finite exceptions and is learnable
in polynomial time from equivalence and standard membership queries is also learnable
in polynomial time from equivalence and malicious membership queries. (Theorem 7.)

5. Every concept class that is learnable fromm equivalence and standard membership
queries is learnable in the strict model from2`(m − ` + 1) + ` − 1 equivalence and
limited membership queries. (Theorem 8.)

MALICIOUS OMISSIONS AND ERRORS 253

Table 1. Summary of the results for various boolean formulas:n denotes the number of variables;m denotes
the number of terms in a formula;s denotes the size of a concept;` denotes the number of lies or omissions;l
denotes the number of exceptions.

Class of Concepts Type ofMQ’s Number ofEQ’s Number ofMQ’s

Monotone Monomials (Theorem 1) LMQ’s n`+ n+ 1

Monotonek-term DNF (Theorem 3) LMQ’s O(knk + n2`)

Monotone DNF, Nonstrict (Theorem 4) LMQ’s m+ 1 n(m+ `)

Monotone DNF, Strict (Theorem 4) LMQ’s m+ `+ 1 n(m+ `)

Monotone DNF (Theorem 5) MMQ’s O(m+ n`) O(mn2 + `n3)

Monotone DNF with Finite Exceptions
(Theorem 6)

MQ’s O(m2n2l3) O(mn2 + ln3)

DFA’s (Corollary 5) MMQ’s poly(s, n, `) poly(s, n, `)

Decision Trees (with ExtendedEQ’s,
Corollary 6)

MMQ’s poly(n, `) poly(n, `)

Monotone DNF with Finite Exceptions
(Corollary 7)

MMQ’s poly(n,m, l, `) poly(n,m, l, `)

6. There exists a concept class learnable withm equivalence and standard membership
queries that requires2`(m − ` + 1) − 1 equivalence and limited membership queries
to be learned in the strict model. (Theorem 9.)

7. There exists a concept class learnable in the strict model withm+ 2` equivalence and
limited membership queries that requires

(
m
`

)
− 1 equivalence and malicious member-

ship queries to be learned. (Subsection 6.4.)

8. Discussion and Open Problems

As noted in the introduction, there are many classes of concepts that are efficiently learn-
able with membership and equivalence queries. For some of them we now have learning
algorithms that use equivalence and limited or malicious membership queries. Many other
problems still remain unexplored. For example, there is not yet any algorithm for learning
read-once formulas from equivalence and limited or malicious membership queries, even
though there is an algorithm for learning read-once formulas from equivalence and stan-
dard membership queries. A start in this direction is made in (Angluin, 1994), which gives
a randomized polynomial-time algorithm to learnµ-DNF formulas with equivalence and
malicious membership queries. In the model of PAC learning with membership queries,
it would be interesting to see whether Baum’s algorithm (Baum, 1991) can be modified to
tolerate “I don’t know” answers.

Another type of open problem is finding lower bounds for any of the classes of concepts for
which we give learning algorithms using equivalence and limited or malicious membership
queries. So far, we have lower bounds for only a specially constructed class and for
monotone monomials in the model that uses only limited membership queries. For other

254 D. ANGLUIN, ET AL.

classes, the following question is still relevant: can we prove something stronger than the
trivial bound that there must be more membership queries than lies or omissions?

Moving on to the comparison of models, we have two very intriguing questions. The first
one is, are there any classes of concepts that are polynomial-time learnable from equiva-
lence and limited membership queries, but not polynomial-time learnable from equivalence
and malicious membership queries? The second question is, are learning with exceptions
and learning with lies equally difficult for classes that are polynomially closed under finite
exceptions, or is learning with exceptions more difficult for these classes? That is, is there a
class that is polynomially closed under finite exceptions, is learnable with malicious mem-
bership queries in polynomial time, and is not polynomial-time learnable with exceptions?
We also do not know how the difficulty of learning with exceptions classes that are not
polynomially closed under finite exceptions relates to learning such classes with malicious
membership queries.

A less important extension of this work would be to improve the time bound for the
algorithm that learns monotone DNF formulas with exceptions and possibly for the one
that learns monotone DNF from equivalence and malicious membership queries.

Acknowledgments

This research was funded in part by the National Science Foundation, under grants CCR-
9213881, CCR-9108753, CCR-9314258 and CCR-9208170, and by Esprit BRA ILP, Pro-
ject 6020, OTKA grant T-014228, and OTKA grant T-016349.

We thank the referees for their careful reading and helpful suggestions. This work ap-
peared as two separate papers in the Proceedings of the 7th Annual ACM Conference on
Computational Learning Theory (Angluin & Krik¸is, 1994b), (Sloan & Tur´an, 1994). Part
of it is also available as a technical report (Angluin & Krik¸is, 1994a).

References

Anderson, J. R. (1980).Cognitive Psychology and Its Implications. W. H. Freeman and Company.
Angluin, D. (1987). Learning regular sets from queries and counterexamples.Inform. Comput., 75(2):87–106.
Angluin, D. (1988). Queries and concept learning.Machine Learning, 2(4):319–342.
Angluin, D. (1994). Exact learning ofµ-DNF formulas with malicious membership queries. Technical Report

YALEU/DCS/TR-1020, Yale University Department of Computer Science.
Angluin, D., & Kriķ is, M. (1994a). Malicious membership queries and exceptions. Technical Report YALEU/-

DCS/TR-1019, Yale University Department of Computer Science.
Angluin, D., & Kriķ is, M. (1994b). Learning with malicious membership queries and exceptions. InProc. 7th

Annu. ACM Workshop on Comput. Learning Theory, pages 57–66. ACM Press, New York, NY.
Angluin, D., & Slonim, D. K. (1994). Randomly fallible teachers: learning monotone DNF with an incomplete

membership oracle.Machine Learning, 14(1):7–26.
Auer, P., & Long, P. M. (1994). Simulating access to hidden information while learning. InProc. of the 26th

Annual ACM Symposium on Theory of Computing, pages 263–272. ACM Press, New York, NY.
Baum, E. (1991). Neural net algorithms that learn in polynomial time from examples and queries.IEEE

Transactions on Neural Networks, 2:5–19.
Board, R., & Pitt, L. (1992). On the necessity of Occam algorithms.Theoret. Comput. Sci., 100:157–184.
Bshouty, N. H., (1993). Exact learning via the monotone theory. InProceedings of the 34th Annual Symposium

on Foundations of Computer Science, pages 302–311. IEEE Computer Society Press, Los Alamitos, CA.
Bultman, W. J. (1991).Topics in the Theory of Machine Learning and Neural Computing. PhD thesis, University

of Illinois at Chicago Mathematics Department.

MALICIOUS OMISSIONS AND ERRORS 255

Dean, T., Angluin, D., Basye, K., Engelson, S., Kaelbling, L., Kokkevis, E., & Maron, O. (1995). Learning finite
automata with stochastic output functions and an application to map learning.Machine Learning, 18(1):81–108.

Frazier, M., Goldman, S., Mishra, N., & Pitt, L. (1994). Learning from a consistently ignorant teacher. InProc.
7th Annu. ACM Workshop on Comput. Learning Theory, pages 328–339. ACM Press, New York, NY.

Goldman, S. A., Kearns, M. J., & Schapire, R. E. (1993). Exact identification of read-once formulas using fixed
points of amplification functions.SIAM J. Comput., 22(4):705–726.

Goldman, S. A., & Mathias, H. D. (1992). Learning k-term DNF formulas with an incomplete membership oracle.
In Proc. 5th Annu. Workshop on Comput. Learning Theory, pages 77–84. ACM Press, New York, NY.

Kearns, M. (1993). Efficient noise-tolerant learning from statistical queries. InProc. 25th Annu. ACM Sympos.
Theory Comput., pages 392–401. ACM Press, New York, NY.

Kushilevitz, E., & Mansour, Y. (1993). Learning decision trees using the Fourier spectrum.SIAM J. Comput.,
22(6):1331–1348. Earlier version appeared in STOC 1991.

Lang, K. J., & Baum, E. B. (1992). Query learning can work poorly when a human oracle is used. InInternational
Joint Conference on Neural Networks, Beijing.

Maass, W., & Tur´an, G. (1992). Lower bound methods and separation results for on-line learning models.Machine
Learning, 9:107–145.

Ron, D., & Rubinfeld, R. (1995). Learning fallible deterministic finite automata.Machine Learning, 18(2/3):149–
185.

Sakakibara, K. (1991). On learning from queries and counterexamples in the presence of noise.Inform. Proc.
Lett., 37(5):279–284.

Sloan, R. H., & Turán G. (1994). Learning with queries but incomplete information. InProc. 7th Annu. ACM
Workshop on Comput. Learning Theory, pages 237–245. ACM Press, New York, NY.

Valiant, L. G. (1985). Learning disjunctions of conjunctions. InProceedings of the 9th International Joint
Conference on Artificial Intelligence, vol. 1, pages 560–566, Los Angeles, California. International Joint
Committee for Artificial Intelligence.

Zhuravlev, Y., & Kogan, Y. (1985). Realization of boolean functions with a small number of zeros by disjunctive
normal forms, and related problems.Soviet Math. Doklady, 32:771–775.

Received May 9, 1995
Accepted November 20, 1995
Final Manuscript April 23, 1997

