Machine Learning, 28, 211-255 (1997)
© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Malicious Omissions and Errors in Answers to
Membership Queries

DANA ANGLUIN angluin@cs.yale.edu
MARTINS KRIKIS krikis@cs.yale.edu
Department of Computer Science, Yale University, P.O. Box 208285, New Haven, CT 06520

ROBERT H. SLOAN sloan@eecs.uic.edu

Dept. of Electrical Eng. and Computer Science, 851 S. Morgan St. Rm 1120, University of lllinois at Chicago,
Chicago, IL 60607

GYORGY TURAN ul1557@uicvm.uic.edu

Dept. of Math., Stat., and Comp. Sci., 851 S. Morgan St. Rm 322, University of lllinois at Chicago, Chicago, IL
60607, Automata Theory Research Group Hungarian Academy of Sciences, Szeged

Editor: David Haussler

Abstract. We consider two issues in polynomial-time exact learning of concepts using membership and equiva-
lence queries: (1) errors or omissions in answers to membership queries, and (2) learning finite variants of concepts
drawn from a learnable class.

To study (1), we introduce two new kinds of membership queries: limited membership queries and malicious
membership queries. Each is allowed to give incorrect responses on a maliciously chosen set of strings in the
domain. Instead of answering correctly about a string, a limited membership query may give a special “I don't
know” answer, while a malicious membership query may give the wrong answer. A new parédnietesed to
bound the length of an encoding of the set of strings that receive such incorrect answers. Equivalence queries
are answered correctly, and learning algorithms are allowed time polynomial in the usual parameferéand
class of concepts learnable in polynomial time using equivalence and malicious membership queries is learnable
in polynomial time using equivalence and limited membership queries; the converse is an open problem. For
the classes of monotone monomials and monotfeterm DNF formulas, we present polynomial-time learning
algorithms using limited membership queries alone. We present polynomial-time learning algorithms for the
class of monotone DNF formulas using equivalence and limited membership queries, and using equivalence and
malicious membership queries.

To study (2), we consider classes of concepts that are polynomially closed under finite exceptions and a
natural operation to add exception tables to a class of concepts. Applying this operation, we obtain the class
of monotone DNF formulas with finite exceptions. We give a polynomial-time algorithm to learn the class
of monotone DNF formulas with finite exceptions using equivalence and membership queries. We also give a
general transformation showing that any class of concepts that is polynomially closed under finite exceptions and is
learnable in polynomial time using standard membership and equivalence queries is also polynomial-time learnable
using malicious membership and equivalence queries. Corollaries include the polynomial-time learnability of the
following classes using malicious membership and equivalence queries: deterministic finite acceptors, boolean
decision trees, and monotone DNF formulas with finite exceptions.

Keywords: Concept learning, queries, errors
1. Introduction

There is an impressive and growing number of polynomial-time algorithms, many of them
quite beautiful and ingenious, to learn various interesting classes of concepts using equiva-

212 D. ANGLUIN, ET AL.

lence and membership queries. To apply such algorithms in practice, researchers need to
overcome a number of problems.

One significantissueis the problem of omissions and errorsin answers to queries. Previous
learning algorithms in the equivalence and membership query model are guaranteed to
perform well assuming that queries are answered correctly, but there is often no guarantee
that the performance of the algorithm will “degrade gracefully” if that assumption is not
exactly satisfied.

Lang and Baum (1992) report that this problem derailed their attempt to apply Baum’s
algorithm for learning neural nets from examples and membership queries (Baum, 1991) to
the problem of recognizing hand-written digits. The attempt failed because the membership
guestions posed by the algorithm were too difficult for people to answer reliably. The
algorithm typically asked membership queries on, say, a random-looking blur midway
between a “5” and a “7,” and the humans being queried gave very inconsistent responses.
Studies in cognitive psychology indicate that this is the norm; people are typically quite
inconsistent in deciding where the precise boundary of a concept lies. (See, e.g., Anderson
(1980).)

1.1. Omissions and Limited Membership Queries

This motivated us to introduce the limited membership query. A limited membership query
may be answered either correctly, or with an omission, that is, a special value signifying “I
don't know.” The answers are persistent; that is, repeated queries about the same example
are given the same answer. The choice of the set of strings on which to give answers of
“I don’t know” is assumed to be made by a malicious adversary. We introduce a new
parametetl to quantify the “amount” of omission—it is a bound on the table-size of the
set of strings on which the adversary answers “l don’t know.” (The table-size of a set of
strings is the number of strings in the set plus the sum of their lengths.) A polynomial-time
learning algorithm is permitted time polynomial in the usual parameterd.and

For this model, we define a hypothesis to be “nonstrictly” correct if it agrees with the
target concept on all examples except possibly ones for which a limited membership query
was answered “| don’t know.” Thus, domain elements answered with “I don’t know” are
allowed to be classified arbitrarily by the final hypothesis of a learning algorithm. This
corresponds to the intuition that since a person could not be sure of the classification of a
“blur between 5 and 77, it does not matter how the final hypothesis classifies it.

We give a polynomial-time learning algorithm using just limited membership queries
for the class of monotone monomials and a lower bound on the query complexity of this
problem. We also give a polynomial-time learning algorithm in this model for the class of
k-term monotone DNF formulas.

We also consider combining limited membership queries with equivalence queries. We
assume that the answers to equivalence queries remain correct, that is, any counterexample
given is truly a counterexample to the hypothesis of the learning algorithm. In the nonstrict
model, the equivalence query is answered “yes” if the hypothesis is nonstrictly correct;
otherwise a counterexample must be returned from among examples not answered with “|
don'tknow.” In the strict model, equivalence queries remain as usual, thatis, an equivalence
query is answered with “yes” if the hypothesis is exactly equivalent to the target concept;

MALICIOUS OMISSIONS AND ERRORS 213

otherwise an arbitrary counterexample is returned (including possibly an example previously
answered with “I don’t know.”)

We show that the same classes of concepts can be learned in polynomial time using limited
membership queries and equivalence queries in the nonstrict and strict models. We give
a polynomial-time algorithm to learn monotone DNF formulas using limited membership
gueries and equivalence queries in the nonstrict model.

1.2. Malicious Membership Queries and Errors

Inthe case of limited membership queries, the answers that are not omissions are guaranteed
to be correct. We also consider the situation in which the answers to membership queries
may be wrong. In a malicious membership query, the answer given may be correct, or

it may be an error. As in the case of limited membership queries, we use the parameter
L to bound the table-size of the set of strings whose malicious membership queries are
answered erroneously, the choice of that set of strings is assumed to be made by a malicious
adversary, and the answers to queries are persistent. We assume that equivalence queries
remain correct, which corresponds to the strict model introduced above. That is, the final
hypothesis of the learning algorithm must be exactly equivalent to the target concept.

We give a polynomial-time algorithm to learn monotone DNF formulas using malicious
membership queries and equivalence queries. It is not difficult to see that any concept
class learnable in polynomial time using malicious membership queries and equivalence
gueries is learnable in polynomial time using limited membership queries and equivalence
queries, but the converse direction is an interesting open question. We exhibit a class
of concepts for which the query complexity for equivalence and malicious membership
queries is not bounded by any polynomial in the query complexity for equivalence and
limited membership queries, but both complexities are exponential in the number of strings
that receive incorrect answers.

1.3. Finite Exceptions

A related issue is the assumption that the target concept is drawn from a particular class
of concepts, for example, monotone DNF formulas. Even if the target concept is “nearly”
a monotone DNF formula, there is typically no guarantee that the learning algorithm will
do anything reasonable. We approach this question by considering finite variants of the
concepts in a given class, using the table-size of the set of exceptions as a measure of “how
different” the target concept is from one in the specified class.

We define what it means for a concept class to be polynomially closed under finite
exceptions. Some concept classes, for example, DFA's and decision trees, are polynomially
closed under finite exceptions, while others, like monotone DNF formulas, are not. For the
latter, we define a natural operation of adding exception tables to the concept class to make
it polynomially closed under exceptions. We give a polynomial-time learning algorithm
for the resulting class of monotone DNF formulas with finite exceptions, using equivalence
gueries and standard membership queries.

We then give a general transformation that shows that any class of concepts that is poly-
nomially closed under exceptions and polynomial-time learnable using equivalence que-

214 D. ANGLUIN, ET AL.

ries and standard membership queries is also polynomial-time learnable using equivalence
gueries and malicious membership queries. Corollaries include polynomial-time learning
algorithms using equivalence queries and malicious membership queries for the concept
classes of DFA's, decision trees, and monotone DNF formulas with finite exceptions.

The notion of a finite variant of a concept, that is, a concept with a finite set of excep-
tions, is a unifying theme between the models of learning with equivalence and malicious
membership queries and of learning a concept class with finite exceptions. Our model of
errors in membership queries can be viewed as combining an equivalence oracle for the
target concept and a membership oracle for a finite variant of the target concept. In the case
of learning a concept class with finite exceptions, the equivalence and membership oracles
present the same finite variant of a concept in the base class. In both cases, the goal is to
identify exactly the concept presented by the equivalence oracle.

1.4. Related Work

There is a considerable body of literature on errors in examples in the PAC model, starting
with the first error-tolerant algorithm in the PAC model, given by Valiant (1985). In this case
the goal is PAC-identification of the target concept, despite the corruption of the examples
by one or another kind of error, for example, random or malicious misclassification errors,
random or malicious attribute errors, or malicious errors (in which both attributes and
classification may be arbitrarily changed).

There has been not as much work on omissions and errors in learning models in which
membership queries are available, and the issues are not as well understood. One relevant
distinction is whether the omissions of errors in answers to membership queries are persistent
or not. They ar@ersistentf repeated queries to the same domain element always return the
same answer. In general, the case of persistent omissions or errors is more difficult, since
non-persistent omissions or errors can yield extra information, and can always be made
persistent simply by caching and using the first answer for each domain point queried.

1.5. Non-persistent Errors in Queries

Sakakibara defines one model of non-persistent errors, in which each answer to a query
may be wrong with some probability, and repeated queries constitute independent events
(Sakakibara, 1991). He gives a general technique of repeating each query sufficiently often
to establish the correct answer with high probability. This yields a uniform transforma-
tion of existing query algorithms. The method also works for both of Bultman’s models
(Bultman, 1991). This could be a reasonable model of a situation in which the answers to
gueries were being transmitted through a medium subject to random independent errors;
then the technique of repeating the query is eminently sensible.

A related model is considered by Dean et al. (1995) for the case of a robot learning a
finite-state map of its environment using faulty sensors and reliable effectors. This model
assumes that observation errors are independent as long as there is a nonempty action
sequence separating the observations. This means that there is no simple way to “repeat
the same query”, since a nonempty action sequence may take the robot to another state,
and no reset operation is available. A polynomial-time learning algorithm is given for the

MALICIOUS OMISSIONS AND ERRORS 215

situation in which the environment has a known distinguishing sequence. It achieves exact
identification with high probability.

1.6. Persistent Errors in Membership Queries

The method of “repeating the query” is insufficient for the more difficult case of persis-
tent omissions or errors in membership queries. In this case, we must exploit the error-
correcting properties of groups of “related” queries. In an explicit and very interesting
application of the ideas of error-correcting algorithms, Ron and Rubinfeld use the criterion
of PAC-identification with respect to the uniform distribution, and give a polynomial-time
randomized algorithm using membership queries to learn DFA's with high rates of random
persistent errors in the answers to the membership queries (Ron & Rubinfeld, 1995).

Algorithms that use membership queries to estimate probabilities (in the spirit of the
statistical queries defined by Kearns (1993)) are generally not too sensitive to small rates
of random persistent errors in the answers to queries. For example, Goldman, Kearns, and
Schapire give polynomial-time algorithms for exactly learning read-once majority formulas
and read-once positive NAND formulas of depitflogn) with high probability using
membership queries with high rates of persistent random noise or modest rates of persistent
malicious noise (Goldman, Kearns & Schapire, 1993). As another example, Kushilevitz
and Mansour’s algorithm that uses membership queries and exactly learns logarithmic-
depth decision trees with high probability in polynomial time seems likely to be robust
under nontrivial rates of persistent random noise in the answers to queries (Kushilevitz
& Mansour, 1993).

However, learning algorithms for other classes of concepts using equivalence and mem-
bership queries may depend more strongly on the correctness of the answers to individual
gueries; in these cases, there is no guarantee of a learning algorithm for the class that can
tolerate omissions or errors in the answers to membership queries.

One model that addressed these questions was introduced by Angluin and Slonim: equi-
valence queries are assumed to be answered correctly, while membership queries are either
answered correctly or with “I don’'t know” and the answers are persistent. The “l don’t
know” answers are determined by independent coin flips the first time each query is made
(Angluin & Slonim, 1994). They give a polynomial-time algorithm to learn monotone
DNF formulas with high probability in this setting. They also show that a variant of this
algorithm can deal with one-sided errors, assuming that no negative point is classified as
positive. Goldman and Mathias also consider this model (Goldman & Mathias, 1992). Our
current models and results differ in that the omissions and errors are chosen by a malicious
adversary instead of arandom process, and the rate of incorrect answers that can be tolerated
is consequently much lower.

Frazier et al. (1994) have introduced a model of omissions in answers to membership
gueries, called learning from a consistently ignorant teacher. The basic idea is to require
that if the teacher gives answers to certain queries that would imply a particular answer to
another query, the teacher cannot answer the latter query with “I don't know.” For example,
in the domain of monotone DNF formulas, if the teacher classifies a particular point as
positive, then the teacher cannot answer “I don’t know” about any of the ancestors of the
point. The goal of the learner is to learn exactly the ternary classification of points into

216 D. ANGLUIN, ET AL.

positive, negative, and “I don't know” that is presented by the teacher. Such a ternary
classification may be represented by #ggeemenof a set of binary-valued concepts; the
agreement classifies a point as positive (respectively, negative) if all the concepts in the set
classify it as positive (respectively, negative), otherwise, the agreement classifies the point
as “l don’t know.” Efficient learning algorithms are given in this model for monomials
with at least one positive example, concepts represented as the agreement of a constant
number of monotone DNF formulak;term DNF formulas, DFA's, or decision trees, and
concepts represented by an agreement of boxes with samplable intersection. Compared
to our model, this model has a different measure of the representational complexity of a
concept with omissions, which allows a much higher rate of omissions to be compactly
represented. It also differs in requiring the learner to reproduce exactly the “I don’t know”
labels of the teacher, whereas in our (nonstrict) model of omissions such examples can be
classified arbitrarily.

2. Preliminaries
2.1. Concepts and Concept Classes

Our definitions for concepts and concept classes are a bit non-standard. We have explicitly
introduced the domains of concepts in order to try to unify the treatment of fixed-length
and variable-length domains. We takeandI" to be two finite alphabets. Examples are
represented by finite strings ovEBrand concepts are represented by finite strings Bver

A concepftconsists of a paifX, f), whereX C ¥*, andf mapsX to {0,1}. The setX
is thedomainof the concept. Theositive examplesf (X, f) are thosev € X such that
f(w) =1, and thenegative examplesf (X, f) are thosev € X such thatf (w) = 0. Note
that strings not in the domain of the concept are neither positive nor negative examples of
it.

A concept classs a triple(R,Dom, 1), whereR is a subset of*, Domis a map fromR
to subsets oE*, and for each- € R, u(r) is a function fromDom(r) to {0, 1}. R is the
set of legal representations of concepts. For eaehR, the concept represented byis
(Dom(r), u(r)).

A concept(X, f) is represented bg concept clas&R, Dom) if and only if for some
r € R, (X, f) is the concept represented hyThesizeof a concept X, f) represented by
(R,Dom p) is defined to be the length of the shortest string R such that- represents
(X, f). The size of X, f) is denoted by(X, f)|; note that it depends on the concept class
chosen.

The concept classes we consider in this paper are boolean formulas and syntactically
restricted subclasses of them, boolean decision trees, and DFA's. The representations are
more or less standard, except each concept representation specifies the relevant domain. For
DFA's, the domain of every concept is the &&titself. For boolean formulas and decision
trees, we assume that= {0, 1}, and each concept representation specifies a domain of
the form{0,1}".

For each finite sef of strings from>*, we define itdable-sizedenoted|S||, as the sum
of the lengths of the strings ifi and the number of strings il. Note thatj|.S|| = 0 if and

MALICIOUS OMISSIONS AND ERRORS 217

only if S = (7f. The table-size of a set of strings is related in a straightforward way to an
encoding of a list of the strings; see Section 5.

2.2. Queries

For a learning problem we assume that there is an unknown target condegptn from
a known concept classk, Dom p). Information about the target concept is available to
the learning algorithm as the answers to two types of queries: equivalence queries and
membership queries.

In an equivalence query, the algorithm gives as input a con€ept R with the same
domain as the target, and the answer depends on whethee u(r'). If so, the answer
is “yes”, and the learning algorithm has succeeded in its goal of exact identification of the
target concept. Otherwise, the answer isoanterexampleany stringw € Dom(r) on
which the functiong:(r) andu(r’) differ. We denote an equivalence query on a hypothesis
hby EQ(h).

Thelabelfor a counterexample = EQ(r’) is the value ofu(r) onv, giving its classi-
fication by the target concept. Since the hypothesized contepid the target concept
differ on the classification of the counterexamplehe label ofv is also the complement
of the value ofu(r’) onv. Positive counterexamplese those with label andnegative
counterexampleare those with labél.

In a membership query, the learning algorithm gives as input a sirigagDom(r), and
the answer is either 0, 1, ar. If the answer is equal to the value @fr) on w, then the
answer iscorrect If the answer is equal ta, we say that the answer is amissionor a
“Don't know” . If the answer is O or 1 but not equal to the valueu¢f) on w, then the
answer is arerror or alie.

In astandard membership quegenotedVIQ, all the answers are required to be correct.
In alimited membership quergenoted.MQ, each answer is required to be correct or an
omission. In analicious membership quergenotedVIMQ, each answer is required to be
correct or an error (no omissions). Note that an answer of 0 or 1 to a limited membership
query is always correct, but this is not true for answers to malicious membership queries.

The answers to malicious and limited membership queries are also restricted as follows.

1. They argersistentthat is, different membership queries with the same input string
receive the same answer. Note that non-persistent queries may reveal some information;
in case two different queries to the same string receive different answers, the learning
algorithm knows that there has been an error on this string, though this will not in
general determine the correct classification of the string. Every algorithm designed to
work with persistent queries can be made to work with non-persistent ones by caching
the queries and always using the first answer for subsequent queries of the same string.

2. In addition, we bound the quantity of errors (or omissions) permitted in answers to
malicious (resp., limited) membership queries. One natural quantity to bound would be
the number of different strings whose membership queries can be answered incorrectly,
and this works well in fixed-length domains. However, in variable-length domains, we
wish to account for the lengths of the strings as well as their number.

218 D. ANGLUIN, ET AL.

Therefore, in general the algorithm is given a boundn the table-size|).S||, of the

set S of strings whose malicious (resp., limited) membership queries are answered
erroneously (resp., with &) during a single run. In the case of a fixed-length domain,
{0,1}", we may instead give abouridn the number of different strings whasEM Q’s
(resp.,.LMQ@Q’s) are answered incorrectly (resp., with.d. Note thatL = ¢(n + 1) is

a bound on the table-size in this case.

Note that when. = 0 or ¢ = 0 there can be no errors or omissions in the answers to
MMQ@Q's (or LM @Q’s) and we have the usual model of standard membership queries as
a special case.

We assume that an on-line adversary controls the choice of counterexamples in answers to
equivalence queries and the choice of which elements of the domain will be answered with
errors (orL’s) in malicious (or limited) membership queries. When the learning algorithms
we consider are deterministic, the adversary may be viewed as choosing in advance the set
of strings for which it will give incorrect answers to membership queries, as well as all the
counterexamples it will give to equivalence queries.

In this paper we consider models in which the learning algorithm has access to the
following combinations of queries:

1. membership and equivalence queries,

2. limited membership queries alone,

3. limited membership queries and equivalence queries, and
4. malicious membership queries and equivalence queries.

Model (1) is just the usual model of a minimally adequate teacher (Angluin, 1987). In model
(2), the learning algorithm need only achiawenstrict identification In other words, the
concept output by the learning algorithm must agree with the target concept on all points
not answered. by the LMQ, but it may differ on points answered This corresponds to

our view thatl points form the borderline of the concept and that the classification of them
is irrelevant or meaningless.

For model (3) we consider botmonstrictand strict variants. In the nonstrict variant,
equivalence queries are modified so that if the queried concept and the target concept
differ only on points classified as by the LMQ, then the reply is “yes”. Otherwise, a
counterexample must be given from the set of points not classifiedtasthe LMQ. In
this case, as in model (2), only nonstrict identification is required. In the strict variant of
model (3), as well as in model (4), equivalence queries are not modified, and the learning
algorithm is required to achieve the usual kind of exact identification, that is, the output
concept must agree with the target concept on every point in their common domain.

We extend the usual notion of polynomial-time learning to models (2-4) by allowing the
polynomial bound on the running time to depend on three parameters, thét,is, L).

Heres is the usual parameter bounding the length of the representation of the target concept,
n is the usual parameter bounding the length of the longest counterexample seen so far, and
L is a new parameter, bounding the table-size of the set of strings on which LMQ answers
1 or MMQ gives incorrect answers.

MALICIOUS OMISSIONS AND ERRORS 219

The definitions are extended in the usual way to cover randomized learning algorithms and
their expected running times, and also extended equivalence queries, in which the inputs to
equivalence queries and the final result of the algorithm are allowed to come from a concept
class different from (usually larger than) the concept class from which the target is drawn.

It is straightforward to transform any algorithm that uses malicious membership queries
into one that uses limited membership queries. Eveanswer can be replacegaOoral
arbitrarily and given to the learner. Therefore learning with malicious membership queries
is at least as hard as learning with limited membership queries in the strict model. The
same applies to learning from equivalence and malicious membership queries and learning
from equivalence and limited membership queries in the strict model. Furthermore, in
Subsection 6.3 we show that the strict and the nonstrict models of learning from equivalence
and limited membership queries are in fact polynomial-time equivalent. Note that the most
general kind of membership queries is one in which both wronglaadswers are possible,
but such queries are not harder than the malicious ones and therefore we consider only the
latter.

2.3. Monotone DNF Formulas

We assume a set of propositional variablesnd denote its elements by, -, ..., z,,
wheren is the cardinality ofi”. A monotone DNF formula ovelr” is a DNF formula over
V where no literal is negated. The domain of such a formuf@jd}". For example, for
n = 20,

X124 V Tox17X3 V T9Ts5T12X3 V Ty

is a monotone DNF formula (with domaif, 1}2°). We assume that the target formula

h* has been minimized, that is, it contains no redundant terms. (Incidentally, there is an
efficient algorithm to minimize the number of terms of a monotone DNF formula.) For a
monotone DNF formuld, let#(f) denote the number of terms jin In the above example,
#(f) = 4.

We view the domairf{0, 1}™ of monotone DNF formulas (with or without exceptions)
as a lattice, with componentwise “or” and “and” as the lattice operations. The top element
is the vector of all 1's, and the bottom element is the vector of all 0’s. The elements are
partially ordered by<, wherev < w if and only if v[i] < w[é] forall 1 < i < n. Often we
refer to the examples as points of the hyperc{fbé }". For a point, all pointsw such that
w < v are called thelescendantsf v. Those descendants that can be obtained by changing
exactly one coordinate affrom a 1 to a O arealled thechildrenof v. Theancestorsand
theparentsare defined similarly. Note thatis both a descendant and ancestor of itself.

For convenience, we use a representation of monotone DNF formulas in which each term
is represented by the minimum vector, in the orderigthat satisfies the term. Thus,
vector 10011 (where = 5) denotes the term;x4x5. In this representation, it is a
monotone DNF formula andis a vector in the domain, satisfiesh if and only if for some
termt of h, t < v. Thatis, a monotone DNF formula is satisfied only by the ancestors of
its terms. In the other direction, we say that terooverspointv if and only if v satisfies
t. For the sake of simplicity we often use in our algorithms something called “the empty

220 D. ANGLUIN, ET AL.

DNF formula”. This is the formula with no terms, which is not satisfied by any point, and
is therefore the identically false formula.
For anyn-argument boolean functiofi, we call pointz alocal minimum poinof f if
f(x) = 1 but for every childy of x in the lattice,f (y) = 0. The local minimum points of
a minimized DNF formula represent its terms in our representation.
For twon-argument boolean functionfs and f, we define the sekrr(f1, f2) to be the
set of points where they differ. L.eErr(f1, f2) = {z | f1(z) # f2(x)}. The cardinality
of Err(f1, f2) is called thedistancebetweenf; and f, and is denoted by(f1, f2).

3. Limited Membership Queries

In this section, we present results concerning learning with the help of limited membership
queries. We start with the description of a subroutine that is repeatedly used in all algorithms
for this model.

3.1. Delimiting A Term

Algorithm DeLimIT takes a positive point and finds a set of candidates for a term in
the target concept covering the point. This algorithm plays the role of the algorithms
called “Reduce” in other works on learning monotone DNF (Angluin & Slonim, 1994).
We choose a different name because those algorithms output a single monomial, whereas
Algorithm DeLiMIT finds a set of points that must include a correct term.

1111+
0111 - 10117 1101+ 1110
0011 0101 - 0110 1001 ? 1010 1100 ?
0001~ 0010 01007 1000 ?
0000 -

Figure 1. Example run of AlgorithmDELiMIT for target concepiz;z2. Boldface+'s, —'s and ?s indicate
responses 1, 0, and, respectively, of th&.MQ oracle.

Consider, for example, the situation in Figure 1 where the target conceptisand we
start with the known positive poipt= 1111. With complete information, we would begin
by querying each child g, updatingp to be the first positive child found. This process
would be repeated until eventually we had= 1100. After determining by membership
gueries that every child gf is negative, we could stop.

MALICIOUS OMISSIONS AND ERRORS 221

DELIMIT(p)

{
offbits =00---0

n
(root, DK) = DOWN(p, offbits)
(P,DK) = Up(DK)
P = P U {root}
T = DK U {root}
Return (T, P)

Figure 2. Algorithm DeLIMIT. offbitsis a bit array used in recursive subroutbewN to improve efficiency;
root is a special positive point (with everything beneath it being negative or belongibddyy D K is a certain

set of points withLMQ _L, created byDown and further thinned byJp; P is a certain set of positive points
aboveD K, a useful byproduct oUp; 7' is the set of points among which the correct term of the target formula
must lie.

Because AlgorithmDELIMIT can make only limited membership queries, it may encoun-
ter the difficulty that some positive poipthas children that are all “Don’t know,” or a mix
of “No” and “Don’t know.” For instance, in the example in Figure 1, all queries of children
of 1101 return 0 orL. In this case, AlgorithnDELIMIT continues by querying all the
children ofall the “Don’t know” points. Should it ever get another 1 response to a limited
membership query, it replacgdy that point. What we have just described is the subroutine
Down of DeLiMIT, which invokes itself recursively upon finding a new positive point.

Detailed code of algorithELIMIT and its subroutines is given in Figures 2, 3and 5. In
our C-like pseudocode we often us€a@r loop over a changing set of points; for example,
“For (eachb € A)". By this we mean that in each iteration of the loop the current point
(i.e.,b in this example) is marked, and that only unmarked points can be considered in the
next iterations. Furthermore, the loop condition is checked every time, that is, we check
for an existence of some unmarked point in the possibly changinglisatthis example).
If one exists, we mark it and do the body of the loop which may add new (unmarked)
points to the set or delete some existing points (either marked or unmarked). Points that
are deleted before marking are not processed. Furthermore, to ensure that the algorithms
are deterministic, we need that the current point is chosen according to some unambiguous
rule, i.e., there must not be any choice as to which unmarked point of the set will be marked
and processed next. Thus, we assume that there is some total order on all the elements in
the sample space and use this to unambiguously choose the current point. When the points
of the sample space correspond to assignments of O and Yddables, the easiest total
order is created by treating each point asdnit number. In all our algorithms that learn
boolean formulas, we assume that this total order is used and always pick the point with the
lowest number

Another thing worth explanation about our pseudocode is the use-of. ., -) on the
left side of assignments and as return values for subroutines. We do this to avoid confusing
global variables or things passed by reference. Thus, everything is passed by value (by
making a copy in the called subroutine) and everything that the calling routine needs is
returned to it explicitly. If many things need to be returned, then we put them in a tuple,

222 D. ANGLUIN, ET AL.

denoted by, -, ..., -), and return the tuple. The tuple is basically just a convenient notation
for a structure.

DowN(p, offbits)

{
DK = S
C={c:cisachildof p && ¢ > offbits}
While (C # ,@)
{
a = maximal element of C' with the lowest number
Delete a from C'
If (LMQ(a) ==1)
Return DowN(a, offbits)
Else If (LMQ(a) == 1)
{
DK = DK U {a}
C=CU{c:cisachildof a && ¢ > offbits}
}
Else If (a is a child of p)
{
1 = bit where a and p differ
offbits[i] = 1
}
Return (p, DK)
}

Figure 3. SubroutineDowN. p is the point it is called onpffbitsis a bit array used to improve efficienci,K is
a set of points witi.MQ _L and with all descendants or negative' is a set of points that have to be processed
in the main loop.

The subroutindowN uses a variableffbitsto improve efficiency. If a query to a child
a of a known positive poinp gives a 0 response, then we know that in any descendant of
p, switching off the bit position that distinguishesrom p will lead to a negative point,
because this point will be a descendant o herefore, variableffbitskeeps track of those
bit positions that must be 1, allowing subroutib®wn to save some queries.

EventuallyDowN is called on some positive poiptand finds a (possibly empty) set
DK of descendants gf such that the limited membership oracle respondl€dr every
pointin DK, and all other proper descendantg@ire known to be negative. Th&ownN
returns and poing from then on is called theot. Sincerootis positive, and we know that
every descendant ebot not in setD K is negative, a term of the monotone DNF must lie
somewhere in the sé K U {root}. This set is outlined in Figure 4.

The next major part oDELIMIT is the subroutindJp. Any point corresponding to a
term of the target concept must have only positive ancestors. Subraitimasures that

MALICIOUS OMISSIONS AND ERRORS 223

1111+

0111 -

0011 0101~ 0110

0001~ 0010 0100 ? 1000 ?

0000 -

Figure 4. The set of candidate terms obtained by subrouifiwevN.

Up(DK)

{
P-g
For (each a € DK)
{

A = {parents of a}

For (each b € A)
If (LMQ(b) ==0)
{

Delete all descendants of b from DK
Break /* Out of the For (each b € A) loop */

)
Else If (LMQ(b) == 1)
P =PuU{b}
Else
A = AU {parents of b}

}
Return (P, DK)

Figure 5. SubroutineUp. DK is a set of points witH.MQ _L that has to be thinned? is a set of minimal
ancestors witl.MQ 1 of points inDK; A is a set of certain ancestors of the current paint

no point in DK has any ancestor withMQ 0. Thus,DerLiMIT gets a thinned set of
possible termd’. In the example of Figures 1 and 4, 0100 is deleted figid because
LMQ(0101) = 0. If LMQ(1010) = 0, then 1000 will also be deleted.

As a useful byproduct of subroutifiér, we get a sef?, which consists of the minimal
ancestors witi.MQ 1 of the points inD K (i.e., the minimal points in the lattice ordering
of the set of those ancestors of element®df that haveLMQ 1). If there are no points
in DK, P contains theoot only.

224 D. ANGLUIN, ET AL.

We summarize our discussion in the following lemma. Recall that siveeimiT is
deterministic, the adversary may be thought of as choosing in advance the answers to all
possible limited membership queries. We denot&.bjQ(v) the value of this function on
the pointw.

LEMMA 1 LetT and P be the outputs of running AlgorithbdELIMIT On a positive point
p when the target concept is a monotone DNF. Then

1. T contains a term of the target concept covering
2. Foreveryt € T, every point covered byhasLMQ 1 or L.

3. Foranyv suchthaf.LMQ(v) = 1, and for anyt € T that cover, t covers some point
in P that is a descendant af

Proof: Part 1 follows from the discussion above. Part 2 holds since every ancestor of the
root is positive (sinceoot itself is), and since the code dp ensures this condition for
every other point irf”. To see Part 3, supposehasLMQ(v) = 1 andt¢ is some point of

T that coversy. If ¢ is root, thenroot itself is a point inP that is a descendant of If

t is some other element @f, thenUp has made an upward search frorto find all the
minimal ancestors af with LM Q 1 and placed them . [|

We are now ready to analyze the running timébafLimIT.

LEMMA 2 For any monotone DNF target concept, AlgoritHoeLiMiT makes at most
nf + n limited membership queries, whefés the number ofl responses received. In
general, any sequence otalls to AlgorithmDELIMIT for the same target concept makes
at mostn (¢ + s) limited membership queries.

Proof: Every point queried b ELIMIT(p) is either a child op, or a child of a previously
queried point withLMQ 1, or else is within Hamming distance 1 oflapoint.

For the last case, each time we receive eesponse on a point we could in principle
need to query all the children afin DownN and then all the parents ofin Up, except
that there is a parent or a child ofthat we must have queried before queryingThis
leads to at most — 1 queries for each_ received, plus 1 for the. query itself. As long
as the algorithm remembers the answers to all queries, this holds for any number of calls
to DELIMIT on the same concept.

For the first two cases, let us first note that they only happen in subrdotiveN. Let
us call the point thabownN was called on theurrent point which can be eithes or some
previously queried point with LMQ(a) = 1. WhenDownN makes a query on a child
of the current point and receives a response pthe query is already accounted for. If it
receives a response of 0, then a bit is turned affiits, decreasing the Hamming distance
between the current point adbits If it receives a response of 1, then a recursive call to
DownN is made, and the Hamming distance between the (new) current poioffaitdis
also one less. Since the maximum Hamming distance between two pointthere can
be at most: queries of this kind in every call tDELIMIT.]

The running time oDELIMIT is polynomial in the number of queries it makes.

MALICIOUS OMISSIONS AND ERRORS 225

3.2. Learning Monotone Monomials from Limited Membership Queries Alone

We begin with a very simple application of AlgorithBELIMIT to learn monotone mono-
mials from limited membership queries in the nonstrict model. This should elucidate the
basic ideas at the heart of the more complicated algorithm for learning arbitrary monotone
k-term DNF from limited membership queries that follows.

THEOREM 1 Monotone monomials can be learned from no more thé#s »n + 1 limited
membership queries in the nonstrict model, whdeethe number of. responses received.

Proof: The method is to run AlgorithmDeLiMIT Starting with the all 1's vector, and
then output any term € T that covers every point ii?. (If eitherLMQ(11---1) = 0,
or LMQ(11---1) = L and the “down” phase of AlgorithrbeLiMIT finds no positive
points, then we will output the empty DNF formula.)

First, observe that such atetmmust exist iril", since the true target monomial covers every
pointin P and lies inT" by point 1 of Lemma 1. The output terticovers every point with
LMQ 1 by point 3 of Lemma 1, since it covers every poinfinAnd by point 2 of Lemma 1,
it cannot cover any points withMQ 0, since itisidl". The bound on the number of queries
follows from Lemma 2, which counts all of them except for the first querylte- - 1.

]

The running time again is polynomial in the number of queries made.

Another computationally somewhat more efficient way of learning monotone monomials
would be to rurDeLIMIT on the all 1's vector, and then output the monomiathat is the
intersection of all the points i?. That is, the learner’s output would have a variable if and
only if that variable is in every term i®.

In this version, monomial: covers every point irP, so by point 3 of Lemma 1, it must
cover all pointsy such thaLMQ(v) = 1. On the other hand, sinee is the intersection
of positive points, it must either be the correct monotone monomial or an ancestor of the
correct monotone monomial, $0 cannot cover any negative points.

Now we present a lower bound for this problem.

THEOREM 2 For any integer, if the limited membership oracle givgs;_, (Z) respon-
ses of L, then any learner can be forced to use at le@st,) — 1 limited membership
gueriesnot counting those answerddto learn monotone monomials.

Proof: Let the target concept be defined by a monomial of lemgth(c + 1). It covers

no point with more tharic + 1) 0-bits, and exactly one point witfz + 1) 0-bits. Now let

us assume that all queries of a learning algorithm on points contairinfewer 0-bits are

answered by, anditsfirs{ ',) —2 queries of points with at leagt+-1) 0-bits are answered

by 0. After thatthere are atleast two unqueried points {vithl) 0-bits. The corresponding

two monomials are both consistent with the answers given so far and they differ on points that

did not receive al response. Hence the learning algorithm needs at least one more query.
[|

226 D. ANGLUIN, ET AL.

CoROLLARY 1 For any fixed constant, if the limited membership oracle givéXn¢)
responses af , then the learner can be forced to U8én°*1) limited membership queries
to learn monotone monomials.

3.3. Learning Monoton&-term DNF from Limited Membership Queries Alone

We are now ready to present the algoritwrLyLMQ, that learns monotoreterm DNF
in the nonstrict model from limited membership queries alone. The detailed code is given
in Figures 6 and 7.

FinpPos(h)
{
S = { maximal elements v € {0,1}"s.t. h(v) == 0}
For (each o € S)
If (LMQ(a) == 1)
Return a
Else If (LMQ(a) == 1)
S = S U {children of a}
Return “no”

Figure 6. SubroutineFINDPoOs. S is the set of maximal points in the sample space that are not covered by the
current hypothesis.

Algorithm ONLYLMQ initializes its hypothesié to be the empty formula, and repeats
the following.

By searching down from each maximal point not covered by hypotthesipointg with
LMQ(g) = 1 that is not covered by is found. This is done by the subroutifeNpPos
of Algorithm ONLYLMQ. If no such point is found, theh is correct and the algorithm
outputs it and halts.

Now the pointy is given to AlgorithmDEeLiMIT, which returns the sef§ andP. If there
is a single term irf" that covers all the positive points iA not already covered by, then
this term is added th and we repeat the makfor loop by looking for another point with
LMQ 1 that is not covered by the current hypothesis.

Otherwise, we have to add more than one terrh to cover all the points irP, and we
begin a search for a set of terms to add. This search may disclose more positive points,
so this process itself may have to be iterated. We begin by initialitémmsto beT" and
Posto be those points i that are not covered by. We record the fact that poigthas
already been delimited by placing it in the 8etlimited We then call AlgorithnDELIMIT
on every point irPosand for each call gather together the points frBrim NewPosas well
as add the terms froffi to Terms When all points irPoshave been delimited, we add the
points gathered iNlewPogo Posand try to cover the newly enlarged Setswith any; = 2
terms fromTerms If we succeed, we put these termshinif we fail, we keep enlarging
Terms gathering points ilNewPosthen enlargindPos incrementingj, and trying again in
the same manner to cover all pointsHoswith j terms fromTerms

MALICIOUS OMISSIONS AND ERRORS 227

ONLYLMQ()
{
h = “the empty DNF formula”
For (ever)
{
g = FINDPos(h)
If (¢ == “no”)
Output A
Return
}

(T, P) = DELIMIT(q)
Delimited = {q}
Terms=T
Pos={reP:h(r)==0}
For (j=1; ;j++)
If (3t1,t2,...,t; € Termsst.Vp € Pos((t1 V... Vt;)(p) ==1))

Add the terms t1,...,t; to h

Break /* Out of the For (j =1; ; j++) loop */
}
Else
{
NewPos = (§
For (each p € Pos s.t. p & Delimited)
{
(T, P) = DELIMIT(p)
Delimited = Delimited U {p}
NewPos = NewPosU{r € P:h(r) ==0}
Terms = TermsU T
}
Pos = PosU NewPos
}

Figure 7. Algorithm ONLYLMQ), which learns monotong-term DNF fromLMQ's. Delimitedis the set of
points that have been delimited in the current iteration of the main [Bapnsis the set of candidate termBos
is a set of known positive instances that need to be covered by a certain number of poantasn

228 D. ANGLUIN, ET AL.

THEOREM 3 Algorithm ONLYLMQ learns monotoné-term DNF fromO (kn* + n2/¢)
limited membership queries in the nonstrict model, wheésghe number of_ responses it
receives.

Proof: We prove the theorem in three stages. First we argue that the algorithm eventually
terminates with a DNF hypothesisthat correctly classifies all non-points. Next, in
Lemmas 3 through 6, we argue thatncludes at mosk terms. In particular, Lemma 6

says that at all times through the run of the algoritthis at least as efficient—in terms of
positive instances covered per DNF term—as the target concept. Finally, we argue that the
query bound is correct.

* Algorithm DELIMIT terminates with a correct hypothesis. All the terms added to the
hypothesis are at some point in a $edutput by AlgorithmDEeLimIT. Therefore, by point

2 of Lemma 1, no term that we ever add to our hypothesis can err by classifying a point
with LMQ O as positive.

Furthermore, since point 1 of Lemma 1 guarantees that each time we call the subroutine
DEeLMIT from a point we get at least one termiincovering that point, the algorithm must
eventually succeed in covering the Beswith some number of terms and break out of the
“For (j =1; ;j++)"loop. Since there are only a finite number of positive points, this
means that the algorithm eventually terminates with a hypothesis that correctly classifies
all non-L points.

* Final hypothesis contains at mdsterms. The following lemmas provide the argument
that each hypothesis of Algorith@NLYLMQ contains at most terms.

LEmMA 3 No term in the set Terms is ever implied by the current hypotlieisiside of
the“For (j =1; ;j++)" loop.

Proof: The hypothesi# is constant during the execution of the loop. Every element of
TermsenteredTermsfrom the setl” generated by calling AlgorithrbeLimiT with this
hypothesish. The first call toDELIMIT (the one made immediately before entering the
“For (j =1, ;j++)"loop) is made on some poigtsuch thati(q) = 0, and therefore
no element ofl’ can be implied by:. All subsequent calls tELimIT are made on some
pointr € Pos The setPosis constructed so thdi(r) = 0, so again no points in the set
T returned byDELIMIT can be implied by:, becausd’ contains only descendantsaf

[|

LEMMA 4 Whenever AlgorithnONLYLMQ attempts to cover the set of positive points
Pos with a disjunction of terms from Terms (linelf (3t1,¢2,...,t; € Terms s.t¥p €
Pos ((t1 V...V t;)(p) == 1))” in the code), the set Terms actually contains at lefst
distinct terms of the target concept.

Proof: The proofis by induction ori. For the base cas¢= 1, the sefTferms=T'. Thus
the base case is provided by point 1 of Lemma 1, which says that there must must be aterm
of the target concept ifi at the end of the first call to AlgorithmELIMIT.

For the inductive step, suppose that we are trying to cBeswith j + 1 terms. Then
we know that we tried and failed to cover the previous versioRaswith j terms. By the
inductive hypothesis, this implies that the previous versiofiasmscontained at least

MALICIOUS OMISSIONS AND ERRORS 229

distinct terms of the target concept. If the previous versiofeofsin fact contained more
thanj distinct terms of the target concept, then we are done.

Otherwise, the previous version &érmscontained exactly distinct terms of the target
concept, but nevertheless failed to cover all pointBas That is, there was some point
in the previous version d?osnot covered by any of those particulaterms. This poinp
cannot have been delimited before the attempt to cBaswith j terms, because if it had,
the previous version dfermswould have contained an element covening herefore, after
attempting and failing to covétoswith j termsp is delimited. Now by point 1 of Lemma 1,
a term of the target concept coveripgs in the setl” output by this call taDeLIMIT, and
this point is added tderms ThusTermsnow contains at leagt+ 1 distinct terms of the
target concept.]

LeEMMA 5 Leth’ be the hypothesis that Algorith@NLyLMQ obtains when it updates
its hypothesis. Thenh’ covers all points witlLMQ 1 that are covered by any term in
Terms.

Proof: Assume the contrary holds far, Terms andh’. Lett € Terms be a term and:
be a point withLMQ 1 such that’(x) = 0 andt(x) = 1.

Termt was added tGermsby some call to subroutinBeLIMIT. At that call, according
to point 3 of Lemma 1, the sét must have contained a poinsuch that coveredp andp
is a descendant af. Sinceh’(z) = 0, we knowh(x) = 0, soh(p) = 0. Therefore, after
the call to AlgorithmDEeLiMIT when the outputs hatde T' andp € P, pointp was added
to Pos Thus since’ is satisfied by all points ifPos it must be that’(p) = 1 and thus
K (z) = 1, a contradiction. [|

LEMMA 6 Consider the hypothesisof AlgorithmONLYLMQ at any point in the run of
it for a monotone DNF target concept There is a monotone DNé#consisting of at least
#(h) distinct terms fronz such that{v : d(v) = LMQ(v) = 1} C {v : h(v) = 1}.

Proof: The proofis by induction on the number of times thas enlarged by adding new
terms. The base case with an emptiiolds trivially. Let us now assume that the lemma
holds up to the:-th time we add new terms g and that it does not hold the+ 1-st time.
Let us denoté: after these additions of terms by. andhy. 1, respectively. That is:

(1) there are# (hy) termsty, ta, ..., tum,) in c such that they cover a subset of those
points withLMQ 1 that are covered by,

(2) forany way we takét(hi1) terms frome, there always is some pointwith LM Q 1
that is covered by these terms but nothy; ; .

Furthermore, let us assume that exagtigrms were added to, when making.1, that
is, #(hg+1) — #(hi) = j. Atthe moment thesgterms were added, Lemma 4 guaranteed
the existence of termst), ¢, ..., ¢’ from c in Terms By Lemma 3 none of}, %, ..., ¢
was implied byh;,. Now suppose we take terms, ta, ..., tx(n,), th, 5, - . ., ;, which
are all inc, for a total of#(hy1) terms. By our assumption there is a paintsuch that
LMQ(w) = 1, that is covered by these terms but not/hy.,. By the assumptionyw
cannot be covered by any of thg t», . .., t4(s,), O it would be covered by, and hence

230 D. ANGLUIN, ET AL.

hi+1. Therefore, it must be the case thats covered by some af,#5, ..., t;. But then,
by Lemma 51 must coverw, a contradiction. [|

Lemma 6 implies that the hypothedisof Algorithm ONLYLMQ never contains more
thank terms, which is what we needed to show. What remains for the proof of Theorem 3
is to show that the number of limited membership querie3(isn* + n2¢).

* Number of queries made. A monotokiéerm DNF formula can have at most maximal
negative points. This follows from the following observationsw I§ a negative point and

t is a term, then there must be a variablen ¢ such thaw[i] = 0, or elsev would satisfy

t. Thus, by setting to O at least one variable from each term, we can obtain exactly the
negative points. Maximal negative points are a subset of the points that can be obtained by
setting exactly one variable from each term to 0, which can be done in atrhagays.

Thus, each time is initialized in subroutind"INpDPos, it can have at most* elements.

FinDpPos is called at most: + 1 times, since each time it is called (except the last), it
returns a new positive poigtwhich causes at least one term to be added to

Each call toFiNDPos performs at most on&MQ for each of at most* elements
initially in S. After that, each element queried is a child of a point withi@Q L, so the
number of such queries over all callsfoNDPos is at mostnl. (We assumé&'INDPoOs
caches answers.) Thus, the numbdrbfQ's made byFINDP oS is at most k+1)n* +nf.

The only othedl.MQ'’s are made in calls thevLivIT, and by Lemma 2 the total number
of queries is bounded hy(¢ + s), wheres is the number of calls t ELIMIT. DELIMIT
is called at mosk times on pointg; returned byFINDP0s, and is called at most once for
each element that is ever addedPms The elements added Ropsare all returned inP
by Up, which means that they are all parents of points iitfiQQ L. Hence, at most/¢
elements are ever addedRos and the total number of calls toDELIMIT is bounded by
k + nf. This gives a bound af(¢ + k + n¢) for the number oLMQ’s made in the calls
to DeLiMIT. By adding the bound for the number @M Q’s made in calls t&INDP oS,
we can easily get the desired bound@fkn”* + n2¢) on the total number cEMQ’s.

]

The running time of the algorithNLYLMQ is clearly polynomial in the number of
gueries it makes.

3.4. Learning Monotone DNF from Equivalence and Limited Membership Queries

In this subsection, we give a very simple algorithm that learns monotone DNF with an
unbounded number of terms from equivalence and limited membership queries.

THEOREM 4 Monotone DNF formulas can be learned frarfm + ¢) limited membership
queries together withn + 1 equivalence queries in the nonstrict model, or together with
m + £ + 1 equivalence queries in the strict model, whéis the number ofl. responses
received, andn is the number of terms in the target monotone DNF.

Proof: We modify Angluin’s algorithm for learning monotone DNF from ordinary mem-
bership and equivalence queries (Angluin, 1988), by using AlgoritenimiT. The com-

MALICIOUS OMISSIONS AND ERRORS 231

EQToo()
{
h = “the empty DNF formula”
While ((v =EQ(h)) # “yes”)
If (h(v) == 0)

(T, P) = DELIMIT(v)
Add terms of T to h

}
Else
For (each term ¢ of h)
If (t(v) == 1)
Delete term ¢ from h
Output A

Figure 8. Algorithm EQToo for learning monotone DNF froiQ's andLMQ's. v is the current counterex-
ample.

plete code of the algorithm is given in Figure 8. Note that the same algorithm works for
both the nonstrict and strict models.

TheUp subroutine of AlgorithnDELIMIT guarantees that all terms we putire either
correct, or err only by classifying negative points withiQ L as positive. Lemma 1
guarantees that each time we call AlgoritibeLiMiT we get a new term of the target
monotone DNF.

In the nonstrict model, terms that cover negative points Wwith@Q | do not matter, so

there is at most one call tbeLiMiT and one equivalence query per term. In the strict
model we may add terms withMQ | that cover negative points, and such terms must be
subsequently deleted in response to equivalence queries. There is at most one equivalence
query for each such term, provided that we modify the algorithm to remember deleted terms
and never add them again to the hypothesis. This implies the bounds for the number of
equivalence queries. The bound for the numbdr®fQ’s then follows from Lemma 2.

]

The running time of the algorithm is polynomial in the number of queries it makes.

Note that polynomial learnability of monotone DNF from equivalence and limited mem-
bership queries is implied by the stronger result of Section 4. Itis at least as difficult to learn
from a malicious membership oracle as it is from a limited membership oracle, as pointed
out in Subsection 2.2, so that algorithm for monotone DNF could be used here. The direct
algorithm does, however, give better bounds on the number of queries required.

232 D. ANGLUIN, ET AL.

4. Malicious Membership Queries

In this section, we present and analyze an algorithm that uses equivalence and malicious
membership queries to learn monotone DNF formulas. The key idea is to depend on
equivalence queries as much as possible, since they are correct.

4.1. The Algorithm

The algorithm keeps track of all the counterexamples and their labels received through
equivalence queries and consults them first, before asking a membership query. The pairs
of counterexamples and their labels are kept in a set n&@oedterExamplesObviously,

for a positive counterexample, if x > v then it is not worth making a membership
guery aboutr; it must be a positive point. Similarly, for a negative counterexanmpié

x < v thenzx has to be a negative point of the target formula. For this reason we define
a subroutineCHECKEDMQ and use it instead of a membership query. The subroutine is
given in Figure 9.

CHECKEDMQ (z, CounterExamples)

{
If (3(v, 1) € CounterEzamples s.t. z > v)
Return 1
If (3(v,0) € CounterExamples s.t. & < v)
Return 0
Return MMQ(z)
}

Figure 9. SubroutineCHECKEDM Q.

As in (Angluin, 1988) and (Angluin & Slonim, 1994), our algorithm also uses a subrou-
tine REDUCE in order to move down in the lattice from a positive counterexample. All the
membership queries are done using the subrodtimeckEDMQ, which possibly lets the
algorithm avoid some incorrect answers. The subroutiReUck is given in Figure 10.

REDUCE(v, CounterExamples)

{
For (each child w of v)
If (CHECKEDMQ(w, CounterExamples) == 1)
Return REDUCE(w, CounterExamples)
Return v
}

Figure 10. SubroutineREDUCE.

The algorithm for exactly identifying monotone DNF formulas using equivalence queries
and malicious membership queries is given in Figure 11.

MALICIOUS OMISSIONS AND ERRORS 233

LEARNMONDNF()
{

CounterEzamples =
h = “the empty DNF formula”
While ((v = EQ(h)) # “yes”)

Add (v, (1 — h(v))) to CounterEzamples
Tf (h(v) == 0)
{
w = REDUCE(v, CounterExamples)
Add term w to h

}
Else
For (each term ¢ of h)
If (t(v) ==1)
Delete term ¢ from h
}
Output A

Figure 11. The algorithm for learning monotone DNF froRiQ’s andMMQ's.

The algorithm is based on a few simple ideas. A positive counterexample is reduced to a
point that is added as a term to the existing hypothiesighich is a monotone DNF. That
is, the new hypothesis classifies the latest counterexample and possibly some other points
as positive.

Negative counterexamples are used to detect inconsistencies between membership and
equivalence queries. They show that there have been errors in membership queries that
have caused wrong terms to be added to the hypothesis. The algorithm reacts by removing
all the terms that are inconsistent with the latest counterexample. These are the terms that
have the negative counterexample above them. A term is removed only when there is a
negative counterexample above it.

4.2. Analysis of.EARNMONDNF

THEOREM 5 LEARNMONDNEF learns the class of monotone DNF formulas in polyno-
mial time using equivalence and malicious membership queries.

We need a definition and a simple lemma before proving the theorem.

Let »* be a monotone boolean function ¢6,1}", and leth’ be an arbitrary boolean
function on{0,1}". LetC be any subset df0, 1}". Themonotone correction df with h*
onC, denotednc(h/, h*, (), is the boolean functioh”” defined for each string € {0, 1}"
as follows.

234 D. ANGLUIN, ET AL.

1 if there existy € C such thaty < x andh*(y)
h" () P) if there existy € C such thatr < y andh*(y)
h'(z) otherwise.

1
0,

Note that sincér* is monotone, the first two cases above cannot hold simultaneously.
It is also clear that if the value of”(x) is determined by one of the first two cases,
W'(z) = h*(xz). We prove a simple monotonicity property of the monotone correction
operation.

LEMMA 7 Supposé:r* is a monotone boolean function amd is an arbitrary boolean
function on{0, 1}". LetC; C C5 be two subsets 0, 1}™. Leth; = me(h/, h*,Cy) and
hs = mc(h/, h*,Cy). Then the set of points on whiéh and h* differ is contained in the
set of points on which, andh* differ. That is,Err(he, h*) C Err(hy, h*).

Proof: Let z be an arbitrary point on whichs(xz) # h*(z). Then it must be that
he(z) = I/ (x) and there does not exist any poine C; such thate < y andh*(y) =0
ory < xz andh*(y) = 1. SinceC| is contained inCs, there is no poiny € C; such
thatz < y andh*(y) = 0 or such thaty < z andh*(y) = 1. Thus,hy(z) = h'(x) and
hi(xz) # h*(x). ConsequentlyErr(hy, h*) C Err(hy, h*). [|

Now we start the proof of Theorem 5.
Proof: Leth* denote the target concept, an arbitrary monotone DNF formula{oyé}™
with m terms. Let¢ be a bound on the number of strings whdd@&1Q’s are answered
incorrectly. Because equivalence queries are answered correctly, if the algorithm ever halts,
the hypothesis output is correct, so we may focus on proving a polynomial bound on the
running time.

Since LEARNMONDNF is deterministic and the target concépt is fixed, we may
assume that the adversary chooses in advance how to answer all the queries, that is, chooses
a sequences, yo, . . . Of counterexamples to equivalence queries and & sétstrings on
which to answeMMQ'’s incorrectly. Note thatS| < ¢.

Inturn, these choices determine a particular computatibreaik NMoONDNF which we
now focus on. It suffices to bound the length of this computation. In this computation the
answers tdMMQ’s agree with the boolean functidny defined as followshg(z) = h*(x)
for all stringsz ¢ S andhg(z) = 1 — h*(x) for all stringsz € S. Also, if CHECKEDMQ
is called with stringr and setC’ = CounterExampleghe answer agrees with the boolean
functionmec(hg, h*, C).

The setCounterExamplesnly changes when a new counterexample is received. There-
fore, the successive distinct sets of counterexamples in this computation can be denoted by

Co, Cy,...,whereCy = J andC; = C;_1 U {y;}, fori = 1,2,.... If we also define
hi = mC(ho,h*,Ci)

fori =1,2,...,thenCHECKEDMQ answers according t@, until the first counterexample
is received, then according tq until the second counterexample is received, and so on.

Clearly, sinceh, disagrees withh* on at most¢ strings, d(hg, h*) < ¢. Since the
setsCy, C, ... are monotonically nondecreasing, Lemma 7 shows fat(h;, h*) C
ETT(h,i_l, h*) fori = 17 2, R

MALICIOUS OMISSIONS AND ERRORS 235

We say that a counterexamplgcorrects a positive erroat pointx if h;_;(x) = 1 but
h;(z) = h*(z) = 0. We say that a counterexampjgecorrects a negative erraat pointz if
hi—1(x) = 0buth;(z) = h*(x) = 1. Note that from the construction 6fHECKEDMQ it
follows that positive errors can be corrected only by negative counterexamples and negative
errors can be corrected only by positive counterexamples. Let thetedumsitive and/,,
negative errors corrected in the whole computation. Of codgse,?,, < /.

Cramm 1 If REDUCE is called after counterexamplg and before counterexample, 1,
it returns a local minimum point df;.

Proof: After y; is added taCounterExamplesSCHECKEDMQ answers according th;.
The claim follows from the construction ®EDUCE. []

Cramm 2 The following condition is preserved. Atther1)th equivalence queliQ(h),
each term of. is a positive point of;.

Proof: We prove the claim by induction.
Basis: The first EQ is made on an empty formula. Thus, the claim is vacuously true.

Induction step: Suppose the claim is true up to tite EQ. Leth’ be the hypothesis
h at theith EQ andh” be the hypothesis at the(: + 1)th EQ. There are two cases to
consider.

Case 1:y; is a positive counterexample. Thep(z) = 1ifand only ifh,_;(z) = 1 or
x > y;. Lett bethetermreturned BEDUCE with parameterg; andCounterExamples
Thenh” = 1/ Vt. Lett” beatermimh”. Theneithet” isatermofi’ ort” =¢. If t” is
aterm ofh’ thenh;_; (¢”) = 1 by the inductive assumption and therefésé¢t”) = 1.
If ¢/ = ¢ thenh;(¢") = 1 sincet was returned byREDUCE(y;, CounterExamplés
which usedCHECKEDM Q, which answered according ig.

Case 2:y; is a negative counterexample. Thiesfz) = 1 ifand only if h;_;(2) = 1
andz £ y;. Lett” be aterm imk”, which consists of all those termsof 4’ such that
t'" £ y;. Thereforey” £ y; and by the inductive assumptidn_, (¢”) = 1. It follows
thath;(t") = 1. [|

Cramm 3 Once aterme is deleted from hypothesis it can never reappear in it.

Proof: Sincex was deleted, there must have been a negative counterexgmgleh

thaty, > x. But then(y;,0) belongs taCounterExampleand the callCHECKEDMQ(z,

CounterExampléscan never return 1 again, which is necessary:fto be added té.
]

We divide the run of the algorithm into non-overlappstgges A new stage begins either
at the beginning of the run or with a new negative counterexample. Thus with each new
stageCounterExamplesontains one more negative counterexample and some (possibly
none) new positive counterexamples. The following claim establishes that the distance
d(h;, h*) decreases with every new stage.

236 D. ANGLUIN, ET AL.

CramM 4 Every negative counterexample corrects at least one error. More formaly, if
is a negative counterexample, then there exists {0,1}" such thath;,_;(z) = 1 and
hi(z) = h*(z) = 0.

Proof: Lety; be a negative counterexample returnedy(h). Henceh(y;) = 1, and
there is some term < y; in h. By Claim 2,h,;_1(z) = 1.
Sinceh*(y;) = 0 andy; > « it follows thath*(z) = 0. By the definition ofh; it follows

From Claim 4 it follows that there are at mdgtnegative counterexamples. Hence there
are at most,, + 1 stages in the run of the algorithm.

We divide each stage of the algorithm into non-overlapginigstagesA substage begins
either at the beginning of a stage or with a new positive counterexample that corrects an
error. Obviously there can be no more thgrpositive counterexamples that correct errors
and hence no more thaj + ¢,, + 1 substages in the whole run of the algorithm. The
distanced(h;, h*) decreases with every new substage. If, however, functiorad h;
belong to the same substage, they are equivalent and their local minima are the same. This
allows us to bound the total number of positive counterexamples.

CramM 5 Every new positive counterexample is reduced to a local minimum point of
hg, h1, ... that has not been found earlier.

Proof: Letwv be a positive counterexample tiakDUCE is started with. Let be the point
REDUCE(v, CounterExampleseturns. Assume, by way of contradiction, thhas already
been found before. From Claim 3 it follows thas a term inh. Sincev > ¢, it follows that
h(v) = 1. This is a contradiction to the assumption thas a positive counterexample.
]

We denote the set of local minimum points of a boolean funcfibg Lmp(f). We bound
the total number of different local minima of the functiding A4,

LEMMA 8 Let f and f’ be n-argument boolean functions such thatr(f, f') = {z}.
Then

(@) If f'(x) =1then|Lmp(f’) — Lmp(f)| < 1.
(b) If f'(x) = 0then|Lmp(f’) — Lmp(f)| < n.

Proof:

(&) The only point that can be a local minimum @fand is not a local minimum of, is
x itself. The claim follows immediately.

(b) Any point which is a local minimum of’ but not of f is a parent ofc. Sincex has at
mostn parents, the claim follows. []

MALICIOUS OMISSIONS AND ERRORS 237

COROLLARY 2 Let f and f’ ben-argument boolean functions such thatr(f, /') con-
tainsd,, positive points of’ andd,, negative points of’. Then

ILmp(f’) — Lmp(f)| < ndy, + dp.

COROLLARY 3 Letgo,q1,-..,g, be the subsequence if, i1, . . ., such that eacly; is
the first of all theh;’s in its substage. LeErr(h*,g;—1) — Err(h*,g;) containt, ;_q
positive and/,, ;_; negative points of* forall : = 1,2,...,r. Let Err(h*, g,) contain
¢, positive and/,, . negative points of*. Then the total number of different local minima
of functionsyo, g1, . . ., g-, h* is bounded above by, +n 3 i + >0 lpi-

Proof: Notethayy, g1, ..., g arethe differentfunctionsity, h4, . . ., and that subroutine
CHECKEDMQ first answers according i@, then according tg; and so on. Obviously,
Err(h*,g;) C Err(h*,g;—1) andErr(g;—1,9;) = Err(h*,g;—1) — Err(h*, g;) for all
i =1,2,...,r. Also note that for each=0,1,...,r — 1, one of¢,, ; and/,, ; is O, but
¢, » and’,, , may both be positive.

We want to findJ;_, Lmp(g;) U Lmp(h*)|, knowing thatLmp(h*)| = m. Since

LTJ Lmp(g;) U Lmp(h*)
1=0
C Lmp(h) U (Lmp(g,) — Lmp(h*)) U | (Lmplgs) — Lmp(gi 1)),
1=0

from Corollary 2 it follows that

r—1

[Lmp(g:) ULmp(r*)| < [Lmp(h*)| + (nlny + Lpr) + > (i +)
=0 1=0

and the bound follows. [|

Since each error can be corrected at most once, it foIIowsEbf@tO Ly < ¢, and
Yoi_olp,i < £p. Hence the total number of the local minima and the total number of positive
counterexamples that can be found in a computation is bounded byn/¢,, + ¢,. The
number of negative counterexamples in a complete run is bounded by the number of positive
errors. The total number of counterexamples is therefore boundedib¥,n + ¢, + ¢, <
m+l(n+1) = O(m+ {n).

We now count the number of membership queries in a complete run of the algorithm.
Each positive counterexamplenay cause at most(n + 1) /2 membership queries, before
REDUCE(v, CounterExamplesreturns. Therefore there can be at mOgtnn? + n3)
membership queries in a complete run of the algorithm.

It is also clear that the running time of the algorithm is polynomiakinn and/. This
concludes the proof of Theorem 5.]

ComparingLEARNMONDNF with the algorithmEQToo of Theorem 4, we see that
LEARNMONDNTF is able to cope wittMMQ’s instead of the more benignMQ’s, but

238 D. ANGLUIN, ET AL.

at a cost of making more queries overall. In particular, it U3¢s: + ¢n) equivalence
queries, versus: + £ + 1 for EQToo, andO(mn? + ¢n®) membership queries, versus
mn + ¢n for EQToo. Itis open whether an algorithm to learn monotone DNF formulas
usingEQ’s andMM@Q's can attain query complexity closer to thatio§ Too.

5. Finite Exceptions
5.1. Exceptions

For a conceptX, f) and a finite sef C X, we definethe concep{ X, f) with exceptions

S, denotedxcpt((X, f),S), as the conceptX, f’) where f'(w) = f(w) for strings in

X — S,andf'(w) = 1 — f(w) for strings inS. (Thusf and f’ have the same domain,
and are equal except on the set of strifgsvhich is a subset of their common domain.) It
is useful to note tha$ is partitioned by(X, f) into into the set opositive exceptions’;

that are classified as negative pyand the set aofiegative exceptionS_ that are classified

as positive byf. When the domaiX of a functionf is clearly understood and we do not
wish to mention it explicitly, we often just call this function itself a concept and we also
use a shorthand notation feept (X, f), .S), namely, we just writecpt(f, S).

A concept clasg R, Dom, 1) is closed under finite exceptiomsovided that for every
concept(X, f) represented byR,Dom p) and every finite sefS C X, the concept
xept((X, f),S) is also represented yR, Dom p). If, in addition, there is a fixed poly-
nomial of two arguments such that the concegt (X, f), S) is of size bounded by this
polynomial in the size of X, f) and||S||, we say that R, Dom,) is polynomially closed
under finite exceptions

This definition differs from a similar earlier definition (Board & Pitt, 1992) in that we do
not require the existence of a polynomial-time algorithm that produces the new concept
given the old concept and a list of exceptions. However, for the classes that we consider
there are such algorithms.

We define a natural operation of adding finite exception tables to a class of concepts to
produce another class of concepts that “embeds” the first and is polynomially closed under
finite exceptions.

We assum& C T" and|T"| > 2. We define a simple encodirghat takes a string from
' and a finite set of stringS§ C ¥* and produces a string in I'* from whichr and the
elements of5 can easily be recovered, and is such that= 2(1 + |r| + ||S||). The details
of the encoding are as follows.

Assume that 0 and 1 are distinct symbolginWe define

ey(biby ... b;) < bbbbybby ... b,

for b € {0,1} andby,bs,...,b; € I'. Note thatle,(w)| = 2(1 + |w|) for every string
w € I'*. We then define the encodingofndsS as

r’ =e(r,S) def eo(r)e1(s1)eq(s2) - - . ek mod 2(Sk),

wheresy, so, .. ., s are the strings ird.

MALICIOUS OMISSIONS AND ERRORS 239

Given a concept class?, Dom), we define theclass obtained from it by adding ex-
ception tablego be (R’, Dont, 1), where R’ is the set of all strings of the form(r, S)
such that € R and S is a finite subset obom(r), and for each”’ € R’, the concept
represented by’ = e(r, S) is the concept represented bywith exceptionsS, that is,
(Dont(r'), p' (")) = xcpt(Dom(r), u(r)), 5).

For example, adding exception tables to the monotone DNF formulas produces a concept
class which we terrmonotone DNF formulas with finite exceptiohdore detailed discus-
sion of classes obtained by adding exception tables and of polynomial closure under finite
exceptions can be found in Subsection 5.2.

5.2. Examples and Lemmas

ExaAaMPLE: The class of regular languages represented by DFA's is polynomially closed
under finite exceptions. Board and Pitt give an algorithm that takes as input d/D&Ad

an exception sef, and produces a new DFA focpt M, S) (Board & Pitt, 1992). The
DFA's size is polynomial in the size g/ and.sS. O

ExamMPLE: Another example of a class that is polynomially closed under finite exceptions
is the class of boolean decision trees. This result is taken from (Board & Pitt, 1992) but
since the construction is not given there, we sketch it here. O

LEMMA 9 The class of boolean decision trees is polynomially closed under finite excep-
tions.

Proof: Let T be a decision tree on variables. LetS be the exception set faf. We
construct the decision tree facpt(7T, S) as follows. We treat each exception paing S
individually. First we walk down from the root of the original tr@éto see wherer
is located in it. If this leads us to a leaf with depth(i.e., if all variables are tested
on this path), then we just reverse the value of the leaf, because this pathri®ifdy.
However, if we find ourselves at a leaf with depth less thawe have to add new internal
nodes to the tree. Denote the value of this leabbyVe then continue the path that led
us to this leaf with a path in which all the remaining variables are tested. We end the
path by a leaf with valud — b. For each new internal node on the path, we make the
other child (the one not on the path) a leaf, and give it the original valu€hus, each
counterexample adds at mashew internal nodes to the tree. The size of the new tree,
measured as the number of internal nodes, is boundé@'oy n x |S| = |T| + ||S]]-

]

ExAMPLE: One more interesting example is the class of DNF formulas. O

LEmMA 10 The class of DNF formulas is polynomially closed under finite exceptions.

Proof: Let f be anm-term DNF formula ovem variables andS be an exception set
for it. Let.S be partitioned into the sets of positive and negative exceptisnsahdS_,
respectively), as described in Section 5.1. We construct a DNF formukapdyf, S) from
the formula(f A f_) Vv f, wheref_ is a DNF formula which is true on all the points in

240 D. ANGLUIN, ET AL.

its domain except the ones &1, and f is a DNF formula which is true exactly on the
points inS... The domain for all these formulas{s, 1}".

Obtainingf. is easy—straightforward disjunction of all ttermsin S, where we make
terms from points by substituting the respective variabl@fbvalue of a coordinate and its
negation fo a 0 \alue. Obtaining’_ is harder. First we make a decision tree corresponding
to f_. We put each point frony_ individually in the tree as a O-valued leaf at the end of
a path of lengthm. All the remaining leaves get value 1. Then for each leaf with value
1 we make a term that will go int¢g_ by following the path from this leaf to the root.
Obviously f_ has at mosk x |S_| terms. Thus, after “multiplying” the terms out, the
formula(f A f-) Vv f4 will have at mostnn x |[S_| + |S4+]| < (mn + 1) x |S| terms.

[|

ExaMpPLE: By duality it follows that the class of CNF formulas is polynomially closed
under finite exceptions. O

Note that stronger bounds on the size of the new formula can be obtained by using the
result in (Zhuravlev & Kogan, 1985). We, however, chose to present a simpler argument.
Also note that the size bound is insufficient &rong polynomial closure under exception
listsas defined in (Board & Pitt, 1992).

ExaAMPLE: As our final example we show that any class that is obtained by adding excep-
tion tables to another class is polynomially closed under finite exceptions. O

LEmMMA 11 Let(R,Dom p) be any class of concepts. Then the concept class obtained
from it by adding exception tables is polynomially closed under finite exceptions.

Proof: Let (R’,Dom, u’) be the class obtained frofi?, Dom 1) by adding exception
tables, as defined in Section 5.1. Lgt’, f’) be any concept fronjR’, Dont, /) and
let » € R’ be a shortest representation(d’, /). Then there exists a conceptc R
and a finite setS5 C Dom(r), such that(Don ('), u'(r)) = xcpt((Dom(r), u(r)), S)
and|r'| = 2(1 4 |r| + [|S]]). LetS" C Domi(r') = Dom(r) be any finite set. Let
concepth” be defined a&” def xept((Dom (r), 1/ (")), S). Itis easy to see thdt” =
xept((Dom(r), u(r)), S A S") and thush” is represented by somé’ € R’ with size
20+ r[+ IS AS) < 20+ [r[+ IS+ 15D =[] +2[|5"]]- u

COROLLARY 4 The class of monotone DNF formulas with finite exceptionsis polynomially
closed under finite exceptions.

5.3. Learning Monotone DNF Formulas With Finite Exceptions

In this section, we present an algorithm that learns the class of monotone DNF formulas

with finite exceptions. The target concept is a boolean functiom sariablesh* def
xcpt(hi,, S*), whereh?, is some monotone DNF formula astl is a set of exceptions for
it. The domain of the target concept{ig, 1}".
We assume that we have an upper bound on the cardinalfy ahd denote it by (i.e.,
|S*| <1). If this bound is not known, we can start out by assuming it to be any positive

MALICIOUS OMISSIONS AND ERRORS 241

integer and doubling it whenever convergence is not achieved within the proper time bound,
which will be given later. We assume thd}, is minimized and has: terms.

Like LEARNMONDNTF, our current algorithm also has a §&tunterExamplethat stores
alllabeled counterexamples received from equivalence queries. The purpose of itis slightly
different: it lets the algorithm conclude that some points cannot be classifigf); alone,
and, therefore, have to be included in the exception set.

The algorithm tries to find a suitable monotone DNF formula, which, coupled with a
proper exception set, would give the target concept. The equivalence queries are made on a
pair (h, S) of a monotone DNF formula and a set of exceptiorfs The algorithm focuses
only on buildingh, and setsS to be those elements of the s@bunterExamplethat are
currently misclassified by. It uses a simple subroutifégeTExcEPTIONS for building S.

The subroutine is given in Figure 12.

GETEXCEPTIONS(h, CounterEzamples)

{
S=J
For (each (z,b) € CounterExamples)
If (h(z) # b)
Add z to S
Return S
}

Figure 12. Subroutine GETEXCEPTIONS. h is the monotone DNF part of the current hypothesis;
CounterExamples the set of pairs of counterexamples and their labels seen s§ farthe set of those coun-
terexamples that are misclassified/y

In order to classify the counterexamples received, the algorithm needs to evaluate the cur-
rent functionxcpt(h, S). This is done by another very simple subroutifieEFUNCTION,
given in Figure 13.

THEFUNCTION(h, S, z)

{
If(z €8)
Return 1 — h(z)
Else
Return h(x)
}

Figure 13. SubroutinéeTHEFUNCTION. h is the monotone DNF part of the current hypothesids the set of
exception points for ity is the point that the current hypothesis is evaluated on.

As in (Angluin, 1988), (Angluin & Slonim, 1994), and Section 4, our algorithm also uses
a subroutineEREDUCE to move down in the lattice from a positive counterexample. Its
goal is to reduce the positive counterexample to some point that can be added as a term to
the formulah. Then the new hypothesis would classify the counterexample and possibly
some other points as positive. However, this may not always be possible. There can be

242 D. ANGLUIN, ET AL.

overwhelming evidence that the candidate point is just a positive exception and thus should
not be added td. More precisely, if there are more thanegative counterexamples above

a term ofh, then they all have to be in the exception set, which is then too big. Therefore
the current subroutinREDUCE is somewhat more complex and checks whether a point
has enough evidence to be an undoubted exception point or not. The subroutine is given in
Figure 14.

REDUCE(v, CounterEzamples)

{
For (each child w of v)
If (MQ(w) ==1) && (|[{y > w: {y,0) € CounterExamples}| <))
Return REDUCE(w, CounterEzamples)
Return v
}

Figure 14. SubroutineREDUCE. CounterExamplets the set of counterexamples and their labels seen sbifar;
the bound on the number of exception points, a globally known constant.

The algorithm for learning monotone DNF formulas with at mbsixceptions using
equivalence queries and membership queries is given in Figure 15.

The algorithm is based on the following ideas. Each positive counterexample is reduced
if possible to a new term to be added to the formula, as was explained above. In case this
is not possible, the algorithm benefits anyway by storing it in th€seinterExamples

Negative counterexamples imply that there are not as many positive points in the target
concept as we thought. Sometimes more exception points are necessary for the hypothesis
to be correct. Other times some terms have to be removed from the formula. Deleting a
term happens only when there is enough evidence that a term is wrong, namely, when there
are more thai negative counterexamples above it.

5.4. Correctness and Complexity of the Algorithm
THEOREM 6 LEARNMONDNFEFwWITHFX learns the class of monotone DNF formulas
with exceptions in polynomial time using equivalence and standard membership queries.

Proof: We begin the analysis with this simple claim.

CramM 6 Once aternt is deleted from hypothests it can never reappear in it.

Proof: A termt can be deleted only if there are more tHamegative counterexamples
above it. Toreappearmust be returned bBREDUCE. But every pointreturned BREDUCE
must have at mostiegative counterexamples above it at the time it is returnéd Esa CE
cannot returrt again. []

The following lemma shows what poinBSEDUCE can return.

LEmMA 12 REDUCE always returns either a local minimum/ef or a parent of a positive
exception inS*.

MALICIOUS OMISSIONS AND ERRORS 243

LEARNMONDNFwITHFX ()

{
S = CounterEzamples = (S
h = “the empty DNF formula”
While ((v = EQ((h, 5))) # “yes”)

Add (v, (1 — THEFUNCTION(h, S,v))) to CounterEzamples
If (THEFUNCTION(h, S,v) == 1)
For (each term ¢ of h)
If ([{w >t: (w,0) € CounterExamples}| > 1)
Delete term ¢ from h
For (each (z,1) € CounterEzamples)
If ((h(z) ==0) && (|{y >z : (y,0) € CounterExamples}| <1))

w = REDUCE(z, CounterEzamples)
Add term w to h

}

S = GETEXCEPTIONS(h, CounterExamples)

}
Output (h, S)

Figure 15. The algorithm for learning monotone DNF formulas with finite exceptid®dsunterExamples the

set of counterexamples and their labels seen sd farthe bound on the number of exception points, a globally
known constanth is the monotone DNF part of the current hypotheSiss the set of points iCounterExamples
misclassified byh.

Proof: First note thaREDUCE can only be called on points such that:*(x) = 1 and
can only return points such thath*(w) = 1. Letw be a point returned bREDUCE.
Assumew is not a local minimum point of*. Then there is some chilgof w such that
h*(y) = 1, and the number of negative counterexamples alyoveist exceed (or else
REDUCE would have been called recursively gh Hencey cannot be above any terim

of h},, since each termcan have at mostnegative counterexamples above it. Therefore,
y IS a positive exception ig™*. []

Now we are ready to bound the number of different points that can be returned by the
subroutineREDUCE.

CramMm 7 The number of different points thBEEDUCE can return is at most + (n + 1)1.

Proof: By Lemma 12, the number of different points that can be returnédayuce is

at most the number of points that are local minimabfor parents of positive exceptions
in S*. Let.S* containl, positive exceptions ang negative exceptions, whetg+1,, < 1.
The formulah}, hasm terms and therefore: local minima. By Lemma 8, the number of
local minima ofr* is at mostm + [, + nl,,. Each positive exception has at megtarents,
so the number of parents of positive exceptions is bounded hy Thus, the number of

244 D. ANGLUIN, ET AL.

different pointsREDUCE can return, and the number of callsRepuck, is bounded by
m+ (n+ 1), +nl, <m+ (n+ 1)L [|

All equivalence queries are asked about the current hypotkegig:, S). SinceS is
computed right before each equivalence query, the argument of an equivalence query is
always consistent with all the counterexamples seen to that poink, lagtdh ; denote the
functionxcpt(h, S) at the time wherith andjth equivalence query is asked, respectively,
and leti < j. Letwv; be the counterexample returned by itreequivalence query. Clearly,
the values oh; (v;) andh;(v;) must be different. Thus, the functiowept(k, S) is different
for each equivalence query. This allows us to bound the total number of equivalence queries.

Cramv 8 The number of equivalence queries before success is boundeghiin?1?).

Proof: We examine howcpt k, S) changes. Eithéeritself changes, ot remainsthe same
andS changes; namely, it contains exactly one more point, the most recent counterexample.

By Claim 6, each term of can appear ih or disappear from it only once. Thus each
possible term can induce at most two changes in formuldirst by appearing in it and
then by disappearing. Thuscan only change twice as many times as the number of terms
thatREDUCE can return. Therefore, by Claim 7, there can be at Rpst+ (n + 1)) +1
different functionsh in a complete run of the algorithm.

We now count the number of timéscan change whilé remains the same. S&tgrows
larger by one with each new counterexample. It contains some (possibly none)points
such that:(z) = 1 and some (possibly none) pointsuch that:(z) = 0. We bound the
number of each of these separately.

Each pointz € S such thati(xz) = 1 is above some term df. No term can have more
thani negative counterexamples above it. Therefore, the number of poitS such that
h(z) = 1 can be bounded bytimes the boundn + (n + 1)I on the number of different
terms ofh, that is, byml + (n + 1)I2.

Each pointz € S such thath(z) = 0 is a positive counterexample, and thus is not
above any term irh. Such anr must have more thahnegative counterexamples above it.
Otherwise, the algorithm would have callBa:puck onz and added a new term< x to
h. If x has more thah negative counterexamples above it, then it cannot be above a term
in b}, and thus has to be a positive exceptiorbin Hence we have a bound §f on the
number of points: € S such thati(z) = 0.

Altogether, we can bound the cardinality $tby |S| < ml + (n + 1)1 + 1, < (m +
1)l + (n + 1)I%. While h stays the same, the number of possible different$égsat most
(m+1)l+ (n+1)*+1.

Hence, the total number of equivalence queries in a complete run of the algorithm is
bounded by(2(m + (n + 1)I) + 1) x ((m + 1)l + (n + 1)I*> + 1) = O(m?n213).

[|

We now count the total number of membership queries. Membership queries are made
only in REDUCE, at mostu(n + 1)/2 per call toREDUCE. Claim 7 bounds the number of
different points thaREDUCE can return byn + (n + 1)I. By Claim 6, the number of calls
to REDUCE is bounded by the number of different points that it can return. Therefore, the
total number of membership queries is boundedigyn? + n3l).

MALICIOUS OMISSIONS AND ERRORS 245

It is not difficult to see that the total running time of the algorithm is polynomiaid,im
and!. This concludes the proof of Theorem 6. [|

6. Comparison of the Models

In this section, we compare the models of learning discussed earlier, and give a relation be-
tween learning concepts with exceptions and learning with malicious membership queries.

6.1. Exceptions and Lies

In this subsection, we give a generic algorithm transformation. This transformation shows
that any class of concepts that is polynomially closed under finite exceptions and learnable
in polynomial time with equivalence and standard membership queries is also learnable in
polynomial time using equivalence and malicious membership queries.

THEOREM 7 Let H be a class of concepts that is polynomially closed under finite excep-
tions and learnable in polynomial time with equivalence and standard membership queries.
ThenH is learnable in polynomial time with equivalence and malicious membership que-
ries.

Proof: LetH = (R, Dom p)be atarget class of concepts thatis polynomially closed under
finite exceptions. We assume thatArN is an algorithm to learif using equivalence (EQ)
and standard membership queri®BQ) intimep 4 (s, n), for some polynomiab 4. Without

loss of generalityp 4 is non-decreasing in both arguments. We transform this algorithm
into algorithmLEARNANYWAY, which learns any concept € H using equivalence and
malicious membership queries in time polynomialiifi|, n and the table-siz& of the set

of strings on whichMMQ may lie.

As in Sections 4 and 5.3 the main idea is to keep track of all the counterexamples seen
and to use them to avoid unnecessary membership queries. For this purpose we use a set
CounterExampleagain. As before it stores pairs of counterexamples and their labels. Now,
before asking a membership query about stiinge scarCounterExampleto see whether
it already containg and a label for it. Ifz and the label are found, the algorithm knows
the answer and does not make the query. (For some concept classes, such as monotone
DNF formulas, it might be possible to infer the classificationcafccording to the target
concepth* even thoughe and its label are not contained @ounterExamplesHowever,
this simple checking suffices for our algorithm and, what is more important, works in the
general case.)

Another idea is to keep track of the answers received from membership queries, and to
use them to conclude thAfMQ has lied. For this purposeEARNANYWAY has a set
MembershipAnswersThis set stores pair&e, b) for which MMQ was called on string
x and returned answer After receiving a new counterexample from EQ, the algorithm
stores it inCounterExampleand checks whether this counterexample is already contained
in MembershipAnswerdf it is present inMembershipAnswensith the wrong label, the
algorithm discards everything except the €etunterExampleand starts from scratch. If
this is not the case, the algorithm continues the simulatiohfr~, which we now
describe in detalil.

246 D. ANGLUIN, ET AL.

NEWMQ(z, CounterExamples, Membership Answers)

{
If ((z,b) € CounterEzamples)
Return b
b= MMQ(z)
Add (z,b) to MembershipAnswers
Return b
}

Figure 16. SubroutineNEwM Q. CounterExampless the set of counterexamples and their labels seen so far;
MembershipAnsweis the set of points queried usingMQ and the corresponding answers.

The new algorithm simulatdse ARN on the target concept, but modifieBARN’S queries
as follows:

e Each membership queylQ(x) of algorithm LEARN is replaced by a subroutine
call NEwMQ(z, CounterExampledMembershipAnsweys The subroutine is given in
Figure 16.

e Each equivalence query dfearn, z = EQ(h), as well as the output statement,
Output h, is replaced by the block of code given in Figure 17.

{
¢ = BQ(H)
If (z == “yes”)
Output ~
Return
}
Add (z, (1 — h(z))) to CounterExamples
If ((z, h(z)) € MembershipAnswers)
{
Membership Answers = (S
Restart Simulation, retaining CounterEzamples
}
}

Figure 17.The block of code replacings‘= EQ(h)” or “Output h". his the current hypothesis;is the current
counterexampleCounterExampleis the set of counterexamples and their labels seen siléambershipAnswers
is the set of points queried usidgM Q and the corresponding answers.

Note that when the simulation is restarted, only th&srtnterExamplesflects any work
done so far. We now show thEBEARNANYWAY is correct and runs in time polynomial in
|h*|, n, andL. We partition the run of the algorithm insiageswhere a stage begins with
a new simulation of.EARN. First we show that a stage cannot last forever.

MALICIOUS OMISSIONS AND ERRORS 247

CramMm 9 Every stage ends in time polynomial|ii'|, n, and L.

Proof: Note thatH is polynomially closed under finite exceptions, which means that there
is a polynomialp(-, -) such that for every concepte H and every finite sef C Dom(h)

there exists a concept € H equal taxcpt(h, S) such that sizéx’| < p(|A/, [|S]]). Without

loss of generality we can assume tha& non-decreasing in both arguments. We now prove
that each stage ends in time boundedhyp(|h*|, L), n), where we count only the time
spentorlLEARN operations (i.e., we do not count the simulation and bookkeeping overhead).

We prove this by contradiction. Assume that stag®es over the limit. Let us look at
the situation right after the number of simulated stepiokrN exceeds our stated time
bound. LetS; denote the set of strings thdMQ has lied about during this stage, up to
the time bound. Let denote the length of the longest counterexample received during this
stage, up to the time bound.

None of the strings il§; can belong t€ounterExamplesAssume by way of contradiction
otherwise. Letr € S; be a string contained iGounterExamplewith some label. Sef;
contains exactly the strings that theM Q lied onin this stage and time bound, sothere was a
queryMMQ(z). It must have happened befarevas added t€ounterExamplesBut then
atthe moment was added t€ounterExampleisalready belonged tMembershipAnswers
and an inconsistency had to be found. The stage had to end.

Therefore, considering; as an exception set, all the information received.lBurN in
this stage and within the given time bound is consistent with the cohtepkcpt h*, S;) €
H. LEARN either has to output’ in time bounded by

pr (07| 11Sill), n) < pr (p(IR7], L), n),

or it has to receive a counterexamplec S;. In the former caseLEARNANYWAY
makes an equivalence queBQ(h’') and receives a counterexamplec S;, since only
counterexamples frong; are possible at that point. In either case, an elemers; a§
added toCounterExampledy the above time bound, which we showed above was im-
possible. This is a contradiction to the assumption that stagmes over this bound.

[|

What remains is to show that there can be only a small number of stages. That is, we do
not restart the simulation too many times.

CramM 10 There are at mosk + 1 stages in the run of the algorithlnTEARNANYWAY.

Proof: Atthe beginning of each stage (except the first one) the algorithm discovers a new
string where theMIMQ lies and from then oMMQ can never lie on this string again,
because it is added ounterExamplesTo be more precis&yIMQ does not get a chance

to lie on this string because it is never asked about it again Sl the set of the strings

that MMQ lies on. SincéS| < ||S|| < L, in stageL + 1 theMMQ can lie on no strings

(i.e., it is not asked queries about any of the strings where it may lie). Therfeforen

has to converge to the target concépt]

The time spent on simulation and bookkeeping is clearly polynomitl‘ijy n, and L.
Thus,LEARNANYWAY is a polynomial-time algorithm that uses equivalence and malicious

248 D. ANGLUIN, ET AL.

membership queries to learn the class of concépts (R,Dom w). This concludes the
proof of Theorem 7. [|

As corollaries of Theorem 7 we have the following.

COROLLARY 5 The class of regular languages, represented by DFA’s, is learnable in
polynomial time with equivalence and malicious membership queries.

Proof: In (Board & Pitt, 1992) it was shown that this class of concepts is polynomially
closed under finite exceptions. In (Angluin, 1987) it was shown that it is learnable in
polynomial time using membership and equivalence queries.]

COROLLARY 6 The class of boolean decision trees is learnable in polynomial time with
extended equivalence and malicious membership queries.

Proof: Lemma 9 shows that the class of boolean decision trees is polynomially closed
under finite exceptions. In (Bshouty, 1993) it was shown that it is learnable in polynomial
time using membership and extended equivalence queries.]

COROLLARY 7 The class of monotone DNF formulas with finite exceptions is learnable
in polynomial time with equivalence and malicious membership queries.

Proof: Corollary 4 shows that the class of monotone DNF formulas with exceptions is
polynomially closed under finite exceptions. In Section 5.3 we gave an algorithm that learns
this class in polynomial time with membership and equivalence queries. [|

Note that we can also learn the class of monotone DNF formulas without any exceptions
with this generic algorithm, using extended equivalence and malicious membership queries,
since itis just a subclass of the class that allows exceptions. However, the algorithm is much
less efficient than the one described in Section 4.

6.2. Learning with and without “Don’t knows”

In this subsection, we digress from exceptions and malicious membership queries, and
focus again on limited membership queries and standard membership queries. We present
a lower bound result, the proof of which has ideas useful in further subsections.

We start by briefly describing a method for converting any algorithm for exact identifica-
tion from membership and equivalence queries to one that works for limited membership
queries. We can also show that in some cases an exponential blowup in the number of
queries is necessary.

THEOREM & Every concept class that is learnable withequivalence and membership
queries is learnable with’(m — £+ 1) 4-¢— 1 equivalence and limited membership queries,
where/ is the number ofl responses received.

Proof: Let Algorithm A exactly identify concept clagsfrom at mostn equivalence and
membership queries. We construct a learning algoritiinfior equivalence and limited

MALICIOUS OMISSIONS AND ERRORS 249

membership queries as follows: For each instansech thal.MQ(z) = L, start running

two copies ofA in parallel, one assuming is positive and the other assuming thais
negative. Furthermore, store all the queries and their answers in a global table, and do not
repeat a query that has already been made (possibly by another cdpyFdr each copy

of A, if the answers that it has seen (including the guesses far teswers) are consistent
with some concept frond, then it must output a final hypothesis after at mastjueries
(including the L ones). Those copies that have answers inconsistent with any concept from
C may be stopped; this will take at mast queries. For those copies that do obtain the
final hypothesis after at most queries (except for one, possibly), we may have to ask the
final equivalence query to see which one of them has the correct answer. But, obviously,
some copy ofd will make the correct guesses for theanswers and therefore it will have

a correct final hypothesis after at maestqueries.

The exact bound can be proven by induction on the numloér answers out of the
total m of EQ's andLMQ'’s. The proof is easier if we think about the computatioméf
as a tree. Every query thal’ makes is a node in the tree. Each node is labeled by the
guery made. Every. answer is d&ranching noddi.e., such nodes have two children, one
that assumes the answer is 0 and the other that assumes it is 1). There is no branching on
equivalence queries &rtMQ’s that return a 0 or a 1. All paths from the root to the leaves
have at mostn + 1 nodes on them (for the sake of simplicity, we will assume that a final
EQ is made, and allow for this in the formula). Of course, on each path there are at most
branching nodes. Furthermore, on every root-to-leaf path, the labels of the branching nodes
(i.e., queries made) are all distinct.

We need to bound the total number of nodes in the tree, but for the branching nodes we
need count only how many different labels they have (since no query is repeated). That is,
we basically have to count the non-branching nodes and.add

For convenience let us name these trees. If such a tree as described alfdwaheaking
nodes and at most + 1 nodes on each path from the root to the leaves, we call it an
¢-m-branching-tree (Of course,/ < m for every valid/-m-branching-tree.) We call
¢ plus the number of the tree’s non-branching nodeddbeled-node counsince if all
the non-branching nodes had different labels (which they may, if the tree corresponds to a
computation ofd’ and the labels are given with respect tofRd Q’s or EQ’s being done in
A’), then this would really be just the count of the labels. We now begin the inductive proof
that the labeled-node count of afiyn-branching-tree does not exceZdm — £+ 1) + ¢.

Base case/ = 0, m > 0: If there are no branching nodes then there is only one path
from the root to the leaf in the tree, and since its length is bounded Iyl the bound
holds.

Inductive assumption: Assume that for alt’ < ¢ and for allm > ¢’ we have proved
the bound. That s, the labeled-node count of evem-branching-tree (wheré < /)
is bounded bp* (m — ¢/ 4+ 1) + .

Induction step: Now we prove the bound faf+ 1 and everym > ¢ 4 1. That is, we
take an arbitrary? + 1)-m-branching-tree. We start from the root of the tree and follow
down the only path until we reach the first branching nadeet the number of nodes
fromthe root td, inclusively, ben*. The left subtree dfis anfy-(m—m*)-branching-
tree, for some, < ¢. The right subtree o is an/,-(m — m*)-branching-tree, for

250 D. ANGLUIN, ET AL.

somel; < £. We need to further elaborate on the labels of the branching nodes in these
subtrees. None of these labels are the same as the laliglsioce on every path all
labels have to be different. Léf be the number of branching nodes that have labels
not occurring in the right subtree and &tbe the number of branching nodes that have
labels not occurring in the left subtree. L&tbe the labels that exist in both subtrees
of b. Obviously, we know that, = ¢j + ¢* and that/; = ¢7 + ¢*. We also know that
0+ 0+ 0 =4,

The labeled-node count of the origin@l+ 1)-m-branching-tree can be expressed as
the labeled-node count of the left subtreégblus the labeled-node count of the right
subtree of, plusm*, and minus/*, the number of branching nodes that have been
counted in the labeled-node count of both subtrees.

If we use the inductive assumption for the labeled-node counts of the left and right
subtrees, we just have to verify that

26 (m —m*) — (G +07) + 1) + (6 + %)
+ 25 ((m—m*) — (6 +) + 1) + (6 +£) +m* — 0
<2 (m— (0+1)+1) + (£ +1).
Some simplifications on the left side of this inequality, lead us to
2 (m— (0= 1)+ 1) + 2% (m— (0 —65) + 1)+ ¢
_ m*(Qe—e;‘ 4+ool=t _ 1),
and we have to verify that it does not exceéd! (m — ¢) + ¢ + 1. We can increase the

left side by takingn* as small as possible, namely 1. Therefore, we now only need to
show that

27 (m = (= 7)) + 270 (m— (0= £)) <2FN(m -).

It is easy to prove tha2‘~*(m — (¢ — k)) < 2¢(m —¢), if k < £ < m. Since
;7 <€ <mand{ < ¢ <m,we can apply the above formula to both terms of the left
side of the inequality that we are trying to prove. This completes the inductive proof.

The only difference between the number of querésnakes and the labeled-node count
of a /-m-branching-tree that corresponds to its computation is that we can save the last
equivalence query for one of the copiesAfThis concludes the proof.]

The next theorem shows that in some cases such an exponential blowup in the number of
queries is in fact necessary.

THEOREM 9 There is a concept class learnable with equivalence and membership
queries that require@‘(m — ¢ + 1) — 1 equivalence and limited membership queries,
where/ is the number of. responses received.
Proof: We construct a concept claGshat is a variant of ADDRESSING (Maass & T&ur,

£
1992). Let the instance space be = U?:o X;, where theX;’s are disjoint, X, =

MALICIOUS OMISSIONS AND ERRORS 251

{1,...,0},and|X;| =m — £+ 1for 1 <14 < 2. Since|X,| = ¢, each of its subsets can
be viewed as at+-bit number. A set C X isinC if and only if it has the following form.
It contains exactly one elementhat is not inX,, and if; denotes the number represented
by ¢ N Xy, then thatr is in X;.

Concept clas€ can be learned bfmembership queries for the elementskip followed
by m — £ membership queries for the elementsXgf where: is the number represented
by the responses obtained in the first phase.

On the other hand, the following adversary strategy shows that at2é@ast— ¢ +
1) — 1 equivalence and limited membership queries are required to ¢eafithe limited
membership oracle respondsto all instances inX,. Membership queries for other
elements are answered by “No.” Equivalence queries are answered by providing a negative
counterexample outsidg,.]

Taking¢ = m in the proof of Theorem 9 gives us the original concept class ADDRESS-
ING, and an example where | responses increase the number of queries required from
m for ordinary membership queries 85* — 1 for limited membership and equivalence
queries.

Note that ADDRESSING also causes the incomplete membership query model (Angluin
& Slonim, 1994) to have an expected exponential blowup over ordinary membership que-
ries when the probability of & response is a constant. For constant probahiliof L,
the expected number of instancesXp answeredL is pm. This will increase the num-
ber of queries required from: for ordinary membership queries 28" for incomplete
membership and equivalence queries.

If, instead of allowing equivalence queries only from the concept class, one allows ex-
tended equivalence queries wihy set, then such a blowup cannot occur. This follows
from a result of Auer and Long (1994) showing that in this model membership queries can
speed up learning by only a constant factor.

6.3. Strict versus Nonstrict

Recall that in the nonstrict model the final hypothesis need only agree with the target concept
on pointse such thal.MQ(x) # L, while in the strict model, they must be exactly equal.

Every learning algorithm that works in the strict model can be run in the nonstrict model
without increasing its complexity. A relationship in the other direction can be established
by a method similar to the one used in the proof of Theorem 7 in subsection 6.1.

Every learning algorithm that works in the nonstrict model can be adapted to work in
the strict model as follows. First note that the problem that may occur when running
a nonstrict algorithm in the strict model is that it may receive as a counterexample to an
equivalence query a point that was previously classified as a “Don’t know” in a membership
query. In this case, the execution of the algorithm is interrupted. The algorithm is then
restarted, remembering the point and its classification for possible later use in answering
a membership query. Since each interruption corresponds to a new “Don’t know,” this
simulation essentially adds a multiplicative factor/afo the complexity of the learning
algorithm.

252 D. ANGLUIN, ET AL.

Hence, from the point of view of polynomial learnability, the strict and nonstrict models
usingEQ’s andLMQ's are equivalent.

6.4. Lies versus Omissions

As noted in Subsections 2.2 and 3.4, learning WitRN Q’s andEQ’s is at least as difficult
as withLMQ's andEQ’s. To show that learning withIMQ's andEQ’s is in fact more
difficult, we construct yet another variant of ADDRESSING parameterizeahtand/ as
follows. The universe consists of a s&t of m elements, and a disjoint séf; of (7})
elements. We choose some fixed one-to-one correspondence between the eletkients in
and subsets ok of cardinality/. The desired class contains conceptsonsisting of a
subset ofX, of cardinality/ together with the corresponding elementdf. This concept
class can be learned using LMQ'’s followed by at mos2‘ EQ’s. On the other hand,
consider an adversary that answaifdQ’s with 0, and EQ’s with the element of the
gueried concept fronk; as the counterexample. ThahMQ'’s convey no information,
and EQ’s eliminate concepts one at a time, so at Ie(é;é) — 1 MMQ's andEQ’s are
required to learn this concept class.

This example, withl = log m, shows that the number diMQ’s andEQ’s necessary
to learn a concept class cannot be bounded by any polynomial in the numbaf Qfs
andEQ’s. On the other hand, since in this example the numbdrMdfQ’'s andEQ’s is
exponential ir, it does not answer the question “Are there any concept classes polynomially
learnable fromEQ’'s and LMQ's that are not polynomially learnable frofQ’s and
MMQ's?”

7. Summary

Most of the results proven in this paper are summarized in Table 1. The remaining ones are
given below.

1. Strict and nonstrict models of learning from equivalence and limited membership que-
ries are polynomial-time equivalent. (Subsection 6.3.)

2. Polynomial-time learnability from equivalence and malicious membership queries im-
plies polynomial-time learnability from equivalence and limited membership queries.
(Subsection 2.2.)

3. Learning monotone monomials in the nonstrict model from limited membership queries
alone may requir€(n°*!) queries wherD (n°) omissions are given. (Corollary 1.)

4. Anyclass of concepts thatis polynomially closed under finite exceptions and is learnable
in polynomial time from equivalence and standard membership queries is also learnable
in polynomial time from equivalence and malicious membership queries. (Theorem 7.)

5. Every concept class that is learnable fremequivalence and standard membership
queries is learnable in the strict model fréf(m — ¢ + 1) + ¢ — 1 equivalence and
limited membership queries. (Theorem 8.)

MALICIOUS OMISSIONS AND ERRORS 253

Table 1. Summary of the results for various boolean formulasdenotes the number of variables; denotes
the number of terms in a formula;denotes the size of a conceptdenotes the number of lies or omissiohs;
denotes the number of exceptions.

Class of Concepts Type 0iQ’s Number ofEQ’s Number ofMQ’s
Monotone Monomials (Theorem 1) LMQ’s nl+n+1
Monotonek-term DNF (Theorem 3) LMQ’s O(kn* + n2¢)
Monotone DNF, Nonstrict (Theorem 4) LMQ's m+1 n(m+£)
Monotone DNF, Strict (Theorem 4) LMQ'’s m+£+1 n(m+£)
Monotone DNF (Theorem 5) MMQ’s O(m + nk) O(mn? + In3)
Monotone DNF with Finite Exceptions , 2 253 2 3
MQ's (0] l (@] l
(Theorem 6) Q (mn*%) (mn® +in%)
DFA's (Corollary 5) MMQ's poly(s,n, L) poly(s,n, L)
Decision Trees (with ExtendddQ’s, MMO’s I) !)
Corollary 6) Q poly(n, £) poly(n, £)
Monotone DNF with Finite Exceptions MMQ's poly(n,m, 1, €) poly(n,m, 1, €)

(Corollary 7)

6. There exists a concept class learnable witlequivalence and standard membership
queries that require®’(m — ¢ 4 1) — 1 equivalence and limited membership queries
to be learned in the strict model. (Theorem 9.)

7. There exists a concept class learnable in the strict modebmith2¢ equivalence and
limited membership queries that requir@s) — 1 equivalence and malicious member-
ship queries to be learned. (Subsection 6.4.)

8. Discussion and Open Problems

As noted in the introduction, there are many classes of concepts that are efficiently learn-
able with membership and equivalence queries. For some of them we now have learning
algorithms that use equivalence and limited or malicious membership queries. Many other
problems still remain unexplored. For example, there is not yet any algorithm for learning
read-once formulas from equivalence and limited or malicious membership queries, even
though there is an algorithm for learning read-once formulas from equivalence and stan-
dard membership queries. A start in this direction is made in (Angluin, 1994), which gives
a randomized polynomial-time algorithm to legirDNF formulas with equivalence and
malicious membership queries. In the model of PAC learning with membership queries,
it would be interesting to see whether Baum'’s algorithm (Baum, 1991) can be modified to
tolerate “I don’'t know” answers.

Another type of open problem is finding lower bounds for any of the classes of concepts for
which we give learning algorithms using equivalence and limited or malicious membership
qgueries. So far, we have lower bounds for only a specially constructed class and for
monotone monomials in the model that uses only limited membership queries. For other

254 D. ANGLUIN, ET AL.

classes, the following question is still relevant: can we prove something stronger than the
trivial bound that there must be more membership queries than lies or omissions?

Moving on to the comparison of models, we have two very intriguing questions. The first
one is, are there any classes of concepts that are polynomial-time learnable from equiva-
lence and limited membership queries, but not polynomial-time learnable from equivalence
and malicious membership queries? The second question is, are learning with exceptions
and learning with lies equally difficult for classes that are polynomially closed under finite
exceptions, or is learning with exceptions more difficult for these classes? Thatis, is there a
class that is polynomially closed under finite exceptions, is learnable with malicious mem-
bership queries in polynomial time, and is not polynomial-time learnable with exceptions?
We also do not know how the difficulty of learning with exceptions classes that are not
polynomially closed under finite exceptions relates to learning such classes with malicious
membership queries.

A less important extension of this work would be to improve the time bound for the
algorithm that learns monotone DNF formulas with exceptions and possibly for the one
that learns monotone DNF from equivalence and malicious membership queries.

Acknowledgments

This research was funded in part by the National Science Foundation, under grants CCR-
9213881, CCR-9108753, CCR-9314258 and CCR-9208170, and by Esprit BRA ILP, Pro-
ject 6020, OTKA grant T-014228, and OTKA grant T-016349.

We thank the referees for their careful reading and helpful suggestions. This work ap-
peared as two separate papers in the Proceedings of the 7th Annual ACM Conference on
Computational Learning Theory (Angluin & Kri& 1994b), (Sloan & Twan, 1994). Part
of it is also available as a technical report (Angluin & Kisk1994a).

References

Anderson, J. R. (1980)Cognitive Psychology and Its Implicatiang/. H. Freeman and Company.

Angluin, D. (1987). Learning regular sets from queries and counterexanipfesm. Comput.75(2):87-106.

Angluin, D. (1988). Queries and concept learnimgachine Learning2(4):319-342.

Angluin, D. (1994). Exact learning gf-DNF formulas with malicious membership queries. Technical Report
YALEU/DCS/TR-1020, Yale University Department of Computer Science.

Angluin, D., & Krikis, M. (1994a). Malicious membership queries and exceptions. Technical Report YALEU/-
DCS/TR-1019, Yale University Department of Computer Science.

Angluin, D., & Krikis, M. (1994b). Learning with malicious membership queries and exceptiorBrotn 7th
Annu. ACM Workshop on Comput. Learning Thepages 57—-66. ACM Press, New York, NY.

Angluin, D., & Slonim, D. K. (1994). Randomly fallible teachers: learning monotone DNF with an incomplete
membership oracleMachine Learning14(1):7-26.

Auer, P., & Long, P. M. (1994). Simulating access to hidden information while learnindg?rda. of the 26th
Annual ACM Symposium on Theory of Computjmeges 263-272. ACM Press, New York, NY.

Baum, E. (1991). Neural net algorithms that learn in polynomial time from examples and queidt
Transactions on Neural Networka:5-19.

Board, R., & Pitt, L. (1992). On the necessity of Occam algorithifiseoret. Comput. S¢il00:157-184.

Bshouty, N. H., (1993). Exact learning via the monotone theoryPrateedings of the 34th Annual Symposium
on Foundations of Computer Scienpages 302-311. IEEE Computer Society Press, Los Alamitos, CA.

Bultman, W. J. (1991)Topics in the Theory of Machine Learning and Neural ComputidgD thesis, University
of lllinois at Chicago Mathematics Department.

MALICIOUS OMISSIONS AND ERRORS 255

Dean, T., Angluin, D., Basye, K., Engelson, S., Kaelbling, L., Kokkevis, E., & Maron, O. (1995). Learning finite
automata with stochastic output functions and an application to map leaiaghine Learning18(1):81-108.

Frazier, M., Goldman, S., Mishra, N., & Pitt, L. (1994). Learning from a consistently ignorant teacherodn
7th Annu. ACM Workshop on Comput. Learning Thepages 328-339. ACM Press, New York, NY.

Goldman, S. A, Kearns, M. J., & Schapire, R. E. (1993). Exact identification of read-once formulas using fixed
points of amplification functionsSIAM J. Comput.22(4):705-726.

Goldman, S. A., & Mathias, H. D. (1992). Learning k-term DNF formulas with an incomplete membership oracle.
In Proc. 5th Annu. Workshop on Comput. Learning Thepages 77-84. ACM Press, New York, NY.

Kearns, M. (1993). Efficient noise-tolerant learning from statistical querie®rda. 25th Annu. ACM Sympos.
Theory Comput.pages 392-401. ACM Press, New York, NY.

Kushilevitz, E., & Mansour, Y. (1993). Learning decision trees using the Fourier spect®l&iM J. Compuf.
22(6):1331-1348. Earlier version appeared in STOC 1991.

Lang, K. J., & Baum, E. B. (1992). Query learning can work poorly when a human oracle is usateriational
Joint Conference on Neural Networlgeijing.

Maass, W., & Tuah, G. (1992). Lower bound methods and separation results for on-line learning ndeetsne
Learning 9:107-145.

Ron, D., & Rubinfeld, R. (1995). Learning fallible deterministic finite autom&achine Learning18(2/3):149—

185.

Sakakibara, K. (1991). On learning from queries and counterexamples in the presence ofnfoige. Proc.
Lett, 37(5):279-284.

Sloan, R. H., & Tuah G. (1994). Learning with queries but incomplete informationProc. 7th Annu. ACM
Workshop on Comput. Learning Theppages 237-245. ACM Press, New York, NY.

Valiant, L. G. (1985). Learning disjunctions of conjunctions. RAroceedings of the 9th International Joint
Conference on Atrtificial Intelligence, vol., pages 560-566, Los Angeles, California. International Joint
Committee for Atrtificial Intelligence.

Zhuravley, Y., & Kogan, Y. (1985). Realization of boolean functions with a small number of zeros by disjunctive
normal forms, and related problemSoviet Math. Doklady32:771-775.

Received May 9, 1995
Accepted November 20, 1995
Final Manuscript April 23, 1997

