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Abstract.  We investigate the problem of estimating the proportion vector which maximizes the likelihood

of a given sample for a mixture of given densities. We adapt a framework developed for supervised learning
and give simple derivations for many of the standard iterative algorithms like gradient projection and EM. In this
framework, the distance between the new and old proportion vectors is used as a penalty term. The square distance
leads to the gradient projection update, and the relative entropy to a new update which we call the exponentiated
gradient update (E. Curiously, when a second order Taylor expansion of the relative entropy is used, we arrive

at an update EM which, forn = 1, gives the usual EM update. Experimentally, both the,Epdate and the

EG; -update forp > 1 outperform the EM algorithm and its variants. We also prove a polynomial bound on the
rate of convergence of the E@lgorithm.
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1. Introduction

The problem ofmaximum-likelihoodML) estimation of a mixture of densities is an impor-

tant and well known learning problem (Duda and Hart, 1973). ML estimators are asymptot-
ically unbiased and are a basic tool for other more complicated problems such as clustering
and learning hidden Markov models. We investigate the ML-estimation problem when the
densities are given and only the mixture proportions are unknown. That is, we assume
that we are given a set of distributio$, ..., Dy over some domain, together with a
sample of points from this domain. Our goal is to find the mixture coefficients . , vy

(v; > 0and>  v; = 1) which maximize (approximately) the likelihood of the sample
under the mixture distributior) " v; D;. Most of the common techniques to solve this
problem are based on either gradient ascent iterative schemes (Luenberger, 1984) or on
the Expectation Maximization (EM) algorithm for parameter estimation from incomplete
data (Dempster et al., 1977, Redner and Walker, 1984).
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We derive the standard iterative algorithms for the unsupervised mixture proportions esti-
mation problem by placing them in a common hill-climbing framework. This framework is
analogous to the one developed by Kivinen and Warmuth (Kivinen and Warmuth, 1995a) for
supervised on-line learning. Our goal is to maximize the log likelihood of the observations
as a function of the mixture vectev, denoted by LogLikéw). This is computationally
hard and requires iterative methods. In ttteiteration we approximate the log-likelihood
LogLike(w;, 1) atthe new mixture vectaw; . by LogLike(w;)-+VLogLike(w;)- (w11 —

w;), which is the Taylor expansion of the log-likelihood around the old mixture veetor

It is now easy to maximize this approximated log-likelihood. However the approxima-
tion degrades the further we move from the old mixture veetpr;. Thus we subtract a
penalty termi(w. 1, w;) which is a non-negative function measuring the distance between
the new and old mixture vector. This penalty term keeps; close tow, as measured by
the distance functiod. In summary we are maximizing the function

F(Wt+1) =0 (LOgL|ke(Wt) + VLogL”(e(Wt) . (Wt+1 - Wt)) - d(Wt+1, Wt) . (1)

The relative importance between the penalty term and increasing the log-likelihood is
governed by the positive parametgrcalled thdearning rate

Maximizing the functionF' with different distance functions leads to various iterative
update rules. Using the square distance gives the update rule of the gradient projection
algorithm and the relative entropy distance gives a new update callezkiomentiated
gradientupdate (EG). By using a second order Taylor expansion of the relative entropy
we get thex? distance function. When this distance function is usedigisget to one, we
get the same update as an iteration of the EM algorithm for the simple mixture estimation
problem considered in this paper. Our experimental evidence suggests thatssettihg
results in a more effective update. These results agree with the infinitesimal analysis in the
limit of n — oo based on a stochastic approximation approach (Peters and Walker, 1978a,
Peters and Walker, 1978b, Redner and Walker, 1984).

For the exponentiated gradient algorithm, we are able to prove rigorous polynomial bounds
on the number of iterations needed to get an arbitrarily good ML-estimator. However, this
result assumes that there is a positive lower bound on the probability of each sample point
under each of the given distributions. When no such lower bound exists (i.e., when some
point has zero or near-zero probability under one of the distributions), we are able to prove
similar but weaker bounds for a modified version of,EG

We obtain our convergence results by viewing the mixture estimation problem as an on-
line learning problem. Each iteration becomes a trial where the algorithm is charged a “loss”
of —LogLike(w;), so minimizing the loss corresponds to maximizing the log-likelihood.
Note that the ML solution will also have a loss on each trial. By bounding the extra loss
of the algorithm over the loss incurred by the ML solutimiover a sequence of iterations,
we can show that at least one of the vectors produced by the algorithm is reasonably
good. Note that these results show convergence in log-likelihood rather than convergence
of the mixture vector to the ML solution. Furthermore, the standard rate of convergence
results usually apply only when the algorithm is started with a vector near the ML solution,
whereas our results show convergencefoyinitial probability vector with strictly positive
components.
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The derivations of the learning rules using the above framework are simple and can
readily be applied to other settings. They are similar to previous derivations found in the
literature (Redner and Walker, 1984, Neal and Hinton, 1993).

2. Definitions and Problem Statement

Let R represent the real numbers. We say a veetor (vy, ..., vn) € ®Y is aprobability
vectorif, Vi : v; > 0and) ", v; = 1. The vector(1/N,...,1/N) is called theuniform
probability vector We use the following distance functions between probability veators
andv:

2 1
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All three distance functions are non-negative and zena i#f v. The first one is half of the
square of the Euclidean length of the veatior v. The second one is the standaethtive
entropyand the last one is a second order Taylor approximation €atv) of the relative
entropy called theg2-distance These distance functions are used in Section 3 to derive the
updates used in this paper (See discussion at the end of Section 3 and Figure 1).

We consider the following maximum-likelihood mixture estimation problem:
Input: A P x N matrix X of non-negative real numbers with rows throughxp .
Goal: Find a probability vectow that maximizes the log-likelihood,

1 E N 1 F
LogLike(w) = Iz E In ( E a:p7iw7;> =5 E In(x, - w) ,
p=1 i=1 p=1

wherex,, is thepth row of X.

The maximizers of the log-likelihood are called theximum likelihoodML) solutions.

It is easy to see that the Hessian of the log-likelihood is negative semi-definite. Thus there
are no spurious local maxima and the ML solutions form a convex region. Wa tse
denote an arbitrary ML solution, and cail“the ML solution” for brevity. As there is no
straightforward method for computing an ML solution, iterative methods which compute a
sequencews, ..., wy, ..., converging to an ML solution are popular.

It is most natural to view each row, of X as representing an observation and the
ith column of X as containing the probability of each observation under some known
distribution D;. The entryz,; is then the probability under distributioR; of the pth
observation, and, for any probability vectarx,, - v is the probability under mixture of
thepth observation under the mixture distributiﬁf‘nﬁi1 v; D;. The ML solutionu gives the
proportions or weightings of thB;’s that maximize the log-likelihood of the observations.

Il
—
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We useV L(w;) to represent the gradient of the log-likelihood function at probability
vectorwy,

VL(wy) def (
1 L T 1 -t T
— - p,1 - »,N
S SRS o
p=1 p=1

3. The Updates

*

oLogLike(w;) oLogLike(w;) )

8wt_, 1 ath

Kivinen and Warmuth (Kivinen and Warmuth, 1995a) studied a general framework for on-
line learning in which they derived algorithms for a broad class of loss functions. Here, we
apply their method specifically to negative log-likelihood.

Assume that at iterationwe have the current probability vecter, and are trying to find
a better vectow,, ;. Kivinen and Warmuth study the supervised on-line setting where the
vectorw; summarizes the learning done in previous iteraticausd that learning can be
preserved by choosingwa,; that is “close” tow;. Their method finds a new vecter;
that (approximately) maximizes the following function:

F(wyy1) = nLoglike(wiy1) — d(wip1, wy), 1n>0 . (2)
The penalty term—d(w;1,w;), tends to keepw;,; close tow; (with respect to the
distance measukd and the relative importance between the penalty term and maximizing
the log-likelihood on the current iteration is governed by the positive parametelied the
learning rate A large learning rate means that maximizing the likelihood for the current
row is emphasized while a small learning rate leads to an update which kgepglose
to w,;. Since our iterative updates will be based on the local conditions at the start vector
wy, the penalty term and the learning rate measure how rapidly these local conditions are
expected to change as we move away from Unfortunately, finding av;; maximizing
F'is computationally hard becauS&.(w;. 1), the gradient of the log-likelihood at; 1,
is unknown. Kivinen and Warmuth bypass this difficulty by approxima¥®hgw1) by
V L(w;) and thus are really maximizing the functiéhfrom Equation (1).

To maximize this function¥’, we add a Lagrange multiplier for the constraint that the

components ofv;; sum to one, leading us to maximize

F(wii1,7) = n(Loglike(w;) + VL(wy) - (Wip1 — Wy))

N
7d(Wt+1,Wt) + v <Z Wi1,i — 1) .

=1
This is done by setting th& partial derivatives to zero and enforcing the normalization

constraint. So our framework consists of solving the followlig- 1 equations for theV
coefficients ofw,1:

aF(Wt-i,-l, ’Y)
5wt+1,z‘

od
_ nVE(Wt)i—M-FV:O A3)

5wt+1,i
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and

N
Zwﬂ_l’i =1. (4)
=1

We now derive all updates used in this paper by plugging different distance functions into
the above framework. For the standgmdient projection updatéwhich we abbreviate
GP,) we use the distance functiondc (wei1||we) = 3[|wegr — we¢||. In this case the
equations (3) become

NVL(W)i — (Weg1s —wes) +7=0 .

By summing the abov& equalities and using the identiti@ﬁi1 Wy = vazl Wit1,; =1
we see thaty = - vazl V L(w;); and obtain the update

N
1
Wii1,i = Wi +1) (VE(Wt)i -~ > :Vﬁ(wt)z) : (5)
=1

If we use the relative entropy,sth(wii1||wy) = > werr,i In(wipq,i/wy;), as a
distance function then the equations (3) become

IV L(w,); — (In L;*“ F1)4+7=0.
ti

By solving for thew,; ; we have

Wi, = wy eV EWITL

Enforcing the normalization constraint (4) gives a hew update which we cadihenen-
tiated gradient (EG,) update:

wmeﬂVﬁ(Wt)i
Wt+1,i = N
’ oMV L(We);
Zj:l We,j€ 7

(6)

The framework can also be used to motivate the Expectation Maximization algorithm (EM)
which is another algorithm commonly used for maximum likelihood estimation problems.
For this we use thg? (Chi-squared) distance measure tv, 1 ||w;) = % Zfil (Wiy1,—

wy;)? Jwy,;. Now the equations (3) become

nVL(Wt); — (w - 1) +7v=0.

W4
By solving for thew, ; we get

Wep1,s = N VL(We)i +wei(y+1) .
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We can now sum the abow¥ equalities and use the constraints t@f;l w; = 1
and Zf\;lwtﬂ,i = 1. Our particular mixture estimation problem has the invafiant
SN L w i VL(W); = 1. Thusy = —p and we obtain the update

W41, = Wty (77 (V,C(Wt)l - 1) + 1) . (7)

We call Equation (7) the Eiftupdate because whgn= 1 this gives the standard Expectation-
Maximization (EM) updatew;,,; = w:;VL(w);, for the problem considered in this
paper. The EM update can be motivated by the likelihood equations, and the gen-
eralization to arbitraryy was studied by Peters and Walker (Peters and Walker, 1978a,
Peters and Walker, 1978b).

Since they? distance approximates the relative entropy it may not be surprising that the
EM,,-update (7) also approximates the EGpdate (6). We first rewrite the exponentiated
gradient update by dividing the numerator and denominato¢”bgnd then replace the
exponential functior?* by its first order lower bound + z:

wy ;e(VEW:),~1)

Yoy wy e (VE T

- wii(1+n(VL(We); — 1))
ijzl wy j(1+n(VL(We); — 1))

wy i (M(VL(wy);, —1)+1) .

Thus the EM-update can be viewed as a first order approximation of the-Egélate. The
approximation is accurate when the exponejif L(w;),; — 1) are small. The advantage

of the EM,-update is that it is computationally cheaper as it avoids the exponentiation.
However the EG-update is easier to analyze. Our experiments indicate that these two
update rules tend to approximate each other well.

Each of the different distance functions leads to a different bias that is encoded in the
update. In Figure 1 we plot the three distance functions@ w1 ||w¢), dre (Wit1||we)
andd2(wy1||w) as afunction ofv,; for the three dimensional problem (with a triangle
asthe feasible region fev;, ;). The contour lines for the distance functiogg- are circles
and the contour lines for,d are ellipses that become more degenerate as the old weight
vectorw,; approaches the boundary of the feasible region. The contour lineg; foack
deformed ellipses that bend towards the vertices of the triangular feasible region.

One can also get an update by re-parameterizing the probability vectors and doing un-
constrained gradient ascent in the new parameter space. We use the standard exponential
parameterization (Bridle, 198%; = e"i/ Z;‘V:l e” and maximize the function

W41, =

ParLogLikgr) = LogLike(w(r)).
(Note that thew’s are probability vectors whereas the corresponding veetars uncon-
strained and lie i) For this parameterization the gradient descent update becomes
OParLogLikdr;)

Tt+1,5 = Tt T o
t,i

= 1+ 0w (VL(wy), — 1) .
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Figure 1. The figure contains plots of the three distance functions;d(W¢41||W¢) (first row),
drE(Wit1]|We) (second row) and b (We1||We) (third row) as a function oW, 1. The dimension is

three and the non-negativity constraint on the three componems.of plus the fact that the component must

sum to one result in a triangle as the feasible regiorMar.1. The corners of the triangle correspond to the
vectorw; 1 = (0,0, 1) at the top vertex and vectors (1,0,0) and (0,1,0) at the left and right bottom vertices. The
plots are contour plots of the distance function while looking at the triangle from above. The left column gives
the distance from the uniform vectev; = (1/3,1/3,1/3) which is at the center of the triangle and the right
column the distance from the point (0.3, 0.2, 0.5). Note that contour lines may represent different distances in
different diagrams.

This update can also be derived in our framework by approximately maximizing a function
corresponding td"' (Equation (2)):

G(ri41) = nParLogLikery 1) — d(rer1,re), 1>0 .

For this maximization, we usé(r;i,r;) = %||rt+1 — r4||? as a distance function and
approximate the gradient at,; with the gradient at;.

All of the above update rules can be turned into algorithms by specifying the learning
raten to use in each iteration. The EM algorithm uses a fixed scheduling, where the same
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learning rate (namely; = 1) is used in each iteration. Another possibility is to anneal the
learning rate. At first, a high learning rate is used to quickly approach the ML solution.
Later iterations use a lower learning rate to aid convergence.

The EM algorithm is in fact a limiting case of a more general approach usually called
Generalized EM (GEM) (Dempster et al., 1977, Meng and Rubin, 1992). Neal and Hin-
ton (Neal and Hinton, 1993) considered another extension of EM which involves examining
only a portion of the observation matriX on each iteration. In general, any subset of the
observations could be used, and the algorithm which considers a different row (observation)
on each iteration is the natural analogue of on-line algorithms in the supervised case.

Note that in the above derivations of the updates we ignored the non-negativity constraints
on the new weights;1, ;. For the EG update and for the gradient descent update with
exponential parameterization the non-negativity constraints follow from the non-negativity
of the previous weightsv, ;. However for EM, and GR, the learning rate) has to be
sufficiently small to assure the non-negativity of ihg 1 ;. In particular, the standard EM
algorithm (usingp = 1) has the property that the non-negativity constraints are always
preserved.

4. Convergence and Progress

In this section we discuss the convergence properties of the algorithms. Using standard
methods (with the usual assumptions for convergence proofs) as in Luenberger(1984), it
can be shown that all updates described in the previous section converge locally to an
optimal ML solution, provided that the current mixture vectoy is close to the ML
solution and given the usual assumptions. Moreover, using techniques similar to those
in (Peters and Walker, 1978b, Redner and Walker, 1984), it can be shown that it is better to
use a learning rate > 1 rather than the rate = 1. This implies that the EM algorithm is

not optimal for this family of update rules. This analysis is supported by the experimental
results presented in the next section, where chooging 1 leads to faster convergence,
even when the current mixture vector is far from the ML solution.

These methods suffer from a number of limitations. For instance, the proof of conver-
gence is only valid in a small neighborhood of the solution. In this section, we present a
different technique for proving the convergence of the, E@date and (under non-negativity
assumptions) the GRupdates.

If an update is derived with a distance functibdthen it is natural to analyze how fast the
mixture vector moves towards an (unknown) ML solutioms measured by this distance
function. More precisely, we use the same distance function that motivates the update as a
potential function to obtain worst-case cumulative loss bounds over sequences of updates
(similar to the methods applied to the supervised case (Kivinen and Warmuth, 1995a)). The
natural loss of a mixture vectev, for our problem is-LogLike(w;). Note that this loss is
unbounded since the likelihood fer; is zero when there is somg, for whichw, -x, = 0.

In the supervised case, one can obtain firm worst-case loss bounds with respect to the square
loss for various updates by analyzing the progress (Kivinen and Warmuth, 1995a). But the
square loss is bounded and it is not surprising that it is much harder to obtain strong loss
bounds for our (unbounded loss) unsupervised setting. Nevertheless this type of analysis
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can give insight on how an iterative algorithm moves towards the ML solution and on the
relationships between different update rules. We obtained some reasonably good bounds
for the GR, and EG, updates.

We deal with the unboundedness of the loss function by initially assuming that the smallest
entry in the matrix is bounded away from zero. Thus, fopalhd: we assume, ; > r > 0.
In the following section we give a proof bounding the average additional loss dlitirigls
of the algorithm EG over the loss of the ML solution by

1 /InN
rV 2T °
Thus, by pickingl” = In N/2¢2r? we can guarantee that at least one ofwhé& computed
by algorithm EG, has loss at mostlarger than the ML solution.
In contrast, we prove a similar bound for the Gipdaté in Section 4.2 showing that

the average additional loss durifigtrials of the algorithm GP above the loss of the ML
solution is at most

1 /2N

r\V T
However, the analysis assumes that the, @Gorithm does not produce mixture vectors
with negative components. This assumption may not always hold since the update of the
GP, algorithm is additive. We have been unable to prove thay theed to obtain the above
bound avoids this difficulty.

Even though the above bounds are weak in that they grow Wyith and even though
we don’t know of any matching lower bounds, they suggest a crucial difference be-
tween the exponentiated gradient and gradient descent family, namely, the logarithmic
growth (in terms ofN) of the additional loss bound of the former versus the square-
root growth of the latter family. Similar observations were made in the supervised set-
ting (Kivinen and Warmuth, 1995a, Kivinen and Warmuth, 1995b).

We also show below how to obtain bounds when the entries in the matrix have zero-valued
components. We essentially average the data matrix with a uniform matrix-@aigesian
averaging was also used in (Abe et al., 1991)) and then use the averaged matrix to run our
algorithm. One can show that the ML solution for the averaged matrix is not too far (in
loss) away from the ML solution of the original matrix, but the averaged matrix has the
advantage of having entries bounded away from zero.

4.1. Convergence proofs for exponentiated-gradient algorithms

Recall that the EG algorithm receives a (fixed) set éf instancesx,...,xp, each in
R with positive components. At each iteration, the algorithm produces a mixture or
probability vectorw, € Y and suffers dossrelated to the log-likelihood of the set under
the algorithm’s mixture. The algorithm then updates

The loss suffered by the algorithm at timés
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1
—ﬁZm(wt “Xp)s
p=1

while the loss of the (unknown) ML solutianis

1 B
—FZIn(u “Xp)-
p=1

We are interested in bounding the (cumulative) difference between the loss of the algorithm
and the loss of the ML solution.

We assume thamax; z,; = 1 for all p. We make this assumption without loss of
generality since multiplying an instaneg, by some constant simply adds a constant to
both losses, leaving their difference unchanged. Put another way, the assumed lower bound
r onx,,; used in Theorem 1 (below) can be viewed as a lower bound on the ratio of the
smallest to largest component of any instarge

The EG, algorithm uses the update rule:

) v P Tp,i
wiexp (Bp o)

We1,6 = 7
t

wheren > 0 is the learning rate, and, is the normalization
N n P T
Zy = ; A YL
t Zwm exp (Pzwt ~xp>
=1 p=1

THEOREM 1 Letu € RY be a probability vector, and let,, ..., xp be a sequence of
instances withe, ; > r > 0 for all ¢, p, andmax; z,; = 1 for all p. Forn > 0, EG,
produces a sequence of probability vecters, . . ., wr such that

T P P
1 T dRE(unl) 7’]T
—t:E - ﬁ Elen(Wt . Xp) S —Epi ‘ ln(u . Xp) + f + 8? . (8)

Furthermore, ifw; is chosen to be the uniform probability vector, and we set

_ o 2In N
n=2zr T
then
P
1 T V2T In N
—Z ?Zln(wt “xp) < —FZln(u “Xp) + — 9

t=1 p=1 p=1
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Proof: We have that
dRE(uHWt+1) *dRE(uHWt) = *Zui ln(wt+1,i/wt,i)
n & Lp,i
_ | T p,t
= —ZU;( 1nZt+PZWt Xp)
7 p=1
P u-X
= 1 P 4 inZ,. (10)
P Wy - X
p=1 P
We now work on bounding;

xr
Zy = Zmeexp(ZWP’ >
t
n Tp,i 1/P
—Zwlﬂm{wx) )
p=1 to S
Sincex; ;

€ [0,1] and sinces” < 1 — (1 — @)z for § > 0 andz € [0, 1] we can upper
bound the right—hand side by:

n 1/P
ol (1 (1o (1)) )
1/P
- ZH (wt,i - (1 — exp ( 1 )) wt,i%,i)
— Wi - Xp
i=1p=1

We will need the following fact: For non-negative numbeis,
1/P
ZHA”, < H <ZA ) :
i=1p=1
This fact can be proved by repeated application ofdéi’s inequality’
Using this fact with

Aip= (wm — <1 — exp <

1/P
)
yields an upper bound a#; of

1 (5 (- (o (25 o)
_ H(W (on (32 ))

To further boundn Z;, we apply the following

(11)
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LEMMA 1 Forall « € [0,1] andz € R,

In(1—a(l —e%) < azr+2%/8.

Proof: Fix a € [0, 1], and let
f(z) =ax+2%/8 —In(1 — a(l — %)) .

We wish to show thaf(z) > 0. We have that

J'@)=a+ ] - g(@)
where
o) = —2

T 1-atae
Clearly, f/(0) = 0. Further,

1

(@) = 7 = 9(@) + (9(=))?

which is non-negative for al (the minimum is attained whey(x) = 1/2). Therefore f
is minimized whene = 0; sincef(0) = 0, this proves the claim. ]

Taking logs of Equation (11), the upper boundn and then applying Lemma 1 gives

us
1 - n
“N'1In(1=-w,- 1 —
R R )
P 2
1 1
P 5w x”
2

n
sincer is a lower bound ow; - x,,. Plugging into Equation (10) we obtain

In Zt

IN

IN

n

< L
- 7]+8r2

P 2

n u-xp, n

d wi1) —d wy) < —— — TP ) pp
RE(UH t+1) RE(UH t) = Pp_l( t'Xp) n 312

f Wi Xy 8r

(—ln 9 %p > +77_22
Wy - Xy 8r

Il
Nl
E

p

IN
vl

P

p=1
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using the fact that — e* < —x for all realz. By summing over alt < 7" we get
—drp(ullwi) < drp(ullwr) — drp(ul|lwi)

ﬁii IR S
Pt:1 Wy - Xp 8r2 "’

p=1

IN

which implies the first bound (8) stated in the theorem. The second bound (9) follows
by straightforward algebra, noting thakg(u||lw;) < In N whenw; is the uniform
probability vector. ]

Note that if any other upper bourf€dz g on dzg(u||w;) is known a priori (possibly for
some other choice o), then by tuningy as a function ofK g theln N term in the
bound (9) of the theorem can be replacedibyg. This gives a bound of

VTR g

2r (12)

of the additional loss of the algorithm over the ML solution.
It follows from Theorem 1 that, if we run fof’ iterations, then thaverageloss (or
average minus log-likelihood) of the;’s will be at most

InN
V 2Tr2’
greater than the loss of Therefore, picking’ = (In N)/(2¢%r?) guarantees that at least
one of thew,’s will have a log-likelihood withine of u. Furthermore, it is easy to find the
best candidater; that maximizes the likelihood among;, . .., wr by simply computing
the likelihood of each.

When some of the components; are zero, or very close to zero, we can use the following
algorithm which is parameterized by a real numbeg [0, 1]. Let

Xp = (1 —a/N)x, + (a/N)1

wherel is the all1's vector. As before, we maintain a probability vectey which is
updated using,, rather thanx,,:

wy; exp(nTp,i /Wi - Xp)
Zi Wi eXP(njp,i/Wt : ip)

Wi1,0 =

The vector that we output is also slightly modified. Although eagh; is produced from
the previousw, as above, the algorithm outputs the modified mixture

w; = (1 —a)wy + (a/N)1

and so suffers loss In(w; - x,).

We call this modified proceduteG,,,.
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THEOREM 2 Letu € Y be any probability vector, and lety, ..., xp be a sequence
of instances withx,, ; > 0 for all 4, p, andmax; 2, = 1 for all p. For o € (0,1/2] and

n >0, Igé-m produces a sequence of probability vectérs, . . ., wr such that

TP F
—; ﬁpglln(\ift xp) < —sz:;ln(u - Xp) + 20T

dre(ullwy) . nTN?

13
+ , 502 (13)
Furthermore, ifw; is chosen to be the uniform probability vect®r> 2N21In N, and we
set
N2l N\
- (%)
_ 2a [2InN
TNV
then

T 1& T

P
> FZm(wt -x,) < fFZm(u‘xp) + 2@N2In N)VHT)4 . (14)
t=1 p=1 p=1
Proof: From our assumption thatax; z; ; = 1, we have

\ (1—a)wy-x, +a/N
wy X,  (1—a/N)wy-x, +a/N°

The right hand side of this inequality is decreasing as a functiowof x,, and so is
minimized whernw, - x, = 1. Thus,

V~Vt . Xp
— > (1- N
Wi - X, z2(1-a)+a/N,
or equivalently,
—In(W - xp) —In(w; - %xp) —In(1 —a+ a/N)
—In(w; - Xp) + 2 (15)

IAIA

(sincea < 1/2).
From Theorem 1 applied to the instanégs we have that

T P P
1 - T - drp(u||lwy) nTN?
=Y B2 (Wi %) <=5 In(u- %) + =+ (16)
t=1" p=1 =1

n 8a?

where we used the fact thaf ;, > «/N.
Note that
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u-x,=(1—a/Nu-x,+a/N >u-x,.
p = ( / p p

Combined with inequalities (15) and (16), and summing ovet,athis gives the first
bound (13) of the theorem. The second bound follows from the fact thatd |w;) < In N
whenw is the uniform probability vector. ]

From Theorem 2, it follows that the average additional loss ofstHis for this algorithm
over that of the ML solution is at most

o <<N2:1Fn1v)1/4> |

This is unfortunately a rather weak bound.

4.2. Convergence proofs for gradient-projection algorithms

In this section, we prove a convergence result for the gradient-projection algorithm. The
setup is exactly as in Section 4.1.
The update rule used by G5

n 1 ZNf Tp,i
i=1"P,

Wit1 = W Xp 1

¢ t lewt . X ( N )

wheren > 0 is the learning rate, antlis the all1’s vector. We assume that, ; remains
non-negative.

THEOREM 3 Letu € RY be a probability vector, and let,, ..., xp be a sequence of
instances withe,, ; > » > 0 for all 4, p, andmax; ,; = 1 for all p. Forn > 0, assume
that GP, produces a sequence of probability vecters, . .., wr so that all components
of each are nonnegative. Then

P

T P
1 T nNT  dryc(ullwy)
_E E In(w; - xp) < —— E In(u-x,) + 5,3 + " . a7

t=1 p:l p 1

Furthermore, ifw; is chosen to be the uniform probability vectdr> 2N21In N, and we
set

= UNT

then dzy o (ullwy) < 5 and

1g
2 @

T P

P
1 T 1
—E PE In(w; - xp) g—ﬁg In(u - Xp)—&—;\/NT. (18)
p=1
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Proof: We use ¢yc(ullwy) = Sllu— w¢||* as the potential function since it is the
distance function used to derive the Gipdate. We can bound the change in potential at
time ¢ using straightforward algebra as follows.

1 2 1 2
T e
P 2 P N
n u-x, nel 1 1 1
pZ( Wt'xp) Ty pzwt.xp (XP Nzx”’
= p=1 i=1
n a u-x n? a 1 1<
< Ly In| —2 — — — i
<2 m(Em eSS (v dn)

In the second step we used the convexity of the fundfi¢h, and the fact that — e” < —z
for all realz. Sincex, ; € [r, 1], and assuming that, ; > 0, it follows that this is bounded

by

2

2

P 2
n u-x, n°N
—=) In{——— .
PZ . (wt 'xp) + 2r2
p=1
Thus, summing over all < T', we get

T P
1 1 u-x INT
gl wral = Glu—wif < -5 Sy (22 ) TEL
t=1 p=1

Wt - Xp
So
7 2
: P NT — NT d
ZZm(u Xp>§_ n . +Hu WlH :P<77 = EUC<U|W1))
t=1p=1 NVt Xp 2\ r n 2r n

which implies the bound in Equation (17). The derivation of the second bound in Equa-
tion (18) follows by straightforward algebra. ]

When tuningy to obtain bound (18), we used the fact thatd:(u||w) is at most}. If
a better upper boundy gy ¢, on this distance is available a priori, then we can tyrne
(17) accordingly to obtain the bound of

V2NTKEgyce

r

on the additional loss of GPabove that of the ML solution.

One way to compare the bound for E@2) and the bound for GR17) is to assume that
both algorithms know the true distance to the ML solution, sofgt = drg(u||w1) and
Kgrue = dgye(ul|wy). In this case each algorithm can use the valug wiinimizing its
bound. Ifthe algorithms are tuned in this way and the starting veetds (1/N, ..., 1/N),
then one can show that the bound for fi&never higher that the bound for GR.e.:

(19)
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V/2Tdgrg(ul[wy) < V2NTdgyc(ul|w))
2r a r .

The above may be seen as theoretical support for our observation that thatEdys
converges faster than GRvhen the start vector is uniform and both algorithms use the
(empirically found) best fixed learning rate .

Theorem 3 assumes a lower bound onithe. When no such lower boundis available,
then we can use similar techniques to those described in Section 4.1.

5. Experimental Results

In this section we briefly present and discuss a few of the empirical tests we performed.
In order to compare the various algorithms, data was synthetically created\freanmal
distributions evenly spaced on the unit circlelA. Theith distribution was generated

from a normal distribution with a mean vector= (sin(2%), cos(%%*)). Each observation

was created by uniformly picking one of the distributions, and sampling that distribution
to obtain a poinfz (€1,&) € B2, The corresponding row of contains the probability
density at¢ for each of thelV distributions. The examples presented in this section were
obtained by generating hundreds of observatighs>( 100) from at leasts distributions

(IV > 5)eachwithvariance 1. The same qualitative results are obtained when using matrices
of different sizes and other stochastic sources (such as the uniform distribution). We tested
all the described algorithms. The algorithms were tested using both fixed scheduling and
line-searches to find the best choicenodn each iteration. The line-searches allow us to
compare the updates when they are optimally tuned. Note that when theiftate is

used, the likelihood may have two local maxima as a function @ shown in Figure 2,

so the searches must be careful to pick the global maximum.

The optimal learning rate determined by the line-searches tended to oscillate, as shown
at the bottom part of Figure 3. When a momentum term was added, the oscillations were
damped and the convergence was accelefated.

Using fixed scheduling turned out to be a competitive alternative to the expensive line-
searches. Furthermore, we found that the learning rates used for deriving the bounds in the
previous section are too conservative. For the fixed scheduling experiments reported in this
section we used a higher learning rate in the rdmgg|. All these phenomena are depicted
at the top part of Figure 3.

The gradient ascent update with exponential parameterization appears inferior to all other
methods. A good fixed scheduling for that method is difficult to obtain as the optimal learn-
ing rate has large oscillations. The EFnd EG, updates have about the same performance,
which is expected as the EMipdate approximates the E@pdate. Both methods outper-
form the EM algorithm, and the EMand EG, updates are superior to the EM algorithm
even whem is set to a fixed value greater than one (see Figure 4).

When the uniform start vector and (empirically found) best fixed learning rates for each
algorithm are used, then EGQas well as EM) always converge faster than Gih the
experiments we have done (see Figure 5). The bounds at the end Section 4 may be seen
as theoretical support for this behavior. However when the start vector is not uniform and



114 D.P. HELMBOLD, ET AL.

w1
1 02 03 04 05
0.4 7
05
w2
0.6
07
Zi3
0.8
-0.696
-0.698
b=
8 -0.700
£
£ 0702
-
o
€ .0.704
-0.706
-0.708 _
0 50 700 150 200
Eta

Figure 2. When the EG update is used, the log-likelihood as a functionnofay have local maxima. At
the bottom part of the figure, the log-likelihood is plotted as a function &r a givenw,. At the top, the
corresponding path is plotted over the log-likelihood as a function of the first two weights 1 andw;1,2
(denoted in the figure by W1 and W2).

the ML solutionu is close to the uniform vector then we have observed cases where GP
converges faster than EGand EM,).

One of the main observation in the experiments is the following;, B®&l EM, clearly
outperformGP, when the solution is sparse (see Figure 5). This is consistent with other
settings (Kivinen and Warmuth, 1995a, Kivinen and Warmuth, 1995b, Littlestone, 1988),
where updates derived using the relative entropy distance outperform gradient-descent-type
updates when the solution is “sparse”.

We also compared the performance of the various updates with second order methods.
Second order methods (also known as Newton methods) are based on a quadratic approxi-
mation of the objective function. Near the solution we can approximate the log-likelihood
by the truncated Taylor series,

LogLike(w) ~ LogLike(w;) + VL(w)" (w — w;)
—I—%(w —w) H(wy)(w —w,) ,



A COMPARISON OF NEW AND OLD ALGORITHMS 115

-1.231
5 1232 ¢
<] L
£
S 1233 f
ﬁ P, EGeta (with momentum) -
& _q034 L aX EGeta (line search) -+
S e EGeta (eta=3.5) ©
e EGeta (eta=2.5) ~
-1.235
-1.236 S S—— .
10 20 30 40 50 60 70 80 90 100
lteration #
0.025 T v T T - T
0.02
0.015
pul
O
o
0.01
0.005

10 20 30 40 50 60 70 80 90 100
Iteration #

Figure 3. Top: The log-likelihood using the exponentiated gradient algorithm, with line-searches, line-searches
plus a momentum term, and fixed scheduling wjtl= 3.5 andn = 2.5. The fixed schedulings are only slightly

worse than setting the rate by expensive line-searches, while adding a momentum term accelerates the increase in
the likelihood. Bottom: The values ¢f = e~" when using line-searches for the exponentiated gradient update.

The B-value oscillates, eventually converging to a typical value. This anomaly is common with gradient ascent
algorithms.

whereH (w,) is the Hessian calculated &,

2

0 .

The right-hand side is minimized at,
Wiyl = Wi — H(Wt)_1V£(Wt) .

This is the basic Newton method, which requires calculations of second order derivatives
and inversion of the Hessian. Newton methods converge to a vector close to the solution
in fewer updates than the EMind EG, updates. However, the EMand EG, updates can
often do significantly more iterations than Newton methods with the same computational
effort. We found that wheV is sufficiently large {V > 10) the EM, and EG, algorithms
converged more rapidly than the basic Newton’s method when running time (rather than
number of iterations) is considered. In Figure 6 we plotéedterations of EM, against
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Figure 4. Top: Comparison of the performance of the EMpdate algorithm and the standard EM algorithm. The
EM,,-update clearly outperforms the standard EM algorithm, even when a fixed conservative scheduling is used.
Bottom: comparison of the Eptupdate with gradient ascent algorithms. The gradient-projection is comparable
to the EM,-update and the gradient ascent update with exponential parameterization is inferior.

one iteration of Newton’s method. In this qualitative comparison agairy Bperform
Newton.

6. Applications and future research

We investigated various algorithms for learning the proportion vector which maximizes the
likelihood of a mixture of given densities. This is a very simple mixture estimation problem
since the parameters of the densities don’t have to be learned as well. We presented
some new algorithms called E@&nd EM,. The EG, algorithm uses the gradient of the
log-likelihood in the exponent and the EMs a first-order approximation of the latter
algorithm that replaces the exponentiation by a multiplication. When the learning rate

of the EM, algorithm is set to one then we get the standard EM algorithm for our simple
mixture estimation problem.
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Figure 5. Comparisons of the performance of the JE@d GR, algorithms. Consider 10 Gaussian distributions

with their centers equally spaced on the unit circle. The observations were generated from a perturbation of the
uniform mixture on only 5 of the 10 Gaussians and the algorithms are started with the uniform start vector. This
(and similar experiments) indicate that the JE&gorithm performs better when the optimum mixture vector

has few large components.
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Figure 6. Comparison of EM-update with second order algorithms (Newton methods). Second order methods
require fewer iterations than either the EMpdate algorithm with fixed scheduling or EMvith line searches.

However, the basic second order method requires that the Hessian be calculated as well as its inverse. Since these
calculations requir®(PN?2 + N2) time and the EN algorithm with fixed scheduling requires ony(PN)

time per iteration we can compare a single Newton iteration Witterations of EM,. This qualitative comparison

shows that the EM-update performs better even when fixed scheduling is used for the learning rate. Fhe EG

algorithm behaves essentially the same as, lElhe experiments, however it requires slightly more time because
of the exponentiation.

Identifying the distance function associated with an update helps explain what the update
is doing and facilitates comparisons between iterative methods. After explaining the stan-
dard algorithms using distance functions we might wonder what are the distance functions
most appropriate for a particular situation. One important area for future research is iden-
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tifying good distance functions when the parameters do not form a probability vector. We
have already applied our methodology for deriving updates to more complicated mixture
estimation problems such as training hidden Markov models (Singer and Warmuth, 1996)
and we are currently applying this methodology to mixtures of Gaussians with arbitrary
mean and variance. In this more complicated setting we need distance functions that de-
pend on the means and variances given to the Gaussians as well as the mixture probabilities
assigned to them.

Our framework naturally leads to on-line versions of our algorithms where only a single
observation (instead of the whole matrix) is used each iteration. In particular, we have
derived an on-line version of EM Experimentally, this version outperforms the known
on-line versions of EM which is the EMlgorithm withn = 1 We have also applied the
on-line versions of our algorithms to a portfolio selection problem (Helmbold et al., 1996)
investigated by Cover (Cover, 1991). Although Cover’s analytical bounds appear better
than ours, experimental results indicate that,Fuhd EG, outperform Cover’s algorithm
on historical stock market data. Furthermore, our algorithms are computationally efficient
while Cover’s algorithm is exponential in the number of possible investments.
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Notes

1. Inthe on-line setting each iteration typically uses only a single observation. Itis therefore desirable to preserve
information about the previous observations while improving the likelihood of the current observation.

A similar update for the case of linear regression was first given by Kivinen and Warmuth (1995a).

N o N 1 P Wi i Tpi 1 P Wi Xp
Zi:l wi, ;i VL(Wt)i = Zi:l P Zp:l x;-vftl =P szl xp-wi) =

This algorithm’s performance was analyzed in the PAC model in (Abe et al., 1991).

o s wD

In one form, Hlder’s inequality states that, for non-negativg b;,

1/

P
Zaibi < Zaf Zbg
i

i %

1/q

for any positivep, ¢ satisfyingl/p + 1/q = 1.

6. Theconjugate gradiergearch is a method for iteratively searching a quadratic cost function (Luenberger, 1984,
Golub and Van Loan, 1989). When the cost function is non-quadratic, as is the likelihood function in our case,
a variant of the conjugate gradient method can be devised. This variant, termed partial conjugate gradient
(PCQ), is restarted after every conjugate gradient steps, so that the search direction dveitgration
becomes the gradient. Adding a momentum term can be seen as an approximation of the partial conjugate
gradient algorithm, with no restarts (i.e., the PCG method ith- co).
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