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Abstract. We investigate the problem of estimating the proportion vector which maximizes the likelihood
of a given sample for a mixture of given densities. We adapt a framework developed for supervised learning
and give simple derivations for many of the standard iterative algorithms like gradient projection and EM. In this
framework, the distance between the new and old proportion vectors is used as a penalty term. The square distance
leads to the gradient projection update, and the relative entropy to a new update which we call the exponentiated
gradient update (EGη). Curiously, when a second order Taylor expansion of the relative entropy is used, we arrive
at an update EMη which, forη = 1, gives the usual EM update. Experimentally, both the EMη-update and the
EGη-update forη > 1 outperform the EM algorithm and its variants. We also prove a polynomial bound on the
rate of convergence of the EGη algorithm.
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1. Introduction

The problem ofmaximum-likelihood(ML) estimation of a mixture of densities is an impor-
tant and well known learning problem (Duda and Hart, 1973). ML estimators are asymptot-
ically unbiased and are a basic tool for other more complicated problems such as clustering
and learning hidden Markov models. We investigate the ML-estimation problem when the
densities are given and only the mixture proportions are unknown. That is, we assume
that we are given a set of distributionsD1, . . . , DN over some domain, together with a
sample of points from this domain. Our goal is to find the mixture coefficientsv1, . . . , vN
(vi ≥ 0 and

∑
vi = 1) which maximize (approximately) the likelihood of the sample

under the mixture distribution
∑
viDi. Most of the common techniques to solve this

problem are based on either gradient ascent iterative schemes (Luenberger, 1984) or on
the Expectation Maximization (EM) algorithm for parameter estimation from incomplete
data (Dempster et al., 1977, Redner and Walker, 1984).
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We derive the standard iterative algorithms for the unsupervised mixture proportions esti-
mation problem by placing them in a common hill-climbing framework. This framework is
analogous to the one developed by Kivinen and Warmuth (Kivinen and Warmuth, 1995a) for
supervised on-line learning. Our goal is to maximize the log likelihood of the observations
as a function of the mixture vectorw, denoted by LogLike(w). This is computationally
hard and requires iterative methods. In thetth iteration we approximate the log-likelihood
LogLike(wt+1) at the new mixture vectorwt+1 by LogLike(wt)+∇LogLike(wt)·(wt+1−
wt), which is the Taylor expansion of the log-likelihood around the old mixture vectorwt.
It is now easy to maximize this approximated log-likelihood. However the approxima-
tion degrades the further we move from the old mixture vectorwt+1. Thus we subtract a
penalty termd(wt+1,wt) which is a non-negative function measuring the distance between
the new and old mixture vector. This penalty term keepswt+1 close towt as measured by
the distance functiond. In summary we are maximizing the function

F (wt+1) = η (LogLike(wt) +∇LogLike(wt) · (wt+1 −wt))− d(wt+1,wt) . (1)

The relative importance between the penalty term and increasing the log-likelihood is
governed by the positive parameterη, called thelearning rate.

Maximizing the functionF with different distance functions leads to various iterative
update rules. Using the square distance gives the update rule of the gradient projection
algorithm and the relative entropy distance gives a new update called theexponentiated
gradientupdate (EGη). By using a second order Taylor expansion of the relative entropy
we get theχ2 distance function. When this distance function is used andη is set to one, we
get the same update as an iteration of the EM algorithm for the simple mixture estimation
problem considered in this paper. Our experimental evidence suggests that settingη > 1
results in a more effective update. These results agree with the infinitesimal analysis in the
limit of n→∞ based on a stochastic approximation approach (Peters and Walker, 1978a,
Peters and Walker, 1978b, Redner and Walker, 1984).

For the exponentiated gradient algorithm, we are able to prove rigorous polynomial bounds
on the number of iterations needed to get an arbitrarily good ML-estimator. However, this
result assumes that there is a positive lower bound on the probability of each sample point
under each of the given distributions. When no such lower bound exists (i.e., when some
point has zero or near-zero probability under one of the distributions), we are able to prove
similar but weaker bounds for a modified version of EGη.

We obtain our convergence results by viewing the mixture estimation problem as an on-
line learning problem. Each iteration becomes a trial where the algorithm is charged a “loss”
of −LogLike(wt), so minimizing the loss corresponds to maximizing the log-likelihood.
Note that the ML solution will also have a loss on each trial. By bounding the extra loss
of the algorithm over the loss incurred by the ML solutionu over a sequence of iterations,
we can show that at least one of thewt vectors produced by the algorithm is reasonably
good. Note that these results show convergence in log-likelihood rather than convergence
of the mixture vector to the ML solution. Furthermore, the standard rate of convergence
results usually apply only when the algorithm is started with a vector near the ML solution,
whereas our results show convergence foranyinitial probability vector with strictly positive
components.
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The derivations of the learning rules using the above framework are simple and can
readily be applied to other settings. They are similar to previous derivations found in the
literature (Redner and Walker, 1984, Neal and Hinton, 1993).

2. Definitions and Problem Statement

LetR represent the real numbers. We say a vectorv = (v1, ..., vN ) ∈ RN is aprobability
vectorif, ∀i : vi ≥ 0 and

∑n
i=1 vi = 1. The vector(1/N, . . . , 1/N) is called theuniform

probability vector. We use the following distance functions between probability vectorsu
andv:

dEUC(u||v) def= 1
2

N∑
i=1

(ui − vi)2 = 1
2‖u− v‖2

dRE(u||v) def=
N∑
i=1

ui ln
ui
vi

and

dχ2(u||v) def= 1
2

N∑
i=1

(ui − vi)2

vi
.

All three distance functions are non-negative and zero iffu = v. The first one is half of the
square of the Euclidean length of the vectoru− v. The second one is the standardrelative
entropyand the last one is a second order Taylor approximation (atu = v) of the relative
entropy called theχ2-distance. These distance functions are used in Section 3 to derive the
updates used in this paper (See discussion at the end of Section 3 and Figure 1).

We consider the following maximum-likelihood mixture estimation problem:
Input: A P ×N matrixX of non-negative real numbers with rowsx1 throughxP .
Goal: Find a probability vectorw that maximizes the log-likelihood,

LogLike(w) =
1
P

P∑
p=1

ln

(
N∑
i=1

xp,iwi

)
=

1
P

P∑
p=1

ln(xp ·w) ,

wherexp is thepth row ofX.
The maximizers of the log-likelihood are called themaximum likelihood(ML) solutions.

It is easy to see that the Hessian of the log-likelihood is negative semi-definite. Thus there
are no spurious local maxima and the ML solutions form a convex region. We useu to
denote an arbitrary ML solution, and callu “the ML solution” for brevity. As there is no
straightforward method for computing an ML solution, iterative methods which compute a
sequence,w1, . . . ,wt, . . ., converging to an ML solution are popular.

It is most natural to view each rowxp of X as representing an observation and the
ith column ofX as containing the probability of each observation under some known
distributionDi. The entryxp,i is then the probability under distributionDi of the pth
observation, and, for any probability vectorv, xp · v is the probability under mixturev of
thepth observation under the mixture distribution

∑N
i=1 viDi. The ML solutionu gives the

proportions or weightings of theDi’s that maximize the log-likelihood of the observations.
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We use∇L(wt) to represent the gradient of the log-likelihood function at probability
vectorwt,

∇L(wt)
def=

(
∂LogLike(wt)

∂wt,1
, . . . ,

∂LogLike(wt)
∂wt,N

)
=

(
1
P

P∑
p=1

xp,1
xp ·wt

, . . . ,
1
P

P∑
p=1

xp,N
xp ·wt

)
.

3. The Updates

Kivinen and Warmuth (Kivinen and Warmuth, 1995a) studied a general framework for on-
line learning in which they derived algorithms for a broad class of loss functions. Here, we
apply their method specifically to negative log-likelihood.

Assume that at iterationt we have the current probability vectorwt and are trying to find
a better vectorwt+1. Kivinen and Warmuth study the supervised on-line setting where the
vectorwt summarizes the learning done in previous iterations1 and that learning can be
preserved by choosing awt+1 that is “close” towt. Their method finds a new vectorwt+1

that (approximately) maximizes the following function:

F̂ (wt+1) = ηLogLike(wt+1)− d(wt+1,wt), η > 0 . (2)

The penalty term,−d(wt+1,wt), tends to keepwt+1 close towt (with respect to the
distance measured) and the relative importance between the penalty term and maximizing
the log-likelihood on the current iteration is governed by the positive parameterη, called the
learning rate. A large learning rate means that maximizing the likelihood for the current
row is emphasized while a small learning rate leads to an update which keepswt+1 close
to wt. Since our iterative updates will be based on the local conditions at the start vector
wt, the penalty term and the learning rate measure how rapidly these local conditions are
expected to change as we move away fromwt. Unfortunately, finding awt+1 maximizing
F̂ is computationally hard because∇L(wt+1), the gradient of the log-likelihood atwt+1,
is unknown. Kivinen and Warmuth bypass this difficulty by approximating∇L(wt+1) by
∇L(wt) and thus are really maximizing the functionF from Equation (1).

To maximize this functionF , we add a Lagrange multiplier for the constraint that the
components ofwt+1 sum to one, leading us to maximize

F̃ (wt+1, γ) = η (LogLike(wt) + ∇L(wt) · (wt+1 −wt))

−d(wt+1,wt) + γ

(
N∑
i=1

wt+1,i − 1

)
.

This is done by setting theN partial derivatives to zero and enforcing the normalization
constraint. So our framework consists of solving the followingN + 1 equations for theN
coefficients ofwt+1:

∂F̃ (wt+1, γ)
∂wt+1,i

= η∇L(wt)i −
∂d(wt+1,wt)
∂wt+1,i

+ γ = 0 (3)
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and

N∑
i=1

wt+1,i = 1 . (4)

We now derive all updates used in this paper by plugging different distance functions into
the above framework. For the standardgradient projection update(which we abbreviate
GPη) we use the distance function dEUC(wt+1||wt) = 1

2‖wt+1 −wt‖2. In this case the
equations (3) become

η∇L(wt)i − (wt+1,i − wt,i) + γ = 0 .

By summing the aboveN equalities and using the identities
∑N
i=1 wt,i =

∑N
i=1 wt+1,i = 1

we see thatγ = η
N

∑N
i=1∇L(wt)i and obtain the update

wt+1,i = wt,i + η

(
∇L(wt)i −

1
N

N∑
i=1

∇L(wt)i

)
. (5)

If we use the relative entropy, dRE(wt+1||wt) =
∑n
i=1 wt+1,i ln(wt+1,i/wt,i), as a

distance function then the equations (3) become

η∇L(wt)i − (ln
wt+1,i

wt,i
+ 1) + γ = 0 .

By solving for thewt+1,i we have

wt+1,i = wt,ie
η∇L(wt)i+γ−1 .

Enforcing the normalization constraint (4) gives a new update which we call theexponen-
tiated gradient2 (EGη) update:

wt+1,i =
wt,ie

η∇L(wt)i∑N
j=1 wt,je

η∇L(wt)j
. (6)

The framework can also be used to motivate the Expectation Maximization algorithm (EM)
which is another algorithm commonly used for maximum likelihood estimation problems.
For this we use theχ2 (Chi-squared) distance measure dχ2(wt+1||wt) = 1

2

∑N
i=1(wt+1,i−

wt,i)2/wt,i. Now the equations (3) become

η∇L(wt)i −
(
wt+1,i

wt,i
− 1
)

+ γ = 0 .

By solving for thewt+1,i we get

wt+1,i = ηwt,i∇L(wt)i + wt,i(γ + 1) .
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We can now sum the aboveN equalities and use the constraints that
∑N
i=1 wt,i = 1

and
∑N
i=1 wt+1,i = 1. Our particular mixture estimation problem has the invariant3∑N

i=1 wt,i∇L(wt)i = 1. Thusγ = −η and we obtain the update

wt+1,i = wt,i (η (∇L(wt)i − 1) + 1) . (7)

We call Equation (7) the EMη-update because whenη = 1 this gives the standard Expectation-
Maximization (EM) update,wt+1,i = wt,i∇L(wt)i, for the problem considered in this
paper. The EM1 update can be motivated by the likelihood equations, and the gen-
eralization to arbitraryη was studied by Peters and Walker (Peters and Walker, 1978a,
Peters and Walker, 1978b).

Since theχ2 distance approximates the relative entropy it may not be surprising that the
EMη-update (7) also approximates the EGη-update (6). We first rewrite the exponentiated
gradient update by dividing the numerator and denominator byeη and then replace the
exponential functionez by its first order lower bound1 + z:

wt+1,i =
wt,ie

η(∇L(wt)i−1)∑N
j=1 wt,je

η(∇L(wt)j−1)

≈ wt,i(1 + η(∇L(wt)i − 1))∑N
j=1 wt,j(1 + η(∇L(wt)j − 1))

= wt,i(η(∇L(wt)i − 1) + 1) .

Thus the EMη-update can be viewed as a first order approximation of the EGη-update. The
approximation is accurate when the exponentsη(∇L(wt)j − 1) are small. The advantage
of the EMη-update is that it is computationally cheaper as it avoids the exponentiation.
However the EGη-update is easier to analyze. Our experiments indicate that these two
update rules tend to approximate each other well.

Each of the different distance functions leads to a different bias that is encoded in the
update. In Figure 1 we plot the three distance functions dEUC(wt+1||wt), dRE(wt+1||wt)
and dχ2(wt+1||wt) as a function ofwt+1 for the three dimensional problem (with a triangle
as the feasible region forwt+1). The contour lines for the distance function dEUC are circles
and the contour lines for dχ2 are ellipses that become more degenerate as the old weight
vectorwt approaches the boundary of the feasible region. The contour lines for dRE are
deformed ellipses that bend towards the vertices of the triangular feasible region.

One can also get an update by re-parameterizing the probability vectors and doing un-
constrained gradient ascent in the new parameter space. We use the standard exponential
parameterization (Bridle, 1989):wi = eri/

∑N
j=1 e

rj and maximize the function

ParLogLike(r) = LogLike(w(r)).

(Note that thew’s are probability vectors whereas the corresponding vectorsr are uncon-
strained and lie inRN .) For this parameterization the gradient descent update becomes

rt+1,i = rt,i + η
∂ParLogLike(rt)

∂rt,i

= rt,i + ηwt,i(∇L(wt)i − 1) .
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Figure 1. The figure contains plots of the three distance functions dEUC(wt+1||wt) (first row),
dRE(wt+1||wt) (second row) and dχ2 (wt+1||wt) (third row) as a function ofwt+1. The dimension is
three and the non-negativity constraint on the three components ofwt+1 plus the fact that the component must
sum to one result in a triangle as the feasible region forwt+1. The corners of the triangle correspond to the
vectorwt+1 = (0, 0, 1) at the top vertex and vectors (1,0,0) and (0,1,0) at the left and right bottom vertices. The
plots are contour plots of the distance function while looking at the triangle from above. The left column gives
the distance from the uniform vectorwt = (1/3, 1/3, 1/3) which is at the center of the triangle and the right
column the distance from the point (0.3, 0.2, 0.5). Note that contour lines may represent different distances in
different diagrams.

This update can also be derived in our framework by approximately maximizing a function
corresponding tôF (Equation (2)):

Ĝ(rt+1) = ηParLogLike(rt+1)− d(rt+1, rt), η > 0 .

For this maximization, we used(rt+1, rt) = 1
2 ||rt+1 − rt||2 as a distance function and

approximate the gradient atrt+1 with the gradient atrt.
All of the above update rules can be turned into algorithms by specifying the learning

rateη to use in each iteration. The EM algorithm uses a fixed scheduling, where the same
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learning rate (namely,η = 1) is used in each iteration. Another possibility is to anneal the
learning rate. At first, a high learning rate is used to quickly approach the ML solution.
Later iterations use a lower learning rate to aid convergence.

The EM algorithm is in fact a limiting case of a more general approach usually called
Generalized EM (GEM) (Dempster et al., 1977, Meng and Rubin, 1992). Neal and Hin-
ton (Neal and Hinton, 1993) considered another extension of EM which involves examining
only a portion of the observation matrixX on each iteration. In general, any subset of the
observations could be used, and the algorithm which considers a different row (observation)
on each iteration is the natural analogue of on-line algorithms in the supervised case.

Note that in the above derivations of the updates we ignored the non-negativity constraints
on the new weightswt+1,i. For the EGη update and for the gradient descent update with
exponential parameterization the non-negativity constraints follow from the non-negativity
of the previous weightswt,i. However for EMη and GPη the learning rateη has to be
sufficiently small to assure the non-negativity of thewt+1,i. In particular, the standard EM
algorithm (usingη = 1) has the property that the non-negativity constraints are always
preserved.

4. Convergence and Progress

In this section we discuss the convergence properties of the algorithms. Using standard
methods (with the usual assumptions for convergence proofs) as in Luenberger(1984), it
can be shown that all updates described in the previous section converge locally to an
optimal ML solution, provided that the current mixture vectorwt is close to the ML
solution and given the usual assumptions. Moreover, using techniques similar to those
in (Peters and Walker, 1978b, Redner and Walker, 1984), it can be shown that it is better to
use a learning rateη > 1 rather than the rateη = 1. This implies that the EM algorithm is
not optimal for this family of update rules. This analysis is supported by the experimental
results presented in the next section, where choosingη > 1 leads to faster convergence,
even when the current mixture vector is far from the ML solution.

These methods suffer from a number of limitations. For instance, the proof of conver-
gence is only valid in a small neighborhood of the solution. In this section, we present a
different technique for proving the convergence of the EGη update and (under non-negativity
assumptions) the GPη updates.

If an update is derived with a distance functiond then it is natural to analyze how fast the
mixture vector moves towards an (unknown) ML solutionu as measured by this distance
function. More precisely, we use the same distance function that motivates the update as a
potential function to obtain worst-case cumulative loss bounds over sequences of updates
(similar to the methods applied to the supervised case (Kivinen and Warmuth, 1995a)). The
natural loss of a mixture vectorwt for our problem is−LogLike(wt). Note that this loss is
unbounded since the likelihood forwt is zero when there is somexp for whichwt ·xp = 0.
In the supervised case, one can obtain firm worst-case loss bounds with respect to the square
loss for various updates by analyzing the progress (Kivinen and Warmuth, 1995a). But the
square loss is bounded and it is not surprising that it is much harder to obtain strong loss
bounds for our (unbounded loss) unsupervised setting. Nevertheless this type of analysis
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can give insight on how an iterative algorithm moves towards the ML solution and on the
relationships between different update rules. We obtained some reasonably good bounds
for the GPη and EGη updates.

We deal with the unboundedness of the loss function by initially assuming that the smallest
entry in the matrix is bounded away from zero. Thus, for allpandiwe assumexp,i ≥ r > 0.
In the following section we give a proof bounding the average additional loss duringT trials
of the algorithm EGη over the loss of the ML solution by

1
r

√
lnN
2T

.

Thus, by pickingT = lnN/2ε2r2 we can guarantee that at least one of thewt’s computed
by algorithm EGη has loss at mostε larger than the ML solution.

In contrast, we prove a similar bound for the GPη update4 in Section 4.2 showing that
the average additional loss duringT trials of the algorithm GPη above the loss of the ML
solution is at most

1
r

√
2N
T

.

However, the analysis assumes that the GPη algorithm does not produce mixture vectors
with negative components. This assumption may not always hold since the update of the
GPη algorithm is additive. We have been unable to prove that theη used to obtain the above
bound avoids this difficulty.

Even though the above bounds are weak in that they grow with1/r, and even though
we don’t know of any matching lower bounds, they suggest a crucial difference be-
tween the exponentiated gradient and gradient descent family, namely, the logarithmic
growth (in terms ofN ) of the additional loss bound of the former versus the square-
root growth of the latter family. Similar observations were made in the supervised set-
ting (Kivinen and Warmuth, 1995a, Kivinen and Warmuth, 1995b).

We also show below how to obtain bounds when the entries in the matrix have zero-valued
components. We essentially average the data matrix with a uniform matrix (thisε-Bayesian
averaging was also used in (Abe et al., 1991)) and then use the averaged matrix to run our
algorithm. One can show that the ML solution for the averaged matrix is not too far (in
loss) away from the ML solution of the original matrix, but the averaged matrix has the
advantage of having entries bounded away from zero.

4.1. Convergence proofs for exponentiated-gradient algorithms

Recall that the EGη algorithm receives a (fixed) set ofP instances,x1, . . . ,xP , each in
R
N with positive components. At each iteration, the algorithm produces a mixture or

probability vectorwt ∈ RN and suffers alossrelated to the log-likelihood of the set under
the algorithm’s mixture. The algorithm then updateswt.

The loss suffered by the algorithm at timet is
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− 1
P

P∑
p=1

ln(wt · xp),

while the loss of the (unknown) ML solutionu is

− 1
P

P∑
p=1

ln(u · xp).

We are interested in bounding the (cumulative) difference between the loss of the algorithm
and the loss of the ML solution.

We assume thatmaxi xt,i = 1 for all p. We make this assumption without loss of
generality since multiplying an instancexp by some constant simply adds a constant to
both losses, leaving their difference unchanged. Put another way, the assumed lower bound
r on xp,i used in Theorem 1 (below) can be viewed as a lower bound on the ratio of the
smallest to largest component of any instancexp.

The EGη algorithm uses the update rule:

wt+1,i =
wt,i exp

(
η
P

∑P
p=1

xp,i
wt·xp

)
Zt

whereη > 0 is the learning rate, andZt is the normalization

Zt =
N∑
i=1

wt,i exp

(
η

P

P∑
p=1

xp,i
wt · xp

)
.

Theorem 1 Let u ∈ RN be a probability vector, and letx1, . . . ,xP be a sequence of
instances withxp,i ≥ r > 0 for all i, p, andmaxi xp,i = 1 for all p. For η > 0, EGη
produces a sequence of probability vectorsw1, . . . ,wT such that

−
T∑
t=1

1
P

P∑
p=1

ln(wt · xp) ≤ −
T

P

P∑
p=1

ln(u · xp) +
dRE(u||w1)

η
+
ηT

8r2
. (8)

Furthermore, ifw1 is chosen to be the uniform probability vector, and we set

η = 2r

√
2 lnN
T

then

−
T∑
t=1

1
P

P∑
p=1

ln(wt · xp) ≤ −
T

P

P∑
p=1

ln(u · xp) +

√
2T lnN

2r
. (9)
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Proof: We have that

dRE(u||wt+1)− dRE(u||wt) = −
∑
i

ui ln(wt+1,i/wt,i)

= −
∑
i

ui

(
− lnZt +

η

P

P∑
p=1

xp,i
wt · xp

)

= − η
P

P∑
p=1

u · xp
wt · xp

+ lnZt . (10)

We now work on boundingZt.

Zt =
N∑
i=1

wt,i

P∏
p=1

exp
(
η

P

xp,i
wt · xp

)

=
N∑
i=1

wt,i

P∏
p=1

(
exp

(
η

wt · xp

)xp,i)1/P

Sincext,i ∈ [0, 1] and sinceβx ≤ 1 − (1 − β)x for β > 0 andx ∈ [0, 1] we can upper
bound the right-hand side by:

N∑
i=1

wt,i

P∏
p=1

(
1−

(
1− exp

(
η

wt · xp

))
xp,i

)1/P

=
N∑
i=1

P∏
p=1

(
wt,i −

(
1− exp

(
η

wt · xp

))
wt,ixp,i

)1/P

We will need the following fact: For non-negative numbersAi,p,

N∑
i=1

P∏
p=1

Ai,p ≤
P∏
p=1

(
N∑
i=1

APi,p

)1/P

.

This fact can be proved by repeated application of H¨older’s inequality.5

Using this fact with

Ai,p =
(
wt,i −

(
1− exp

(
η

wt · xp

))
wt,ixp,i

)1/P

yields an upper bound onZt of

P∏
p=1

(
N∑
i=1

(
wt,i −

(
1− exp

(
η

wt · xp

))
wt,ixp,i

))1/P

(11)

=
P∏
p=1

(
1−wt · xp

(
1− exp

(
η

wt · xp

)))1/P

.

To further boundlnZt, we apply the following:



108 D.P. HELMBOLD, ET AL.

Lemma 1 For all α ∈ [0, 1] andx ∈ R,

ln(1− α(1− ex)) ≤ αx+ x2/8 .

Proof: Fix α ∈ [0, 1], and let

f(x) = αx+ x2/8− ln(1− α(1− ex)) .

We wish to show thatf(x) ≥ 0. We have that

f ′(x) = α+
x

4
− g(x)

where

g(x) =
αex

1− α+ αex
.

Clearly,f ′(0) = 0. Further,

f ′′(x) =
1
4
− g(x) + (g(x))2

which is non-negative for allx (the minimum is attained wheng(x) = 1/2). Therefore,f
is minimized whenx = 0; sincef(0) = 0, this proves the claim.

Taking logs of Equation (11), the upper bound onZt, and then applying Lemma 1 gives
us

lnZt ≤
1
P

P∑
p=1

ln
(

1−wt · xp
(

1− exp
(

η

wt · xp

)))

≤ 1
P

P∑
p=1

[
η +

1
8

(
η

wt · xp

)2
]

≤ η +
η2

8r2

sincer is a lower bound onwt · xp. Plugging into Equation (10) we obtain

dRE(u||wt+1)− dRE(u||wt) ≤ −
η

P

P∑
p=1

(
u · xp
wt · xp

)
+ η +

η2

8r2

=
η

P

P∑
p=1

(
1− u · xp

wt · xp

)
+

η2

8r2

≤ η

P

P∑
p=1

(
− ln

u · xp
wt · xp

)
+

η2

8r2
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using the fact that1− ex ≤ −x for all realx. By summing over allt ≤ T we get

−dRE(u||w1) ≤ dRE(u||wT )− dRE(u||w1)

≤ η

P

T∑
t=1

P∑
p=1

(
− ln

u · xp
wt · xp

)
+
Tη2

8r2
,

which implies the first bound (8) stated in the theorem. The second bound (9) follows
by straightforward algebra, noting that dRE(u||w1) ≤ lnN when w1 is the uniform
probability vector.

Note that if any other upper boundKRE on dRE(u||w1) is known a priori (possibly for
some other choice ofw1), then by tuningη as a function ofKRE the lnN term in the
bound (9) of the theorem can be replaced byKRE . This gives a bound of

√
2TKRE

2r
(12)

of the additional loss of the algorithm over the ML solution.
It follows from Theorem 1 that, if we run forT iterations, then theaverageloss (or

average minus log-likelihood) of thewt’s will be at most√
lnN
2Tr2

.

greater than the loss ofu. Therefore, pickingT = (lnN)/(2ε2r2) guarantees that at least
one of thewt’s will have a log-likelihood withinε of u. Furthermore, it is easy to find the
best candidatewt that maximizes the likelihood amongw1, . . . ,wT by simply computing
the likelihood of each.

When some of the componentsxp,i are zero, or very close to zero, we can use the following
algorithm which is parameterized by a real numberα ∈ [0, 1]. Let

x̃p = (1− α/N)xp + (α/N)1

where1 is the all1’s vector. As before, we maintain a probability vectorwt which is
updated using̃xp rather thanxp:

wt+1,i =
wt,i exp(ηx̃p,i/wt · x̃p)∑
i wt,i exp(ηx̃p,i/wt · x̃p)

.

The vector that we output is also slightly modified. Although eachwt+1 is produced from
the previouswt as above, the algorithm outputs the modified mixture

w̃t = (1− α)wt + (α/N)1

and so suffers loss− ln(w̃t · xp).
We call this modified procedurẽEGα,η.
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Theorem 2 Let u ∈ RN be any probability vector, and letx1, . . . ,xP be a sequence
of instances withxp,i ≥ 0 for all i, p, andmaxi xt,i = 1 for all p. For α ∈ (0, 1/2] and
η > 0, ẼGα,η produces a sequence of probability vectorsw̃1, . . . , w̃T such that

−
T∑
t=1

1
P

P∑
p=1

ln(w̃t · xp) ≤ −
T

P

P∑
p=1

ln(u · xp) + 2αT

+
dRE(u||w1)

η
+
ηTN2

8α2
. (13)

Furthermore, ifw1 is chosen to be the uniform probability vector,T ≥ 2N2 lnN , and we
set

α =
(
N2 lnN

8T

)1/4

η =
2α
N

√
2 lnN
T

then

−
T∑
t=1

1
P

P∑
p=1

ln(w̃t · xp) ≤ −
T

P

P∑
p=1

ln(u · xp) + 2(2N2 lnN)1/4(T )3/4 . (14)

Proof: From our assumption thatmaxi xt,i = 1, we have

w̃t · xp
wt · x̃p

≥ (1− α)wt · xp + α/N

(1− α/N)wt · xp + α/N
.

The right hand side of this inequality is decreasing as a function ofwt · xp and so is
minimized whenwt · xp = 1. Thus,

w̃t · xp
wt · x̃p

≥ (1− α) + α/N,

or equivalently,

− ln(w̃t · xp) ≤ − ln(wt · x̃p)− ln(1− α+ α/N)
≤ − ln(wt · x̃p) + 2α (15)

(sinceα ≤ 1/2).
From Theorem 1 applied to the instancesx̃p, we have that

−
T∑
t=1

1
P

P∑
p=1

ln(wt · x̃p) ≤ −
T

P

P∑
p=1

ln(u · x̃p) +
dRE(u||w1)

η
+
ηTN2

8α2
(16)

where we used the fact thatx̃p,i ≥ α/N .
Note that
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u · x̃p = (1− α/N)u · xp + α/N ≥ u · xp.

Combined with inequalities (15) and (16), and summing over allt, this gives the first
bound (13) of the theorem. The second bound follows from the fact that dRE(u||w1) ≤ lnN
whenw1 is the uniform probability vector.

From Theorem 2, it follows that the average additional loss of thewt’s for this algorithm
over that of the ML solution is at most

O

((
N2 lnN

T

)1/4
)
.

This is unfortunately a rather weak bound.

4.2. Convergence proofs for gradient-projection algorithms

In this section, we prove a convergence result for the gradient-projection algorithm. The
setup is exactly as in Section 4.1.

The update rule used by GPη is

wt+1 = wt +
η

P

P∑
p=1

1
wt · xp

(
xp −

∑N
i=1xp,i
N

1

)

whereη > 0 is the learning rate, and1 is the all1’s vector. We assume thatwt,i remains
non-negative.

Theorem 3 Let u ∈ RN be a probability vector, and letx1, . . . ,xP be a sequence of
instances withxp,i ≥ r > 0 for all i, p, andmaxi xp,i = 1 for all p. For η > 0, assume
that GPη produces a sequence of probability vectorsw1, . . . ,wT so that all components
of each are nonnegative. Then

−
T∑
t=1

1
P

P∑
p=1

ln(wt · xp) ≤ −
T

P

P∑
p=1

ln(u · xp) +
ηNT

2r2
+

dEUC(u||w1)
η

. (17)

Furthermore, ifw1 is chosen to be the uniform probability vector,T ≥ 2N2 lnN , and we
set

η =
r√
NT

then dEUC(u||w1) ≤ 1
2 and

−
T∑
t=1

1
P

P∑
p=1

ln(wt · xp) ≤ −
T

P

P∑
p=1

ln(u · xp) +
1
r

√
NT. (18)
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Proof: We use dEUC(u||wt) = 1
2‖u−wt‖2 as the potential function since it is the

distance function used to derive the GPη update. We can bound the change in potential at
time t using straightforward algebra as follows.

1
2
‖u−wt+1‖2 −

1
2
‖u−wt‖2

=
η

P

P∑
p=1

(
1− u · xp

wt · xp

)
+
η2

2

∥∥∥∥∥ 1
P

P∑
p=1

1
wt · xp

(
xp −

1
N

N∑
i=1

xp,i

)∥∥∥∥∥
2

≤ − η
P

P∑
p=1

ln
(

u · xp
wt · xp

)
+
η2

2P

P∑
p=1

∥∥∥∥∥ 1
wt · xp

(
xp −

1
N

N∑
i=1

xp,i

)∥∥∥∥∥
2

In the second step we used the convexity of the function‖·‖2, and the fact that1−ex ≤ −x
for all realx. Sincexp,i ∈ [r, 1], and assuming thatwt,i ≥ 0, it follows that this is bounded
by

− η
P

P∑
p=1

ln
(

u · xp
wt · xp

)
+
η2N

2r2
.

Thus, summing over allt ≤ T , we get

1
2
‖u−wT+1‖2 −

1
2
‖u−w1‖2 ≤ −

η

P

T∑
t=1

P∑
p=1

ln
(

u · xp
wt · xp

)
+
η2NT

2r2
.

So

T∑
t=1

P∑
p=1

ln
(

u · xp
wt · xp

)
≤ P

2

(
ηNT

r2
+
‖u−w1‖2

η

)
= P

(
ηNT

2r2
+

dEUC(u||w1)
η

)
which implies the bound in Equation (17). The derivation of the second bound in Equa-
tion (18) follows by straightforward algebra.

When tuningη to obtain bound (18), we used the fact that dEUC(u||w1) is at most12 . If
a better upper bound,KEUC , on this distance is available a priori, then we can tuneη in
(17) accordingly to obtain the bound of

√
2NTKEUC

r
(19)

on the additional loss of GPη above that of the ML solution.
One way to compare the bound for EGη (12) and the bound for GPη (17) is to assume that

both algorithms know the true distance to the ML solution, so thatKRE = dRE(u||w1) and
KEUC = dEUC(u||w1). In this case each algorithm can use the value ofη minimizing its
bound. If the algorithms are tuned in this way and the starting vectorw1 is (1/N, . . . , 1/N),
then one can show that the bound for EGη is never higher that the bound for GPη, i.e.:
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√
2TdRE(u||w1)

2r
≤
√

2NTdEUC(u||w1)
r

.

The above may be seen as theoretical support for our observation that that EGη always
converges faster than GPη when the start vector is uniform and both algorithms use the
(empirically found) best fixed learning rate .

Theorem 3 assumes a lower bound on thexp,i. When no such lower boundr is available,
then we can use similar techniques to those described in Section 4.1.

5. Experimental Results

In this section we briefly present and discuss a few of the empirical tests we performed.
In order to compare the various algorithms, data was synthetically created fromN normal
distributions evenly spaced on the unit circle inR2. The ith distribution was generated
from a normal distribution with a mean vector~µ =

(
sin( 2πi

N ), cos( 2πi
N )
)
. Each observation

was created by uniformly picking one of the distributions, and sampling that distribution
to obtain a point~ξ = (ξ1, ξ2) ∈ R2. The corresponding row ofX contains the probability
density at~ξ for each of theN distributions. The examples presented in this section were
obtained by generating hundreds of observations (P ≥ 100) from at least5 distributions
(N ≥ 5) each with variance 1. The same qualitative results are obtained when using matrices
of different sizes and other stochastic sources (such as the uniform distribution). We tested
all the described algorithms. The algorithms were tested using both fixed scheduling and
line-searches to find the best choice ofη on each iteration. The line-searches allow us to
compare the updates when they are optimally tuned. Note that when the EGη-update is
used, the likelihood may have two local maxima as a function ofη as shown in Figure 2,
so the searches must be careful to pick the global maximum.

The optimal learning rate determined by the line-searches tended to oscillate, as shown
at the bottom part of Figure 3. When a momentum term was added, the oscillations were
damped and the convergence was accelerated.6

Using fixed scheduling turned out to be a competitive alternative to the expensive line-
searches. Furthermore, we found that the learning rates used for deriving the bounds in the
previous section are too conservative. For the fixed scheduling experiments reported in this
section we used a higher learning rate in the range[1..5]. All these phenomena are depicted
at the top part of Figure 3.

The gradient ascent update with exponential parameterization appears inferior to all other
methods. A good fixed scheduling for that method is difficult to obtain as the optimal learn-
ing rate has large oscillations. The EMη and EGη updates have about the same performance,
which is expected as the EMη update approximates the EGη update. Both methods outper-
form the EM algorithm, and the EMη and EGη updates are superior to the EM algorithm
even whenη is set to a fixed value greater than one (see Figure 4).

When the uniform start vector and (empirically found) best fixed learning rates for each
algorithm are used, then EGη (as well as EMη) always converge faster than GPη in the
experiments we have done (see Figure 5). The bounds at the end Section 4 may be seen
as theoretical support for this behavior. However when the start vector is not uniform and
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Figure 2. When the EGη update is used, the log-likelihood as a function ofη may have local maxima. At
the bottom part of the figure, the log-likelihood is plotted as a function ofη for a givenwt. At the top, the
corresponding path is plotted over the log-likelihood as a function of the first two weightswt+1,1 andwt+1,2

(denoted in the figure by W1 and W2).

the ML solutionu is close to the uniform vector then we have observed cases where GPη

converges faster than EGη (and EMη).

One of the main observation in the experiments is the following: EGη and EMη clearly
outperformGPη when the solution is sparse (see Figure 5). This is consistent with other
settings (Kivinen and Warmuth, 1995a, Kivinen and Warmuth, 1995b, Littlestone, 1988),
where updates derived using the relative entropy distance outperform gradient-descent-type
updates when the solution is “sparse”.

We also compared the performance of the various updates with second order methods.
Second order methods (also known as Newton methods) are based on a quadratic approxi-
mation of the objective function. Near the solution we can approximate the log-likelihood
by the truncated Taylor series,

LogLike(w) ≈ LogLike(wt) +∇L(wt)
T (w −wt)

+
1
2

(w −wt)
T
H(wt)(w −wt) ,
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Figure 3. Top: The log-likelihood using the exponentiated gradient algorithm, with line-searches, line-searches
plus a momentum term, and fixed scheduling withη = 3.5 andη = 2.5. The fixed schedulings are only slightly
worse than setting the rate by expensive line-searches, while adding a momentum term accelerates the increase in
the likelihood. Bottom: The values ofβ = e−η when using line-searches for the exponentiated gradient update.
Theβ-value oscillates, eventually converging to a typical value. This anomaly is common with gradient ascent
algorithms.

whereH(wt) is the Hessian calculated atwt,

Hij(wt) =
∂2

∂wt,i∂wt,j
LogLike(wt) .

The right-hand side is minimized at,

wt+1 = wt −H(wt)−1∇L(wt) .

This is the basic Newton method, which requires calculations of second order derivatives
and inversion of the Hessian. Newton methods converge to a vector close to the solution
in fewer updates than the EMη and EGη updates. However, the EMη and EGη updates can
often do significantly more iterations than Newton methods with the same computational
effort. We found that whenN is sufficiently large (N ≥ 10) the EMη and EGη algorithms
converged more rapidly than the basic Newton’s method when running time (rather than
number of iterations) is considered. In Figure 6 we plottedN iterations of EMη against
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Figure 4. Top: Comparison of the performance of the EMη-update algorithm and the standard EM algorithm. The
EMη-update clearly outperforms the standard EM algorithm, even when a fixed conservative scheduling is used.
Bottom: comparison of the EMη-update with gradient ascent algorithms. The gradient-projection is comparable
to the EMη-update and the gradient ascent update with exponential parameterization is inferior.

one iteration of Newton’s method. In this qualitative comparison again EMη outperform
Newton.

6. Applications and future research

We investigated various algorithms for learning the proportion vector which maximizes the
likelihood of a mixture of given densities. This is a very simple mixture estimation problem
since the parameters of the densities don’t have to be learned as well. We presented
some new algorithms called EGη and EMη. The EGη algorithm uses the gradient of the
log-likelihood in the exponent and the EMη is a first-order approximation of the latter
algorithm that replaces the exponentiation by a multiplication. When the learning rateη
of the EMη algorithm is set to one then we get the standard EM algorithm for our simple
mixture estimation problem.
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Figure 5. Comparisons of the performance of the EGη and GPη algorithms. Consider 10 Gaussian distributions
with their centers equally spaced on the unit circle. The observations were generated from a perturbation of the
uniform mixture on only 5 of the 10 Gaussians and the algorithms are started with the uniform start vector. This
(and similar experiments) indicate that the EGη algorithm performs better when the optimum mixture vectoru
has few large components.

Figure 6. Comparison of EMη-update with second order algorithms (Newton methods). Second order methods
require fewer iterations than either the EMη-update algorithm with fixed scheduling or EMη with line searches.
However, the basic second order method requires that the Hessian be calculated as well as its inverse. Since these
calculations requireO(PN2 + N3) time and the EMη algorithm with fixed scheduling requires onlyO(PN)
time per iteration we can compare a single Newton iteration withN iterations of EMη . This qualitative comparison
shows that the EMη-update performs better even when fixed scheduling is used for the learning rate. The EGη

algorithm behaves essentially the same as EMη in the experiments, however it requires slightly more time because
of the exponentiation.

Identifying the distance function associated with an update helps explain what the update
is doing and facilitates comparisons between iterative methods. After explaining the stan-
dard algorithms using distance functions we might wonder what are the distance functions
most appropriate for a particular situation. One important area for future research is iden-
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tifying good distance functions when the parameters do not form a probability vector. We
have already applied our methodology for deriving updates to more complicated mixture
estimation problems such as training hidden Markov models (Singer and Warmuth, 1996)
and we are currently applying this methodology to mixtures of Gaussians with arbitrary
mean and variance. In this more complicated setting we need distance functions that de-
pend on the means and variances given to the Gaussians as well as the mixture probabilities
assigned to them.

Our framework naturally leads to on-line versions of our algorithms where only a single
observation (instead of the whole matrix) is used each iteration. In particular, we have
derived an on-line version of EMη. Experimentally, this version outperforms the known
on-line versions of EM which is the EMηalgorithm withη = 1 We have also applied the
on-line versions of our algorithms to a portfolio selection problem (Helmbold et al., 1996)
investigated by Cover (Cover, 1991). Although Cover’s analytical bounds appear better
than ours, experimental results indicate that EMη and EGη outperform Cover’s algorithm
on historical stock market data. Furthermore, our algorithms are computationally efficient
while Cover’s algorithm is exponential in the number of possible investments.
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Notes

1. In the on-line setting each iteration typically uses only a single observation. It is therefore desirable to preserve
information about the previous observations while improving the likelihood of the current observation.

2. A similar update for the case of linear regression was first given by Kivinen and Warmuth (1995a).

3.
∑N

i=1
wt,i∇L(wt)i =

∑N

i=1
1
P

∑P

p=1

wt,ixp,i
xp·wt

= 1
P

∑P

p=1

wt·xp
xp·wt

= 1.

4. This algorithm’s performance was analyzed in the PAC model in (Abe et al., 1991).

5. In one form, H¨older’s inequality states that, for non-negativeai, bi,

∑
i

aibi ≤

(∑
i

api

)1/p(∑
i

bqi

)1/q

for any positivep, q satisfying1/p+ 1/q = 1.
6. Theconjugate gradientsearch is a method for iteratively searching a quadratic cost function (Luenberger, 1984,

Golub and Van Loan, 1989). When the cost function is non-quadratic, as is the likelihood function in our case,
a variant of the conjugate gradient method can be devised. This variant, termed partial conjugate gradient
(PCG), is restarted after everyK conjugate gradient steps, so that the search direction everyK iteration
becomes the gradient. Adding a momentum term can be seen as an approximation of the partial conjugate
gradient algorithm, with no restarts (i.e., the PCG method withK →∞).
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