Skip to main content
Log in

On the Role of Lightning NOx in the Formation of Tropospheric Ozone Plumes: A Global Model Perspective

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

A series of ozone transects measured each year from 1987 to 1990 over thewestern Pacific and eastern Indian oceans between mid-November andmid-Decembershows a prominent ozone maximum reaching 50–80 ppbv between 5 and 10 kmin the 20° S–40° S latitude band. This maximum contrasts with ozonemixing ratios lower than20 ppbv measured at the same altitudes in equatorial regions. Analyses witha globalchemical transport model suggest that these elevated ozone values are part ofa large-scale tropospheric ozone plume extending from Africa to the western Pacific acrosstheIndian ocean. These plumes occur several months after the peak in biomassburninginfluence and during a period of high lightning activity in the SouthernHemispheretropical belt. The composition and geographical extent of these plumes aresimilar to theozone layers previously encountered during the biomass burning season in thisregion.Our model results suggest that production of nitrogen oxides from lightningstrokes sustains the NOx (= NO+NO2) levels and the ozonephotochemical productionrequired in the upper troposphere to form these persistent elevated ozonelayers emanating from biomass burning regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreae, M. O., Atlas, E., Cachier, H., Cofer III, W. R., Harris, G. W., Helas, G., Koppmann, R., Lacaux, J.-P., and Ward, D. E., 1996: Trace gas and aerosol emissions from savanna fires, in J. S. Levine (ed.), Biomass Burning and Global Change, Vol. 1, MIT Press, Mass., pp. 278-295.

    Google Scholar 

  • Baldy, S., Ancellet, G., Besafi, M., Badr, A., and Lan Sun Luk, D., 1996: Field observations of the vertical distribution of tropospheric ozone at the island of Reunion (southern tropics), J. Geophys. Res. 101, 23835-23849.

    Google Scholar 

  • Bates, T. S., Huebert, B. J., Gras, J. L., Griffiths, F. B., and Durkee, P. A., 1998: International Global Atmospheric Chemistry (IGAC) Project's first aerosol characterization experiment (ACE-1): overview, J. Geophys. Res. 103, 16297-16318.

    Google Scholar 

  • Bonsang, B., Kanakidou, M., and Boissard, C., 1994: Contribution of tropical biomass burning to the global budget of hydrocarbons, carbon monoxide and tropospheric ozone, in J. Van Ham, L. J. H. M. Janssen, and R. J. Swart (eds), Non-CO 2 greenhouse gases, Kluwer Academic Publishers, Dordrecht, pp. 261-270.

    Google Scholar 

  • Brasseur, G. P., Hauglustaine, D. A., and Walters, S., 1996: Chemical compounds in the remote Pacific troposphere: Comparison between MLOPEX measurements and chemical transport model calculations, J. Geophys. Res. 101, 14795-14813.

    Google Scholar 

  • Brasseur, G. P., Hauglustaine, D. A., Walters, S., Rasch, P. J., Müller, J.-F., Granier, C., and Tie, X. X., 1998: MOZART, a global chemical transport model for ozone and related chemical tracers, 1, Model description, J. Geophys. Res. 103, 28265-28289.

    Google Scholar 

  • Cahoon, D. R., Stocks, B. J., Levine, J. S., Cofer III, W. R., and O'Neill, K. P., 1992: Seasonal distribution of African savanna fires, Nature 359, 812-815.

    Google Scholar 

  • Chameides, W. and Walker, J. C. G., 1973: A photochemical theory of tropospheric ozone, J. Geophys. Res. 78, 8751-8760.

    Google Scholar 

  • Chatfield, R. B., Vastano, J. A., Singh, H. B., and Sachse, G., 1996: A general model of how fire emissions and chemistry produce African/oceanic plumes (O3, CO, PAN, smoke) in TRACE A, J. Geophys. Res. 101, 24279-24306.

    Google Scholar 

  • Christian, H. J. et al., 1996: The Optical Transient Detector (OTD), in Proceedings of the 10th International Conference on Atmospheric Electricity, Ozaka, Japan, pp. 368-371.

  • Cros, B., Nganga, D., Minga, A., Fishman, J., and Brackett, V., 1992: Distribution of tropospheric ozone at Brazzaville, Congo, determined from ozonesonde measurements, J. Geophys. Res. 95, 12869-12875.

    Google Scholar 

  • Crutzen P. J., Heidt, L. E., Krasnec, J. P., Pollock, W. H., and Seiler, W., 1979: Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl, and COS, Nature 282, 253-256.

    Google Scholar 

  • Crutzen, P. J., Hao, W. M., Liu, M. H., Lobert, J. M., and Scharffe, D., 1989: Emissions of CO2 and other trace gases to the atmosphere from fires in the tropics, in P. Crutzen, J. C. Gérard, and R. Zander (eds), Our Changing Atmosphere, University of Liè ge, Liè ge, pp. 449-471.

    Google Scholar 

  • Dwyer, E., Grégoire, J.-M., and Malingreau, J-P., 1998: A global analysis of vegetation fires using satellite images: spatial and temporal dynamics, Ambio 27, 175-181.

    Google Scholar 

  • Emmons, L. K. et al., 1997: Climatologies of NOx and NOy: A comparison of data and models, Atmos. Environ. 31, 1851-1904.

    Google Scholar 

  • Emmons, L. K., Hauglustaine, D. A., Muller, J.-F., Carroll, M. A., Brasseur, G. P., Brunner, D., Stahelin, J., Thouret, V., and Marenco, A., 2000: Data composites of airborne observations of tropospheric ozone and its precursors, J. Geophys. Res., in press.

  • Fishman, J., Fakhruzzaman, K., Cross, B., and Nganga, D., 1991: Identification of widespread pollution in the southern hemisphere deduced from satellite analyses, Science 252, 1693-1696.

    Google Scholar 

  • Forster, P. M. de F. and Shine, K. P., 1997: Radiative forcing and temperature trends from stratospheric ozone changes, J. Geophys. Res. 102, 10841-10855.

    Google Scholar 

  • Fuelberg, H. E. et al., 1999: A meteorological overview of the Pacific Exploratory Mission (PEM) Tropics period, J. Geophys. Res. 104, 5585-5622.

    Google Scholar 

  • Gallardo, L. and Cooray, V., 1996: Could cloud-to-cloud discharges be as effective as cloud-to-ground discharges in producing NOx?, Tellus 48B, 641-651.

    Google Scholar 

  • Granier, C., Hao, W. M., Brasseur, G., and Müller, J.-F., 1996: Land use practices and biomass burning: Impact on the chemical composition of the atmosphere, in J. S. Levine (ed.), Biomass Burning and Global Change, MIT Press, Cambridges, Mass., pp. 140-198.

    Google Scholar 

  • Hack, J. J., 1994: Parameterization of moist convection in the NCAR community climate model (CCM2), J. Geophys. Res. 99, 5551-5568.

    Google Scholar 

  • Hao, W. M. and Liu, M.-H., 1994: Spatial distribution of tropical biomass burning in 1980 with 5° x 5° resolution, Global Biogeochem. Cycles 8, 495-503.

    Google Scholar 

  • Hao, W. M., Ward, D. E., Olbu, G., and Baker, S. P., 1996: Emissions of CO2, CO, and hydrocarbons from fires in diverse African savanna ecosystems, J. Geophys. Res. 101, 23577-23584.

    Google Scholar 

  • Hauglustaine, D. A. and Granier, C., 1995: Radiative forcing by tropospheric ozone changes due to increased emissions of CH4, CO and NOx, in W.-C. Wang and I. S. A. Isaksen (eds), Atmospheric Ozone as a Climate Gas, Springer-Verlag, Berlin, pp. 189-203.

    Google Scholar 

  • Hauglustaine, D. A., Brasseur, G. P., Walters, S., Rasch, P. J., Müller, J.-F., Emmons, L. K., and Carroll, M. A., 1998a: MOZART, a global chemical transport model for ozone an and evaluation, J. Geophys. Res. 103, 28291-28335.

    Google Scholar 

  • Hauglustaine, D. A., Brasseur, G. P., and Walters, S., 1998b: A Three-Dimensional Simulation of Ozone over the North Atlantic Ocean, in R. D. Bojkov and G. Visconti (eds), Atmospheric Ozone, International Ozone Commission, L'Aquila, pp. 735-738.

    Google Scholar 

  • Hauglustaine, D. A., Brasseur, G. P., and Levine, J. S., 1999: A sensitivity simulation of tropospheric ozone changes due to the 1997 Indonesian fire emissions, Geophys. Res. Lett. 26, 3305-3308.

    Google Scholar 

  • Holtslag, A. and Boville, B., 1993: Local versus nonlocal boundary-layer diffusion in a global climate model, J. Clim. 6, 1825-1842.

    Google Scholar 

  • Huntrieser, H., Schlager, H., Feigl, C., and Höller, H., 1998: Transport and production of NOx in electrified thunderstorms: survey of previous studies and new observations at midlatitudes, J. Geophys. Res. 103, 28247-28264.

    Google Scholar 

  • Jacob, D. J. et al., 1996: Origin of ozone and NOx in the tropical troposphere: A photochemical analysis of aircraft observations over the South Atlantic Basin, J. Geophys. Res. 101, 24235-24250.

    Google Scholar 

  • Japan Meteorological Agency, 1995: Antarctic Meteorological Data obtained by the Japanese Antarctic Research Expedition, Special Volume VI, Summary of Meteorological Observations at Syowa, Mizuho, and Asuka Stations 1961-1993, Tokyo.

  • Jonquiè res, I., Marenco, A., Maalej, A., and Rohrer, F., 1998: Study of ozone formation and transatlantic transport from biomass burning emissions over West Africa during the airborne tropospheric ozone campaigns TROPOZ I and TROPOZ II, J. Geophys. Res. 103, 19059-19073.

    Google Scholar 

  • Kim, J. H. and Newchurch, M. J., 1996: Climatology and trends of tropospheric ozone over the eastern Pacific ocean: the influences of biomass burning and tropospheric dynamics, Geophys. Res. Lett. 23, 3723-3726.

    Google Scholar 

  • Kim, J. H., and Newchurch, M. J., 1998, Biomass-burning influence on tropospheric ozone over New Guinea and South America, J. Geophys. Res. 101, 1455-1461.

    Google Scholar 

  • Kley, D., Crutzen, P. J., Smit, H. G. J., Vömel, H., Oltmans, S. J., Grassl, H., and Ramanathan, V., 1996: Observations of near-zero ozone concentrations over the convective Pacific: Effects on air chemistry, Science 274, 230-233.

    Google Scholar 

  • Kley, D., Smit, H. G. J., Vömel, H., Grassl, H., Ramanathan, V., Crutzen, P. J., Williams, S., Meywerk, J., and Oltmans, S. J., 1997: Tropospheric water-vapour and ozone cross-sections in a zonal plane over the central equatorial Pacific ocean, Q. J. R. Meteorol. Soc. 123, 2009-2040.

    Google Scholar 

  • Lacis, A. A., Wuebbles, D. J., and Logan, J. A., 1990: Radiative forcing of climate by changes of vertical distribution of ozone, J. Geophys. Res. 95, 9971-9981.

    Google Scholar 

  • Lamarque, J.-F., Brasseur, G. P., Hess, P. G., and Müller, J.-F., 1996: Three-dimensional study of the relative contributions of the different nitrogen sources in the troposphere, J. Geophys. Res. 101, 22,955-22,968.

    Google Scholar 

  • Law, K. S., Plantevin, P.-H., Thouret, V., Marenco, A., Asman, W. A. H., Lawrence, M., Crutzen, P. J., Müller, J.-F., Hauglustaine, D. A., and Kanakidou, M., 2000: Comparison between global chemistry transport model results and measurements of ozone and water vapor Airbus in-service aircraft (MOZAIC) data, J. Geophys. Res. 105, 1503-1525.

    Google Scholar 

  • Lawrence, M. G., Chameides, W. L., Kasibhatla, P. S., Levy II, H., and Moxim, W., 1995: Lightning and atmospheric chemistry: the rate of atmospheric NO production, in H. Volland (ed.), Atmospheric Electrodynamics, CRC Press, pp. 189-202.

  • Lee, D. S. et al., 1997: Estimations of global NOx emissions and their uncertainties, Atmos. Environ. 31, 1735-1750.

    Google Scholar 

  • Levy II, H., 1971: Normal atmosphere: Large radical and formaldehyde concentrations predicted, Science 173, 141-143.

    Google Scholar 

  • Levy II, H., Moxim, W. J., and Kasibhatla, P. S., 1996: A global three-dimensional time-dependent lightning source of tropospheric NOx, J. Geophys. Res. 101, 22911-22922.

    Google Scholar 

  • Logan, J. A., 1994: Trends in the vertical distribution of ozone: an analysis of ozonesonde data, J. Geophys. Res. 99, 25553-25585.

    Google Scholar 

  • Logan, J. A. and Kirchhoff, V. W. J. H., 1986: Seasonal variations of tropospheric ozone at Natal, Brazil, J. Geophys. Res. 91, 7875-7881.

    Google Scholar 

  • Martin, R. V., Jacob, D. J., Logan, J., Ziemke, J. M., and Washington, R., 2000: Detection of a lightning influence on tropical tropospheric ozone, Geophys. Res. Lett. 27, 1639-1642.

    Google Scholar 

  • Matsubara, K., Doi, M., Uekubo, T., Okada, K., Aoki, S., and Kawaguchi, S., 1991: Results of ozone observation from the equatorial region to Antarctica in 1987, in Proc. NIPR Symposium Polar Meteorol. Glaciol. 4, pp. 1-11.

  • Müller, J.-F., 1992: Geographical distribution and seasonal variation of surface emissions and deposition velocities of atmospheric trace gases, J. Geophys. Res. 97, 3787-3804.

    Google Scholar 

  • Orville, R. E. and Henderson, R. W., 1986: Global distribution of midnight lightning: September 1977 to August 1978, Mon. Weather. Rev. 114, 2640-2653.

    Google Scholar 

  • Penner et al., 1998: An evaluation of upper tropospheric NOx with two models, J. Geophys. Res. 103, 22097-22113.

    Google Scholar 

  • Pickering, K., Wang, Y., Tao, W.-K., Price, C., and Müller, J.-F., 1998: Vertical distributions of lightning NOx for use in regional and global chemical transport models, J. Geophys. Res. 103, 31203-31216.

    Google Scholar 

  • Portmann, R. W., Solomon, S., Fishman, J., Olson, J. R., Kiehl, J. T., and Briegleb, B., 1997: Radiative forcing of the Earth's climate system due to tropical tropospheric ozone production, J. Geophys. Res. 102, 9409-9417.

    Google Scholar 

  • Price, C. and Rind, D.: 1992: A simple lightning parameterization for calculating global lightning distributions, J. Geophys. Res. 97, 9919-9933.

    Google Scholar 

  • Price, C. and Rind, D., 1992: NOx from lightning 1. Global distribution based on lightning physics, J. Geophys. Res. 97, 9919-5941.

    Google Scholar 

  • Price, C., Penner, J., and Prather, M., 1997: NOx from lightning 2. Constraints from the global atmospheric electric circuit, J. Geophys. Res. 102, 5943-5951.

    Google Scholar 

  • Ridley, B. A., Walega, J. G., Dye, J. E., and Grahek, F. E., 1994: Distributions of NO, NOx, NOy, and O3 to 12 km altitude during the summer monsoon season over New Mexico, J. Geophys. Res. 99, 25519-25534.

    Google Scholar 

  • Roelofs, G.-J. and Lelieveld, J., 1997: Model study of the influence of cross-tropopause O3 transports on tropospheric O3 levels, Tellus 49B, 38-55.

    Google Scholar 

  • Roelofs, G.-J., Lelieveld, J., Smit, H. G. J., and Kley, D., 1997: Ozone production and transports in the tropical Atlantic region during the biomass burning season, J. Geophys. Res. 102, 10637-10651.

    Google Scholar 

  • Schultz, M. et al., 1999: On the origin of tropospheric ozone and NOx over the tropical South Pacific, J. Geophys. Res. 104, 5829-5843.

    Google Scholar 

  • Seiler, W. and Crutzen, P. J., 1980: Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning, Clim. Change 2, 207-247.

    Google Scholar 

  • Smyth S. B. et al., 1996: Factors influencing the upper free tropospheric distribution of reactive nitrogen over the south Atlantic during the TRACE A experiment, J. Geophys. Res. 101, 24165, 24186.

    Google Scholar 

  • Stith, J., Dye, J., Ridley, B., Laroche, P., Defer, E., Baumann, K., Hübler, G., Zerr, R., and Venticinque, M., 1999: NO signatures from lightning flashes, J. Geophys. Res. 104, 16081-16089.

    Google Scholar 

  • Thompson, A. M. et al., 1996: Where did tropospheric ozone over southern Africa and the tropical Atlantic come from in October 1992? Insights from TOMS, GTE TRACE A, and SAFARI 1992, J. Geophys. Res. 101, 24251-24278.

    Google Scholar 

  • Turman, B. N. and Edgar, B. C., 1982: Global lightning distribution at dawn and dusk, J. Geophys. Res. 87, 1191-1206.

    Google Scholar 

  • Wang, Y., DeSilva, A. W., Goldenbaum, G. C., and Dickerson, R. R., 1998: Nitric oxide production by simulated lightning: dependence on current, energy, and pressure, J. Geophys. Res. 103, 19149-19159.

    Google Scholar 

  • Williamson, D. L. and Rasch, P. J., 1989: Two-dimensional semi-Lagrangian transport with shape preserving interpolation, Mon. Weather Rev. 117, 102-129.

    Google Scholar 

  • Zhang, R., Sanger, N. T., Orville, R. E., Tie, X. X., Randel, W., and Williams, E. R., 2000: Enhanced NOx by lightning in the upper troposphere and lower stratosphere inferred from the UARS global NO2 measurements, Geophys. Res. Lett. 27, 685-688.

    Google Scholar 

  • Ziemke, J. R., Chandra, S., and Bhartia, P. K., 1998: Two new methods for deriving tropospheric column ozone from TOMS measurements: The assimilated UARSMLS/HALOE and convective-cloud differential techniques, J. Geophys. Res. 103, 22115-22127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauglustaine, D., Emmons, L., Newchurch, M. et al. On the Role of Lightning NOx in the Formation of Tropospheric Ozone Plumes: A Global Model Perspective. Journal of Atmospheric Chemistry 38, 277–294 (2001). https://doi.org/10.1023/A:1006452309388

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006452309388

Navigation