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Abstract

The anchoring of proteins to the cell surface of lactic acid bacteria (LAB) using genetic techniques is an exciting
and emerging research area that holds great promise for a wide variety of biotechnological applications. This paper
reviews five different types of anchoring domains that have been explored for their efficiency in attaching hybrid
proteins to the cell membrane or cell wall of LAB. The most exploited anchoring regions are those with the LPXTG
box that bind the proteins in a covalent way to the cell wall. In recent years, two new modes of cell wall protein
anchoring have been studied and these may provide new approaches in surface display. The important progress that
is being made with cell surface display of chimaeric proteins in the areas of vaccine development and enzyme- or
whole-cell immobilisation is highlighted.

Introduction

There are at least three reasons to change the outside
appearance of a bacterium by expressing foreign pro-
teins at its surface. First, it should help to understand
the fundamental mechanisms of protein targeting to
the cell envelope. Second, it may enable to con-
trol the interactions between the bacterium and its
environment. Third, it opens the way to a number
of potentially important biotechnological applications.
This paper focuses mainly on the third reason.

In the last decade there has been considerable pro-
gress towards the development of systems to anchor
and display heterologous (poly)peptides at the surface
of bacteria, such that they are detectable on the out-
side of the intact cells. The progress is most advanced
in Gram-negative bacteria, notablyEscherichia coli,
for which several efficient fusion protein display sys-
tems have been described (Hofnung 1991; Georgiou
et al. 1997; Ståhl & Uhlén 1997a). Most of these sys-
tems take advantage of the anchoring capacity of outer
membrane proteins, employing transmembrane span-
ning domains (LamB, OmpA, PhoE) or domains that
contain a lipomodification signal (Lpp, TraT). Others
use the surface exposure capacity of fimbriae, pili or
flagellae (FliC, FimH, PapA; Georgiou et al. 1997).

Gram-positive bacteria have also been taken into
account for bacterial surface display purposes. The
lack of an outer membrane and the presence of mul-
tiple peptidoglycan layers in the cell wall of these
bacteria resulted in the use of a number of different
targeting strategies that link proteins to the membrane
or cell wall (Fischetti et al. 1993; Ståhl & Uhlén
1997a). The non-pathogenic staphylococci,Staphylo-
coccus xylosusandcarnosus, and the oral commensal
Streptococcus gordoniiwere among the first Gram-
positives for which anchored heterologous cell surface
proteins were described (Hansson et al. 1992; Pozzi et
al. 1992a,b). Recently, other lactic acid bacteria (LAB)
like Lactococcus lactisandLactobacillussubsp., are
being examined for their capacity to target and at-
tach heterologous proteins to the membrane and wall
components (Piard et al. 1997b; Pouwels et al. 1998;
Poquet et al. 1998; Steidler et al. 1998). The anchoring
domains that have been used in these LAB, including
Staph. xylosus, Staph. carnosusandStrep. gordonii, to
attach heterologous (poly)peptides will be discussed
in this short review. The vector systems, expression
and translocation signals to produce and transport the
hybrid surface proteins are also essential elements in
the surface display strategies, but for these specific
items the reader is referred to a recent comprehensive
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overview (Pozzi & Wells 1997a). The biotechnolo-
gical applications that form the driving force behind
research of surface linked proteins will be briefly ad-
dressed. A wide variety of applications are envisaged
for LAB carrying surface exposed proteins, among
which the immobilisation of enzymes at the bacterial
surface, the immobilisation of the production strain at
ligand-coated surfaces, generating whole-cell bioad-
sorbents for environmental purposes, diagnostic tools
and display of entire peptide libraries. Hitherto, the
most common motivation to attach proteins to the
outer compartment of LAB has been the development
of live-bacterial-vaccine delivery systems (Fischetti et
al. 1996; Medaglini et al. 1998; Pouwels et al. 1998;
Pozzi & Wells 1997a; Ståhl et al. 1997b).

Modes of anchoring

The general approach taken to position proteins at the
cell surface consists of genetically linking a hetero-
logous polypeptide in such a way to a protein known
to be located at the cell surface that the chimaeric
protein will be exposed, at least partly, to the outer
environment. This approach requires rather detailed
knowledge of the topology of the protein containing
the anchoring signal, in order to determine an appro-
priate site for insertion or fusion. Such information
may be obtained from protein homology comparisons
to make an educated guess or from experimentation.
Both strategies have been followed for LAB using
cell surface anchoring domains of LAB- or non-LAB
proteins.

The application of five different types of anchor-
ing domains has been described or is currently un-
der investigation. Figure 1 summarises these different
modes of anchoring and gives also a proposal for no-
menclature. Type 1 and type 2 anchors (A1 and A2,
respectively) link the hybrid protein to the membrane.
At present, the most commonly applied method of an-
choring in LAB uses the type 3 anchor (A3), in which
the displayed protein is covalently linked to cell-wall
components. Attachment domains of type 4 (A4) and
type 5 (A5) interact in a yet unknown manner with
the cell wall and only very recently received attention.
All types of anchors and their use in hybrid proteins
are listed in Table 1 and will be discussed below. A1
and A2 domains reside in the N-terminal part of the
hybrid proteins. The cell wall anchoring regions A3
to A5 are unique for Gram-positive bacteria and, in
the cases described here, require the presence of the

attachment domain in the C-terminus of the target pro-
tein. The hybrid protein gene is then preceded in the
genetic construct by a secretion signal sequence that
enables translocation of the expressed product across
the cytoplasmic membrane.

Transmembrane anchors.In general, transmem-
brane spanning domains (TMSs) of any membrane
protein may be used as an A1 domain. Protein to-
pology studies that formed the basis for using one
or more TMSs as an anchor were performed e.g.
for the holin LytP of the lactococcal bacteriophage
r1t. Alkaline phophatase (PhoA) fusion and insertions
studies of the human immunodeficiency virus (HIV)
gp41E epitope (ELDKWAS) revealed suitable sites
for anchoring (Leenhouts et al., unpublished). The
strategy to insert amino acid sequences in an exter-
ior loop between TMSs may limit the insert size in
order not to disturb the membrane protein topology
(Hofnung 1991). In addition, this type of anchoring
may not result in true surface exposure of the inserted
domain since at least 100 amino acids are needed in
the extended loop to cross the cell wall (Fischetti et
al. 1990). For these reasons a fusion approach is often
preferred in which the target protein is simply linked at
its N-terminus to one or more TMDs of a cytoplasmic
membrane protein. PhoA andβ-galactosidase (LacZ)
were fused to different N-terminal parts of theL. lactis
bacteriocin-transport-accessoryprotein LcnD. Fusions
located C-terminally to amino acid residue 44 of LcnD
resulted in extracellularly anchored enzymes (Franke
et al. 1996). A similar hybrid protein containing the
N-terminal 80 amino acids of LcnD and at the C-
terminus a 99 amino acid B-cell epitope of the human
cytomegalovirus (hCMV) pp65 matrix protein was
successfully anchored in this way. The pp65 moiety
was accessible to proteinase K from the outside of
protoplasts (Franke et al. 1998).

Poquet et al. (1998) identified in a random ap-
proach with an export specific reporter enzyme, seven
lactococcal gene fragments encoding TMSs that func-
tion as membrane anchors. The nuclease reporter
protein requires an extracellular location to be active
and, therefore, important information on the topology
of the fused membrane proteins is obtained.

For none of the above mentioned hybrid proteins
has its accessibility from the outside of intact cells
been described.

Lipoprotein anchors. A2 or lipoprotein anchoring
domains are characterised by covalent binding to the
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Figure 1. Modes of anchoring of chimaeric proteins to the cell surface of LAB. The light grey areas represent a heterologous (poly)peptide.
The grey regions are the different types of anchoring domains. A1: transmembrane anchor region. A2: lipoprotein anchor domain. A3:
LPXTG-type cell-wall anchoring domain. A4: AcmA-repeats cell-wall binding domain. A5: surface-layer-protein attachment region. The black
lines extending from the A2 and A3 domains represent the covalent bond between the anchors and the lipid bilayer and the peptide crossbridge
that connect the peptidoglycan layers, respectively. Components of the cell surface such as (lipo)teichoic acids and oligosaccharides are not
shown.

lipid bilayer through N-acyl diglyceride modification
of a cysteine residue located immediately C-terminal
to the signal sequence cleavage site (Pugsley 1993).
Haandrikman et al. (1991) have shown in their study
on the proteinase maturation lipoprotein PrtM that this
type of modification mechanism operates inL. lac-
tis. An A2 signal has been identified on the basis
of homology in theL. lactis oligopeptide binding
protein OppA (Tynkkynen et al., 1993). This putat-
ive OppA anchoring signal was used to position the
merozoite stage surface antigen MSA2 ofPlasmodium
falciparum on the outside ofL. lactis (Leenhouts et
al. unpublished). Data on the surface display of this
OppA::MSA2 fusion protein and of other anchored
MSA2 hybrids (Table 1 and below) should be available
soon.

In the same random procedure as described above
for the transmembrane anchors Poquet et al. (1998)
identified four new lactococcal lipoprotein-anchoring
signals. In one case, Nlp1, degradation of the fu-
sion protein by proteinase K treatment on intact cells
demonstrated its surface exposure.

LPXTG-motif anchor. The type 3 anchor signals
(A3) contain highly conserved sequences and start at
the C-terminus with a short tail of positively charged

residues that remain in the cytoplasm. Upstream of
the cytoplasmic domain a stretch of approximately 30
hydrophobic amino acids (optimal length is species
dependent; Schneewind et al. 1993) is preceded by the
well-conserved pentapeptide LPXTG (Fischetti et al.
1990). The charged tail and hydrophobic domain are
thought to function as a temporary stop to position
the LPXTG motif for proteolytic cleavage. Correct
positioning results in cleavage between the threon-
ine and glycine residues followed by amide-linkage
of the threonine residue to the peptide crossbridge in
the peptidoglycan of the cell wall, by the action of
a postulated sortase (Navarre & Schneewind 1994;
Schneewind et al. 1995). The amino acid composi-
tion of the peptide crossbridge, which varies among
the different LAB species, is flexible with respect to
the sorting reaction (Strauss et al. 1998; Ton-That
et al. 1998). The sorting signal (LPXTG box, hy-
drophobic region and charged tail) is preceded by a
wall-associated region of about 50 to 125 residues
and is characterised by a high percentage of pro-
line/glycine and/or threonine/serine residues (Fischetti
et al. 1990). The mechanism by which these A3
domains are cell-surface targeted and subsequently
covalently anchored to the cell wall has been elucid-
ated in detail for immunoglobulin binding protein A
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Table 1. Anchoring domains that have been used to immobilise hybrid proteins in or on the cell envelope of LAB

Host bacterium Anchor domaintype Origin Displayed protein Origin References

Staph. carnosusandxylosus ProtAA3 Staph. aureus CTB V. cholerae Liljeqvist, 1997

ABP Strep.subsp. Andŕeoni, 1997

ScFv anti-hIgE mouse Gunneriusson, 1996

gpG hRSV Nguyen, 1993a, 1995;

(101aa epitope) Robert, 1996

M3 P. falciparum Samuelson,1995;

(Pf155/RESA) Hansson,1992

FnBPBA3 Staph. aureus lipase Staph. hyicus Strauss, 1996b

β-lactamase E. coli Strauss, 1996b

Strep. gordonii M6A3 Strep. pyogenesM6 Strep. pyogenesPozzi, 1992b; Oggioni, 1996

E7 HPV Pozzi, 1992a; Oggioni, 1995;

Medaglini, 1997

gp120 HIV Pozzi, 1994

(T-cell epitope)

gp120/E7 HIV/HPV Di Fabio, 1998;

(V3 epitope) Medaglini, 1998

Ag5.2 hornet venom Medaglini, 1995

HA measles virus Medaglini, 1998; Pozzi, 1997

LTB E. coli Ricci, 1996; Pozzi, 1997b

gp120/LTB HIV/E. coli Medaglini, 1998; Pozzi, 1997b

(V3 epitope)

L. lactis ProtAA3 Staph. aureus streptavidin Sm. avidinii Steidler, 1998

M6A3 Strep. pyogenesnuclease Staph. aureus Piard, 1997b

holinA1 phage r1t gp41E HIV Leenhouts, unp.

(Katinger epitope)

LcnDA1 L. lactis pp65 hCMV Franke, 1998

(99aa epitope)

Tmp1-7A1 L. lactis nuclease Staph. aureus Poquet, 1998

Nlp1-4A2 L. lactis nuclease Staph. aureus Poquet, 1998

OppAA2 L. lactis MSA2 P. falciparum Leenhouts, unp.

PrtPA3 L. lactis TTFC C. tetanii Norton, 1995; Norton, 1996

MSA2 P. falciparum Leenhouts, unp.

AcmAA4 L. lactis β-lactamase E. coli Buist, 1997

α-amylase B. licheniformis Buist, 1997

MSA2 P. falciparum Leenhouts, unp.

Lactobacillussubsp. M6A3 Strep. pyogenesLTB E. coli Rush, 1997

gp41E HIV Mercenier, 1996

(Katinger epitope)

AcmAA4 L. lactis β-lactamase E. coli Steen, unp.

PrtPA3 Lb. paracasei GusA E. coli Pouwels, 1996; 1998

HA Infuenza virus Pouwels, 1996

(Hackett epitope)

TTFC C. tetanii Maassen, 1999

VP7 and 8 Rotavirus Leer, 1996; Pouwels, 1998

Urease A and B H. pylori Leer, 1996; Pouwels, 1998

SlpA5 Lb. brevis VP1 Enterovirus Palva et al., unp.

(11 aa epitope)

A1: transmembrane anchor;A2: lipoprotein membrane anchor;A3: LPXTG-type cell-wall anchor;A4: AcmA repeats cell-wall anchor;A5:
surface-layer-protein anchor.a: only in Staph. xylosus. b: only in Staph. carnosus.
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(ProtA) of Staphylococcus aureus. Its description is
beyond the scope of this short review and the reader
is referred to other reviews and the original literature
(Schneewind et al. 1992, 1993, 1995; Ton-That et al.
1997; Navarre et al. 1998, 1999).

The anchoring domain of ProtA has been em-
ployed extensively inStaph. xylosusand carnosus
to surface display various antigens for vaccine de-
velopment purposes (Ståhl et al. 1997b). Electron
microscopy, immunofluorescence microscopy and
fluorescence-activated cell sorting (FACScan) tech-
niques have been used to determine the proper display
of the proteins. Many of the hybrid proteins in these
studies contain the albumin binding protein fragment
(ABP) from streptococcal protein G, allowing easy
isolation of the hybrid proteins and rapid colorimetric
analysis of successful display. In a comparative study,
mice were immunised with live recombinant bacteria
with surface expressed ABP as the model immunogen
(Robert et al. 1996; Andréoni et al. 1997). Higher
serum antibody titers were obtained with recombinant
Staph. carnosusthan with the correspondingStaph.
xylosusstrain. This result was attributed to the higher
number of hybrid proteins present on the surface of the
Staph. carnosusstrain which was calculated to be as
much as 104 per cell and 3×103 for theStaph. xylosus
strain. Nguyen et al. (1995) engineered the hydro-
phobicity of a non-secretable portion of the G protein
of the respiratory syncytial virus (RSV) by replacing
or deleting hydrophobic phenylalanine residues. This
resulted in a properly surface displayed protein and
showed for the first time that hydrophobicity engin-
eering can be used to optimise surface display. Such a
strategy may have important implications in the area of
vaccine development if surface display is required of
proteins that are normally not secreted. Hydrophobi-
city engineering may influence the native structure
of the protein, which is acceptable as long as pro-
tective immunity can be elicited. Correct folding of
the displayed proteins is a requirement if they have
to exert certain (enzymatic) activities. It was shown
that the ProtA anchoring system is efficient in ex-
pressing a functional single chain antibody fragment
(scFv), the mouse anti-human IgE scFv, on the surface
of Staphylococcus(Gunneriusson et al. 1996). These
recombinantStaph. carnosuscells were able to re-
cognise human IgE and this result paves the way for
applications such as using recombinant LAB as whole
cell diagnostic devices or the surface display of scFv
libraries. Cholera toxin fragment B (CTB) ofVibrio
choleraewas also functionally displayed onStaph.

carnosus(Liljeqvist et al. 1997). The functionality of
the non-toxic CTB requires pentamerization as was
demonstrated by binding of the recombinant bacteria
to monosialoganglioside GM1, which is present on all
epithelial cells of mucosal surfaces.

In another application of the ProtA surface anchor
it was fused to the streptavidin monomer ofStrep-
tomyces avidiniiand expressed inL. lactis (Steidler
et al. 1998). Lysostaphin treatment of producer
cells released the fusion protein, indicating that it
was linked to the peptidoglycan layer. Immobilisa-
tion of the recombinant strain on a biotinylated al-
kaline phosphatase-coated polystyrene support sug-
gested that the streptavidin moiety of the hybrid pro-
teins is accessible from the outside. These results open
possibilities to immobilise LAB on solid surfaces for
production purposes.

The C-termini of numerous Gram-positive bac-
terial surface proteins are highly homologous to the
ProtA anchoring signal (Fischetti et al. 1996). An-
otherStaph. aureusA3 region, that of the fibronectin
binding protein B (FnBPB), was effective in immob-
ilisation of the normally soluble enzymes lipase of
Staphylococcus hyicusandβ-lactamase ofE. coli on
the cell surface ofStaph. carnosus(Strauss & Götz
1996). A spacer region which exceeded a critical
length of approximately 90 amino acids between the
LPXTG box and the C-terminus of the enzymes was
required to allow efficient folding of the enzymes in
their catalytically active form.

An A3 cell wall binding region that has found ap-
plication in various LAB, like the one of ProtA, is the
anchor domain of the fibrillar M6 protein ofStrepto-
coccus pyogenes. The M6 sorting signal appears to be
functional inStrep. gordonii, L. lactis, Lb. fermentum,
Lb. sake,andStreptococcus thermophilus(Pozzi et al.
1992a; Piard et al. 1997a). The M6 anchoring domain
was extensively exploited inStrep. gordonii. Repor-
ted were the cell surface display of the subunit B of
heat labile toxin (LTB) ofE. coli, which has a similar
function as CTB, the allergen Ag5.2 of white-faced
hornet venom and a variety of relevant immunodom-
inant antigens of human virusses, including the E7
protein of papillomavirus (HPV), parts of gp120 of
HIV and the measles virus hemoagglutinin. The hy-
brid proteins were detected on the cell surface by
immunofluorescence microscopy and elicited relevant
immune responses in parenteral and local immunisa-
tions (Pozzi et al. 1997b). An important step in the
development of LAB carriers for vaccine purposes was
the successful colonisation of the vaginal mucosa of
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Cynomolgus monkeys with recombinantStrep. gor-
donii expressing the HPV E7 protein and part of HIV
gp120 on the cell surface, which resulted in antigen-
specific vaginal IgA, serum IgG and T-cell responses
(Di Fabrio et al. 1998; Medaglini et al. 1998).

A heterologous enzyme, aStaph. aureusnuclease,
was immobilised on the surface ofL. lactisusing 139
C-terminal residues of M6. The presence of active
nuclease in the cell wall fraction suggested correct sur-
face display of the hybrid protein (Piard et al. 1997b).
A similar M6 anchoring domain was exploited to sur-
face exposeE. coli LTB on Lb. casei, Lb. paracasei,
Lb. acidophilus, Lb. plantarumand Lb. fermentum
(Rush et al. 1997). The presence of the LTB im-
munogen on the surface of this set ofLactobacillus
species allows to investigate the mucosal immune re-
sponses to the antigen expressed in colonising and
non-colonising strains. Mercenier et al. (1996) ex-
pressed M6 hybrid proteins containing parts of HIV
gp41 or gp120 on the cell surface ofLb. paracasei, as
was demonstrated by immunofluorescence techniques.
Local administration in mice of recombinant colon-
ising Lb. paracaseistrains carrying the M6-anchored
HIV parts induced significant systemic and mucosal
responses.

LAB A3 domains that are being examined for
surface display purposes are those of the proteinases
(PrtP) ofL. lactisandLb. paracasei(Kok et al. 1988;
Vos et al. 1989; Holck & Næs 1992). The tetanus toxin
fragment C (TTFC) ofClostridium tetaniiwas fused
to the lactococcal PrtP anchor but, although the hy-
brid protein was produced inL. lactis, it appeared that
TTFC could not be detected on the surface of intact
cells by immunogold or immunofluorescent labelling
techniques. Lysozyme/lysostaphin treatment of the
producer demonstrated that all TTFC was present in
the cell membrane and not in the cell wall. Never-
theless, membrane located TTFC proved to be ap-
proximately 13 to 20-fold more immunogenic than
intracellular soluble TTFC. Both forms were capable
of evoking protective immune responses in mice sub-
cutaneously immunised with the recombinant strains
(Norton et al. 1995; Norton et al. 1996). Whether
the inefficient targeting to the cell wall is caused by
the lactococcal PrtP anchoring domain or is a TTFC-
specific effect, are questions that need to be addressed.
At present, a fusion with MSA2 is under investiga-
tion (Leenhouts et al., unpublished). The PrtP sorting
signal of Lb. paracaseiseems to work efficiently in
a number of differentLactobacillusspecies to sur-
face display various antigens, including TTFC ofC.

tetanii, rotavirus proteins VP7 and 8, urease A and B
of Helicobacter pylori, and an influenza virus hemo-
agglutinin epitope fused toβ-glucoronidase (GusA) of
E. coli as a carrier protein (Leer et al. 1996; Pouwels
et al. 1996, 1998). FACScan analyses indicated that
Lb. caseiproducing surface-anchored TTFC exposed
approximately 4×103 antigenic molecules per cell to
the environment. High levels of serum IgG specific
for TTFC were induced following parenteral immun-
isation of mice with this recombinant strain (Maassen
et al. 1999), but low antibody levels were observed
after oral administration, which was attributed to the
poor viability of theLb. caseistrain in the gut of mice
(Pouwels et al. 1998).

AcmA-repeats anchor.Nearly all bacterial cell wall
hydrolases have a modular design, in which an act-
ive site domain degrades the peptidoglycan and a cell
wall binding domain immobilises the enzyme in or on
the peptidoglycan layer. The cell wall binding domain
is often comprised of repeated amino acid sequences.
The C-terminal region of the lactococcal cell wall hy-
drolase AcmA contains three repeated sequences of 44
amino acids separated by stretches of 21 to 31 amino
acids rich in serine, threonine and asparagine residues
(Buist et al. 1995). This repeat region is defined here as
an A4 domain. There are no reports providing insight
in the mechanism of binding of these repeats or details
on the interaction of the A4 attachment region with the
cell wall. Repeats homologous to the ones in AcmA
are present in many cell wall- or membrane-associated
proteins in Gram-positive and Gram-negative bacteria,
but do not necessarily reside in the C-terminus of
the protein (Buist 1997). Proteins of Gram-positives
with an A4-like domain are usually detected in the
wall fraction as well as in the supernatant. This ob-
servation suggests an interaction of the A4 attachment
region with the cell wall that is less strong than that
of the LPXTG type (A3) and is, most likely, of a
non-covalent nature.

Although the cell wall binding domain of AcmA
contains 3 repeats, 1 repeat proved to be sufficient for
cell wall binding (Buist 1997). Interestingly, AcmA
present in the supernatant of anL. lactisproducer was
able to bind from the outside to anL. lactis strain
devoid of AcmA and to a range of Gram-positive bac-
teria, includingLactobacillus, Clostridium, Listeria
and Bacillus (Buist and Steen, unpublished results).
The A4 domain of AcmA could also be used to im-
mobilise the normally soluble enzymesα-amylase of
E. coli andβ-lactamase ofBacillus licheniformesin
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an active form on the cell surface ofL. lactis. Like
AcmA, these chimaeric enzymes could bind toL. lac-
tis cells when added from the outside (Buist 1997).
An attractive possibility of this type of binding is
to couple hybrid proteins to non-recombinant Gram-
positive bacteria. The possibility to use the AcmA
A4 attachment region to display antigens, e.g. like
MSA2, on the cell surface ofL. lactis is currently
under investigation (Leenhouts et al., unpublished).

Surface-layer-protein anchor.Some LAB strains
contain, like various other Gram-positive bacteria, a
layer of proteins exterior to the cell wall. These so-
called surface layer (S-layer) proteins form porous
lattices of identical subunits completely covering the
cell surface and may constitute up to 20% of the total
cell protein content. These properties make S-layer
proteins (SLPs) an attractive target for protein anchor-
ing studies. At present, the genes ofLb. brevis, Lb.
acidophilus, Lb. crispatusand Lb. helveticusSLPs
have been genetically characterised (Vidgrén et al.
1992; Boot et al. 1993; Toba et al. 1995; Calleg-
ari et al. 1998). Comparison of the SLP amino acid
sequences of the latter three bacteria revealed a con-
served C-terminal one-third of the proteins (>80%
identity), that is thought to interact with the cell wall
(Pouwels et al. 1998). Expression of SLPs in hetero-
logous hosts (strains ofLb. caseiandL. lactis which
lack S-layer proteins) resulted in secretion of the S-
layer proteins in the medium (Callegari et al. 1998;
Martinez et al., unpublished results). This finding sug-
gests thatLb. caseiand L. lactis lack (a) cell wall
component(s) required for proper attachment and this
may implicate that cell surface anchoring of SLP hy-
brid proteins is limited to the host from which theslp
gene was isolated.

Palva et al. (unpublished) used theLb. brevisSLP
to produce chimaeric proteins inLb. breviswith an 11
amino acid insert of an enteroviral capsid protein VP1.
Whole cell-ELISA techniques were used to identify
two permissive hydrophilic sites in the C-terminal re-
gion of this SLP that allow surface exposure of the
epitope. These results may suggest that theLb. brevis
SLP anchoring domain resides in another part of the
protein than it does in the other three SLPs.

Conclusions and perspectives

A number of different anchoring domains have been
explored in LAB for the cell surface anchoring of

heterologous (poly)peptides and, although still rather
premature, a few interesting applications arise at the
horizon. From a practical point of view, LAB may
have certain advantages over Gram-negative and other
Gram-positive bacteria that make them more suitable
for bacterial surface-display purposes. LAB have the
status of being generally recognised as safe (GRAS)
making them certainly more useful in food and med-
ical applications than some other bacterial species.
It is exactly in these areas that research on surface
display in LAB has concentrated so far. Important
progress has been made in the immobilisation of en-
zymes, the immobilisation of LAB for production
purposes and in vaccine development. Although the
latter research area has been the major driving force
in this field, it is still a matter of debate whether
cell-surface display of antigens for vaccine purposes
is essential for eliciting effective immune responses.
Experimental data forStaph. xylosusand carnosus
indicated that surface exposure is essential (Nguyen
et al. 1995). On the other hand, immunisations with
L. lactis expressing intracellular soluble, membrane-
located or cell wall-associated immunogens revealed
that all forms were effective in evoking protective
immune responses, the particulate form of the anti-
gen being more immunogenic (Norton et al. 1996;
Wells et al. 1996; Robinson et al. 1997). Although
surface exposure of antigens may, thus, be advant-
ageous in terms of immunogenicity, it may also have
drawbacks as, e.g., higher susceptibility to proteolytic
degradation in the gastrointestinal tract (GIT) in oral
vaccinations. Antigens anchored to the cytoplasmic
face of the cell membrane may have the same elevated
level of immunogenicity as proteins anchored at the
exterior and may be better protected against proteo-
lytic activity in the GIT. This approach has been taken
in Gram-negative bacteria (Eko et al. 1999) but, to the
best of our knowledge, it has not been investigated in
Gram-positives.

The expression of an scFv on the surface ofStaph.
carnosusopens the possibility to express entire (arti-
ficial) antibody libraries in LAB. Although construc-
tion of such libraries is limited to strains that are
highly transformable, strategies like that could help
to identify antibody fragments that are reactive to sur-
face components of mucosal cells, such as M-cells that
are present in immunoreactive sites. Co-expression of
these antibody fragments on the surface of LAB car-
rying an immunogen may target the bacteria to the
desired area and enhance the immune response (Ståhl
& Uhlén 1997a). Another interesting application of
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recombinant antibody- or artificial binding-protein lib-
raries that warrants further exploration is the selection
of ligands that bind specifically to e.g. pollutants,
such as heavy metals (Sousa et al. 1996). LAB car-
rying such surface-located ligands could then be ex-
ploited in environmental applications like whole-cell
bioadsorbants or biofilters.

The cell wall sorting signals that contain the
LPXTG box are clearly the most exploited anchor-
ing signals in LAB. The systems developed inStaph.
carnosusandStrep. gordoniifor cell-surface display
using this type of anchor belong to the most advanced
in LAB. New techniques, such as FACScan, were used
for the first time forStaph. carnosusand, more re-
cently also forLb. casei, to quantify the number of
surface exposed protein molecules on intact cells. A
broader use of these techniques will be required to
reliably assess each anchoring system in the various
bacteria.

In addition to the successful use of heterologous
anchor domains from pathogenic bacteria, an import-
ant development is the identification and application
of LAB anchors. For several purposes the presence
of heterologous DNA fragments should be minimised,
especially for those in which the GRAS status of the
production organism plays a critical role.

The AcmA-repeats and the S-layer proteins rep-
resent new types of anchoring devices in LAB and
offer alternative approaches for cell surface attach-
ment. Both need further characterisation as they are
potentially very versatile. For instance, the AcmA re-
peat domain binds to the cell wall of a wide range of
Gram-positive bacteria, also when it is added from the
outside. This property allows to anchor chimaeric pro-
teins, e.g. antigens or active enzymes, to the surface
of non-recombinant bacteria, which would prevent
the release of recombinant DNA in the environment.
Hybrid S-layer proteins may have the limitation that
surface anchoring is restricted to the bacterium from
which the gene was isolated, but they do have the at-
tractive ability to form crystalline structuresin vitro.
The ability to form lattices was retained forLb. acido-
philus and Lb. crispatusSLPs that were produced
in E. coli (Smit et al., unpublished). This property
may be exploited in yet other approaches using the
isolated protein for, e.g., ultrafiltration membranes,
diagnostics, vaccine development and nanotechnology
(Sleytr et al. 1997).

As LAB research on membrane proteins, cell wall
proteins and surface display advances, the putative bi-
otechnological applications will become increasingly

realistic and still new ones may emerge from this
exciting and rapidly developing research area.
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