Skip to main content
Log in

Quantum Vacuum Effects in the Gravitational Field of a Global Monopole

  • Published:
Astrophysics Aims and scope

Abstract

A study is made of the vacuum expectation values for the energy-momentum tensor of a massive scalar field that satisfy a Robin mixed boundary condition on a spherical surface with a background gravitational field from a D+1-dimensional global monopole. Expressions are derived for the Wightman function, vacuum expectation of the square of the field, vacuum energy density, and the radial and azimuthal pressures inside the spherical surface. The regularization procedure involves using the generalized Abel-Plana formula for series in terms of the zeroes of cylindrical functions. This formula makes it possible to separate the part owing to the gravitational field of a global monopole without boundaries from the vacuum expectation and to represent the parts induced by the boundary in the form of exponentially converging integrals which are especially convenient for numerical calculations. The asymptotic behavior of the vacuum averages is studied at the center of the sphere and near its surface. It is shown that for small values of the parameter describing the solid-angle deficit in the geometry of a global monopole, the vacuum stresses induced by the boundary are highly anisotropic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects, Cambridge Univ. Press, Cambridge (1994).

    Google Scholar 

  2. A. M. Polyakov, Pis'ma zh. eksperim. i teor. fiz. 20, 430 (1974); G. t'Hooft, Nucl. Phys. B79, 276 (1974).

    Google Scholar 

  3. T. W. B. Kibble, J. Phys. A9, 1387 (1976).

    Google Scholar 

  4. D. D. Sokolov and A. A. Starobinskii, Dokl. AN SSSR 234, 1043 (1977).

    Google Scholar 

  5. M. Barriola and A. Vilenkin, Phys. Rev. Lett. 63, 341 (1989).

    Google Scholar 

  6. W. A. Hiscock, Class. Quantum Gravity 7, L235 (1990).

    Google Scholar 

  7. F. D. Mazzitelli and C. O. Lousto, Phys. Rev. D43, 468 (1991).

    Google Scholar 

  8. E. R. Bezerra de Mello, V. B. Bezerra, and N. R. Khusnutdinov, Phys. Rev. D60, 063506 (1999).

    Google Scholar 

  9. E. R. Bezerra de Mello, J. Math. Phys. 43, 1018 (2002).

    Google Scholar 

  10. M. Bordag, K. Kirsten, and S. Dowker, Commun. Math. Phys. 182, 371 (1996).

    Google Scholar 

  11. E. R. Bezerra de Mello, V. B. Bezerra, and N. R. Khusnutdinov, J. Math. Phys. 42, 562 (2001).

    Google Scholar 

  12. V. M. Mostepanenko and N. N. Trunov, The Casimir Effect and Its Applications, Clarendon, Oxford (1997).

    Google Scholar 

  13. G. Plunien, B. Muller, and W. Greiner, Phys. Rep. 134, 87 (1986).

    Google Scholar 

  14. M. Bordag, U. Mohidden, and V. M. Mostepanenko, Phys. Rep. 353, 1 (2001).

    Google Scholar 

  15. A. A. Saaryan, Izv. AN Arm. SSR, Matematika 22, 166 (1987); Candidate's Dissertation, Erevan (1987).

    Google Scholar 

  16. A. A. Saharian, The Generalized Abel-Plana Formula. Applications to Bessel Functions and Casimir Effect, Report1 IC/2000/14; hep-th/0002239.

  17. N. Birrell and P. Davis, Quantized Fields in Curved Space-time [Russian translation], Mir, Moscow (1984).

    Google Scholar 

  18. A. Erdelyi, et al., Higher Transcendental Functions, vol. 2, McGraw Hill, New York (1953).

    Google Scholar 

  19. L. Sh. Grigoryan and A. A. Saaryan, DAN Arm. SSR 83, 28 (1986); Izv. AN Arm. SSR, Fizika 22, 3 (1987).

    Google Scholar 

  20. A. A. Saharian, Phys. Rev. D63, 125007 (2001).

    Google Scholar 

  21. A. A. Saaryan, Izv. AN Arm. SSR, Fizika 23, 130 (1988).

    Google Scholar 

  22. A. Romeo and A. A. Saharian, Phys. Rev. D63, 105019 (2001).

    Google Scholar 

  23. A. Rezaeian and A. A. Saharian, Class. Quantum Gravity 19, 3625 (2002).

    Google Scholar 

  24. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions [Russian translation], Nauka, Moscow (1979).

    Google Scholar 

  25. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series: Special Functions [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  26. A. Romeo and A. A. Saharian, J. Phys. A35, 1297 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saharian, A.A. Quantum Vacuum Effects in the Gravitational Field of a Global Monopole. Astrophysics 47, 260–272 (2004). https://doi.org/10.1023/B:ASYS.0000031841.59310.c2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ASYS.0000031841.59310.c2

Navigation