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Abstract. When using squared error loss, bias and variance and their decomposition of prediction error are well
understood and widely used concepts. However, there is no universally accepted definition for other loss functions.
Numerous attempts have been made to extend these concepts beyond squared error loss. Most approaches have
focused solely on 0-1 loss functions and have produced significantly different definitions. These differences stem
from disagreement as to the essential characteristics that variance and bias should display. This paper suggests an
explicit list of rules that we feel any “reasonable” set of definitions should satisfy. Using this framework, bias and
variance definitions are produced which generalize to any symmetric loss function. We illustrate these statistics
on several loss functions with particular emphasis on 0-1 loss. We conclude with a discussion of the various
definitions that have been proposed in the past as well as a method for estimating these quantities on real data sets.
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1. Introduction

Over the last few years a great deal of research has been conducted on a family of classifiers
known as ensembles. Examples of such classifiers include, the Error Correcting Output Cod-
ing method (ECOC) (Dietterich & Bakiri, 1995), Bagging (Breiman, 1996a) and AdaBoost
(Freund & Schapire, 1996). Several theories have been proposed for the success of these
classifiers. One involves the use of margins (Schapire et al., 1998) while a second draws
connections to additive logistic regression (Friedman, Hastie, & Tibshirani, 2000). A third
theory postulates that the ensembles work because of the reduction in “variance”, caused by
the agglomeration of many classifiers into one classification rule. More recent work suggests
that, while Bagging may indeed reduce variance, Boosting generates reductions in the error
rate by decreasing both variance and bias. These results provide interesting insights and nu-
merous attempts have been made to postulate why this effect occurs. Unfortunately, this work
has been hampered by the fact that there are no universally accepted definitions for bias and
variance when one moves away from squared error loss. There have been many suggestions
to extend these concepts to classification problems. See for example Dietterich and Kong
(1995), Kohavi and Wolpert (1996), Breiman (1996b), Tibshirani (1996), Friedman (1996),
Wolpert (1997), Heskes (1998) and Domingos (2000). However, most of this work has con-
centrated on 0-1 loss functions and generally resulted in wildly differing definitions. The
differences can be attributed to disagreement over the criteria that variance and bias should
fulfill. Some definitions have clearly been constructed to produce an additive decomposition
of the prediction error. While others attempt to reproduce the standard characteristics of
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variance and bias in a general setting. Unfortunately, for general loss functions it is not possi-
ble to provide a single bias/variance definition that will simultaneously achieve both criteria.

In this paper we introduce bias/variance definitions which have several key advantages
over previously suggested approaches. One of the major difficulties in arriving at a sat-
isfactory bias-variance decomposition is that there are several properties one would want
that decomposition to have. Unfortunately, for general loss functions, there is no single
definition that has all these properties and as a result different authors have dropped one or
another, often without a particular rationale. In this paper we argue that these difficulties
arise because there are two sets of quantities of interest, not just one. In the special case of
squared error loss these quantities coincide but in general this will not be the case. In the
standard setting there are two reasonable interpretations of variance. One is that it provides
a measure of randomness of a quantity. We define this as the “variance”. The other interpre-
tation is that variance gives the increase in error rate caused by randomness which we call
the “variance effect”. Even though for squared error loss these quantities are numerically
equal, in general they are clearly not conceptually the same thing. Further, either or both
could be important depending on your objectives. Similarly there are two interpretations
of bias. One is that it represents the systematic difference between a random variable and
a particular value, e.g. the target, and the other is the degree to which that systematic dif-
ference contributes to error. We call these the “bias” and “systematic effect” respectively.
Again these two quantities need not be the same and both may be important. In this paper
we derive separate definitions for all four quantities. By providing two sets of definitions
we ensure that all the important characteristics are captured and allow the user to specify
which they are interested in.

Unlike previous work, the definitions in this paper are based on an explicitly stated set
of criteria for variance and bias, ensuring that they possess what are generally considered
the correct properties. For example the definitions attribute zero bias and variance to the
Bayes classifier which several previous methods have not. The definitions we propose are not
unique in fulfilling these criteria and reasonable people may disagree about what definitions
should follow from them. However, to enable such a discussion one first needs to establish
a set of reference criteria.

The third advantage of our approach is that the definitions are general to all symmetric loss
functions. Most of the previously suggested definitions of bias and variance are specifically
tailored to a small collection of loss functions such as 0-1 loss. It is obviously undesirable
to have to derive new definitions for each new loss function.

The paper is structured as follows. In Section 2 we provide a set of criteria which we feel
any definitions of bias and variance should fulfill. Based on these criteria we suggest the first
set of definitions which are designed to replicate the natural properties of bias and variance.
Section 3 develops the second set of definitions which provide an additive decomposition
of the prediction error into bias and variance effects. For certain loss functions these two
sets of definitions are identical but in general need not be. Section 4 gives examples where
these general definitions are applied to some specific loss functions, in particular to 0-1 loss
common in classification problems. In Section 5 we discuss some of the pros and cons of
the previously suggested definitions. Finally, Section 6 provides examples of the definitions
applied to simulated and real world data sets.
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2. General definitions for bias and variance

In this section we briefly examine the dual roles of bias and variance for squared error loss.
We then introduce three rules which we believe any reasonable definitions should satisfy
and use these rules to extend the concepts of bias and variance to arbitrary symmetric loss
functions.

2.1. Squared error loss

In the standard regression setting the variance of an estimator, Ŷ , is defined as EŶ (Ŷ − EŶ )2

or equivalently

Var(Ŷ ) = min
µ

EŶ (Ŷ − µ)2. (1)

We define the systematic part of Ŷ as

SŶ = arg min
µ

EŶ (Ŷ − µ)2. (2)

The notation SŶ is used to emphasize that S is an operator acting on the distribution of Ŷ .
In the standard squared error loss setting SŶ will be equal to EŶ Ŷ . Using this definition
one can view Var(Ŷ ) as a measure of the expected distance, in terms of squared error loss,
of the random quantity (Ŷ ) from its nearest non random number (SŶ ).

The squared bias of Ŷ in predicting a response Y is defined as

(EŶ Ŷ − EY Y )2 = (SŶ − SY )2. (3)

This means that squared bias can be viewed as a measure of the distance, in terms of squared
error, between the systematic parts of Ŷ and Y .

Finally we note, from the prediction error decomposition (Geman, Bienenstock, &
Doursat, 1992),

EY,Ŷ (Ŷ − Y )2︸ ︷︷ ︸
prediction error

= Var(Y )︸ ︷︷ ︸
irreducible error

+ bias2(Ŷ ) + Var(Ŷ )︸ ︷︷ ︸
reducible error

, (4)

that the expected loss of using Ŷ to predict Y is the sum of the variances of Ŷ and Y plus the
squared bias. The variance of Y is beyond our control and is thus known as the irreducible
error. However, the bias and variance of Ŷ are functions of our estimator and can therefore
potentially be reduced.

This shows us that Var(Ŷ ) serves two purposes.

1. Through (1) and (2) it provides a measure of the variability of Ŷ about SŶ ,
2. and from (4) it indicates the effect of this variance on the prediction error.
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Similarly bias(Ŷ ) serves two purposes.

1. Through (3) it provides a measure of the distance between the systematic components
of Y and Ŷ ,

2. and from (4) we see the effect of this bias on the prediction error.

This double role of both bias and variance is so automatic that one often fails to consider
it. However, when these definitions are extended to arbitrary loss functions it will not, in
general, be possible to define one statistic to serve both purposes. It is for this reason that
we propose two sets of bias/variance definitions.

2.2. General loss functions

Squared error is a very convenient loss function to use. It possesses well known mathematical
properties such as the bias/variance decomposition that make it very attractive to use.
However, there are situations where squared error is clearly not the most appropriate loss
function. This is especially true in classification problems where a loss function like 0-1
loss seems more realistic.

To extend the definitions of variance and bias in a systematic way we propose three
simple rules which it seems reasonable that any definitions should follow.

(a) When using squared error loss, any generalized definitions of bias and variance must
reduce to the corresponding standard definitions.

(b) The “variance” must measure the variability of the estimator Ŷ . Hence it must not
be a function of the distribution of the response variable, Y . Furthermore, it must be
nonnegative and zero iff Ŷ is constant for all training sets.

(c) The “bias” must measure the difference between the systematic parts of the response
and predictor. In other words it must be a function of Ŷ and Y only through SŶ and
SY . Furthermore, the bias should be zero if SŶ = SY .

Based on an earlier version of this paper, Heskes (1998) develops his bias/variance decom-
position using an almost identical set of requirements. The rules are also similar in spirit
to those given in the desiderata of Wolpert (1997). The first of these rules is self evident.
The second states that the variance of Ŷ should only depend on the distribution of Ŷ and
not on Y . In other words it will depend on the training rather than the test data. This rule
is desirable because it allows us to compare estimators across different response variables;
a low variance estimator will be low variance for any test set of data. We also require that
the variance be nonnegative and zero iff Ŷ does not deviate from SŶ . This is a natural
requirement since variance is a measure of the average distance of Ŷ from its systematic
component. The third rule states that the bias of Ŷ should depend only on the systematic
components of Ŷ and Y . Bias is viewed as a measure of the systematic difference between
the response and predictor. Hence, variability of Y about SY and of Ŷ about SŶ will have no
effect on the bias. A natural fourth requirement would be that the variance and bias provide
an additive decomposition of the prediction error. Unfortunately, as has been mentioned
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earlier, for general loss functions, this requirement is inconsistent with the first three. We
will return to a decomposition of the prediction error in the following section.

One might imagine that (a) would be sufficient to provide a unique generalization. How-
ever, this is not the case because of the large number of definitions for variance and bias that
are equivalent for squared error but not for other loss functions. For example, the following
definitions of variance are all equivalent for squared error.

(i) Var(Ŷ ) = minµ EŶ (Ŷ − µ)2 = EŶ (Ŷ − SŶ )2

(ii) Var(Ŷ ) = EŶ (Ŷ − EY Y )2 − (EŶ Ŷ − EY Y )2 = EŶ (Ŷ − SY )2 − (SŶ − SY )2

(iii) Var(Ŷ ) = EY,Ŷ (Y − Ŷ )2 − EY (Y − EŶ Ŷ )2 = EY,Ŷ (Y − Ŷ )2 − EY (Y − SŶ )2

Note EY,Ŷ indicates that the expectation is taken over the distribution of both the re-
sponse and the predictor. Let L be an arbitrary symmetric loss function i.e. L(a, b) =
L(b, a). Then the above three definitions lead naturally to three possible generalized
definitions,

Var(Ŷ ) = min
µ

EŶ L(Ŷ , µ) = EŶ L(Ŷ , SŶ ) (5)

Var(Ŷ ) = EŶ L(SY, Ŷ ) − L(SY, SŶ ) (6)

Var(Ŷ ) = EY,Ŷ L(Y, Ŷ ) − EY L(Y, SŶ ), (7)

where

SŶ = arg min
µ

L(Ŷ , µ) (8)

SY = arg min
µ

L(Y, µ). (9)

For general loss functions these last three equations need not be consistent. This inconsis-
tency accounts for some of the differences in the definitions that have been proposed. For
example, Tibshirani bases his definition of variance on (5) while Dietterich and Kong base
their’s more closely on (7). We will see later that both (5) and (7) are useful for measuring
different quantities. However, neither (6) nor (7) fulfill requirement (b) which leaves (5) as
a natural generalized definition of variance.

In a similar fashion there are several equivalent ways of defining the squared bias for
squared error loss.

(i) bias2(Ŷ ) = (EY Y − EŶ Ŷ )2 = (SY − SŶ )2

(ii) bias2(Ŷ ) = EY (Y − EŶ Ŷ )2 − EY (Y − EY Y )2 = EY (Y − SŶ )2 − EY (Y − SY )2

(iii) bias2(Ŷ ) = EŶ (Ŷ − EY Y )2 − Var(Ŷ ) = EŶ (Ŷ − SY )2 − E(Ŷ − SŶ )2

(iv) bias2(Ŷ ) = EY,Ŷ (Y − Ŷ )2 − Var(Y ) − Var(Ŷ ) = EY,Ŷ (Y − Ŷ )2 − EY (Y − SY )2 −
EŶ (Ŷ − SŶ )2

Therefore, requirement (a) leads to four possible generalized definitions.

bias2(Ŷ ) = L(SY, SŶ ) (10)
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bias2(Ŷ ) = EY L(Y, SŶ ) − EY L(Y, SY ) (11)

bias2(Ŷ ) = EŶ L(SY, Ŷ ) − EŶ L(Ŷ , SŶ )

bias2(Ŷ ) = EY,Ŷ L(Y, Ŷ ) − EY L(Y, SY ) − EŶ L(Ŷ , SŶ )

Again these definitions will not be consistent for general loss functions. However, (10) is
the only one that fulfills requirement (c). Therefore, for an arbitrary symmetric loss function
L we generalize the concepts of bias and variance in the following way.

Loss function

Squared error General

Variance EŶ (Ŷ − EŶ )2 EŶ L(Ŷ , SŶ )

SŶ = arg minµ EŶ (Ŷ − µ)2 SŶ = arg minµ EŶ L(Ŷ , µ)

Bias2 (EY Y − EŶ Ŷ )2 L(SY, SŶ )

In this formulation variance captures the average deviation between Ŷ and its closest
systematic value, measured relative to L . Similarly bias measures the distance between the
systematic parts of Ŷ and Y relative to L . Our definition of bias is equivalent to that of bias2

for squared error. Note that while these definitions fulfill the natural requirements of bias and
variance as defined by (a) through (c) they are not unique. For any given loss function there
may be more than one set of definitions that satisfy these requirements. This is particularly
true if the loss function is asymmetric. In this paper we have restricted to considering
symmetric loss functions because it is not clear what interpretation to put on variance and bias
in the asymmetric case. In addition to having the correct intuitive properties, for squared error
loss, these definitions will also provide an additive decomposition of the prediction error.
However, for general loss functions no such decomposition will be possible. In fact, we show
in Section 4.1 that one may construct examples where the variance and bias of an estimator,
Ŷ , are constant but the reducible prediction error changes as one alters the distribution of
the response variable, Y . In the next section we provide a second set of definitions which
form a decomposition of prediction error into variance and systematic effects.

3. Bias and variance effect

In this section we develop a second set of bias/variance definitions which provide an additive
decomposition of the prediction error. In Section 3.2 we detail the theoretical and experi-
mental relationships between these definitions and those proposed in the previous section.

3.1. An additive decomposition of prediction error

Often we will be interested in the effect of bias and variance. For example, in general,
it is possible to have an estimator with high variance but for this variance to have little
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impact on the prediction error. It is even possible for increased variance to decrease the
prediction error, as we show in Section 4.2. We call the change in error caused by vari-
ance the variance effect (VE) and the change in error caused by bias the systematic effect
(SE). For squared error loss the variance effect is equal to the variance and the system-
atic effect is equal to the bias squared. However, in general the relationships will be more
complicated.

Recall in the standard situation we can decompose the prediction error as follows.

EY,Ŷ (Y − Ŷ )2 = Var(Y )︸ ︷︷ ︸
irreducible error

+ bias2(Ŷ ) + Var(Ŷ )︸ ︷︷ ︸
reducible error

(12)

However, note that

Var(Y ) = EY (Y − EY Y )2

bias2(Ŷ ) = (EY Y − EŶ Ŷ )2 = EY [(Y − EŶ Ŷ )2 − (Y − EY Y )2]

Var(Ŷ ) = EŶ (Ŷ − EŶ Ŷ )2 = EY,Ŷ [(Y − Ŷ )2 − (Y − EŶ Ŷ )2]

Hence, if L S is squared error loss, then an equivalent decomposition to (12) is

EY,Ŷ L S(Y, Ŷ )︸ ︷︷ ︸
Error

= EY L S(Y, EY Y )︸ ︷︷ ︸
Var(Y )

+ EY [L S(Y, EŶ Ŷ ) − L S(Y, EY Y )]︸ ︷︷ ︸
bias2(Ŷ )

+ EY,Ŷ [L S(Y, Ŷ ) − L S(Y, EŶ Ŷ )]︸ ︷︷ ︸
Var(Ŷ )

(13)

This decomposition does not rely on any special properties of squared error and will hold
for any symmetric loss function. Notice that, in this formulation, bias2 is simply the change
in the error of predicting Y , when using EŶ Ŷ , instead of EY Y ; in other words it is the
change in prediction error caused by bias. This is exactly what we have defined as the
systematic effect. Similarly Var(Ŷ ) is the change in prediction error when using Ŷ , instead
of EŶ Ŷ , to predict Y ; in other words the change in prediction error caused by variance. This
is what we have defined as the variance effect. Therefore (13) provides a natural approach
to defining the systematic and variance effects for a general symmetric loss function, L .
Namely

VE(Ŷ , Y ) = EY,Ŷ [L(Y, Ŷ ) − L(Y, SŶ )]

SE(Ŷ , Y ) = EY [L(Y, SŶ ) − L(Y, SY )]

Notice that the definitions of variance and systematic effects respectively correspond
to (7) and (11). We now have a decomposition of prediction error into errors caused
by variability in Y i.e. Var(Y ), bias between Y and Ŷ i.e. SE(Ŷ , Y ) and variability in Ŷ
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i.e. VE(Ŷ , Y ).

EY,Ŷ L(Y, Ŷ ) = EY L(Y, SY )︸ ︷︷ ︸
Var(Y )

+ EY [L(Y, SŶ ) − L(Y, SY )]︸ ︷︷ ︸
SE(Ŷ ,Y )

+ EY,Ŷ [L(Y, Ŷ ) − L(Y, SŶ )]︸ ︷︷ ︸
VE(Ŷ ,Y )

= Var(Y ) + SE(Ŷ , Y ) + VE(Ŷ , Y )

As is the case with squared error loss, Var(Y ) provides a lower bound on the prediction
error. In the case of 0-1 loss it is equivalent to the Bayes error rate. Different approaches have
been taken to this term with some authors incorporating it (Tibshirani, 1996; Domingos,
2000) and others not (Dietterich & Kong, 1995). In practice Var(Y ) can either be estimated,
as we demonstrate in Section 6.2, or assumed to be zero by setting SY = Y . This allows an
individual to choose whether they wish to incorporate a Bayes error type term or not.

3.2. Relation between bias, variance and their effects

The following theorem summarizes the main theoretical relationships between variance and
variance effect and between bias and systematic effect.

Theorem 1. Provided the loss function is strictly convex;
1. Under squared error loss, the bias and systematic effects are identical. Similarly the

variance and variance effects are identical.
2. The bias and systematic effect of an estimator will be identical if the Bayes error rate is

zero i.e. Y = SY for all inputs.
3. An estimator with zero bias will have zero systematic effect.
4. An estimator with zero variance will have zero variance effect.

The proofs of these results are immediate from the fact that, for convex loss functions,
L(a, b) = 0 implies a = b. The first result draws the connection between bias, variance,
systematic and variance effects in the familiar setting of squared error loss. The second
result is particularly important because it implies that, provided the noise level in the data is
low, bias and the systematic effect will be very similar. When the noise level is high there is
no guaranteed relationship between these two quantities. However, the median correlation
between bias and systematic effect for the 6 data sets examined in Section 5 is 96.6%. This
suggests that in practice there may be a strong relationship between the two quantities. This
would mean that bias was a good predictor of its effect on the error rate. In other words, an
estimator that tends to be low bias may also tend to have a small contribution from bias to
the error rate.

Apart from the case where the variance is zero or the loss function is squared error
there is also no theoretical relationship between variance and variance effect. However, the
median correlation between these two numbers on the data sets of Section 5 is 81.1%, again
suggesting a strong relationship may exist in practice. In other words an estimator that tends
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to be low variance may also tend to have a small contribution from variance to the error
rate.

4. Alternatives to squared error loss

In this section we show how the definitions from Sections 2 and 3 can be applied to specific
loss functions.

4.1. Polynomial loss

The squared error loss function can be generalized using L(a, b) = |a − b|p. With p = 2
this gives squared error loss while p = 1 gives absolute loss. Using this loss function, the
generalized definitions of variance and bias from Section 2 become

Var(Y ) = EY L(Y, SY ) = EY |Y − SY |p (14)

Var(Ŷ ) = EŶ L(Ŷ , SŶ ) = EŶ |Ŷ − SŶ |p (15)

bias(Ŷ ) = L(SY, SŶ ) = |SY − SŶ |p (16)

where SY = arg minµ EY |Y − µ|p and SŶ = arg minµ EŶ |Ŷ − µ|p. While the systematic
and variance effects of Section 3 reduce to

VE(Ŷ , Y ) = EY,Ŷ (|Y − Ŷ |p − |Y − SŶ |p) (17)

SE(Ŷ , Y ) = EY (|Y − SŶ |p − |Y − SY |p) (18)

Notice that, with p = 2, SŶ = EŶ Ŷ and (14) through (18) reduce to the standard variance
and bias (squared) definitions.

Alternatively, with p = 1, SŶ becomes the median of Ŷ and (14) through (18) become

Var(Y ) = EY |Y − med(Y )| (irreducible error)

Var(Ŷ ) = EŶ |Ŷ − med(Ŷ )|
bias(Ŷ ) = |med(Y ) − med(Ŷ )|

VE(Ŷ , Y ) = EY,Ŷ (|Y − Ŷ | − |Y − med(Ŷ )|)
SE(Ŷ , Y ) = EY (|Y − med(Ŷ )| − |Y − med(Y )|)

While it will often be the case that an estimator with large bias will have a large systematic
effect and similarly an estimator with high variance will have a high variance effect, this
is not necessarily the case. A simple example using absolute loss provides an illustration.
Suppose Y is a random variable with the following distribution.

y ‖ 0 | 1 | 2‖ | |‖ | |
P(Y = y) ‖ a/4 | 1/2 | (2 − a)/4
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We choose to estimate Y using the constant Ŷ = 2. Note that both Var(Ŷ ) and VE(Ŷ , Y ) are
zero so the systematic effect is the only relevant quantity in this case. Clearly, for 0 < a < 2,
med(Y ) = 1 and med(Ŷ ) = 2 so bias(Ŷ ) = 1 and

SE(Ŷ , Y ) = EY (|Y − med(Ŷ )| − |Y − med(Y )|)
= 2 · a

4
+ 1 · 1

2
+ 0 · 2 − a

4
−

(
1 · a

4
+ 0 · 1

2
+ 1 · 2 − a

4

)

= a/2

Notice that for any value of a between 0 and 2 the median of Y is equal to 1 so the bias
remains constant as a changes. Clearly the systematic effect on the prediction error is not
a function of the bias. In fact, as a approaches 0 so does the systematic effect. Hence,
unlike squared error loss, it is possible to have bias which does not increase the prediction
error.

4.2. Classification problems

When training a classifier, the most common loss function is L(a, b) = I (a �= b). We
will now use the notation C and SC instead of Ŷ and SŶ to emphasize the fact that this
is a classification problem so our predictor typically takes on categorical values: C ∈
{1, 2, . . . , K } for a K class problem. We will also use the notation T and ST instead of Y
and SY as the response variable in this situation is often referred to as the target. Further
define

PT
i = PT (T = i)

PC
i = PC (C = i)

where i runs from 1 to K . Note that PC
i is based on averages over training sets. From (8)

and (9) we note that, with this loss function, the systematic parts of T and C are defined
as

ST = arg min
i

ET (I (T �= i)) = arg max
i

PT
i

SC = arg max
i

PC
i

ST is the Bayes classifier while SC is the mode of C . The variance and bias components
are defined as

Var(T ) = PT (T �= ST ) = 1 − max
i

PT
i

Var(C) = PC (C �= SC) = 1 − max
i

PC
i (19)

bias(C) = I (SC �= ST ) (20)
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VE(C, T ) = PT,C (T �= C) − PT (T �= SC)

= PT
SC −

∑
i

PT
i PC

i (21)

SE(C, T ) = PT (T �= SC) − PT (T �= ST )

= PT
ST − PT

SC (22)

Note that in general Var(C) and VE(C, T ) will not be equal. In fact they may not even be
related. Again we provide a simple example involving a three class problem to illustrate
this point. Suppose T , at a fixed input X , has the following distribution.

t ‖ 0 | 1 | 2‖ | |‖ | |PT (T = t |X ) ‖ 0.5 | 0.4 | 0.1

Further suppose that we have two potential classifiers, C1 and C2, and, at the same input X ,
they have the following distributions over training samples.

c ‖ 0 | 1 | 2‖ | |
PC1 (C1 = c|X )

∥∥ 0.4
∣∣ 0.5

∣∣ 0.1
PC2 (C2 = c|X )

∥∥ 0.1
∣∣ 0.5

∣∣ 0.4

For both classifiers the systematic part is, SC = 1. While the systematic part of T is ST = 0.
Hence both classifiers are “biased” and the systematic effect is 0.1. In other words, if C1

and C2 had no variability, so they always classified to Class 1, their error rate would be 0.1
above the minimum i.e. Bayes error rate. The two classifiers have identical distributions
except for a permutation of the class labels. Since the labels have no ordering any reasonable
definition of variance should assign the same number to both classifiers. Using (19) we do
indeed get the same variance for both.

Var(C1) = Var(C2) = 1 − 0.5 = 0.5

However, the effect of this variance is certainly not the same.

VE(C1, T ) = PT,C1 (T �= C1) − PT (T �= SC1) = 0.59 − 0.6 = −0.01

VE(C2, T ) = PT,C2 (T �= C2) − PT (T �= SC2) = 0.71 − 0.6 = 0.11

The variance of C1 has actually caused the error rate to decrease while the variance of C2

has caused it to increase. This is because the variance in C1 is a result of more classifications
being made to Class 0 which is the Bayes class while the variance in C2 is a result of more
classifications being made to Class 2. Friedman (1996) noted, that for 0-1 loss functions,
increasing the variance can actually cause a reduction in the error rate as we have seen with
this example.
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5. A comparison of definitions

Dietterich and Kong (1995), Kohavi and Wolpert (1996), Breiman (1996b), Tibshirani
(1996), Heskes (1998) and Domingos (2000) have all provided alternative definitions
for the bias and variance of a classifier. In this section we discuss these definitions
and compare them with the more general ones provided in Sections 2 and 3.

Kohavi and Wolpert define bias and variance of a classifier in terms of the squared er-
ror when comparing PC

i to PT
i . For a two class problem they define the squared bias as

(PT
1 − PC

1 )2 and the variance as PC
1 (1 − PC

1 ) which are as one would expect for squared
error. These definitions suffer from the fact that they attempt to assess how closely the
distribution of the classifier PC

i matches the distribution of the target PT
i . However, in

general one does not necessarily want these probabilities to match. For example a clas-
sifier that assigns probability 1 to arg maxi PT

i i.e. PC
ST = 1 will produce the lowest

expected (Bayes) error rate yet the Kohavi and Wolpert approach would assign a non-
zero bias to this classifier. In general one is more interested in whether C = T than
whether PT

i = PC
i . In fact, the Bayes classifier will always have PT

i �= PC
i unless

PT
i = 1.
Dietterich and Kong define bias = I (P(C �= T ) ≥ 1/2) and var = P(C �= T ) − bias.

This gives a decomposition of the prediction error into

P(C �= T ) = var + bias

From these definitions we note the following.

– Although not immediately apparent, this definition of bias coincides with (20) for the 2
class situation.

– No allowance is made for any noise or Bayes error term. As a result the bias estimate
will tend to be greatly exaggerated.

– For K > 2 the two definitions are not consistent which can be seen from the fact that
for our definition of bias the Bayes classifier will have zero bias while for Dietterich and
Kong’s it is possible for the Bayes classifier to have positive bias.

– The variance term will be negative whenever the bias is non zero.

Breiman’s definitions are in terms of an “aggregated” classifier which is the equivalent
of SC for a 0-1 loss function. He defines a classifier as unbiased, at a given input, X , if
ST = SC and lets U be the set of all X at which C is unbiased. He also defines the
complement of U as the bias set and denotes it by B. He then defines the bias and variance
over the entire test set as

bias(C) = PX (C �= T, X ∈ B) − PX (ST �= T, X ∈ B)

var(C) = PX (C �= T, X ∈ U ) − PX (ST �= T, X ∈ U )
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This is equivalent to defining bias and variance at a fixed X as

bias =
{

P(C �= T ) − P(ST �= T ) ST �= SC
0 ST = SC

var =
{

P(C �= T ) − P(ST �= T ) ST = SC
0 ST �= SC

This definition has the following appealing properties.

– Bias and variance are always non-negative.
– If C is deterministic then its variance is zero (hence SC has zero variance).
– The bias and variance of the Bayes classifier (ST ) is zero.

However, this approach has a couple of significant problems. First, it can not easily be
extended to loss functions other than 0-1. Second, at any fixed input X the entire reducible
error, i.e. total error rate less Bayes error rate, is either assigned to variance, if C is unbiased
at X , or to bias, if C is biased at X . It is reasonable to assign all the reducible error to
variance if C is unbiased because in this case if C did not vary it would be equal to the
Bayes classifier. In fact for these inputs Breiman’s definitions coincide with those of this
paper. However, when C is biased it is not reasonable to assign all reducible error to bias.
Even when C is biased, variability can cause the error rate to increase or decrease (as
illustrated in Section 4.2) and this is not reflected in the definition.

Tibshirani defines variance, bias and a prediction error decomposition for classification
rules (categorical data). Within this class of problems his definition of variance is identical
to (19). He defines a quantity AE (Aggregation Effect), which is equal to (21), and for most
common loss functions his definition of bias is equivalent to (22). This gives the following
decomposition of prediction error,

P(C �= T ) = P(T �= ST ) + Bias(C) + AE(C)

which is identical to ours. However, it should be noted that although these definitions are
generalizable to any symmetric loss function they do not easily extend beyond the class of
“classification rules” to general random variables, e.g. real valued. It is comforting that when
we restrict ourselves to this smaller class the two sets of definitions are almost identical.

Based on an earlier version of this paper, Heskes suggests using the rules from Section 2.2
to construct a bias/variance decomposition for a Kullback-Leibler class of loss functions.
This measures the error between the target density q(t) and the classifier’s density p̂(t).
He defines variance and bias terms which are an exact analog of those presented in this
paper when measuring error in densities. It is shown that the error can be decomposed
into an additive combination of the two terms. Interestingly, for this particular class of
loss functions, as with squared error, it is possible to define a single quantity to serve the
purpose of bias and systematic effect and a single quantity to serve the purpose of variance
and variance effect. This is an elegant approach but, unfortunately, does not apply to all loss
functions. For example it does not directly apply to 0-1 loss functions. An attempt is made to
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extend these results to zero-one loss by taking the limit case of a log-likelihood-type error.
When this is performed the following decomposition is produced for a fixed value of T .

P(C �= T ) = (P(C �= T ) − P(C �= SC)) + P(C �= SC)

The last term is defined as variance and is identical to the variance definitions in this paper
and that of Tibshirani. The first term, when summed over the distribution of T , is defined as
a combination of bias and intrinsic noise. Unfortunately, as the author points out, in taking
the limiting case the first term can no longer be considered the error of the systematic (or
average) classifier. Hence it losses any natural interpretation as bias.

Domingos provides definitions of bias and variance which are identical to those in this
paper. He then suggests the following decomposition of the error term into

ET,C L(T, C) = c1Noise + Bias + c2Variance (23)

where c1 and c2 are factors that depend on the loss function. For example for zero one loss,
with two classes, c1 = 2P(T = ST ) − 1 and c2 = ±1. While (23) appears to provide an
additive decomposition of the error rate c1 and c2 are in fact functions of bias and variance.
It can be shown that c1 = (1 − 2Bias)(1 − 2Variance) and c2 = 1 − 2Bias so that the
decomposition can be rewritten in several alternative forms. For example

ET,C L(T, C) = (1 − 2Bias)(1 − 2Variance)Noise + Bias + (1 − 2Bias)Variance

Thus, the decomposition is multiplicative. It would be interesting to study the relation-
ship between Friedman’s and Domingos’ theories, both of which suggest a multiplicative
decomposition. See Friedman (1996) for further discussion of several of these definitions.

6. Experiments

In this section we demonstrate the definitions of Sections 2 and 3 on several data sets. In Sec-
tion 6.1 we use simulated data to give a numerical comparison of many of the bias/variance
definitions that were discussed in Section 5. Then in Section 6.2 we illustrate how to estimate
variance, bias, variance effect and systematic effect on real data sets. These experiments
demonstrate how one might implement the various bias/variance quantities on real data sets.
They are not intended to provide any empirical justification for the definitions themselves.

6.1. Experimental study of different definitions

To provide an experimental comparison of some of the definitions for variance and bias that
have been suggested, we performed two simulation studies. The first simulation consisted of
a classification problem with 26 classes, each distributed according to a standard bivariate
normal with identity covariance matrix but differing means. Many independent training
sets with 10 observations per class were chosen. On each of these training sets 7 different
classifiers were trained and their classifications, on a large set of test points, were recorded.
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Table 1. Bias and variance for various definitions calculated on a simulated data set with 26 classes.

Classifier LDA ECOC Bagging Tree 1 NN 5 NN 11 NN

Bias (K and W) 2.5 0.7 1.7 1.8 0.1 0.3 0.7

Variance (K and W) 7.4 13.8 13.1 16.8 16.0 12.4 11.0

Noise (K and W) 14.9 14.9 14.9 14.9 14.9 14.9 14.9

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Bias (Dietterich) 21.5 27.4 27.7 32.2 27.7 25.3 24.1

Bias less Bayes error −1.6 4.3 4.6 9.1 4.6 2.2 1.0

Variance (Dietterich) 3.3 1.9 2.0 1.3 3.3 2.3 2.4

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Bias (Breiman) 0.0 0.4 1.1 1.6 0.1 0.0 0.0

Variance (Breiman) 1.7 5.9 5.5 8.8 7.8 4.5 3.4

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Bias 1.6 5.2 6.1 8.5 1.6 1.2 0.9

Variance 10.5 20.6 19.3 25.1 24.8 18.8 16.3

Systematic effect 0.0 0.5 1.5 2.2 0.0 0.0 0.0

Variance effect 1.7 5.8 5.1 8.2 7.9 4.5 3.5

Bayes error 23.1 23.1 23.1 23.1 23.1 23.1 23.1

Prediction error 24.8 29.3 29.7 33.5 31.0 27.6 26.5

Based on the classifications from the different training sets estimates for bias and variance,
averaged over the input space, were calculated for each of the classifiers. The 7 different
classifiers were linear discriminant analysis (LDA) (Fisher, 1936), ECOC (Dietterich &
Bakiri, 1995), bagging (Breiman, 1996a), a tree classifier (Breiman et al., 1984), and 1, 5
and 11 nearest neighbors (Fix & Hodges, 1951; Cover & Hart, 1967; Stone, 1977). The
ECOC and bagging classifiers were both produced using decision trees as the base classifier.
On the first 4 classifiers 100 training sets were used. However, it was discovered that the
estimates of bias for nearest neighbors were inaccurate for this number so 1000 training
sets were used for the last 3 classifiers. Estimates for bias and variance were made using
Dietterich, Breiman and Kohavi & Wolpert’s definitions as well as those given in this paper.
The results are shown in Table 1.

Notice that LDA performs exceptionally well. This is not surprising because LDA is
asymptotically optimal for mixtures of normals as we have in this case. Both Breiman’s
bias estimate and the systematic effect indicate no effect from bias. This is comforting since
we know that LDA has the correct model for this data set. The estimate of bias from (20)
is slightly above zero, 1.6%. This is due to the relatively low number of training samples.
It can be shown that this estimate will converge to zero as the number of training sets
increases. Since the bias estimate is averaged over the input space, one can interpret it as
the proportion of the space where the classifier tends more often to classify to a class other
than the Bayes class. For example the ECOC method can be seen to classify to a class other
than the Bayes class over about 5% of the input space, indicating a fairly low level of bias.

Also notice that Breiman’s bias and variance estimates are very similar to the systematic
and variance effect estimates from (22) and (21). His estimate of the bias contribution seems
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to be consistently below or equal to that of the systematic effect. This slight difference
between the two definitions is due to the fact that, at any given test point, all the reducible
error is attributed to either bias or variance (see Section 5). Dietterich’s definitions produce
quite different estimates. They tend to attribute almost all the error rate to bias rather than
variance. This is partly due to the fact that no allowance is made for the positive Bayes
error of 23.1%. However, even when this is subtracted off there are still some anomalies
such as LDA having a negative bias. Kohavi and Wolpert provide their own definition for
noise which does not correspond to the standard Bayes error. In general it produces a lower
estimate. In turn this tends to cause their variance term to be inflated relative to the variance
effect defined in this paper or Breiman’s definition of variance. The Kohavi and Wolpert
definition of bias provides roughly similar estimates to that of Breiman and of the systematic
effect from this paper.

It is well known that the nearest neighbors classifier tends to experience decreased vari-
ance in its classifications when the number of neighboring points are increased. One can
gain an idea of the effect on variance and bias by examining the three nearest neighbor
classifiers. As one would expect, the variance, and variance effect, decrease as the number
of neighbors increase. However, the bias estimate also decreases slightly which is not what
we would expect. This happens with most of the definitions. In fact the bias is not decreas-
ing. There is a tendency to overestimate bias if it is very low because of the skewed nature
of the statistic. 11-nearest neighbors averages each of its classifications over 11 points for
each training data set so is using 11,000 data points. This produces a good estimate for bias.
However, 1-nearest neighbors is only using 1,000 data points which gives a less accurate
estimate. It is likely in both cases that the true bias is almost zero. This is evidenced by the
fact that the systematic effect is zero.

The ECOC and Bagging classifiers are both examples of so called ensembles or majority
vote classifiers. They are constructed by combining the classifications from 100 of the
tree classifiers from Table 1. According to the theories of Section 1 these methods should
produce lower variance classifiers. However, while both methods do reduce the variance,
and variance effect, they also reduce the bias, and systematic effects. Clearly the reason
for the success of these methods is more complicated than simply a reduction in variance.
Finally note that, while in theory there need not be any relationship between bias and
systematic effect and between variance and variance effect, in this particular example there
is a strong relationship. For example, the correlation between variance and variance effect,
among the 7 classifiers, is 99%. As observed earlier there is some evidence that in practice
bias and variance may be good predictors for systematic and variance effects.

The second data set is similar to the first except that in this one there were only 10
classes and 5 training data points per class. For this data set eight classifiers were used.
They were LDA, ECOC, bagging, tree classifiers with 5, 8 and 13 terminal nodes, 1-nearest
neighbor and 11-nearest neighbor. The results are presented in Table 2. Again LDA performs
extremely well, with a very low bias and Breiman’s definitions produce similar results to
those of (21) and (22). Notice that Dietterich’s definition can result in a negative variance.
Also note that while in theory the variance effect can be negative it is not for any of the
examples we examine. As the number of terminal nodes in a tree increases we would expect
its bias to decrease and variance to increase. In this example the bias, and systematic effect,
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Table 2. Bias and variance for various definitions calculated on a simulated data set with 10 classes.

Classifier LDA ECOC Bagging Tree5 Tree8 Tree13 1 NN 11 NN

Bias (K and W) 1.2 0.8 0.9 15.2 2.8 1.1 0.1 1.9

Variance (K and W) 8.5 15.0 13.3 27.7 22.3 17.7 16.3 17.4

Noise (K and W) 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Bias (Dietterich) 12.5 24.8 20.8 73.3 41.0 28.8 24.5 18.3

Bias less Bayes error −8.0 4.3 0.3 52.8 20.5 8.3 4.0 −2.2

Variance (Dietterich) 11.4 5.2 7.4 −16.1 −2.8 11.7 6.1 15.3

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Bias (Breiman) 0.0 0.6 0.6 17.3 2.7 0.8 0.0 0.1

Variance (Breiman) 3.3 8.8 7.2 19.3 13.9 11.7 10.1 12.9

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Bias 1.3 5.5 5.0 33.0 13.3 5.8 1.0 1.5

Variance 12.0 21.4 19.3 43.8 30.1 26.0 23.7 25.4

Systematic effect 0.0 0.8 0.9 17.5 3.3 1.0 0.0 0.1

Variance effect 3.3 8.7 7.0 19.1 13.4 11.5 10.1 12.9

Bayes error 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5

Prediction error 23.9 30.0 28.4 57.1 37.2 33.0 30.6 33.5

do decrease. However, the variance, and variance effect, also decrease. This can happen if,
by increasing the number of terminal nodes, we average over less variable data points.

In summary, it appears that Dietterich’s definitions assign far too high a proportion of
the prediction error to bias rather than variance. His definitions do not take into account the
Bayes error rate. As this error rate increases, the bias, by his definition, will also tend to
increase which does not seem sensible. This definition of bias may work better for a two
class problem. Alternatively the definitions of Kohavi and Wolpert, while allowing for a
noise term, tend to underestimate the Bayes error rate and and as a consequence overestimate
the variance component. Both Breiman’s definitions and those presented in this paper seem
to produce reasonable estimates with Breiman’s tending to put slightly more weight on
variance.

6.2. Estimating bias and variance on real-world data sets

Finally we illustrate how to estimate bias, variance, systematic effect, variance effect and
Bayes error on four real world data sets from the UCI repository. The data sets were glass,
breast cancer, vowel and dermatology. Estimating bias, systematic effect and Bayes error
rate is difficult when the underlying distribution is unknown. Previous authors (Kohavi &
Wolpert, 1996; Domingos, 2000) have solved this problem by assuming the noise level to be
zero. This allows bias to be estimated but unfortunately tends to result in it being drasticly
overestimated because any variability in the target is added to the bias term. This is less of
a problem if one is only interested in the change in bias or variance for given classifiers.
However, often one is attempting to decide whether bias or variance are the primary cause
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of error in a classifier. If bias is the main problem one should use a more flexible classifier
while the reverse is true if variance is the problem. By assuming a noise level of zero and
hence overestimating bias one could easily be lead to fit a more flexible classifier when in
reality a less flexible classifier is required. Hence we take an alternative approach to the
problem by estimating the noise level using the following method. If multiple targets are
observed at each input then the noise level can be estimated by calculating the proportion
of targets that differ from the most common class. In practice it is rare to observe multiple
targets at each input so we use targets at nearby inputs. Hence a decision must be made as
to the size of the neighborhood to be used. In this study it was found that using targets at
the 3 closest inputs to each given target provided reasonable estimates of noise level and
hence bias. This procedure implicitly assumes that the probability distribution of targets
is continuous over the input space. However, this does not seem to be an unreasonable
assumption in most situations and is likely to produce more accurate estimates than setting
the noise level to zero.

We were able to calculate ST by taking the most common class among the 3 nearest
neighbors to each input. This allowed the Bayes error rate to be estimated. To calculate the
other quantities we used a Bootstrap approach (Efron & Tibshirani, 1993). This involves
resampling the original data to produce new data sets with similar distributions to the
original. We produced 50 so called bootstrap data sets and fit the various classifiers to each
one in turn. From these fits we estimated SC , the most commonly classified class for each
input. This in turn meant that bias, variance, systematic effect and variance effect could be
estimated. A cross-validation procedure was used to provide estimates for a new test data
set. Cross-validation is performed by removing a portion of the data (e.g. 10%), training the
classifier on the remainder and producing predictions on the left out data. This procedure is
then repeated by removing another portion of the data until a prediction has been produced
for each input. Five fold cross-validation, i.e. leaving out 20% of the data at each step, was
performed on all the data sets except the Vowel data which already had a separate test set.
The 7 classifiers used were LDA, Bagging (using 20 trees each with 5 terminal nodes), 5
and 10 terminal node trees and 1, 5 and 11 nearest neighbors. The results are shown in
Tables 3 through 6.

We examine the glass data first. The Bayes error is high for this data. If it was assumed
to be zero the systematic effect terms would all increase by about 17% causing a possibly
undue focus on bias as the cause of errors. Despite the adjustment for the Bayes error the
bias and systematic effect terms for LDA are still large. This indicates that the data does

Table 3. Estimates for bias, variance, systematic effect and variance effect on glass data set.

Classifier LDA Bagging Tree 5 Tree 10 1 NN 5 NN 11 NN

Bias 54.6 30.2 33.1 28.5 11.6 18.7 31.4

Variance 16.4 19.2 19.5 23.2 12.1 20.4 15.7

Systematic effect 39.0 18.3 20.2 12.4 9.2 13.0 22.2

Variance effect 1.2 2.8 2.1 6.5 3.7 5.4 0

Bayes error 17.0 17.0 17.0 17.0 17.0 17.0 17.0

Prediction error 57.2 38.1 39.3 35.9 29.9 35.4 39.2
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Table 4. Estimates for bias, variance, systematic effect and variance effect on breast cancer data set.

Classifier LDA Bagging Tree 5 Tree 10 1 NN 5 NN 11 NN

Bias 2.6 2.8 2.6 2.2 2.2 1.4 1.7

Variance 0.4 3.2 3.8 3.7 1.7 1.8 1.1

Systematic effect 2.2 1.6 1.5 0.9 2.0 0.6 0.9

Variance effect 0 1.5 2.4 2.4 0.1 0.9 0.3

Bayes error 2.0 2.0 2.0 2.0 2.0 2.0 2.0

Prediction error 5.0 5.1 5.9 5.3 4.1 3.5 3.2

Table 5. Estimates for bias, variance, systematic effect and variance effect on vowel data set.

Classifier LDA Bagging Tree 5 Tree 10 1 NN 5 NN 11 NN

Bias 55.6 64.3 64.9 58.0 43.5 39.8 40.3

Variance 21.0 51.6 51.4 33.7 12.4 22.3 26.0

Systematic effect 55.6 63.9 65.0 58.0 43.5 39.8 40.3

Variance effect −1.1 7.1 5.9 4.7 0.9 5.2 6.6

Bayes error 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Prediction error 54.7 71.2 71.1 62.9 44.6 45.2 47.1

Table 6. Estimates for bias, variance, systematic effect and variance effect on dermatology data set.

Classifier LDA Bagging Tree 5 Tree 10 1 NN 5 NN 11 NN

Bias 3.0 11.9 11.1 6.0 2.2 1.8 2.9

Variance 2.2 5.1 5.4 5.4 2.0 2.6 2.3

Systematic effect 1.0 9.4 8.8 2.3 1.5 0.4 1.5

Variance effect 1.3 −0.6 −0.5 2.9 0.8 1.6 0.7

Bayes error 2.0 2.0 2.0 2.0 2.0 2.0 2.0

Prediction error 4.3 10.8 10.3 7.1 4.3 4.0 4.2

not follow a Gaussian distribution. However, we note that the variance and variance effect
terms are very low indicating that a large reduction in error may be caused by fitting a more
flexible classifier. Such a classifier would likely increase the error from variance but more
than offset this by a decrease in the error from bias. The tree classifier results are as we
would predict. Namely decreasing bias and systematic effects and increasing variance and
variance effects as the number of terminal nodes increases. The nearest neighbor results
are also as we would predict with increasing bias and decreasing variance as the number
of neighbors increases. The lone exception is the variance term for 5 nearest neighbors
which increases over 1 nearest neighbors. This is likely a result of ties among multiple
classes which nearest neighbors breaks at random. Such ties are not possible with 1 nearest
neighbors. This effect was apparent in all four data sets. Finally we note that even after
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taking account of the large Bayes error rate all 7 classifiers clearly exhibit considerably
more bias than variance indicating reductions in the error rate could be achieved by fitting
a more flexible classifier such as a neural network.

The cancer data set has a much lower Bayes error and all 7 classifiers perform fairly well.
Again LDA has very low variance and variance effect but also low bias indicating that, in this
case, its model assumptions are more reasonable. As we would expect the 10 node tree clas-
sifier has a reduced bias over the 5 node version. Interestingly this does not appear to come
at the expense of increased variance. The Bagging classifier causes a small reduction in vari-
ance and variance effect over the 5 node tree classifier. The variance and systematic effects
are very low for all three nearest neighbor classifiers which makes them difficult to compare.

Interestingly, given the difficulty of the Vowel data set, the Bayes error is extremely
low. All the classifiers have very high bias relative to their variance. Clearly more flexible
classifiers are required to fit the test data. This is highlighted by the fact that the 10 node tree
has a significantly lower bias than the 5 node tree. Notice the extremely strong relationship
between bias and systematic effect for all classifiers (over a 99.99% correlation). This is
because the Bayes error rate is close to zero so that statement 2 of Theorem 1 applies to
this data.

The dermatology data set also has a fairly low Bayes error rate. However, notice the
effect that including this term has on the variance and systematic effect terms for the 10
node tree. When the Bayes error rate is taken account of we notice that the variance effect
is larger than the systematic one suggesting that a classifier with fewer nodes may produce
a lower error rate. However, if the Bayes error rate is assumed to be zero the systematic
effect increases to 4.3 which is significantly larger than the variance effect and incorrectly
implies that a tree with more nodes should be fit.

7. Conclusion

In this paper we have produced two sets of bias/variance definitions. The first satisfies natural
properties such as measuring variability of an estimator and distance between the systematic
parts of the estimator and response. The second provide an additive decomposition of the
prediction error in terms of the “effects” of bias and variance. The definitions apply to all
symmetric loss functions and types of predictors/classifiers, i.e. real valued or categorical.
When squared error loss is used with real valued random variables they reduce to the standard
definitions but in general allow a much more flexible class of loss functions to be used. While,
in theory it is possible for there to be little or no relationship between variance and variance
effect and between bias and systematic effect, in practice there is some evidence that these
quantities are highly correlated. This means that one may be able to use variance and bias
to predict the systematic and variance effects of an estimator/classifier on a new data set.
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