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Abstract This paper extends the currently accepted model of inductive bias by identifying six categories of
bias and separates inductive bias from the policy for its selection (the inductive policy). We analyze existing
"bias selection" systems, examining the similarities and differences in their inductive policies, and identify three
techniques useful for building inductive policies. We then present a framework for representing and automatically
selecting a wide variety of biases and describe experiments with an instantiation of the framework addressing
various pragmatic tradeoffs of time, space, accuracy, and the cost of errors. The experiments show that a common
framework can be used to implement policies for a variety of different types of bias selection, such as parameter
selection, term selection, and example selection, using similar techniques. The experiments also show that different
tradeoffs can be made by the implementation of different policies; for example, from the same data different rule
sets can be learned based on different tradeoffs of accuracy versus the cost of erroneous predictions.
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1. Introduction

Inductive learning takes place within a conceptual framework and set of assumptions
(Buchanan, Johnson, Mitchell, & Smith, 1978). The term inductive bias refers to the
choices made in designing, implementing and setting up an inductive learning system that
lead the system to learn one generalization instead of another (Mitchell, 1980). Unfortu-
nately, different domains, tasks, and situations may require different inductive biases. We
present a model of inductive learning that includes not only an explicit bias, but the additional
considerations involved in representing and selecting an inductive bias. These extra consid-
erations, which deal with relationships between the learning program and the user, such as
the costs of learning and using incorrect relationships, we term pragmatic considerations.

An inductive policy is a strategy for selecting inductive bias based on a task's pragmatic
considerations.' An inductive policy addresses tradeoffs to be made in a particular domain.
For example, higher accuracy achieved by looking at more examples may be traded for the
ability to learn within a given resource bound. There are many dimensions to inductive bias,
so an inductive policy may be considered to select biases by searching a multi-dimensional
space. A satisfactory bias is one that satisfies some criteria defined by the pragmatic
considerations, both in terms of the performance of the learned concept description (e.g.,
with respect to accuracy and error cost) and in terms of the performance of the learning
system (e.g., with respect to resource constraints).

We show that not only is it important to represent inductive bias explicitly, but that a
framework where inductive policy is represented explicitly can effectively represent dif-
ferent policies for selecting bias under different circumstances. Types of bias selection
previously considered separately can be treated uniformly within this framework, e.g.,
parameter selection, term selection, and example selection. A system built around this
framework will be flexible; it will be able to obtain different behavior from the learning
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system—even on the same training data—based on different considerations. In particular,
we address pragmatic considerations of space, time, accuracy, and error cost.

2. Inductive Bias & Inductive Policy

The dual-space model of induction proposed by Simon and Lea (1974) makes explicit the
rule and example spaces (sr and se in Fig. 1), the methods of searching the spaces (mr

and me), the relations between the examples and mr (pe,r), and the relations between the
rules and me (pr,e)- The relations, pe-r and pr-e, correspond to the ways in which the rules
and examples interact in learning; e.g., examples are used to evaluate rules, and rules can
be used to guide intelligent example selection. In principle, any of these can be changed
independently of the others. For example, the same method (mr) can be used to search the
rule space with different ways of using the examples to evaluate the rules (pe,r)-

2

2.1. An Extended Model of Inductive Bias

We add to this model an explicit inductive bias, which includes choices that instantiate all
of the specifiable parts of the Simon and Lea model: sr, se, mr, me, pe,r, and pr.e. For any
particular learning system, some of these choices may be built in. However, many learning
systems allow one to change the bias along one or more of these six dimensions. For exam-
ple, most learning programs allow one to change the set of terms used to describe hypotheses.

The space of different inductive biases has been partitioned into choices that restrict the
space of hypotheses considered (restriction biases) and choices that place an ordering on the
space of hypotheses (preference biases) (Dietterich, 1991; Rendell, 1986; Utgoff, 1986).
Very little work discusses bias relating to the example space (as such); one exception is
the work of Ruff (1990). In Section 5.3, below, we describe how a system can deal with
pragmatic considerations involving the example space using the same techniques used for
bias selection along other dimensions.

Figure 1. Inductive bias defines the rule and example spaces (sr and se), the methods of searching the spaces
(mr and me), the relations between the examples and m r(p e , r) , and the relations between the rules and me (pr,e).
Solid arrows indicate relationships emphasized in the original model of induction as a problem of searching two
spaces (Simon & Lea, 1974).
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Biases may also be partitioned according to the part of the learning problem that they
affect. Rendell, et al. (1987) partition biases into representational manifestations and
algorithmic manifestations. Representational manifestations include constraints on the de-
scription of objects (e.g., hypotheses). These correspond to the definitions of the rule space
and can be extended to the example space (sr and se). Algorithmic manifestations include
constraints on the construction, transformation and verification of hypotheses. These would
then correspond to the methods for searching the spaces (mr and me). Most learning pro-
grams have parameters with which one can change the representational or algorithmic bias.

2.2. Inductive Policy

Although the concept of inductive bias has been analyzed and formalized (Haussler, 1988;
Rendell, 1986; Utgoff, 1984), there has not been a clear distinction between the bias choice
and the strategy for making a bias choice. To avoid confusion, we call a choice of specific
sr, mr,se,me, P(e,r, or pr,e a bias choice. Inductive policy denotes the strategy used for
making bias choices. Inductive policy decisions involve addressing tradeoffs and thus
guide the selection of a suitable bias. These decisions are based on underlying assumptions
of each domain, of the learning goals within the domain, and of each particular investigator.
Bias comprises syntactic and semantic choices; the inductive policy addresses pragmatics—
the relationship between the bias choices and the goals of the people using the learning
program. In Section 4 we discuss how inductive policies can be represented explicitly in
a system.

An example of underlying assumptions in a domain concerns the total number of examples
available for learning and the amount of processing power. With many examples and little
computing power, the machine learning researcher immediately wants to consider different
strategies from those he or she would consider if the opposites were true, e.g., (i) use a
relatively inexpensive algorithm, (ii) use a technique for selecting a subset of examples
(intelligent or random), or (iii) use an incremental learning method.

Just as early learning systems were constructed with an implicit fixed bias, more recent
learning systems have an implicit fixed policy for selecting bias when they include bias
selection at all. In Section 3 we analyze existing systems with respect to the policies they
use for searching their bias spaces. We identify three techniques that are used in many
inductive policies, which we will call inductive policy techniques. These techniques are
the beginnings of a tool kit for building inductive policies for new problems. We simplify
by describing a bias as either sufficient or insufficient, where "sufficient" means that a
satisfactory concept description can be learned with that bias.

2.3. Techniques for Building Inductive Policies

By analyzing existing systems for selecting inductive bias, we can identify techniques that
have been used in their inductive policies. Three techniques are commonly used and are
not specific to any one category of bias:

• adding structure to the bias space
• using learned knowledge for bias-space search guidance
• constructing a learned theory across multiple biases
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Adding structure to the bias space involves adding detail to any or all of the six categories
of bias (Fig. 1), using domain knowledge and knowledge regarding various biases to order
or to restrict the bias-space search.3 For example, consider a problem where there are
too many features for feasible learning within a limited amount of space. Suppose we are
relatively sure that there will be many (simple) redundant, satisfactory descriptions. We can
then restrict the search to consider only feature subsets of size k, where k is small, and still
have a good chance of finding a sufficient bias. Other work has considered optimal policies
for ordering search biases based on cost and knowledge regarding probable sufficiency
(Slagle, 1964; Simon & Kadane, 1975; Korf, 1985; Provost, 1993).

The second technique for building inductive policies is to use the results of learning with
the first i biases to determine an appropriate bias i + 1. This assumes that new biases
can be formed from existing biases either by altering them or by combining elements of
several previous biases, and that an evaluation function can be defined such that biases that
give high scores often lead to biases that are sufficient. Let us return to our example of
term selection, but without assuming much redundancy among the large number of terms.
Let us assume that a restriction has been placed on the bias space (for space reasons, as
described above) that limits bias selection to subsets of size k (for small k) from a very
large set of possible terms. This bias space may be very sparse if there is no information
about possible relevance of the various terms. One simple method of guiding the search of
the bias space is to keep track of which terms were used in partial concept descriptions that
perform well (e.g., the best so far), and add these to subsequent biases, hopefully increasing
the probability that a subsequent bias will be sufficient.

A third technique is to build a concept description from elements learned in several
biases, which we call theory construction across biases. Using such a technique assumes
that (i) coherent concept descriptions can be constructed from partial concept descriptions;
(ii) these partial concept descriptions can be evaluated for probable goodness, and (iii)
partial concept descriptions that evaluate well often lead to concept descriptions that are
satisfactory (as in rule learners (Clearwater & Provost, 1990; Michalski, Mozetic, Hong, &
Lavrac, 1986)). An important side effect of this type of technique is that the partial concept
description(s) constructed through bias i can be used as information to guide the bias-space
search. In addition, learning with bias i + 1 can be restricted to address incompleteness
and inconsistencies with respect to the currently held concept description; such inductive
strengthening techniques are described elsewhere (Provost & Buchanan, 1992b).

This set of inductive policy techniques is not meant to be complete, but instead to represent
techniques commonly used for bias selection. One technique that is not as common is to
use the data directly to help guide bias selection. For example, term selection systems can
use statistical tests to estimate the degree of relevance of each term. We will now review
existing systems in light of the inductive policy techniques described above; the review
provides a number of examples of each of the three techniques.

3. Implicit Inductive Policies

Addressing inductive policy is not new. Probably the first system recognized as an AI ma-
chine learning system was Samuel's checkers program (developed 1947-1967) (Samuel,
1963). Samuel studied several methods of learning; one method involved tuning a polyno-
mial evaluation function for use in an alpha-beta minimax search. The checkers program
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performed bias selection in the form of term selection. Samuel decided on a representation
that would prohibit him from expressing interactions among the terms, but would provide
him with a simpler representation. Later he made a different tradeoff, choosing the more
complicated signature tables that would allow him to represent interactions among terms.

Samuel's program searched the bias space with respect to sets of terms (sr). The bias
selection policy began as random selection. The program constructed the concept descrip-
tion as it searched the bias space, as opposed to starting from scratch with the new set of
terms, and used this description to help guide the selection process—the term making the
least contribution was replaced.

Another early learning program, a pattern-recognition program developed by Uhr and
Vossler (1963), used operators to transform an input pattern into a list of numerical char-
acteristics, then compared these characteristics to those in memory associated with stored
patterns. The features used to describe the patterns were the operators and their character-
istics, both of which were created dynamically.

The program selected its bias dynamically with respect to sr. It searched the bias space
using both random selection and data-driven guidance based on input patterns received. In
addition, the search was guided by the knowledge learned during the bias-space search:
terms that performed poorly were discarded; terms that performed well were used to create
new terms. The program constructed its concept description as it searched the bias space.

3.1. Bias Selection Systems

The first implemented4 work to address explicitly the question of automatic bias selec-
tion was Utgoff's (1984) STABB (Shift To A Better Bias) system. It adds new terms
to the concept description language based on two heuristics—least disjunction and con-
straint back-propagation. STABB operates on top of the LEX system (Mitchell, Utgoff,
& Banerji, 1983), which uses the candidate elimination algorithm (Mitchell, 1978). The
least-disjunction procedure is a goal-free method; terms are added by finding the least-
specific disjunction of existing useful terms. The constraint back-propagation proce-
dure introduces terms by deducing the domain of an operator sequence that proved to
be useful (cf. Explanation-Based Generalization (Mitchell, Keller, & Kedar-Cabelli, 1986),
Explanation-Based Learning (DeJong & Mooney, 1986)). After a shift of bias, STABB
reprocesses all the training examples (i.e., the version spaces for all existing concepts
are recomputed). STABB is one of several systems that construct new terms and add
them to the description language (constructive induction (Dietterich & Michalski, 1983)—
Matheus (1989) provides a comprehensive overview). Constructive induction differs from
term selection, as in Samuel's program, in that the set of possible terms is not predefined
extensionally.

In general, constructive induction systems search a bias space of sets of terms (sr).
Generally, these systems guide their bias-space search based on the learned rules, often based
on knowledge of what seems to be working or not working. Some constructive induction
systems perform theory construction across biases, others do not. STABB (and FRINGE
(Pagallo, 1989) and CITRE (Matheus, 1989)) starts each search of the hypothesis space
from scratch, not constructing a concept description across biases. STAGGER (Schlimmer,
1987), on the other hand, constructs its concept description as the system's bias is modified
by adding new terms.
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The VBMS system (Rendell, Seshu, & Tcheng, 1987) chooses a learning algorithm
based on problem characteristics, such as the number of features and the number of ex-
amples. VBMS begins with no knowledge of the appropriateness of biases. Gradually,
it induces relationships between problem classes and biases. VBMS clusters algorithms
based on their past performance; when it is faced with a new problem, the system selects
the "best" algorithm and tries it. If this algorithm does not perform satisfactorily, VBMS
tries the next best and so on. When VBMS runs out of "good" candidates it picks algo-
rithms randomly and tries them until all algorithms are exhausted. After this procedure is
complete, VBMS updates its problem/algorithm performance statistics.

VBMS considers bias selection with respect to three learning programs, combining selec-
tion of mr, pe,r, and pr.e VBMS' policy initially is a randomly ordered exhaustive search
of the coarse-grained bias space. As the bias space is searched (for different problems)
VBMS gradually changes the orderings of the learning programs, and thus the structure
of the bias space. VBMS performs no bias-space search guidance based on the learned
results of the current problem, and does not perform theory construction across biases. The
main contribution of this work is that VBMS performs "meta-level" learning, inducing what
biases are appropriate for what problems, given that appropriate dimensions of the problem
space can be identified.

Tcheng, Lambert, Lu and Rendell (1989) designed the Competitive Relation Learner
(CRL), a generalized recursive splitting algorithm (cf. CART (Breiman, Friedman, Olshen,
& Stone, 1984) and ID3 (Quinlan, 1986a)) that includes multiple decomposition strategies,
multiple function-approximation strategies, and multiple decomposition-evaluation func-
tions. CRL produces a hybrid representation of the learned concept by first estimating the
quality of the learning strategies on the entire example set, and then seeing if decompo-
sition can help matters by estimating the quality of the learning strategies after each type
of decomposition. CRL is combined with a bias-optimization program called the Induce
and Select Optimizer (ISO). ISO first probes randomly in the bias space, evaluating each
probe by forming CRL's hypothesis with the given bias. ISO then attempts to describe
an objective surface over the bias space and uses the examples and this surface to guide
selection of the next bias with which to learn. This process continues until some stopping
criteria are met.

CRL/ISO considers bias selection with respect to function approximation strategies (sr),
decomposition strategies, and other instantiations of pe,r and pr,e. ISO's policy for bias
selection begins as random selection of biases. The results of learning with the various
biases are used for bias-space search guidance. CRL/ISO can produce a set of Pareto
optimal5 biases with respect to different objectives, thereby addressing different pragmatic
considerations as a pre-process to learning. However, it is limited in the categories of bias
it addresses and its strategy for searching the bias space is fixed; policies taking resource
constraints on learning into account, for example, could not be represented.

In more recent work, Brodley's (1993; this volume) Model Class Selection (MCS) system
also forms a tree-structured hybrid classifier that chooses between or mixes three representa-
tions: linear discriminant functions, standard decision trees, and instance-based classifiers.
MCS is shown to be robust. Over a large collection of data sets, the system never per-
forms much worse than the best of the primitive learning components, and in some cases
out-performs them all.

MCS searches a bias-space of model classes (sr), and data-partitioning functions (pe.r and
pr .e). The search of the bias space is guided by heuristic rules that examine characteristics
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such as the number of features describing the data, the number of instances, the performance
of the learned classifier, its compression, and the information gain. The hybrid classifier
is constructed as the bias space is searched, and the space can be structured with a global
bias, which prefers one type of function to the others in certain situations.

Gordon (1990) addresses active bias selection. Specifically, she uses actively requested
examples to test explicit "biasing assumptions," and subsequently to select appropriate "bias
adjustments." These biasing assumptions are defined as beliefs that a particular attribute,
attribute value, or attribute value combination is unnecessary for learning the target concept.
When a biasing assumption is tested and found to be suitable or not, the selection of terms
follows in order to incorporate or delete that constraint.

Gordon's system, PREDICTOR, adjusts its bias with respect to sr. PREDICTOR con-
structs its concept description as it adjusts its inductive bias. It guides its search of the
bias space by the currently held concept descriptions and the actively requested train-
ing examples.

More recently, Spears and Gordon (1991) have explored the use of genetic algorithms
(GAs) to produce a multistrategy concept learner that can select adaptively from among
alternative learning methods. Their system, adaptive GABIL, searches the space of methods
and the space of hypotheses in parallel. They consider adding two alternative methods to
their GA-based concept learner: (i) dropping a feature from a disjunct, and (ii) adding a
(internal) disjunct to the current classification rule.

Adaptive GABIL's bias space consists of two binary dimensions (mr). It constructs its
concept description as the system searches the bias space, and the search is guided by the
partial concept descriptions formed along the way.

Holder (1990) also addresses multistrategy learning. As with VBMS, his PEAK system
addresses three learning methods: rote learning, ID3, and EBL, combining mr, pe.r, and
pr,e. However, PEAK constructs its concept description across biases. The bias space is
structured based on prior knowledge (what learning method is applicable for what kind of
goal violation), and the bias-space search is guided by the performance of the currently held
concept description—a learning method is selected based on the violation of performance
goals (cf., other work on multistrategy learning (Michalski, 1993)).

Cohen's system, DEXTER (Cohen, et al., 1993), generates machine learning experiments
for learning to predict DNA hydration patterns. Based on expert domain knowledge, the
system selects subsets of the training examples and subsets of features, with the goal of
increasing the accuracy of the learned classifier (the underlying learning system is CART
(Breiman, et al., 1984) or Swap-1 (Weiss & Indurkhya, 1991)). DEXTER addresses me

and sr. Its policy is to structure its bias space based on domain knowledge about inter-
esting subsets of data and subsets of features. The search is guided by the success with
previous biases.

Russell (1986) advocated a framework for building a theory of induction that is similar
to the SBS model described below: (i) construct the space of possible classes of higher-
level regularities, (ii) search the space for interesting classes, (iii) analyze the results of the
search, (iv) apply the results. Russell's space of higher-level regularities comprises those
that can be represented in formal logic—the space of all deductive arguments that lead to
the base-level rule as their conclusion.

Russell and Grosof have continued this work, looking at inductive bias from the perspec-
tive of formal logic (see, e.g., Russell & Grosof (1990)). They consider prior knowledge
and learned knowledge as biases for a learning system, in which the hypothesis space is an
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intermediate stage between the prior knowledge and the induced theory. They assert that
the hypothesis space can be represented as a logical sentence in formal (first-order) logic,
which the system derives from what it knows about the domain. The learner's theory of
the domain is formed non-monotonically.6 As a limitation to their declarative approach,
they note that "some biases seem to be intrinsically formulated in terms of computational
resource use or syntactic structure," which would be difficult to handle with their current
approach (Grosof & Russell, 1990, p. 76).

Russell and Grosof address sr and emphasize theory construction across biases and
bias-space search guidance based on learned knowledge. The biases considered are col-
lections of domain knowledge, and the bias-space search guidance takes the form of non-
monotonic reasoning. The bias space is structured by the assignment of priorities to default
beliefs.

DesJardins' PAGODA (desJardins, 1991; desJardins, 1992) uses probabilistic back-
ground knowledge and a model of the system's expected learning performance to compute
the expected value of different biases (in this case, sets of features) for different learning
goals. Her work uses the bias with the highest expected value for learning, addressing ex-
plicitly the tradeoff of accuracy for simplicity of the hypothesis space. Features that increase
the expected accuracy marginally but increase the size of the space significantly would not
be considered adequately relevant to be included in a bias.

DesJardins' approach addresses sr. The policy is to structure the bias space based on
probabilistic domain knowledge (uniformities) to calculate a bias's expected quality based
on expected accuracy and a time-preference function that indicates the degree to which the
importance of accuracy on a prediction task changes over time.

3.2. Summary of Previous Policies

The similarities and differences among the existing systems for bias selection become
apparent when the systems are characterized using the policy techniques presented above.
Table 1 summarizes the policies used by previous work, based on these techniques, and
includes the SBS Testbed system described in the next section.

Several conclusions can be drawn from the work presented in this section. First, guiding
bias selection based on the learned rules is an effective and widely used technique. This
can be done based on the set of rules learned in the previous bias (as in STABB), based
on a concept description that is constructed as the bias-space search progresses (as in
STAGGER), or based on a separate data structure used only by the bias selection system
(as in CRL/ISO). Second, it is easier to construct theories across some bias spaces than
across others. If the syntax of sr can vary widely, more effort must be taken to allow a
hybrid representation, without which composing knowledge can be very difficult. Even
if the syntax of sr is relatively stable, constructing a theory across biases is easier with
some forms of representation than with others. For example, it is not as straightforward
to combine multiple decision trees (Buntine, 1991) as it is to combine multiple rule sets
(cf., SE-trees, which combine multiple decision trees (Rymon, 1993) and the trees created
explicitly for incremental learning (Utgoff, 1989)). A final conclusion from the analysis
of existing approaches is that it is possible to structure the bias space, but that to do so
there must be prior knowledge regarding the various biases in the space, e.g., knowledge
about the priorities of different biases or knowledge about the effects of different biases. If
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Table 1. A characterization of existing approaches' methods of searching the bias space.

Bias selection
system
or approach

STABB
Other

constructive
induction

VBMS

CRL/ISO

MCS

Russell &
Grosof

PEAK

PREDICTOR

adaptive
GABIL

DEXTER

PAGODA

SBS Testbed

Categories of
bias addressed

Sr

•V

mr, Pe.r &.pr.e

(3 learning
programs)

Sr,Pe.r &Pr,e

Sr,pe.r&pr,f

Sr

m r ,pe . r &.pr,e

(3 learning
programs)

Sr

mr

me, & sr

•1r

s r . s e ,m r ,m e ,
Pe.r & pr,e

Bias-space
search guidance?

yes — based on learned rules
yes — based on learned rules,

data, and/or prior
knowledge

no — (potentially) exhaustive
search of structured bias
space

yes — initially randomized,
then based on learned rules

yes— based on heuristic rules
based on data and learned
rules

yes — based on learned rules
and prior knowledge (non-
monotonic inference)

yes — based on violation of
goals and structure of bias
space

yes — based on learned rules,
assumption definitions and
actively selected training
examples

yes — based on learned rules
and fitness function (genetic
algorithm)

yes — based on success with
previous biases

no

yes — based on learned rules,
prior knowledge, and
success with previous biases

Theory
construction

across biases?

no
yes* & no*

no

no

yes

yes (logical
theory of
domain)

yes (hybrid
representation)

yes

yes

no

no

yes (rule set)

Bias space
structuring?

no
usually not

yes — initially
random, then
learned

no

yes — global bias

yes — priorities of
default beliefs

yes — effects of
methods on goal
violations

possible —
heuristics can be
ordered based on
error penalty &
cost of application

no

yes

yes — probabilistic
domain knowledge

yes — operators
explicitly structure
bias space

*e.g., STAGGER (Schlimmer, 1987).
fe.g., FRINGE (Pagallo, 1989), CITRE (Matheus, 1989).

such knowledge is available, it is important that the approach to bias selection be able to
incorporate it.

4. Using an Explicit Policy to Search the Bias Space: The SBS Testbed

Bias selection systems address the problem that in most cases it is not clear a priori exactly
which set of bias choices to make given the underlying assumptions of the domain. Instead,
the assumptions define a space of biases. Just as a bias determines the rule and example
spaces and the methods of searching them, the policy defines the bias space (Sh) and the
method of searching it (mb), as shown in Fig. 2.
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Figure 2. The SBS model: inductive policy defines the bias space and the method of searching the bias space.

4.1. SBS Model

The SBS model (Search of the Bias Space) was developed to facilitate both the study of
policies for bias selection and the development of systems that automatically select bias for
inductive learning systems. The instantiation of the model used in this paper views biases as
states, i.e., as sets of choices of sr, mr, se, me, pe,r, and pre; bias transformation operators
are used to move from one bias to the next. The set of bias transformation operators, along
with how they are applied and evaluated, define nth. The dimensions addressed by the
operators define Sb. If the underlying learning system represents much of its bias explicitly,
the search operators can modify the bias by making different bias choices with respect to
this explicit representation. Most often, policies specify how to trade classification accuracy
for the reduction of some cost, for example, time, space usage, complexity of the concept
description, or costs of using the learned knowledge.

We implemented this model in a system called the SBS Testbed, which allows explicit
representation of different inductive policies and experimentation with them. The learning
system around which the Testbed has been built is a multiclass version of the RL learning
system (Provost, Buchanan, Clearwater, & Lee, 1993; Clearwater& Provost, 1990; Danyluk
& Provost, 1993). RL has several convenient explicit "hooks" for changing its bias that
can be exploited for these experiments but, as with other learning programs, portions of its
bias are implicit. The SBS Testbed allows the specification of policies that address any bias
represented explicitly in RL.

A strength of RL as a learning program is that its straightforward search of the rule space
allows many different learning biases to be specified. This has been beneficial when using
the system as a data-analysis tool, especially when scientists specify particular constraints
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Table 2. Characterization of bias for RL. An asterisk indicates a dimension along which a system implement!
in the Testbed can select bias, because the dimension is represented explicitly.

Type of bias

•V

mr

Pe.r

se

me

Pr.e

Syntactic

disjunctive sets of conjunctive
rules, based on attribute/value
representation; complexity
limit on rules*

beam search (width*)

beam search evaluation function*;
inductive strengthening* limits
search of rule space based on
current set of examples

attribute/value representation

example selection method*
(typically manual)

inductive strengthening* limits
examples used in search of rule
space based on rules learned so far

Semantic

set of terms* and value hierarchies*
chosen for particular domain;
semantic constraints on rule
formation (not implemented in
Testbed version)

rules* as prior knowledge to bias
search

positive and negative performance
thresholds* (beam search
evaluation function*)

set of terms* chosen for particular
domain

typically none; examples can be
weighted based on importance
(not implemented in Testbed
version)

typically none

on the rules they want to see (Provost, et al., 1993). Table 2 summarizes RL's bias based on
the model presented earlier, further dividing the categories of bias into syntactic or semantic
biases, based on the amount of domain knowledge that supports their choice. Asterisks (*)
denote those dimensions that are represented in the Testbed. It should be noted that the
Testbed can select bias with respect to each of the six categories.

4.2. SBS Testbed Architecture

The user supplies a set of bias transformation operators and an evaluation function to form
a specific bias selection system. The control cycle for the SBS Testbed is (see Fig. 3):

(1) form candidate biases with each of the bias transformation operators,
(2) run the learning system with each candidate bias,
(3) compare the biases based on the evaluation function, which usually will factor in the

performance of the rules learned with each bias,
(4) choose the bias and/or the corresponding set of rules that performs best with respect to

the evaluation function, and
(5) iterate until some stopping criteria are satisfied.

The rules are judged on a set of evaluation examples, typically separate from the training
examples or the final test set (cf., recent work by Brodley (1993), Quinlan (1993), and
Schaffer (1993), who use the performance of learned concept descriptions to pick the best
bias). The default evaluation function is classification accuracy; however, other evaluation
functions may use domain-dependent criteria for the learned concept description or specific
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Figure 3. The operator application cycle of the SBS Testbed. The partial domain model describes the domain;
it includes attributes, values, value hierarchies, domain-knowledge constraints, etc.

aspects of its performance (e.g., sensitivity, specificity, positive/negative predictive value,
costs of errors made).

We built the SBS Testbed to be flexible with respect to the different policies that can
be represented. Policies can address any or all of the six categories of bias defined above.
In addition, the Testbed policies can structure the bias space explicitly, guide bias space
search, and construct concept descriptions from knowledge learned with multiple biases.

4.3. Policy Techniques in the Testbed

As discussed above, a bias space can be structured through restrictions and orderings.
This structure can be implemented in the Testbed through (i) the dimensions addressed by
the bias selection operators, (ii) the order in which biases are selected by the bias selection
operators, and (iii) operator preconditions, which specify the context under which operators
are applied.

In the Testbed, bias-space search guidance is implemented through the operators that
represent the policy. As in previous systems, guidance can be based on the rules learned
in previous biases, the rules' performance on the evaluation examples, or prior domain
knowledge. The search of the bias space can be guided in two ways. First, operators can
select several different biases, and pick the new bias that performs best. Thus, the system
can do hill-climbing (with random walking) under the assumption that a high-performing
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bias is more likely to be found near another high-performing bias than near a low-performing
bias. A second method for guiding the search of the bias space is to analyze the learned
concept description and use the results of the analysis to help suggest subsequent biases.

Concept descriptions can be constructed across multiple biases with two techniques,
which can be called monotonic and non-monotonic theory construction. The former takes
the union of the rule set learned with the current bias and the Testbed's current-best rule set,
if this union increases the performance. This allows knowledge learned in different biases
to be combined. The latter takes the union and then tries to find a good-performing subset
via a greedy pruning heuristic (similar to that used by Quinlan (1987)). For convenience,
these techniques are provided as options in the Testbed, which can be switched on or off.
Alternative theory construction techniques can be instantiated as operators or post- learning
actions that modify the currently held rule set in light of newly learned rule sets.

The Testbed also allows the restriction of subsequent rule-space search through the com-
monly used heuristic: only consider rules that cover at least one example not covered
previously, which we call inductive strengthening because it strengthens subsequent biases
based on inductively learned rules. It has been shown that inductive strengthening can
reduce the size of the concept description as well as the number of nodes searched when a
rule set is provided as prior knowledge to the learner (Provost & Buchanan, 1992b). Testbed
operators can take advantage of inductive strengthening by providing a set of rules to RL
as prior knowledge. In RL, by default, inductive strengthening takes place based on the
currently held concept description, but it can be turned off if policy considerations demand
a highly redundant concept description (Provost & Buchanan, 1992a).

5. Experiments

We present four sets of experiments demonstrating the flexibility of the SBS Testbed to
represent policies dealing with important tradeoffs in learning regarding time, space, accu-
racy, and cost. The experiments test two main claims, one general and one specific. First,
the SBS Testbed is flexible in that it can represent policies that deal with a variety of types
of bias; previous systems were very limited in the different types of bias that could be
addressed (see Table 1). In particular, we consider parameter selection, term selection, and
example selection, based on different tradeoffs. Our second claim is that when the SBS
Testbed is given policies to search the bias space automatically, it finds biases that satisfy
the tradeoffs and thereby allow effective learning.7

Our purpose is not to compare any specific policy with previous policies, but to show that
by representing inductive policy explicitly it is possible to implement a variety of policies
in a single system. We believe that it is important not to have to build a new learning system
whenever a new pragmatic concern is encountered. The SBS framework provides a method
for taking pragmatic considerations as input to the system, in the form of inductive policies.
The first three sets of experiments demonstrate the flexibility of the Testbed to address
different dimensions in the bias space, through the specification of different operators.
The fourth set of experiments shows that by changing the system's evaluation function
based on different desired tradeoffs, different behavior can be elicited even from the same
training data.

In addition, we provide further evidence, augmenting the analysis of previous work,
that very similar inductive policy techniques are applicable for bias selection along very
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different bias dimensions. We show that the SBS framework allows expressions of simple
policies that can guide bias-space search effectively. One could imagine implementing
more complex policies for searching the bias space (e.g., simulated annealing).

5.1. Experiment Set #1: Parameter Selection

To show how a policy can favor accuracy over learning time we consider the selection of
parameters for RL. We show that the policy is effective by showing that the rules learned
had comparable or better accuracy than rules learned by manually setting RL's bias or by
using a decision-tree learning program.

Consider four parameters: (a) the beam width of the beam search, (b) the maximum
number of conjuncts in any of the rules considered, (c) a limit on the fraction of the positive
examples a rule must cover and (d) a limit on the fraction of the negative examples a rule
may cover, e.g., to allow for noisy data. For any particular application in a given domain, it
is not clear a priori how these search parameters for RL's covering procedure should be set.
For example, for the well-known problem of learning to classify mushrooms as edible or
poisonous (Schlimmer, 1987), the size of the syntactically defined space of conjunctive
descriptions is greater than 1015 using 22 multi-valued attributes. Thus it is important
to select a bias that restricts search, while still allowing the learning program to find a
satisfactory concept description.

To show that we can trade increased learning time for increased accuracy, we implemented
a randomized search of the bias space with the objective of maximizing classification
accuracy. The bias-space search terminated when 100,000 partial rules had been searched
by RL since the last improvement in accuracy. This policy was implemented in the Testbed
with an operator (see Fig. 4) that randomly selects a positive threshold, a negative threshold,
a rule complexity, and a beam width, and with an operator that tested for convergence.

We ran the randomized system with three sets of data from the UCI Repository: the
mushroom domain, the automobile domain, and the heart disease domain. The first domain
was chosen because it was of interest to the authors; the latter two because they contained
both symbolic and numeric data. The results are summarized in Table 3, which lists the
domain, the numbers of training and test examples, and the test-set predictive accuracy (av-
eraged over ten random training/test partitions) of rules learned by three different systems:
(i) the Testbed system using the operator of Fig. 4, (ii) RL with manual bias selection (by
the first author), and (iii) RL-DT (a decision tree program based on C4 (Quinlan, 1986b)
that accompanies RL). The decision trees were converted to rules, which were then pruned
based on the techniques of Quinlan (1987). All classifications were made by an inference

Preconditions:
<none>

Actions:
Select positive threshold randomly from (0.01, 1.0)
Select negative threshold randomly from (0, positive threshold)
Select rule complexity randomly from (1, total # of terms)
Sdect beam width randomly from (1,10,000)

Figure 4. Testbed operator for randomly selecting bias along four dimensions: the positive and negative perfor-
mance thresholds, the beam width, and the maximum conjunct limit.
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Table 3. Results for three learning problems where the bias space was searched under different policies (averages
over 10 trials with 95% confidence intervals using Student's t distribution are shown).

Average test accuracy (%)
(with 95% confidence interval)

Domain
(UCI repository)

Automobiles
(3 price classes)

Heart disease
Mushrooms

Number of
examples
(train/test)

(133/66)

(200/103)
(100/915)

System-(i)
(randomized

selection)

84.5 ±4.5

78.0 ±2.3
96.3 ±1.5

System-(ii)
(manual selection)

80.4 ±1.7

76.9 ±1.3
95.0±1.1

System-(iii)
(fixed bias:

decision tree)

78.2 ±1.9

73.4 ±2.2
95.1 ±1.8

engine that used a voting strategy when multiple rules predict different classes. The results
with the decision-tree rules are included for comparison with a typical fixed-bias system.
All systems were trained on the same number of examples. System-(i) requires a separate
set of examples for bias evaluation; to facilitate comparison we reused the training examples
as the evaluation examples (these were not the final test data).

These experiments show that a parameter selection policy dealing with one type of
tradeoff can be represented in the SBS Testbed, and the Testbed can find biases to learn
satisfactory concept descriptions with respect to that policy. The tradeoff involved here is a
typical one in machine learning: higher accuracy for increased search time. For example,
system-(i) took longer than any single run of RL, but manual bias selection (with system-
(ii)) involved several RL runs to find a high-accuracy bias. System-(i) exhibits significantly
higher accuracy in the Auto and Heart domains because it had more patience than the author
did in waiting for convergence. Note that a randomized policy alone works well in these
domains mainly because there are many sufficient biases (the concepts are relatively easy
to learn, cf. Holte (1993)).

To provide further evidence that increased time can be traded effectively for increased ac-
curacy, we ran system-(i) as an "anytime" learner: the system was stopped at various points
during its search, and the accuracy of its current concept description was measured. If the
quality of the concept descriptions learned with different biases varies, the quality of the con-
cept descriptions system-(i) learns will increase monotonically (modulo errors in the eval-
uation of the concept descriptions' qualities) until the "best" concept description is learned.

Figure 5 summarizes the results of 90 runs on the mushroom data. We chose landmarks
of 100,200,400 25600 RL search nodes, and provided system-(i) with a termination
operator that stopped the bias-space search after the underlying system had completed
the run where the landmark was exceeded. The best set of rules at this point was used as
the concept description for this run. The runs were performed in a manner similar to those
above, with 10 runs per landmark. The figure plots the average classification accuracy of
the resultant concept descriptions versus the average number of actual nodes searched for
each landmark; 95% confidence intervals are shown. Note that in addition to the marked
increase in accuracy up to 1000 search nodes, the figure also shows that the accuracies
become more consistent as the system performs more bias-space search.

In principle, the randomized policy scales the amount of search of the bias space to the
amount of time available, from a random selection at one extreme to an exhaustive search
(effectively) at the other. Here the only non-negligible factor in the Testbed's overhead
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Figure 5. System-(i)'s performance in the mushroom domain increases with the amount of time spent searching
the bias space.

is the bias evaluation. However, it is important to note that the randomized policy is a
completely uninformed bias-space search; it uses none of the three techniques described
above to increase its efficiency in searching the bias space. The next section describes
experiments where a randomized policy alone is not effective, but an augmented policy is.

5.2. Experiment Set #2: Term Selection

In order to investigate policies for a different tradeoff and a different type of bias, we chose
to address the following pragmatic consideration: if there are very many terms that might
be potentially relevant and processing capability is limited, e.g., there is not enough space
to learn with all the terms simultaneously, one may need to limit the set of terms used for
any learning run. If the number of irrelevant terms is large, and no information is provided
as to probable relevance, the bias space formed by taking small subsets of the large set
will be too sparse for a randomized search to be effective and tractable. However, we show
that by utilizing the techniques outlined in Sections 2 and 4, a randomized search can be
enhanced so that it overcomes the problem of a sparse space and can be effective in selecting
a good bias. The policies given to the Testbed were: randomized search of small sets of
terms, randomized search guided by learned relevance knowledge, and randomized searches
where the concept descriptions are constructed across biases using different methods of
theory construction.

Note that this is a slightly different problem from that addressed in previous work on term
selection (e.g., Littlestone (1988)). First, in the present work the pragmatic assumption is
that it is not possible to learn with all the terms simultaneously; previous work, on the
other hand, tries to reduce the number of mistakes made when learning with a large number
of terms. Second, it is important to avoid building a new system for every new pragmatic
consideration encountered. This section shows that by giving the Testbed an appropriate
policy, the system can deal effectively with a new pragmatic consideration. Almuallim
and Dietterich (1991) have studied the problem of learning with many irrelevant features
using an exhaustive-search policy and conclude that irrelevant features should be removed
from the training data before popular inductive learning algorithms (viz., ID3 and the like)
can learn well. The problem of relevance of terms also has been studied by several other
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Table 4. Target concept for synthetic learning task. TP/P and FP/N denote the (fractional) true positive and false
positive coverages of each rule in the target concept. Each ( X x i ) is a feature: (attribute value).

Rule

( S s 1 ) ( T t 1 ) - > C 1
(L / l ) (Mmi) ( /Vn i ) -> Cl
(I i 1 ) ( J J1)-> C1
( D d 1 ) ( E e 1 ) - > C 1
(Aa i ) ->Cl
(Rr1)- C2
( O o 1 ) ( P p i ) ( Q q 1 ) - + C 2
( K k 1 ) - > C 2
( G g i ) ( H h i ) - > C 2
(B b1,)(C c1) -» C2

TP/P

0.8
0.4
0.5
0.6
0.4
0.7
0.5
0.6
0.3
0.7

F P / N

0.03
0.02
0.03
0
0
0.01
0.04
0.04
0.01
0

AI researchers (Samuel, 1963; Subramanian, 1989; Riddle, 1989; Gordon, 1990; Kira &
Rendell, 1992; desJardins, 1992), and in the statistics literature (Devijver & Kittler, 1982).

5.2.1, A Synthetic Domain. To simulate the problem of having a very large set of terms
most of which are irrelevant, we used a synthetic domain. The synthetic domain has 22
attributes, each with between 2 and 12 nominal values. The data were generated from a
set of 10 rules, which are depicted in Table 4. Some of the rules are "heuristic" rules,
in that they have non-null false positive coverage. The example generator gave a set of
data comprising examples of concepts Cl and C2, such that the constraints given by the
rules and their coverages were satisfied. We chose this synthetic domain because we could
specify a concept that is relatively complex, but for which we know a priori how to set
RL's parameters to regenerate the rules that generated the data. Thus we can concentrate
on selecting bias with respect to the set of terms used. To this set of 22 attributes we added
198 new Boolean attributes, giving a total of 220 attributes. The example generator filled
in the irrelevant attributes with random values. See Provost (1992b) for more details.

5.2.2. Term Selection Experiments. Using data generated with the augmented attribute
set, we ran several experiments with different term selection policies. The experiments
show that bias selection policies can be represented in the Testbed to deal effectively with a
second type of bias and a second tradeoff: increasing learning time for a reduction in space
usage to learn a satisfactory concept description. Furthermore, the experiments illustrate
the utility of the inductive policy techniques described in Sections 2 and 4.

The results of these experiments are summarized in Table 5. For each experiment, the
table lists three quantities averaged over 10 runs with different randomly generated training
sets of 200 examples. The quantities compared in the table are the total number of nodes
searched in the underlying rule-space searches, the number of rules in the learned rule set,
and the classification accuracy on a separate test set of 1000 examples.

Experiment 0 shows the results of running RL with the original 22 attributes, known to
be relevant; in Experiment 1 we used the entire set of 220 attributes. These runs generated
figures for comparison. RL's bias along the dimensions considered in the previous section
was held constant at the strongest values that would allow the system to learn the set of
rules from which the data were generated. The results of Experiment 0 are as would be
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Table 5. Experiments with term selection policies (averages over 10 trials with 95% confidence intervals using
Student's t distribution are shown).

Experiment &
system no.

0
1
2
3

4

5

6

Experiment

RL with 22 attributes
RL with 220 attributes
Random subsets of 22 attributes
Selection of approx. 22 attributes

based on learned relevance
knowledge

System-2 + monotonic theory
construction across biases

System-4 + inductive
strengthening

System-5 with non-monotonic
theory construction

Nodes
searched

535 ± 88
6825 ± 195

19636 ±3035
26804 ±5174

27152 ±5292

14930 ±3368

25913 ±5781

Rules
learned

26 ±3
842.1 ±174.1

15.8 ±6.2
68.6 ±10.5

120.8 ±42.9

42.3 ±12.4

12.1 ±1.0

Accuracy

96.9 ±0.6
90.4 ±1.3
76.3 ±2.7
82.8 ±2.0

91.5±1.6

91.9±1.4

95.4 ±1.3

Preconditions:
<none>

Actions:
Select 22 attributes randomly from the large set (220 attributes)

Figure 6. Testbed operator for randomly selecting a subset of terms (System-2).

expected given that a good bias is known in advance—high accuracy and short search time.
In Experiment 1, over 800 rules were learned in a search of approximately 6800 nodes. The
large number of rules learned is due to the existence of such a large number of randomly
generated Boolean features. Given a rule that almost meets the thresholds, in many cases
there will be one or more randomly generated features that can be added to the rule to
meet the thresholds. This fact also accounts for the decrease in classification accuracy as
compared to running RL with only the relevant attributes.

Let us now assume that our computational power is limited so that we can learn with only
about 22 attributes at a time. We used the SBS Testbed to build systems that select subsets
of approximately 22 terms, restricting the otherwise prohibitively expensive bias space. We
start with a randomized term selection policy. A system was instantiated in the Testbed
with a single operator that chose a random subset of 22 of the 220 terms. This operator
is depicted in Fig. 6; we will refer to this system as "System-2," based on the experiment
number listed in Table 5, and the systems for the subsequent experiments similarly. The
convergence criterion was 10,000 nodes searched without an improvement in score; the
score was classification accuracy on a separate set of 200 evaluation examples. We see
that as compared to RL with the larger set of terms, System-2 used more search to learn
fewer rules with lower accuracy. This is because with the smaller sets of terms, there is
much less freedom to fit the data with random features. However, none of the randomly
chosen subsets of terms contained enough of the "correct" terms. Randomized search is
not sufficient for a search of this bias space with the convergence criteria given, although
given enough time, probabilistically speaking, the randomized search will hit the correct
set of attributes eventually.
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Preconditions:
<none>

Actions:
Include each attribute ai in attribute set with probability pi

<MM7ihm=«-a!iyjar>
Post-Learning Actions:

For each rule learned and attribute a; mentioned in that rule
if Pi <1 increment pi by e, where e=max(0.01,1-pi) and

decrement eachpy, such that j # i, and aj was

selected in this round, by -;—;—. , f .. . -J # of selected attributes -1

Figure 7. Testbed operator for probabilistically selecting a subset of terms, with guidance based on learned
relevance knowledge (System-3).

One technique to extend a simple bias-space search, suggested by the analysis of exist-
ing systems, is to use knowledge learned during the search of the bias space to guide
the selection of future biases. For the current problem, learned knowledge as to the
probable relevance and irrelevance of the attributes can guide the search to subsets of
terms that include more of the relevant terms and fewer of the irrelevant terms, in ef-
fect, choosing terms that correlate well with the data—both alone and in conjunction with
other terms. In Experiment 3, the randomized search was enhanced to take advantage of
knowledge learned about the relevance of the attributes. System-3's operator is shown in
Fig. 7.

For the current set of attributes, System-3 either selected or rejected each attribute with a
probability from a list of attribute/probability pairs. The system updated this data structure
based on the results of each run of the learning system. Through this process, attributes
that contribute to good rules have an increased probability of appearing in future sets of
attributes, while attributes that never appear in good rules have a decreased probability
of appearing in future sets. The performance of System-3 shows a significant increase in
classification accuracy over System-2 indicating that the search guidance indeed leads the
system to better biases. The number of rules learned is increased, due to the larger number
of relevant terms. The number of nodes searched is a little larger than it was for Experiment
2, indicating that it took some time to build up the knowledge needed to converge on a
(better-performing) bias.

The accuracy achieved in Experiment 3 is still not as high (83%) as that achieved with
RL and the large set of terms (90%).8 Several modifications of the policy yielded similar
results. Viewing traces of the evolution of the relevance data structure showed that over
many runs, terms achieved high relevance in rough proportion to the simplicity of the rules in
which they appear. This indicates that this policy did not deal well with feature interaction.
Previous work has shown that similar, but simpler, policies that try to build sets of terms
incrementally also have problems with feature interaction, e.g., sequential forward selection
(Devijver & Kittler, 1982; Kira & Rendell, 1992).

Experiment 4 used System-2 enhanced with monotonic theory construction across biases.
As described in Section 4.3, this technique simply replaces the current "best" rule set with
the union of this rule set and the rule set learned with the new bias, if the combined set shows
a performance improvement. By the results shown in Table 5, we can see that the latter
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system performed better in terms of classification accuracy, while searching approximately
the same number of nodes.

The concept descriptions learned by System-4 were more complex than those learned
by either System-2 or System-3. In Experiment 5, System-4 was run with the inductive
strengthening heuristic turned on and the Testbed's current rule set used as prior knowledge
for subsequent runs (see Section 4.3). We see a decrease by almost half in the amount of
search needed as well as a decrease in the complexity of the resultant concept description.

The final experiment listed in Table 5 shows the effect of using the non-monotonic
method of theory construction (see Section 4.3) in a system in all other respects equivalent
to System-4. The result is that by trading off time spent learning and constructing the theory,
a small set of rules can be learned that performs very well even given the space constraints.

These results provide support for our two main claims, showing that a system based on the
SBS model is flexible in that it facilitates experimentation with different inductive policies
for term selection, leading to an effective policy. Additionally, the results indicate that
a simple method for using knowledge learned during bias selection to construct concept
descriptions across multiple biases was more effective than a simple method for using
learned knowledge to guide the bias-space search. This is interesting because while the
policies of most previous bias selection systems implemented some form of bias-space
search guidance, only about half of these systems constructed concept descriptions from
knowledge learned in multiple biases (see Table 1).

5.3. Experiment Set #3: Example Selection

To demonstrate further the flexibility of the SBS Testbed, we experimented with representing
a policy for example selection in the form of incremental batch learning (Clearwater, et al.,
1989). The tradeoff of interest in this experiment was to allow somewhat decreased accuracy
(from what would be achievable with a batch learner) in order to be able to learn from many
examples under space constraints. Implementing such a policy demonstrates how inductive
policies can deal with aspects of inductive bias relating to the selection of examples (me)
within the same framework, and using similar techniques, as more conventional aspects of
inductive bias.

In essence, the policy is: randomly divide a large set of examples into small subsets;
learn a set of rules with the first subset as the training set; switch to the next subset; filter
the rules learned with the previous subset using the new training set; and then learn with
the new subset, constructing the overall theory incrementally with subsequent learning
addressing incompleteness in the currently held theory. The operator for this incremental
batch learning policy is shown in Fig. 8.

Preconditions:
<none>

Actions:
load next example set (partitioned as preprocess)
update coverages of current rule set
remove rules that do not satisfy thresholds
invoke inductive strengthening and learn with new rule set

Figure 8. Testbed operator for incremental batch learning.
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Table 6. Results of batch learning and incremental batch learning policy on NYNEX MAX learning task (space
constraints limited batches to 500 examples).

# Training examples
per run

500
10 batches of 500

# Test examples

2457
845

Average%
accuracy

86.5
90.7

Standard
deviation

1.0
0.9

Number of runs

10
10

As shown in Table 6 the simple incremental batch learning policy is sufficient for learning
a satisfactory theory on the NYNEX MAX learning task (Rabinowitz, Flamholz, Wolin, &
Euchner, 1991; Danyluk & Provost, 1993) on a platform where space constraints previously
had prohibited satisfactory learning (Provost, 1992b). For this task, satisfactory learning had
been defined beforehand by the domain experts as greater than 90% accuracy. These results
provide further support for our first claim that the SBS Testbed system is flexible—a policy
can be represented for example selection within the same framework as parameter selection
and term selection. They also provide support for our second claim—the incremental batch
learning policy was effective for learning a satisfactory rule set under space constraints.
Interestingly, as in the previous section, theory construction across biases alone is sufficient
for effective learning (no structuring or search guidance is used here).

5.4. Experiment Set #4: Trading, off Accuracy for Reduced Error Cost

In previous sections we experimented with different bias selection operators in order to
demonstrate the flexibility of the SBS Testbed. In this section we further demonstrate the
Testbed's flexibility by experimenting with the bias evaluation function. The results show
that policies can be represented in the Testbed that select bias effectively with respect to
different desired tradeoffs involving accuracy and the cost of errors.

In the mushroom domain the cost of making a mistake is asymmetric. Under normal
circumstances, no harm is done when an edible mushroom is classified as poisonous. In
contrast, classifying a poisonous mushroom as edible can have mortal consequences. In
this domain, the assumption that one prediction is more costly than another should lead
to a different inductive policy from that taken when all mistakes can be weighted equally.
Obviously, a completely safe policy would be to predict every mushroom is poisonous—
dangerous predictions would never be made. However, this approach would never allow
any mushroom to be eaten.

For these results we used the ClimBS system, implemented in the SBS Testbed. As
described in Provost (1992a), ClimBS is similar to the randomized system of Section 5.1,
but performs a hill-climbing search in RL's bias space and uses nonmonotonic theory
construction.

Table 7 shows the results of several experiments in which ClimBS was used to learn rules
for the mushroom domain. The bias evaluation function was varied across the experiments
to reflect different assumptions about the tradeoff of accuracy versus the cost of making
risky errors. The table lists the number of rules learned, the predictive accuracy of the rule
set, and the fraction of the predictions that might be risky. The results are averaged over
10 trials, 95% confidence intervals are given; 100 randomly selected examples were used
for learning, 400 for bias evaluation, and 515 for testing; we chose a small training set in
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Table 7. Experiments I-IV compare the accuracy and risk (percentage of predictions that are possibly fatal) of
learning with different inductive policies represented as bias evaluation functions in ClimBS (and are described
in the text). Results are averages over 10 runs; 95% confidence intervals are given. Training sets contained 100
examples randomly chosen from 1015; 400 randomly chosen examples were used for bias evaluation, and the
remaining 515 examples were used for testing.

Experiment

I
II
III
IV

No. rules

8±2
9±1
8±2
6±2

Accuracy

96.3 ± 1.3
95. 2 ± 0.9
91.5 ± 5.2
82.2 ±14.8

%Risk

2.7 ±2.0
0.87 ±0.48
0.74 ±0.45
0.16 ±0.28

order to study error cost. These 1015 examples comprise every eighth mushroom in the
database and can be shown to be a representative sample—ClimBS can learn a set of rules
with these 1015 examples that can predict the edibility of the remaining 7000+ examples
with an accuracy of 99.7% on the remaining examples in the database.

In Experiment I, the default evaluation function (only consider predictive accuracy, use
voting to apply rules) was used. Although the classification accuracy is impressive, over
two percent of the examples were dangerously classified as edible, when they were actually
poisonous. In Experiment II the evaluation function compared biases based on predictive
accuracy, applying rules with a "better safe than sorry" evidence-gathering strategy: call
a mushroom poisonous if any rule says it is poisonous. The accuracy of the resultant
descriptions are not degraded much, while the fraction of risky predictions is reduced to
one-third its previous value.

Experiments in and IV use a linear combination of predictive accuracy and number of
risky predictions to evaluate the rule sets learned with different biases. In particular, the
function used was: / = number of correct predictions — w * number of risky predic-
tions. In Experiment III, w = 10; in Experiment IV, w = 50. One can see the tradeoff
of classification accuracy for safe predictions that is manifested in the rule sets learned by
ClimBS.

The SBS Testbed allows for the specification of the relative value of different rule sets
with respect to their performance. This explicit representation of how the system should
deal with the accuracy/safety tradeoff allows the system to select biases to learn a concept
description that gives a good score with respect to this function, and thereby performs well
with respect to the tradeoff. This work on cost-sensitive learning is extended by Provost
(1994), where a similar policy is shown to be effective for trading off accuracy for a reduction
in monetary costs when diagnosing errors in the telephone local loop.

6. Conclusions and Future Directions

We have presented a model of six categories of bias that define a bias space, and have aug-
mented it with a separate concept of inductive policy, which takes account of the pragmatics
of learning, i.e., the tradeoffs that are made with respect to goals defined in each domain.
A future avenue for research is build a system like the SBS Testbed, where policies are
represented in a less procedural fashion. As a first step in this direction, this work begins
to identify a taxonomy of pragmatic concerns for learners. At a high level, pragmatic con-
cerns can be divided based on whether they apply to the learner itself or the learned concept
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description. Finer grained concerns address benefits (accuracy, understandability), costs
(of measuring features, of making mistakes), and resource usage (time, space).

The major drawback to this search-based approach to bias selection is computational
efficiency. Learning with a large number of different biases can be very expensive in terms
of run time. As discussed in Section 5.1, tradeoffs can be made between the amount of search
time and other desiderata (viz., high accuracy); however, addressing the problem of scaling
up to larger problems becomes especially important when a learner is trying a large number
of different biases. Machine learning research has begun to address the issue of scaling
up learning programs to very large problems (Catlett, 1992; Musick et al., 1993; Wirth &
Catlett, 1988; Provost & Aronis, in press; Provost & Hennessy, 1994). Scaling up using
parallelism is especially relevant to bias selection. Using massively parallel architectures,
the time needed for an individual run of a learning system can be reduced by two to three
orders of magnitude, enabling bias selection for larger problems (Provost & Aronis, in
press). Alternatively, by taking advantage of a network of workstations, one can scale up
by learning with different biases on different machines and use cooperation to construct a
satisfactory concept description (cf. work on distributed machine learning (Chan & Stolfo,
1993; Provost & Hennessy, 1994)).

In order to avoid significant recoding in building a new system for each new learning task,
learning systems must be flexible. We have shown that by modeling bias selection as search,
a flexible system can be built that can learn differently under different pragmatic constraints.
We have shown that within the same framework, the SBS Testbed can perform parameter
selection, term selection, and example selection. In addition, we have shown that the Testbed
can learn different concept descriptions based on different tradeoffs between accuracy and
the cost of errors. The Testbed achieves this flexibility by explicitly representing an inductive
policy as input—i.e., a strategy for selecting bias that satisfies a task's pragmatic constraints.

In the SBS Testbed, inductive policies are represented as a set of bias selection operators,
and a function for evaluating biases. Thus, it is possible to implement policies for selecting
bias along any dimension that is represented explicitly in the underlying learning system.
This suggests that an important future direction for inductive bias research is to provide
learning systems that are more flexible in the different kinds of biases they can employ. For
example, a limitation of the SBS Testbed is that it currently uses only RL as the underlying
learning system; as Section 3 shows, much work has been done on policies for selecting
bias with respect to the description language beyond what is available in RL. The Testbed
could be augmented with many underlying learners. More complex techniques would have
to be developed for bias-space search guidance, bias-space structuring, and the construction
of theories from multiple biases.

In addition, we have shown from an analysis of previous bias selection systems and
new results that the three main techniques for building non-trivial policies, structuring the
bias space, using learned knowledge to guide bias selection, and constructing a theory across
multiple biases are not specific to any particular dimension in the bias space. Previous
systems that address very different dimensions use similar techniques. Instantiations of
these techniques in the Testbed have been shown to be effective across a variety of bias-space
dimensions. The experiments in Section 5.2 suggest that for at least one task, constructing a
concept description from knowledge learned in multiple biases is more effective than trying
to guide search to a satisfactory bias. We would like to see if this is a general phenomenon,
which would suggest that bias selection systems should concentrate on techniques for
combining knowledge learned in multiple biases (cf., Buntine, 1991).
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Notes

1. Any procedure for selecting a bias constitutes a bias—but at a different level. This is the point of separating
policy considerations that include criteria for evaluating a bias from the inductive bias that directly guides the
learning, and the point of allowing different policies to be represented.

2. However, often search methods are designed for particular representations, so in practice changing only one
may be less than straightforward.

3. Note how this corresponds to the notions of preference and restriction biases. Once a particular inductive
policy is implemented, it becomes a meta-level bias to the learning system.

4. Automatically changing the framework within which a learning program operates was discussed explicitly as
early as 1978 (Buchanan, et al., 1978).

5. A bias is "Pareto optimal" with respect to a set of criteria if there is no bias that will improve performance
with respect to one criterion without degrading it with respect to another.

6. Russell and Grosof employ a non-monotonic logic, based on circumscription (see Lifschitz, 1987; McCarthy,
1980), that allows one to express prioritized defaults directly (Grosof & Russell, 1990).

7. "Effective" learning means different things in different pragmatic situations. In one context, one may want to
spend considerable time maximizing accuracy. In another context, one may be satisfied with lower accuracy
in exchange for timely results.

8. It does provide a simpler rule set.
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