
Machine Learning, 51, 51–71, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Polynomial-Time Decomposition Algorithms
for Support Vector Machines

DON HUSH dhush@lanl.gov
CLINT SCOVEL jcs@lanl.gov
Los Alamos National Laboratory, Los Alamos, NM, 87545, USA

Editor: Lisa Hellerstein

Abstract. This paper studies the convergence properties of a general class of decomposition algorithms for
support vector machines (SVMs). We provide a model algorithm for decomposition, and prove necessary and
sufficient conditions for stepwise improvement of this algorithm. We introduce a simple “rate certifying” condition
and prove a polynomial-time bound on the rate of convergence of the model algorithm when it satisfies this
condition. Although it is not clear that existing SVM algorithms satisfy this condition, we provide a version of the
model algorithm that does. For this algorithm we show that when the slack multiplier C satisfies

√
1/2 ≤ C ≤ mL,

where m is the number of samples and L is a matrix norm, then it takes no more than 4LC2m4/ε iterations to
drive the criterion to within ε of its optimum.

Keywords: support vector machines, polynomial-time algorithms, decomposition algorithms

1. Introduction

The soft margin formulation in Cortes and Vapnik (1995) has the advantage that it provides
a design criterion for support vector machines (SVMs) for both separable and nonseparable
data while maintaining a convex programming problem. To maintain a computationally
feasible approach across all kernels, algorithms are developed for the Wolfe Dual Quadratic
Program (QP) problem whose size is independent of the dimension of the ambient space.
The Gram matrix for the Wolfe Dual is m × m where m is the number of data samples. For
large m the storage requirements for this matrix can be excessive, thereby preventing the
application of many existing QP solvers. This barrier can be overcome by decomposing the
original QP problem into smaller QP problems and employing algorithmic strategies that
solve a sequence of these smaller QP problems. For the class of algorithms considered here
these smaller QP problems are restrictions of the original QP problem where optimization
is allowed over a subset of the data called the working set. The key is to select working sets
that guarantee progress toward the original problem solution at each step. Such algorithms
are commonly referred to as decomposition algorithms, and many existing SVM algorithms
fall into this class (Cristianini & Shawe-Taylor, 2000; Joachims, 1998; Keerthi et al., 2001;
Osuna, Freund, & Girosi, 1997; Platt, 1998; Vapnik, 1998). In this paper we provide a model
algorithm for decomposition and prove necessary and sufficient conditions for stepwise
improvement of this algorithm. These conditions require that each working set contain a

52 D. HUSH AND C. SCOVEL

certifying pair (defined in Section 3). Computation of a certifying pair takes O(m) time.
We define a simple “rate certifying” condition on certifying pairs that enables the proof of
a polynomial-time bound on the rate of convergence. It is not clear that the working sets
chosen by existing SVM algorithms contain certifying pairs that satisfy this condition. On
the other hand, we provide an O(m log m) algorithm for determining a certifying pair that
does. The next section sets the stage for our development by providing a formal definition
of the problem and establishing some of its basic properties.

2. Preliminaries

Let S = 〈(x1, y1), . . . , (xm, ym)〉 be a finite set of observations from a two-class pattern
recognition problem where xi ∈ X and yi ∈ {−1, 1}. The Support Vector Machine (SVM)
maps the space of covariates X to a Hilbert space H of higher dimension (possible infinite),
and fits an optimal linear classifier in H. It does so by choosing a map � : X → H in
such a way that �(x) · �(y) = K (x, y) for some known and easy to evaluate function K .
Sufficient conditions for the existence of such a map are provided by Mercer’s theorem
(Vapnik, 1998). Let zi = �(xi) so that

zi · z j = �(xi) · �(x j) = K (xi , x j).

A linear classifier in H is given by

ŷ = sign(ψ · z + b). (1)

In the soft margin formulation of Cortes and Vapnik (1995) the optimal ψ is given by

ψ =
m∑

i=1

λi yi zi (2)

where λ ∈ �m optimizes the Wolfe Dual quadratic programming problem,

WD(S):
max −1

2
λ · (Qλ) + λ · 1

s.t. λ · y = 0
0 ≤ λi ≤ C, i = 1, 2, . . . , m

(3)

where

Qi j = yi y j (zi · z j) = yi y j K (xi , x j). (4)

The choice of the unspecified parameter C > 0 has been investigated but we do not address
that here. Once λ has been determined the optimal value of b is given by

ṽ(λ)∗low ≤ −b ≤ ṽ(λ)∗high

POLYNOMIAL-TIME DECOMPOSITION ALGORITHMS 53

where ṽ(λ)∗low and ṽ(λ)∗high are defined in Section 3. This paper is concerned with the analysis
of a class of algorithms for WD(S) that are motivated by situations where m is so large that
direct storage of Q is prohibitive.

Let WD(S) denote an instance of the Wolfe Dual defined by the sample set S. Let �(S)
represent the set of feasible solutions for WD(S),

�(S) = {λ : (0 ≤ λi ≤ C) ∩ (λ · y = 0)}

Note that �(S) is both convex and compact. Denote the Wolfe Dual criterion by

R(λ) = −1

2
λ · (Qλ) + λ · 1 (5)

and let �∗(S) represent the set of optimal solutions for WD(S),

�∗(S) =
{
λ : λ = arg max

λ∈�(S)
R(λ)

}
.

With Z = [y1z1, y2z2, . . . , ym zm] we can write Q = Z T Z , verifying that Q is symmetric
and positive semi-definite. Thus, R(λ) is a concave function over �(S) and R∗ = R(�∗(S))
is unique. The Lagrangian for WD(S) takes the form

L(λ, µ, α, β) = 1

2
λ · (Qλ) − λ · 1 + µ(λ · y) −

∑
i

αiλi −
∑

i

βi (C − λi)

where αi ≥ 0, βi ≥ 0.
Define

vi =
∑

j

λ j y j K (x j , xi) − yi , i = 1, 2, . . . , m. (6)

Then the Karush-Kuhn-Tucker (KKT) conditions (e.g. see Avriel, 1976, p. 96) for WD(S)
take the form

yi (vi + µ) = αi − βi

αiλi = 0, i = 1, 2, . . . , m

βi (C − λi) = 0, i = 1, 2, . . . , m

where we have made use of the relation

(Qλ)i − 1 =
∑

j

λ j yi y j z j · zi − 1 = yi

(∑
j

λ j y j z j · zi − yi

)

= yi (ψ · zi − yi) = yivi

There are three regimes for λi ; two where it equals a bound, and one where it falls between
the bounds. Combining the conditions above with these three regimes we obtain a simpler

54 D. HUSH AND C. SCOVEL

set of conditions that are equivalent to the KKT conditions

yi (vi + µ) = 0, 0 < λi < C

yi (vi + µ) ≤ 0, λi = C (7)

yi (vi + µ) ≥ 0, λi = 0

It is possible to use the satisfaction of these equations as a stopping condition for optimization
algorithms, but they involve µ. An alternative set of optimality conditions were introduced
in Keerthi et al. (2001) and Keerthi and Gilbert (2000) that do not use µ. In the next section
we present these conditions and use them to develop a simple optimality test.

3. Tests for optimality using certifying pairs

We define a partition of the index set of S based upon the data

(vi , yi , λi).

Define

Ilow = {i : (λi = C, yi = 1) ∪ (λi = 0, yi = −1)}
Ihigh = {i : (λi = C, yi = −1) ∪ (λi = 0, yi = 1)} (8)

Iint = {i : 0 < λi < C}

and

Vlow = {vi : i ∈ Ilow}
Vhigh = {vi : i ∈ Ihigh} (9)

Vint = {vi : i ∈ Iint}

and let

v∗
low = sup

i∈Ilow

{vi } (10)

v∗
high = inf

i∈Ihigh

{vi } (11)

where the sup and inf of the empty set are defined as −∞ and ∞ respectively.

Definition 1. λ is properly ordered for S if |Vint| = 0 and

v∗
low ≤ v∗

high

or |Vint| = 1 and

v∗
low ≤ Vint ≤ v∗

high.

POLYNOMIAL-TIME DECOMPOSITION ALGORITHMS 55

We now prove a result first stated by Keerthi and Gilbert (2000).

Theorem 1 (Keerthi & Gilbert). A feasible λ for the Wolfe dual problem WD(S) is optimal
if and only if λ is properly ordered for S.

Proof: The optimality conditions (7) can be rewritten as

vi + µ ≥ 0, i ∈ Ihigh

vi + µ ≤ 0, i ∈ Ilow (12)

vi + µ = 0, i ∈ Iint.

Now suppose that λ is optimal. Then Eq. (12) imply that

|Vint| ≤ 1

vi − v j = (vi + µ) − (v j + µ) ≥ 0, i ∈ Ihigh, j ∈ Ilow

vi − v j = (vi + µ) − (v j + µ) ≥ 0, i ∈ Ihigh, j ∈ Iint

vi − v j = (vi + µ) − (v j + µ) ≥ 0, i ∈ Iint, j ∈ Ilow

The first equation implies that |Vint| = 0 or 1 and the second equation implies that v∗
low ≤

v∗
high. When |Vint| = 1 the second and third equations imply that

v∗
low ≤ Vint ≤ v∗

high

and so λ is properly ordered. On the other hand, suppose λ is properly ordered. Then
|Vint| ≤ 1. By the definitions of v∗

low and v∗
high it is clear that

|Vint| ≤ 1

vi − v j = (vi + µ) − (v j + µ) ≥ 0, i ∈ Ihigh, j ∈ Ilow

vi − v j = (vi + µ) − (v j + µ) ≥ 0, i ∈ Ihigh, j ∈ Iint

vi − v j = (vi + µ) − (v j + µ) ≥ 0, i ∈ Iint, j ∈ Ilow

and we can choose −µ to be any point in [v∗
low, v∗

high] when |Vint| = 0 and −µ = Vint when
|Vint| = 1 so that the conditions (12) are satisfied. Consequently, λ is optimal if and only if
it is properly ordered for S.

Tests for proper ordering can be simplified if we define

Ĩ low = Ilow ∪ Iint

Ĩ high = Ihigh ∪ Iint

and

ṽ∗
low = sup

i∈ Ĩ low

{vi } (13)

ṽ∗
high = inf

i∈ Ĩ high

{vi } (14)

56 D. HUSH AND C. SCOVEL

Then λ is properly ordered for WD(S) if and only if

ṽ∗
low ≤ ṽ∗

high.

The proof of this statement follows directly from the proof of Theorem 1. Lack of opti-
mality can be determined by the existence of a certifying pair.

Definition 2. A certifying pair for λ ∈ �(S) is a pair of indices i and j in the index set
of S whose values (vi , yi , λi) and (v j , y j , λ j) are sufficient to prove that λ is not properly
ordered for S.

We note that Keerthi and Gilbert (2000) refer to this as a violating pair. However, because
we later define rate certifying pair we decided not to adopt this terminology.

Theorem 2. λ is not properly ordered for S if and only if there exists a certifying pair. A
certifying pair can be obtained by making at most one pass through the data while making
two comparisons.

Proof: Suppose that λ is not properly ordered for S. Then there exists indices i ∈ Ĩ high

and j ∈ Ĩ low such that vi < v j . Choose any such pair. To determine a certifying pair make
one pass through the data while keeping track of indices that represent ṽ∗

high and ṽ∗
low. Stop

at the first point where ṽ∗
high < ṽ∗

low.

4. A general decomposition algorithm

Algorithmic solutions for the Wolfe dual must consider the fact that when m is large the
storage requirements for Q can be excessive. This barrier can be overcome by decomposing
the original QP problem into smaller QP problems.

Suppose we partition the index set of λ into a working set W and a non-working set
W c. Note that W indexes a subset of the data. Then λ = (λW , λW c) and y = (yW , yW c) are
partitioned accordingly and Q is partitioned as follows

Q =
[

QW QW W c

QW c W QW c

]

where QW W c = QT
W c W . Then (3) can be written

max −1

2
λW QW λW + λW · (1 − QW W cλW c) − 1

2
λW c QW cλW c + λW c · 1

s.t. λW · yW + λW c · yW c = 0 (15)

0 ≤ λi ≤ C, i = 1, 2, . . . , m

With λW c fixed this becomes a QP problem of size dim(λW) with the same generic properties
as the original. This motivates algorithmic strategies that solve a sequence of QP problems

POLYNOMIAL-TIME DECOMPOSITION ALGORITHMS 57

over different working sets. The key is to select a working set at each step that will guarantee
progress toward the original problem solution.

Theorem 3. Consider the subset constrained Wolfe dual problem defined as follows.
Consider a feasible λ. Define a subset W of the index space of S with complement W c.
Optimize the Wolfe dual criterion with respect to λ́ subject to the constraint that λ́ = λ on
W c. Let λ∗ denote a solution to this constrained problem. Then, R(λ∗) > R(λ), if and only
if W contains a certifying pair for λ.

Proof: Since R is concave, λ is non-optimal for WD(S) if and only if there is a feasible
infinitesimal λ̇ at λ such that

dR(λ) · λ̇ > 0. (16)

Further, the solution to the constrained Wolfe dual produces an increase in R if and only
if there is a feasible constrained λ̇W (with nontrivial components on W only) such that
dR(λ) · λ̇W > 0. Consequently, to prove the theorem it is sufficient to show that a feasible
λ̇W exists that satisfies (16) if and only if W contains a certifying pair.

The derivative of R is given by

dR(λ) · λ̇ = (1 − Qλ) · λ̇ =
∑

i

(1 − yiψ · zi)λ̇i = −
∑

i

yivi λ̇i

= −
∑

i

divi = −d · v

where di = yi λ̇i . The feasible directions λ̇ satisfy λ̇ · y = 0, λ̇i ≥ 0 when λi = 0, and λ̇i ≤ 0
when λi = C . In terms of d these conditions become d · 1 = 0, di ≥ 0 when i ∈ Ihigh, and
di ≤ 0 when i ∈ Ilow. Decompose d = dhigh + dlow + dint and v = vhigh + vlow + vint into
their components under the subsets defined by Ihigh, Ilow, and Iint. Then (16) can be written

dhigh · vhigh + dlow · vlow + dint · vint < 0 (17)

and the feasibility constraints are

dhigh · 1 + dlow · 1 + dint · 1 = 0, dhigh ≥ 0, dlow ≤ 0, dint free. (18)

Assume that W contains a certifying pair. Then it must satisfy one of the following
inequalities,

vi < v j , i, j ∈ Iint

vi < v j , i ∈ Ihigh, j ∈ Iint

vi < v j , i ∈ Iint, j ∈ Ilow

vi < v j , i ∈ Ihigh, j ∈ Ilow

58 D. HUSH AND C. SCOVEL

In all four cases we can verify (17) and (18) by choosing di = −d j > 0 for the certifying
pair and d = 0 for all other indices so that

dR(λ) · λ̇W = −di (vi − v j) > 0

The proof of “if” is finished.
Now assume that there is a feasible λ̇W for which dR(λ) · λ̇W > 0. Then (17) and (18)

are satisfied. Let Vint(W) (Iint(W)) be the restrictions of Vint (Iint) to the indices of W . If
|Vint(W)| > 1 then any two components i, j ∈ Iint(W) for which vi �= v j constitute a
certifying pair. If |Vint(W)| = 1 let v∗ = Vint(W) and write (17) as

dhigh · vhigh + dlow · vlow + v∗dint · 1 < 0

Combining with (18) gives

dhigh · (vhigh − v∗1) + dlow · (vlow − v∗1) < 0, dhigh ≥ 0, dlow ≤ 0

For this inequality to hold at least one of the two terms must be negative. To make the first
term negative at least one component of (vhigh − v∗1) must be negative. Similarly, to make
the second term negative at least one component of (vlow − v∗1) must be positive. Either
case gives a certifying pair. Finally, if |Vint(W)| = 0 then (17) and (18) becomes

dhigh · vhigh + dlow · vlow < 0

dhigh · 1 = −dlow · 1, dhigh ≥ 0, dlow ≤ 0

Without loss of generality let the components of dhigh and dlow be normalized so that

∑
i∈Ihigh

di = 1

∑
i∈Ilow

−di = 1

Then (dhigh · vhigh + dlow · vlow) is the difference between convex combinations of Vhigh(W)
and convex combinations of Vlow(W). For this difference to be negative the two convex hulls
must overlap. This implies a certifying pair. This finishes the “only if” part, so the proof is
finished.

Theorem 3 motivates a class of algorithms of the form Algorithm A1 below. Members
from this class solve a sequence of decomposed QP problems of the form in (15) over
working sets that can vary in size from 2 to |S| and contain at least one certifying pair. The
initialization ensures that W (0) contains at least one certifying pair. The QPSolve routine
on line 11 solves the QP problem restricted to the current working set W (k − 1). Line 14
chooses a certifying pair for inclusion in the next working set. The algorithm terminates
when a certifying pair no longer exists. The AnySubset routine on line 18 chooses a subset

POLYNOMIAL-TIME DECOMPOSITION ALGORITHMS 59

of samples to be included with the certifying pair in the next working set. This subset is
irrelevant to the issue of guaranteed improvement, but is likely to have an effect on the rate
of convergence.

Algorithm A1: General Decomposition Algorithm.

1:

2: INPUTS: S = {(xi , yi)}m
i=1

3:

4: OUTPUT: λ

5:

6: IS = {1, 2, . . . , m}
7: λi = 0, i ∈ IS

8: Ĩ low = {i : yi = −1}
9: Ĩ high = {i : yi = 1}

10: W (0) ← subset of IS with at least one sample from each class.
11: k ← 1
12: loop
13: λ(k) ← QPSolve(W (k − 1), λ(k − 1), S)
14: Update membership in Ĩ low, Ĩ high for samples in W (k − 1)
15: vi (k) ← ∑

j y jλ j (k)K (x j , xi) − yi , i ∈ IS

16: P ← any pair i, j that satisfy i ∈ Ĩ low, j ∈ Ĩ high, and vi > v j

17: if (P = ∅) then
18: return(λ(k))
19: end if
20: W (k) ← P ∪ AnySubset(IS\P)
21: k ← k + 1
22: end loop

5. Convergence

In general, the stepwise improvement of Algorithm A1 is not sufficient to guarantee con-
vergence. Indeed, Keerthi and Ong (2000) provide an example where each working set
contains a certifying pair but Algorithm A1 does not converge to the optimal solution.
However, convergence results have been proved for some special cases, e.g. see Keerthi
and Gilbert (2000), Chang, Hsu, and Lin (2000), and Lin (2000). The convergence result in
Keerthi and Gilbert (2000) defines λτ to be τ -optimal if it satisfies ṽ∗

low < ṽ∗
high +τ for some

τ > 0. It then shows that the generalized SMO (GSMO) algorithm converges to a τ -optimal
solution in a finite number of steps. The GSMO algorithm is a special case of Algorithm A1

where the AnySubset function returns the empty set. The analysis in Keerthi and Gilbert
(2000) leaves open the question of accuracy with respect to the optimal solution, that is it
provides no bound on |R(λτ) − R∗| or |λτ − λ∗|.

Chang, Hsu, and Lin (2000) give a proof of convergence for a special case of Algorithm
A1 where the working set is defined to be the indices corresponding to the nontrivial

60 D. HUSH AND C. SCOVEL

components of d in the solution to the optimization problem

max dR(λ(k)) · d

s.t. d · y = 0

0 ≤ (λ(k) + d)i ≤ C, i = 1, 2, . . . , m

|{di : di �= 0}| ≤ q

where q ≥ 2. Their proof shows that, with this choice of working set, Algorithm A1 pro-
duces a sequence {λ(k)} whose limit point is optimal for WD(S). More recently Lin (2000)
has provided a similar proof of convergence for SVMlight where the working set is defined
by Joachims (1998) to be the indices corresponding to the nontrivial components of d in
the solution to a slightly different optimization problem

max dR(λ(k)) · d

s.t. d · y = 0, −1 ≤ di ≤ 1, i = 1, 2, . . . , m

di ≥ 0, if (λ(k))i = 0, di ≤ 0, if (λ(k))i = C

|{di : di �= 0}| ≤ q

where q ≥ 2.
The analysis in Chang, Hsu, and Lin (2000) and Lin (2000) is asymptotic and there-

fore leaves open the question of finite step convergence to the optimum. In the following
section we provide a finite step convergence proof for a special case of Algorithm A1 that
corresponds to “chunking”.

5.1. Finite step convergence for chunking

Chunking (as described in Cristianini & Shawe-Taylor, 2000) is a decomposition method
in which each working set contains all support vectors from the current solution plus an
additional set of samples that violate an “optimality condition”. If the optimality condition
is chosen so that the additional set always contains at least one certifying pair1 then the
resulting algorithm takes the form of Algorithm A1 where the AnySubset routine returns,
at a minimum, the indices for all samples with λi > 0. The following theorem holds for
this class of chunking algorithms.

Theorem 4. Let S be a finite set of observations containing at least one sample from each
class. Consider Algorithm A1 where the AnySubset routine returns any set that contains
the indices for all samples with λi > 0. This algorithm converges to a solution of WD(S)
for finite k.

Proof: Algorithm A1 terminates only when there are no certifying pairs, and if it terminates
then λ ∈ �∗(S). We assume that QPSolve provides an exact solution to the constrained

POLYNOMIAL-TIME DECOMPOSITION ALGORITHMS 61

Wolfe dual. Then Theorem 3 guarantees that when we are not at a solution the criterion
for WD(S) is strictly increased from one step to the next, i.e. R(λ(k + 1)) > R(λ(k)).
Since λ = 0 on W c, all nontrivial contribution to R is made by the working set. Thus,
no working set is revisited, and since there are a finite number of working sets, and R∗ is
unique, termination in finite k is guaranteed.

We now show that with the proper choice of certifying pair we can provide polynomial-
time bounds on the run time of Algorithm A1.

5.2. Convergence rate

In this section we provide bounds on the convergence rate for Algorithm A1 when each
working set contains a rate certifying pair (defined below). More specifically we give a
polynomial bound on the number of iterations required to drive |R(λ) − R∗| to within ε

of its optimum. Note that the criterion has a strong dependence on the size of the sample
set m. In general R becomes unbounded as m → ∞. Consequently the development of
convergence rates requires the normalization of R in terms of the number of samples. For
example, in empirical risk minimization it is standard to divide the number of training
errors by the number of samples to obtain the fraction of training errors. However at present
we know of no natural normalization for R. Therefore to allow for the incorporation of
an appropriate normalization we implicitly denote the error tolerance as a function of m
through the notation εm .

Let λ∗ be an optimal parameter value and R∗ = R(λ∗) denote the optimal criterion value.
Let r (λ) = R(λ) − R∗ so that r ≤ 0 and r∗ = 0. Because of concavity,

R(λ∗) − R(λ) ≤ dR(λ) · (λ∗ − λ)

which can be rewritten as

−r (λ) ≤ dr(λ) · (λ∗ − λ).

If we define

σ (λ) = sup
λ́∈�(S)

dr(λ) · (λ́ − λ), (19)

we obtain

−r (λ) ≤ σ (λ). (20)

Let γ denote a parameter value which differs from λ in at most two places and define

σ́ (λ) = sup
γ∈�(S)

dr(λ) · (γ − λ). (21)

62 D. HUSH AND C. SCOVEL

When σ́ (λ) ≥ ασ (λ) for some 0 < α < 1 then we can bound the distance to the optimum
by −r (λ) ≤ σ́ (λ)/α. We use this to determine a bound on the convergence rate for
Algorithm A1.

Let λk denote the value of the state at the k-th iteration and let γk denote a parameter that
differs from λk in at most two indices. We note that in previous sections the subscripted
λk was used for the k-th component of the vector λ and the parenthetic λ(k) was used for
the state of the algorithm at the k-th iteration. However, in the present analysis we need
no components of the vector and feel the use of λk for the state at the k-th iteration is a
better notation for this section. Let Rk = R(λk), rk = r (λk), drk = dr(λk), σk = σ (λk), and
σ́k = σ́ (λk) where

σ (λk) = sup
λ́∈�(S)

dr(λk) · (λ́ − λk) (22)

and

σ́ (λk) = sup
γk∈�(S)

dr(λk) · (γk − λk). (23)

Definition 3. Algorithm A1 is a rate certifying algorithm if there exists an α such that the
certifying pair chosen on line 14 satisfies

σ́k ≥ −αrk, 0 < α < 1

for all k. A rate certifying pair is a pair of indices in the index set of S for which σ́k ≥ −αrk

at iteration k of a rate certifying algorithm.

Chang, Hsu, and Lin (2000) establish a relationship of this type for a particular choice of
rate certifying pair with α = 1

m2 and use it to prove asymptotic convergence. The following
theorem gives a bound on the number of iterations that are sufficient to drive the criterion
to within εm of its optimum for a rate certifying algorithm.

Theorem 5. Let λ(k) denote the sequence of states generated by Algorithm A1. If it is a
rate certifying algorithm then R∗ − R(λk) ≤ εm after

k ≥ 1

q∗α

(
BL

αεm
− 1

)
+ 1

iterations, where

q∗ = min

{
1

4C2
,

1

2

}
,

B = max

{
1,

α(R∗ − R(λ0))

L

}
,

POLYNOMIAL-TIME DECOMPOSITION ALGORITHMS 63

and L is the maximum of the norms of the 2 by 2 matrices determined by restricting Q to
2 indices. In words, if we wish to get an accuracy of εm, then it is sufficient to perform

1
q∗α (BL

αεm
− 1) + 1 iterations.

Proof: Let {i, j} ⊂ W (k) denote the indices of a rate certifying pair in the working set
such that σ́k ≥ −αrk .

Following Dunn (1979) we consider the following auxiliary equations. Let γk differ from
λk in the two indices i, j .

γ ∗
k = arg max

γk∈�(S)
drk · (γk − λk) (24)

λ̄k+1 = λk + ωk(γ ∗
k − λk) (25)

ωk =

βk

|γ ∗
k − λk |2 , 0 <

βk

|γ ∗
k − λk |2 ≤ 1

1,
βk

|γ ∗
k − λk |2 > 1

(26)

βk+1 = (1 − ωkα)βk + αω2
k

2
|γ ∗

k − λk |2 (27)

where β0 = 1.
Since Rk+1 − Rk = rk+1 − rk and R(λk+1) ≥ R(λ̄k+1),

rk+1 − rk ≥ r (λ̄k+1) − rk = ωkdrk · (γ ∗
k − λk) − ω2

k

2
(γ ∗

k − λk) · Q(γ ∗
k − λk)

≥ ωkdrk · (γ ∗
k − λk) − ω2

k

2
L|γ ∗

k − λk |2

With σ́k = drk · (γ ∗
k − λk) ≥ −αrk we have

rk+1 − rk ≥ ωk σ́k − ω2
k

2
L|γ ∗

k − λk |2

≥ −ωkαrk − ω2
k

2
L|γ ∗

k − λk |2

which can be written

rk+1 ≥ (1 − ωkα)rk − ω2
k

2
L|γ ∗

k − λk |2.

Define ρk = − αrk
L and B = max(1, ρ0). Then

ρk+1 ≤ (1 − ωkα)ρk + αω2
k

2
|γ ∗

k − λk |2.

64 D. HUSH AND C. SCOVEL

We show by induction that ρk ≤ Bβk as follows.

ρk+1 ≤ (1 − ωkα)ρk + αω2
k

2
|γ ∗

k − λk |2

≤ (1 − ωkα)Bβk + αω2
k

2
|γ ∗

k − λk |2

= B

(
(1 − ωkα)βk + αω2

k

2B
|γ ∗

k − λk |2
)

≤ Bβk+1.

We now control βk . Plugging the definition of ωk in Eq. (26) into Eq. (27) for βk we
obtain

βk+1 = βk − α

2|γ ∗
k − λk |2 β2

k

βk

|γ ∗
k − λk |2 ≤ 1

βk+1 = (1 − α)βk + α

2
|γ ∗

k − λk |2 βk

|γ ∗
k − λk |2 > 1

(28)

In the latter case |γ ∗
k − λk |2 < βk so then

βk+1 ≤
(

1 − α

2

)
βk .

Putting the two equations from (28) together we obtain

βk+1 ≤ βk − qkβ
2
k (29)

where

qk = min

{
α

2|γ ∗
k − λk |2 ,

α

2βk

}

= α min

{
1

2|γ ∗
k − λk |2 ,

1

2βk

}
≥ α min

{
1

4C2
,

1

2βk

}
≥ α min

{
1

4C2
,

1

2

}
= αq∗

(30)

since βk ≤ β0 = 1. Therefore, by Dunn (1979) Eqs. (29) and (30) imply that

βk ≤ 1

1 + αq∗(k − 1)

but going back through the relations ρk = − αrk
L and ρk ≤ Bβk implies

−rk ≤ BL

α (1 + αq∗(k − 1))
.

POLYNOMIAL-TIME DECOMPOSITION ALGORITHMS 65

Consequently, when

k ≥ 1

αq∗

(
BL

αεm
− 1

)
+ 1,

then

BL

α (1 + αq∗(k − 1))
≤ εm

and

−rk ≤ εm .

The proof is finished.

5.3. Efficient computation of a rate certifying pair

In the previous section we determined that σ́k ≥ ασk is sufficient to establish σ́k ≥ −αrk .
Chang, Hsu, and Lin (2000) show that a certifying pair always exists such that σ́k ≥

1
m2 σk . They do this by considering the solution to a linear programming (LP) problem
(similar to the LP problem for σk), and then restricting this solution to two indices. In
this section we show how to solve this LP to produce a rate certifying pair in O(m log m)
operations.

Let λ = λ(k) be the current solution and define

Li = −λi , i = 1, 2, . . . , m

Ui = C − λi , i = 1, 2, . . . , m

Let η∗ be the solution to the linear program

max dR(λ) · η
s.t. η · y = 0

Li ≤ ηi ≤ Ui , i = 1, 2, . . . , m

(31)

Note that the solution to this problem and (19) are related by λ́∗ = η∗ + λ. As in Section 3,
define

Ĩ η

low = {i : (η∗
i = Li , yi = −1) ∪ (η∗

i = Ui , yi = 1) ∪ (Li < η∗
i < Ui)}

Ĩ η

high = {i : (η∗
i = Ui , yi = −1) ∪ (η∗

i = Li , yi = 1) ∪ (Li < η∗
i < Ui)}

ṽ
η

low = max
i∈ Ĩ η

low

{vi }

= −∞, Ĩ η

low = ∅

66 D. HUSH AND C. SCOVEL

ṽ
η

high = min
i∈ Ĩ η

high

{vi }

= ∞, Ĩ η

high = ∅

and choose

µ∗ ∈ [
ṽ

η

low, ṽ
η

high

]
From Chang, Hsu, and Lin (2000) we know that the certifying pair (i, j) given by

i = arg max
p

|η∗
p||vp − µ∗| (32)

j = arg max
p �=i,(yi ηi)(ypηp)<0

|η∗
p| (33)

is a rate certifying pair with rate α = 1
m2 . The following lemma establishes that this pair

can be determined in a computationally efficient manner.

Lemma 1. Given y, λ = λ(k), and v = v(λ(k)) the rate certifying pair (i, j) in (32) and
(33) can be computed in O(m log m) time.

Proof: We describe an algorithm that computes this pair in O(m log m) time. Our algo-
rithm solves the LP in (31) and then computes the two indices using (32) and (33). Once the
LP is solved it is straightforward to implement (32) and (33) in O(m) steps, so we describe
only the LP solution.

Consider the LP in (31). Recall that dR(λ)i = −yivi . The Karush-Kuhn-Tucker conditions
for the solution η are

yivi = αi − βi + µyi

αi (ηi − Li) = 0

βi (Ui − ηi) = 0

with αi ≥ 0, βi ≥ 0 and η · y = 0. These equations can be written

vi − µ ≥ 0, i ∈ I η

high

vi − µ ≤ 0, i ∈ I η

low (34)

vi − µ = 0, i ∈ I η
int

where

I η

low = {i : (ηi = Ui , yi = 1) ∪ (ηi = Li , yi = −1)}
I η

high = {i : (ηi = Ui , yi = −1) ∪ (ηi = Li , yi = 1)}
I η
int = {i : Li < ηi < Ui }

POLYNOMIAL-TIME DECOMPOSITION ALGORITHMS 67

To solve these equations, fix µ and determine η to satisfy

i ∈ I η

high vi − µ ≥ 0

i ∈ I η

low vi − µ ≤ 0.
(35)

For example, if vi > µ, then set ηi = Li if yi = 1 and ηi = Ui if yi = −1. To determine
µ we use the constraint

η · y = 0.

Written out this becomes

0 = η · y =
∑

i∈I η

low

yiηi

︸ ︷︷ ︸
≥0

+
∑

i∈I η

high

yiηi

︸ ︷︷ ︸
≤0

+
∑
i∈I η

int

yiηi

Our strategy is to choose µ so that it splits the samples into I η

low and I η

high in such a way that
the first and second sums cancel as closely as possible. When they do not cancel exactly we
shift µ so that the split occurs on a value vi , thereby placing samples with this value into I η

int
and allowing us to choose their parameters ηi to satisfy the equality. More specifically we
sort the values of v in increasing order and use k to index the sorted list (i.e. vk ≤ vk+1). As
µ increases from −∞ to ∞, jumping over values where µ = vk , with η being determined
as above, the value of η · y is monotonically increasing and must pass from negative to
positive. In fact it is easy to see that η · y increases by C each time an individual sample is
jumped. Suppose that this increasing function achieves the value 0 on the interval (vk, vk+1).
Then we let µ be any value in this interval and since I η

int is empty and η was chosen to satisfy
(35) we have a solution. Suppose this increasing function skips the value 0 and jumps from
−a < 0 to b > 0 at µ = vk and there are a total of M ≥ 1 samples with this value of v

(i.e. vk = vk+1 = · · · = vk+M−1). Then set µ = vk and place the first M1 = �a/C� of
these samples in I η

low (the rest remain in I η

high). If a/C is integral then this gives η · y = 0
and we have a solution once again (with M of the samples satisfying (35) with equality and
I η
int = ∅ as before). If a/C is not integral then its remainder is used to determine ηk+M1 ,

the component of η corresponding to vk+M1 . This gives η · y = 0 and places this sample in
I η
int, and again we have a solution. Note that there are many solutions to these equations.

This construction gives η∗ and µ∗, both of which are necessary to implement (32) and (33).
It takes O(m log m) steps to sort the v, followed by an additional pass through the list to
initialize η, placing all samples in I η

high and yielding η(0) · y. Since η · y begins at η(0) · y
and increases by C each time µ is increased past a data point, the components of η for all
the points up to k∗ = �−η(0) · y

C � are changed by C placing them in I η

low. Then, if −η(0) · y
C is

not integral its remainder is used to determine the component of η for the k∗ + 1 sample
which is moved to I η

int. Updating η in this way requires at most one complete pass through
the list. This completes the proof.

Algorithm A2 computes a rate certifying pair using the method described in the proof
above. In addition to the sort, this algorithm makes a total of four passes through the list.
The number of computations in this procedure can sometimes be reduced. Let i, j be a rate

68 D. HUSH AND C. SCOVEL

certifying pair. Then vi and v j are on opposite sides of µ∗, and since i, j is also a certifying
pair µ∗ must lie between ṽ∗

high and ṽ∗
low (defined in (13) and (14)). This means that the sorting

operation required in our search for µ can be restricted to the vi in this interval. Since the
sorting operation dominates the run time this can lead to a substantial savings when the
number of samples in this interval is small.

Algorithm A2: Rate Certifying Pair Algorithm.

INPUTS: y, v, and λ (at the current iteration)

OUTPUT: (i1, i2) {sample indices for a rate certifying pair}

{L is an ordered list of indices in nondecreasing order of {vi } so that vL(l) ≤ vL(l+1)}
L ← LSort(V)

{initially place all samples in I η

high and compute η(0) · y}
EtaDotY ← 0
for i = 1 to m do

if (yi = 1) then ηi ← −λi

else if (yi = −1) then ηi ← C − λi

EtaDotY ← EtaDotY + ηi yi

end for

{determine split point index and move samples into I η

low}
l∗ ← �−EtaDotY/C�
for l = 1 to l∗ do

ηL(l) ← ηL(l) + yL(l) · C
end for
EtaDotY ← EtaDotY + l∗ · C

{if needed, move sample into I η
int}

if (EtaDotY < 0) then
l∗ ← l∗ + 1
ηL(l∗) ← ηL(l∗) − yL(l∗) · EtaDotY
µ ← vL(l∗)

else
µ ← value in [vL(l∗), vL(l∗+1)] {if i∗ = 0 or i∗ = m then use vL(i∗) = vL(i∗+1)}

end if

{determine indices for rate certifying pair}
i1 ← maxi=1,m |ηi ||vi − µ|
i2 ← maxi=1,m and (yi1 ηi1)(yi ηi)<0 |ηi |

Return((i1, i2))

POLYNOMIAL-TIME DECOMPOSITION ALGORITHMS 69

5.4. Summary of rates

If we use Algorithm A2 to choose a rate certifying pair then α = 1
m2 and by Theorem 5

Algorithm A1 will drive the criterion to within εm of its optimum in no more than

m2

q∗

(
BLm2

εm
− 1

)
+ 1

iterations. Further, with λ0 = 0 we have R∗ − R(λ0) ≤ dR(λ0)(λ∗ − λ) = 1 · λ∗ ≤ Cm so
that B = 1 when C ≤ Lm. Thus, when

√
1/2 ≤ C ≤ Lm, q∗ = 1

4C2 and neglecting lower
order terms, the number of iterations simplifies to

4LC2m4

εm

In the case where the working sets are of size two we can use this result to establish a
worst case overall run time for Algorithm A1. At each iteration we must solve a 2 by 2 QP
problem, update the vi (k), and determine the next certifying pair. The time to solve the 2 by
2 QP problem is a constant, and it takes order m operations to update the vi (k). If we add
m log m operations to determine the certifying pair, the worst case run time is of order

4LC2m5 log m

εm

Now consider our choice for εm obtained through an appropriate normalization of R (see
discussion at the beginning of this section). Because R tends to increase with m, εm will
be an increasing function of m. Although the form of this function is not yet known it will
clearly improve the run-time bounds presented above. For example, if εm = m pε then the
order of the polynomial in these bounds is reduced by p.

6. Discussion

This paper considers a class of algorithms for support vector machines that decompose the
original Wolfe Dual QP problem into a sequence of smaller QP problems defined on subsets
of the data. Following the work of Keerthi and Gilbert (2000) and Keerthi et al. (2001) we
provide a scalar condition that is necessary and sufficient for optimality of the QP problem.
This leads naturally to the introduction of certifying pairs as a necessary and sufficient
condition for stepwise improvement, and motivates the use of Algorithm A1 as a model
algorithm for this problem. By leveraging the results of Chang, Hsu, and Lin (2000) we
have developed Algorithm A2 for selecting the certifying pair in Algorithm A1. Theorem 5
shows that the number of iterations for this instantiation of Algorithm A1 is O(m4) and the
overall run time is O(m5 log m).

Many existing SVM algorithms are either special cases of Algorithm A1 or can be made so
through slight modification. For example, Platt’s Sequential Minimal Optimization (SMO)

70 D. HUSH AND C. SCOVEL

algorithm, which chooses working sets of size two, is designed to choose a pair that give
a strict increase in R at each step (Platt, 1998). The original algorithm however, contains a
flaw that can lead to improper behavior (Keerthi et al., 2001; Keerthi & Gilbert, 2000). This
behavior can be traced to its inability to guarantee a certifying pair in each working set. By
forcing each working set to contain a certifying pair the corrected algorithm not only has
guaranteed convergence, but also improved performance (Keerthi et al., 2001).

The SVMlight algorithm in Joachims (1998) uses a modification of Zoutendijk’s method
(Zoutendijk, 1970) to choose working sets of size q ≥ 2. This choice can be shown to
contain the q/2 largest vi from Ĩ low and the q/2 smallest vi from Ĩ high, thus guaranteeing
at least one certifying pair.

The chunking algorithm described in Cristianini and Shawe-Taylor (2000) and the decom-
position algorithm of Osuna, Freund, and Girosi (1997) both attempt to ensure improvement
in R by choosing working sets that include support vectors from the current solution plus
a subset of samples that violate an “optimality condition” with respect to this solution. A
strict implementation of the algorithms described in these papers can lead to undesirable
behavior because they cannot guarantee a certifying pair in their working sets. However,
such a guarantee can be achieved with a slight modification (as we did for the chunking
algorithm in Section 5.1).

It is not clear that the algorithms above satisfy the rate certifying condition in Definition 3,
nor that this is necessary to establish rates for them. We have described a new SVM algorithm
that satisfies the rate certifying condition and has polynomial-time rates. It is not yet clear
how this algorithm will compare with existing algorithms in practice. Note that Keerthi’s
GSMO algorithm (Keerthi et al., 2001) and Jochamin’s SVMlight algorithm (Joachims,
1998) require O(m) time to determine a certifying pair while A2 requires O(m log m)
time. However, we know of no bounds on the rates of convergence for GSMO and SVMlight

(although they seem to work well in practice), but can guarantee a polynomial convergence
rate when we use A2.

Finally we note that the polynomial-time bound on the number of iterations scales as
m4, which is unattractive. We leave open the issue of the tightness of this bound, although
we suspect that it may be loose. A closely related issue is the determination of a proper
normalization for R that would give rise to an explicit functional dependence of ε on m.
This is likely to improve the rate.

Acknowledgments

We would like to thank the reviewers for their thorough and thoughtful considerations of
the manuscript, in particular the reviewer that recommended a correction to our proof of
Theorem 5. We also gratefully acknowledge support from the DOE AMS program in applied
mathematics at Los Alamos National Laboratory.

Note

1. This requires a slight modification to the chunking algorithm in Cristianini and Shawe-Taylor (2000).

POLYNOMIAL-TIME DECOMPOSITION ALGORITHMS 71

References

Avriel, M. (1976). Nonlinear programming: Analysis and methods, 1st edn. Englewood Cliffs, N.J.: Prentice Hall.
Chang, C., Hsu, C., & Lin, C. (2000). The analysis of decomposition methods for support vector machines. IEEE

Transactions on Neural Networks, 11:4, 1003–1008.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.
Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based

learning methods, 1st edn. Cambridge, UK: Cambridge University Press.
Dunn, J. (1979). Rates of convergence for conditional gradient algorithms near singular and non-singular extremals.

SIAM J. Control and Optimization, 17:2, 187–211.
Joachims, T. (1998). Making large-scale SVM learning practical. In B. Scholkopf, C. Burges, & A. Smola (Eds.),

Advances in kernel methods—support vector learning. Cambridge, MA: MIT Press.
Keerthi, S., & Gilbert, E. (2000). Convergence of a generalized SMO algorithm for SVM classifier design.

Technical Report CD-00-01, Control Division Technical Report, Department of Mechanical and Production
Engineering, National University of Singapore. Also in Machine Learning, to appear.

Keerthi, S., & Ong, C. (2000). On the role of the threshold parameter in SVM training algorithms. Technical
Report CD-00-09, Control Division Technical Report, Department of Mechanical and Production Engineering,
National University of Singapore.

Keerthi, S., Shevade, S., Bhattacharyya, C., & Murthy, K. (2001). Improvements to Platt’s SMO algorithm for
SVM classifier design. Neural Computation, 13, 637–649.

Lin, C.-J. (2000). On the convergence of the decomposition method for support vector machines. Technical Report,
Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan.
Also in IEEE Trans. Neural Networks, to appear.

Osuna, E., Freund, R., & Girosi, F. (1997). Support vector machines: Training and applications. Technical Report
AIM-1602, MIT.

Platt, J. (1998). Fast training of support vector machines using sequential minimal optimization. In B. Scholkopf,
C. Burges, & A. Smola (Eds.), Advances in kernel methods—Support vector learning (pp. 41–64). Cambridge,
MA: MIT Press.

Vapnik, V. (1998). Statistical learning theory. New York, NY: John Wiley and Sons.
Zoutendijk, G. (1970). Methods of feasible directions: A study in linear and non-linear programming. Amsterdam:

Elsevier.

Received September 11, 2000
Revised September 5, 2001
Accepted September 5, 2001
Final manuscript September 10, 2001

