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Abstract. While many implementations of Bayesian neural networks use large, complex hierarchical priors,
in much of modern Bayesian statistics, noninformative (flat) priors are very common. This paper introduces a
noninformative prior for feed-forward neural networks, describing several theoretical and practical advantages of
this approach. In particular, a simpler prior allows for a simpler Markov chain Monte Carlo algorithm. Details of
MCMC implementation are included.
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1. Introduction

Much of the existing Bayesian neural network literature relies upon complex hierarchical
priors for the parameters of the network, for example, MacKay (1992), Neal (1996), Rios
Insua and Müller (1998), and Andrieu, de Freitas, and Doucet (2001). This paper proposes
a fully noninformative prior with several philosophical and practical advantages. It also
discusses how to implement model fitting via Markov chain Monte Carlo with this prior.

In the Bayesian context, one’s choice of prior is meant to reflect either knowledge from
previous experience or data, or to reflect personal and subjective beliefs about the problem
(or both). In order to accurately choose a prior, one needs to understand how to interpret
the parameters of a neural network model. Unfortunately, few people seem to realize how
difficult a problem this is. Section 2 will discuss this issue in more detail. The bottom line
is that if one cannot interpret the parameters effectively, it may be unwise to pretend so
by using a proper prior. A noninformative prior is a way to acknowledge this high degree
of uncertainly about the meaning of the parameters and to let the data more fully guide
the model. Such priors were first fully established by Jeffreys (1961). There is now an
extensive literature on such reference priors, and Kass and Wasserman (1996) provide a
thorough review of this literature.

This noninformative prior is much simpler in structure, and it thus leads to a much simpler
final model. This has advantages in reducing the dimension of the parameter space with the
attendant benefits of shorter MCMC programming and run times. Since the noninformative
prior is flat with respect to most parameters, the posterior modes of the parameters will be
the same as would be obtained under least-squares fitting. This has the advantage that one’s
results are directly comparable to those of many other researchers, and that one can directly
relate to those doing non-Bayesian analysis. However, one still gains all of the benefits of



198 H.K.H. LEE

the Bayesian approach. For example, it is straightforward to get estimates of variability or
error probabilities from MCMC output, and one can justifiably interpret the results in terms
of probabilities. This approach also allows one to do model averaging (Kass & Raftery,
1995) over several different fitted networks to improve predictive power.

Noninformative priors, including the one of this paper, often have many invariance prop-
erties (Jeffreys, 1961; Hartigan, 1964). For example, Jeffreys’s prior is invariant with respect
to all differentiable transformations of the input variables. The prior of this paper is eas-
ily seen to be invariant with respect to a shift in location or scale. Thus one need not be
concerned about rescaling the variables (except, perhaps, for computational reasons).

This noninformative prior, as well as many other priors for neural networks, have been
shown to be asymptotically consistent for the posterior, in the sense that the posterior
probability accumulates in a Hellinger neighborhood of the truth (Lee, 2000a).

In many problems, including this one, it is important to consider the issue of model
selection. How many hidden nodes are best? Are all of the inputs necessary? Noninformative
priors, being not informative, do not provide the same shrinkage as some other priors (or
methods such as weight decay), and so the user must keep this in mind. It is advisable to
use some model selection technique, and these are discussed in Section 6.

This paper focuses exclusively on feed-forward neural networks with a single hidden
layer of units with logistic activation functions, without direct connections from the inputs
to the outputs. For regression problems, linear output units are used, while for classification,
the softmax approach is taken. However, all of these methods and results are fully generaliz-
able to any variety of feed-forward networks. The primary focus of this paper is the case of
regression, although some classification examples are also presented. The particular form
of the model in this paper in the case of regression is:

yi = βo +
k∑

j=1

β j�(γ ′
j xi ) + εi , εi

iid∼ N (0, σ 2)

where xi is a (possibly vector-valued) input, yi is the target, γ are the weights from the
inputs to the hidden layer, β are the weights from the hidden layer to the outputs, and the
activation function is

�(z) = 1

1 + exp(−z)
.

2. Interpretation of the parameters

This section will demonstrate the infeasibility of trying to interpret the parameters of a
neural network in the general case. Before getting to the general case, let us first look at
some cases where the parameters can be interpreted, so that we can see what happens to
cause a loss of interpretability.

The case of a single hidden node is straightforward. With a single input variable, the
model for the fitted values, ŷi , is

ŷi = β0 + β1

1 + exp(−γ0 − γ1xi )
.
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Figure 1. A one-node function.

Figure 1 shows this fitted function for β0 = 1, β1 = 2, γ0 = −6, and γ1 = 10 over x
in the unit interval. In the one-hidden node case, the parameters are easily interpreted. β0

represents the overall location of y, a sort of intercept, in that y = β0 when the logistic
function is close to zero (which it is here for values of x near or below zero). β1 is the overall
scale factor for y, in that the logistic function ranges from 0 to 1, so β1 is like the range of
y, which in this case is 3 − 1 = 2. The γ parameters control the location and scale of the
logistic function. The center of the logistic function occurs at − γo

γ1
, here 0.6. The larger the

value of γ1, the steeper the increase in y as one moves away from the center. If γ1 is positive,
then the logistic rises from left to right. If γ1 is negative, then the logistic will decrease as
x increases.

This interpretation works fine for a single hidden node. For well-separated nodes (in
terms of their centers and slopes, so that for any particular value of x , at most one node
is near its center and the rest are far enough from their centers that a small change in x
does not produce a noticeable change in the logistic function), one can continue to use
this interpretation. Two nodes with centers near each other, but with opposite signs on
γ1, can combine to produce a peak, similar in spirit to a kernel or a radial basis function.
However, when the nodes effectively overlap, which is typically the case in a real problem,
the parameters can no longer be interpreted as above.

For example, the left plot of figure 2 results from maximum likelihood (least-squares)
fitting of a two-node network to the motorcycle accident data of Silverman (1985). The
x-axis is the time in milliseconds after the crash, and the y-axis the acceleration force on
the head of the rider. The two-node model does a good job of capturing the main features of
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Figure 2. Logistic basis functions.
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the data, although perhaps it over-smooths for small x values. Keep in mind that this fit is
achieved with only two hidden nodes. It is impossible to use any of the above interpretations
of the nodes for this fit, because there are more points of inflection in the fit than there are
hidden nodes. The two individual nodes are shown in the right plot of the figure, and they
have very similar centers and slopes, but combine to produce a highly non-linear fit. Note
that the scale of the basis functions is two orders of magnitude larger than the original data.
Looking at only the data, it is not at all clear that the particular basis functions of figure 2
would work so well. This is an extremely simple case, with only two hidden nodes and a
single input variable, and one can easily imagine how much worse things can get with more
hidden nodes.

Alternative models in the neural networks literature require the selection of many hyper-
parameters for their hierarchical priors. There is little guidance on how the selection of these
hyperparameters affects the posterior in specific cases. Typically such models are meant to
impose some shrinkage in the fitted model, but how much shrinkage can be allowed in the
example of figure 2 before the least-squares solution becomes infeasible under the posterior,
because the scale of the least-squares fit is so different than the scale of the data? In most
cases, even a small amount of shrinkage will eliminate the least-squares fit of this figure.
Yet a shrinkage model won’t be easily able to fit the data as well, requiring more hidden
nodes and increasing the computational complexity. A noninformative prior allows the data
to drive the model, rather than the prior.

At this point, two comments should be made. First, in the limiting case of infinitely many
hidden nodes, Neal (1996) has shown that the model converges to a Gaussian process model,
and demonstrates how the prior parameters affect the posterior. This is indeed an elegant
solution to understanding the prior. Yet in practice, many users of neural networks opt for
a relatively small number of hidden nodes, and it is these finite models that this paper is
meant to address. Second, prior shrinkage does have its benefits, in particular, it can help
guard against overfitting (analogously to weight decay). One must take more care with a
noninformative prior, and some suggestions are in Section 6.

3. An improper prior

The prior I propose for feed-forward neural networks is

π (β, γ, σ 2) ∝ 1

σ 2
. (1)

Notice that this prior is only defined up to a constant. Since it has an infinite integral, it
does not matter what the constant is. Priors with an infinite integral, such as this one, are
called improper. While the thought of using an improper prior may sound odd, improper
priors have found to be very useful in practice. Many of Jeffreys’s (1961) original reference
priors were improper. The key is to ensure that the posterior is proper (finite). Below are
some details to enforce propriety for this prior.

This choice of prior is well-established in least-squares regression (see for example,
Gelman et al., 1995). It places uniform prior density over the real line for all parameters
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except the variance of the error. For the variance, it is uniform with respect to the log of the
variance, since variances must be positive and are right-skewed. By using a prior such as
this one, we make no assumptions about the location or scale of any of the parameters in the
model. Gelman et al. (1995) present some theoretical advantages of this family of priors.

If we condition on the hidden nodes (i.e., temporarily think of all hidden node parameters
as fixed), then fitting the linear output weights is exactly a linear regression problem. It makes
sense to thus apply results from the regression literature. The hidden nodes can be seen as
basis functions, and a noninformative prior is then noninformative about the fitted function,
allowing the data to drive the fit.

In the case of simple least-squares regression, the posterior is necessarily proper (assum-
ing at least as many data points as parameters). In the case of a neural network, propriety
of the posterior is not guaranteed. Hence we need to make a few minor modifications to the
prior. The basic idea is to guarantee that the logistic basis functions of the hidden layer are
linearly independent. We do this by putting certain restrictions on the parameters during the
MCMC fitting process, a method now common in the mixture model literature (Diebolt &
Robert, 1994; Wasserman, 2000).

First, a piece notation is helpful. Denote the outputs of the hidden layer as

zi j =
[

1 + exp

(
−γ j0 −

p∑
h=1

γ jh xih

)]−1

and let Z be the matrix with elements (zi j ). The fitting of the vector β is merely a least-
squares regression on the design matrix Z . What is necessary is a restriction on Z to ensure
the linear independence of the columns of Z . A sufficient condition for linear independence
is that the determinant of Zt Z is larger than some positive value Cn . We can let Cn → 0
as n → ∞ as long as Cn > 0 for all n (n is the sample size). To ensure propriety of the
posterior, we also need to bound the individual γ ’s such that |γ jh | < Dn for all j, h. Dn is a
bound which is allowed to grow with n, as discussed in the next paragraph. A full theoretical
justification of these restrictions follows in Section 5.

It is computationally useful to also bound the other parameters (namely |β j | < Dn; σ

does not need to be bounded). This can help with numerical stability in the MCMC fitting.
It is also theoretically useful in that this prior can be shown to be asymptotically consistent
for the posterior (Lee, 2000a). The consistency proof requires that Dn = o(exp(nr )) for all
r > 0.

The basic idea of the constraining values Cn and Dn is that as the sample size n increases,
Cn and Dn can become more extreme (closer to zero for Cn , arbitrarily large for Dn).
Asymptotically, the rate does not matter for Cn , and the rate for Dn required by the con-
sistency theorem is exponentially fast. In practice, one can just pick a large constant value
for Dn such as 100,000, and a small constant value for Cn such as 0.0001. What matters is
the numerical stability of one’s computational routines, and numbers such as these usually
suffice for double precision arithmetic.

Thus the restricted prior is

πn(β, γ, σ 2) = π (β, γ, σ 2)I{θ∈n} ∝ 1

σ 2
I{θ∈n}. (2)
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where I{} is an indicator function (equal to one when its argument is true, zero otherwise),
and n is the parameter space restricted such that:

1. |ZT Z| > Cn

2. |γ jh | < Dn for all j, h
3. |β j | < Dn for all j

4. Fitting the model with MCMC

Fitting the model is straightforward using Markov chain Monte Carlo. The full posterior is
proportional to the likelihood times the prior:

f (β, γ, σ 2 | y) ∝ 1

σ 2
(2πσ 2)−n/2 exp

[
− 1

2σ 2

n∑
i=1

(
yi − β0 −

k∑
j=1

β j zi j

)2 ]
I{θ∈n}.

The complete conditional distributions for σ 2 and β given the other parameters and the data
are inverse-gamma and normal, respectively:

σ 2 | γ, y ∼ �−1

(
n − k − 1

2
,

1

2

n∑
i=1

(
yi − β̂0 −

k∑
j=1

β̂ j zi j

)2 )
(3)

β | γ, σ 2, y ∼ N ((Zt Z )−1 Zt y, (Zt Z )−1σ 2), (4)

where β̂ are the fitted coefficients from a least-squares regression of y on Z . Thus the
MCMC algorithm is as follows:

1. Start with arbitrary initial values for γ .
2. Compute Z .
3. Draw σ 2 via Eq. (3).
4. Draw β via Eq. (4).
5. For each j from 1, . . . , k, do the following Metropolis step:

(a) Generate a candidate γ̃ j ∼ N (γ j , 0.052).
(b) Re-compute Z with γ̃ j and compute

∣∣Zt Z
∣∣.

(c) If |Zt Z | > 0.0001 and |γ jh | < 100,000 for all j, h, accept γ̃ j with probability
min(1,

f (β,γ̃ ,σ 2|y)
f (β,γ,σ 2|y) ); otherwise, reject the candidate and keep the current value of γ j .

6. Repeat steps 2 though 5 for the required number of iterations.

The resulting draws will be a sample from the joint posterior distribution of the parameters.
An explanation of why the determinant restriction keeps the posterior from being improper
follows in the next section. Note that the choice of Cn = 0.0001 and Dn = 100,000
are arbitrary and can be adjusted to match individual computational requirements. They
generally do not affect the actual fit of the model, since the logistic function tails off very
quickly (i.e., 1/(1 + exp(−x)) is numerically equivalent to 1.0 for x > 40.) The choice of
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0.05 in the proposal function of step 5(a) should be treated as a tuning parameter, and can
be adjusted to aim for an acceptance probability of approximately forty percent.

Many diagnostics exist for checking convergence, or at least lack thereof, of the chain.
It is important to use only those values drawn from the stationary distribution of the chain,
with the initial burn-in runs discarded. The reader is referred to Gilks, Richardson, and
Spiegelhalter (1996) for a further discussion of convergence diagnostics, which includes
several examples and additional references.

Note that there exist many more sophisticated methods of generating Metropolis-Hastings
proposals to achieve higher acceptance probabilities and better mixing of the chain, such as
Hybrid Monte Carlo (Neal, 1996). Such algorithms can also be applied to this model with
their standard benefits. However, there is a trade-off between programming time and run
time, in that more complicated approaches can decrease the necessary run time, but may
take much more time and effort to program. Some concern has also been voiced about trying
to make the MCMC iterations as independent as possible from each other. However, it is not
normally necessary to use independent samples when estimating posterior quantities, such
as means or predictions (see for example, Gilks, Richardson, & Spiegelhalter, 1996). The
approach of this paper is to use a simpler algorithm and just let it run for more iterations,
which often takes a similar amount of computing time in the end. In some cases, using a
much simpler model leads to much faster run times (see the abalone example of Section 7.2).
However, this is merely an issue of implementation and this noninformative prior can be
used with any choice of fitting algorithm.

5. Theoretical justification for the restrictions

This section contains first a heuristic explanation of the restrictions, followed by more
rigorous theory. To understand why the restrictions force propriety on the posterior, first
look at a simplified scenario. Consider a single input x with n observations. Instead of
using logistic functions, suppose the activation functions are step (Heaviside or indicator)
functions of the form

� j (x) = I{x≤a j } or � j (x) = I{x>a j }.

Suppose for now that network contains only two hidden nodes. Then z j = (z1 j , . . . , znj ) =
(1, . . . , 1, 0, . . . , 0) or (0, . . . , 0, 1, . . . , 1) and z0 is a vector of ones (the bias input). Let

ri =
∑

i

zi j for i = 1, 2; r12 =
∑

i

zi1z2i .

r1 is the number of cases with input 1 larger (or smaller depending on the direction of
inequality in the indicator) than the first threshold a1. r12 is the number of cases for which
both hidden units give outputs of 1. The determinant of interest is

∣∣Zt Z
∣∣ =

∣∣∣∣∣∣∣
r1 r12 r1

r12 r2 r2

r1 r2 n

∣∣∣∣∣∣∣ = r1r2n + 2r1r2r12 − r2
1 r2 − r1r2

2 − r2
12n.
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This determinant will be zero if any of the following happen: ri = 0, ri = n, r1 = r2 = r12,
or {r1 = n − r2 and r12 = 0}. Essentially one needs to ensure that the thresholds for
the activation functions are all separated by data points (i.e., there is a data point xi that
is between the thresholds of the two indicators), and that no threshold occurs outside the
range of the data. These are exactly the conditions that prevent linear dependence. If we
choose a small enough Cn (for indicator functions, all we need is 0 < Cn < 1), then the
same conditions guarantee that |Zt Z | > Cn . The same logic applies to datasets with more
inputs and to networks with more hidden nodes.

For indicator function hidden nodes, the requirement on the determinant also prevents
impropriety in the posterior. Consider the case of trying to fit an indicator function where
the parameter is the threshold. Suppose one tries to fit a threshold smaller than the smallest
data point, xmin. Then the data do not provide any information for distinguishing between
putting the threshold at xmin − b1 and xmin − b2 for any positive numbers b1 and b2. Since
this equivalence set has infinite mass under the prior, the posterior is improper. On the other
hand, when fitting a threshold inside the range of the data, the data force propriety on the
posterior.

The indicator functions relate to logistic functions in that indicator functions are a limiting
case of logistic functions. Let

�(x) = 1

1 + exp(−γ0 − γ1x)

be a logistic function. If γ0, γ1 → ∞ such that γ0

γ1
→ a for some constant a, then �(x) →

I{x>−a}. We would then need the determinant condition to guarantee linear independence.
However, this is not the only condition we need to guarantee a proper posterior. The trian-
gular region where γ0, γ1 → ∞ such that γ0

γ1
→ a has infinite area. Over this region, as the

parameters get large, the likelihood converges to some non-zero constant (in most problems,
the likelihood converges to zero in the tails). Thus the posterior over this region alone is
improper. For this reason, we also need to bound the individual parameters.

The logistic functions allow values between zero and one, so that two columns of Zt Z
could be very similar, but not identical. In regression this is called multicollinearity. The
near-linear dependence causes instability in the parameter estimates. It is computationally
desirable to avoid this case, which we can do by requiring the determinant to be larger than
some small positive number Cn rather than merely requiring it to be non-zero.

Now for the the full proof of the propriety of the prior. Denote the likelihood by Ln .
Let π be the noninformative prior of Eq. (1), πn be the restricted prior of Eq. (2), and n

the restricted parameter space described with Eq. (2). Let Cn decrease to 0 (for example,
Cn = 1/n) and let Dn increase with n (for example, Dn = 100,000 + n). First the likelihood
is re-written so that β can be integrated out, which involves completing the square for β.

Ln = f (β,γ, σ | y) = (2πσ 2)−n/2 exp

[
− 1

2σ 2

n∑
i=1

(
k∑

j=0

β j z j − yi

)2 ]

= (2πσ 2)−n/2 exp

[
− 1

2σ 2
(Zβ − Y)t (Zβ − Y)

]
in vector notation
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= (2πσ 2)−
k+1

2 |Zt Z|− 1
2 exp

{
− 1

2σ 2
[β − (Zt Z)−1Zt Y]t (Zt Z)[β − (Zt Z)−1Zt Y]

}

∗ (2πσ 2)−
n−(k+1)

2 |Zt Z| 1
2 exp

{
− 1

2σ 2
[Yt Y − Ŷt Ŷ]

}
= f (β |γ, σ, y) f (γ, σ | y),

where Ŷ is the vector of fitted values, Ŷ = E[Y | X]. Note that f (β |γ, σ, y) is a proper
density as long as |Zt Z| > 0, which is true over n . Denote by �n the subspace of n that
relates to all of the γ parameters. Then the posterior is proper:∫

Lnπn =
∫

n

f (β |γ, σ, y) f (γ, σ | y)

[
1

σ 2

]
dβ dσ dγ

=
∫

�n

∫ [ ∫
f (β |γ, σ, y) dβ

]
1

σ 2
f (γ, σ | y) dσ dγ

=
∫

�n

∫
1

σ 2
(2πσ 2)−

n−(k+1)
2 |Zt Z| 1

2 exp

{
− 1

2σ 2
[Yt Y − Ŷt Ŷ]

}
dσ dγ

≤
∫

�n

∫
1

σ 2
(2πσ 2)−

n−(k+1)
2 |Zt Z| 1

2 dσ dγ

= (2π )−
n−(k+1)

2 (n − k + 1)−1
∫

�n

|Zt Z| 1
2 dγ

The last integral is finite because �n is a bounded set and the integrand is finite. Thus the
posterior is proper.

In addition to showing that the adjusted prior leads to a proper posterior, it is also important
to show that the adjusted prior is asymptotically equivalent to the original improper prior,
which can be shown in both a global and local sense. First, it is clear that, for any compact
set κ , ∫

κ

|πn − π | =
∫

κ

|π In − π | → 0 as n → 0

because |Zt Z| must be non-zero for the true function (or else it would have one fewer
node), and because for a large enough n, n will contain all elements of κ that satisfy the
determinant condition. This equation says that, in the limit as the sample size grows, πn

converges to π on all compact sets. In this sense, the two priors are “asymptotically globally
equivalent” (Wasserman, 2000).

Second is a condition of “asymptotic local equivalence”. It relates to correct second-order
frequentist coverage properties (Wasserman, 2000). The key is that the original and adjusted
priors have the same local properties (while the adjusted prior is better behaved in the tails).
Suppose there exists a true value of the parameters, θ0. Then for large n,∣∣∣∣∂ log πn

∂θ0
− ∂ log π

∂θ0

∣∣∣∣ = Op

(
1√
n

)

because if n is large enough, θ0 will be contained in n .



A NONINFORMATIVE PRIOR FOR NEURAL NETWORKS 207

6. Avoiding overfitting

Overfitting is a traditional problem faced by data analysts. Several methods have been devel-
oped for combating overfitting in the case of neural networks, including weight decay, early
stopping, and Bayesian methods. A popular device in the Bayesian context is Automatic
Relevance Determination (ARD) (MacKay, 1992; Neal, 1996), which adds another layer
to the hierarchical prior to adjust the weights for the relative importance of the inputs. In a
fully Bayesian paradigm, one puts a prior over the space of possible models and explores the
posterior for the model space, either choosing the model of highest posterior probability or
doing model averaging, i.e., predicting with a weighted average of predictions from multiple
models where the weights are the posterior probabilities of the models. Some methodology
for reversible-jump MCMC is presented in Müller and Rios Insua (1998) and Andrieu, de
Freitas, and Doucet (2001).

An alternative Bayesian approach is to approximate the posterior probabilities directly.
For a review of the difficulties in estimating these posterior probabilities for a neural net-
work, see Lee (2002). If the model space is sufficiently small, one can simply estimate
probabilities for all models exhaustively. Should the model space be too large to esti-
mate all possible models, one can use a searching technique such as Bayesian Random
Searching (BARS). A brief description BARS is provided here, and more details can be
found in Lee (2000b, 2001). BARS is motivated by Markov Chain Monte Carlo Model
Composition (MC3) (Raftery, Madigan, & Hoeting, 1997), which uses MCMC on the
model space, estimating posterior probabilities of the models with the fraction of time the
Markov chain spends visiting each model. In order to compute the transition probabili-
ties for this chain, one needs the ratio of the posterior probabilities of the two models,
or equivalently, their Bayes factor. This can be approximated using the BIC (Lee, 2002).
Since these posterior probabilities are estimated as part of MC3, instead of discarding
them and relying on the steady state properties of the chain, BARS simply keeps track
of the probabilities of all models visited, using these probabilities as the final estimates,
and using the chain merely as a stochastic method for exploring the model space. This
approach is similar to that of Chipman, George, and McCulloch (1998) in the context
of CART.

7. Examples

7.1. Robot arm data

The canonical dataset in the Bayesian neural network literature is the robot arm data of
MacKay (1992). The idea of the data is to model the relationship between the two joint
angles of the arm (x1 and x2) and the resulting arm position in Cartesian coordinates (denoted
by y1 and y2). In this case, the data were actually simulated from the true functions and
Gaussian noise was added. The true model is

y1 = 2.0 cos(x1) + 1.3 cos(x1 + x2) + ε1 (5)

y2 = 2.0 sin(x1) + 1.3 sin(x1 + x2) + ε2 , (6)
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Table 1. Comparison of methods on the robot arm data.

Method Mean square error on test data R2

MacKay 0.00557 0.9966

Neal 0.00549 0.9967

Müller and Insua 0.00620 0.9963

Andrieu, de Freitas, and Doucet 0.00502 0.9970

This paper 0.00501 0.9970

where εi
iid∼ N (0, 0.052). The data are divided into two groups: a training set of 200 obser-

vations, and a test set of 200 observations. The models are fit using only the training set,
and then the models can be validated on the test set.

Fitting models with each of two through sixteen hidden nodes and estimating the posterior
probabilities of these models via the BIC approximation (Lee, 2002) finds that a six hidden
nodes network has about 98% of the posterior probability of the model space. MCMC was
run with the methods of Section 4 using 20,000 burn-in iterations (far more than necessary)
and 20,000 posterior samples. The MCMC output was then used to fit the model on the 200
cases in the test data set. The theoretical optimum value for the mean squared error (MSE)
is 0.005, and the model of this paper has an MSE of 0.00501. The small mean square error
shows that this model does indeed fit quite well.

This dataset has also been analyzed by several others in the Bayesian neural network
literature, in particular MacKay (1992), Neal (1996), Müller and Rios Insua (1998a) and
Andrieu, de Freitas, and Doucet (2001). Table 1 shows the MSE and R2 achieved on the
test data by the methods of each of the above competing models. All of these methods have
an error rate on the same order of magnitude, although the methods of this paper do well
within this group of methods.

7.2. Abalone data

This dataset, available at the UCI Machine Learning Repository (http://www.ics.uci.
edu/~mlearn/MLRepository.html), involves predicting the age of abalone from eight
physical measurements (Nash et al., 1994). Here the response is treated as a continuous
variable. The data were divided into a training set of the first 3133 cases and a test set of the
last 1044 cases. For comparison, I fit both the model of this paper (BARS chooses seven in-
puts and two hidden nodes) and the model of Neal using his neural network code (Neal, 1996,
available at http://www.cs.toronto.edu/~radford/fbm.software.html). For
Neal’s code, multiple combinations of nodes and prior hyperparameter values were tried
with and without ARD. The best found used 16 hidden nodes with ARD. Table 2 shows the
results of predicting on the test set. Both methods achieve similar fits. However in terms of
running time, Neal’s code took six hours to run 250 burn-in runs and 750 posterior samples,
while the algorithm of this paper took only twelve minutes to run 10,000 burn-in runs and
20,000 posterior samples on the same Compaq Alpha processor.
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Table 2. Comparison of error rates on the Abalone data.

Method Mean square error on test data R2

Hierarchical neural network 3.89 0.34

Neural network of this paper 3.93 0.33

Table 3. Comparison of error rates on the median house price data.

Method Mean square error on test data R2

Hierarchical neural network 6.10 × 109 0.54

Neural network of this paper 3.65 × 109 0.72

7.3. Median house price data

A third regression example is the median house price by census block in California (Pace &
Barry, 1997), available at Statlib (http://lib.stat.cmu.edu/datasets/). Eight input
variables are available for 20,640 cases, which were equally divided into a training set and
a test set. Results comparing the code of Neal (1996) for a network of 20 nodes with ARD
to the model of this paper (using four hidden nodes) are shown in Table 3. Note that the
noninformative prior model does significantly better.

7.4. Diabetes data

Ripley (1996) provides an analysis of a dataset on diabetes in Pima Indian women (the
data are also available at the UCI Repository, http://www.ics.uci.edu/~mlearn/
MLRepository.html). The idea is to predict the presence of diabetes using seven health
covariates. There are 532 complete records,1 of which 200 are used as a training set and the
other 332 are used as a test set. About 33% of the population has diabetes. The methods
of this paper are easily applied to classification examples, either by changing the out-
put node from linear to logistic (or using the Softmax model for multiple categories; this
approach requires Metropolis-Hastings updates for the output weights), or by using a la-
tent added variable approach (as in Albert & Chib, 1993); additional details are in Lee
(1998).

BARS finds that the best model uses only one hidden node and four explanatory vari-
ables: number of pregnancies, plasma glucose, body mass, and pedigree. The error rate
on the test set with this model is 65 of 332, or 19.6%. For comparison, Table 4 reports
misclassification rates as reported by Ripley (1996) for a number of other analyses, as well
as the result of running Neal’s neural network code (Neal, 1996). Again for Neal’s code,
multiple combinations of nodes and prior hyperparameter values were tried, and the model
shown was the best found, which used 18 hidden nodes with ARD.
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Table 4. Comparison of error rates on the Pima Indian diabetes data.

Standard linear discrimination 20.2%

Robust linear discrimination 22.9%

Logistic regression 19.9%

Multivariate adaptive regression splines (MARS) 22.6%

Projection pursuit regression (PPR) 22.6%

Multi-layer neural network 22.6%

Nearest neighbor with CV 24.7%

Classification tree 24.4%

Hierarchical neural network 20.2%

Neural network of this paper 19.6%

Table 5. Comparison of error rates on the loan applications data.

Logistic regression 35%

Nearest neighbor 36%

CART 31%

Hierarchical neural network 29%

Neural network of this paper 31%

7.5. Loan applications data

Lee (2001) describes a dataset on applications for personal loans at a bank. One can at-
tempt to predict whether the loan was approved or denied from 23 covariates. There is
a large amount of correlation between covariates (e.g., someone with a mortgage will be
a homeowner; a person cannot have lived in their current residence for more years than
they are old), so some model selection technique is required. 53% of the applications were
denied when reviewed by a trained loan officer. The data are split into a training set of
4000 observations and a test set of the remaining 4508 observations. Using the training set,
BARS finds that the optimal model uses seven explanatory variables and two hidden nodes.
Table 5 compares the misclassification rates of various methods on the test data. Note that
the data are very messy, and not all information available to loan officers has been coded in
the dataset, so one can only expect large error rates.

8. Conclusions

Modern Bayesian methods include noninformative priors in the toolbox. This paper is meant
to help bring this perspective and practice to the neural network community. Noninformative
priors have both philosophical and practical advantages over both complicated hierarchical
priors and over non-Bayesian methods. They simplify the choice of prior, the model, the
computational details, and the interpretation of the results. Markov chain Monte Carlo
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algorithms can be much simpler when a noninformative prior is used. However, it is not
a free lunch—overfitting can become more of a problem with noninformative priors than
might be the case in other methods, so the user should consider a model selection/shrinkage
technique to complement the model (as one should in general). The methods of this paper
are easily extended to other varieties of feed-forward networks. I hope that these ideas will
be found useful in other areas of the machine learning community as well.
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Note

1. The UCI web site documentation stated that there is no missing data, however some records have zeroes that
are not possible, such as a zero blood pressure.
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