Skip to main content
Log in

Enzyme kinetics of multiple alternative substrates

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

An innovative theoretical approach that enables the complete characterisation of enzyme–substrate and enzyme–substrate–competitor reactions is generalised to systems with multiple alternative substrates. Based on the quasi‐steady‐state assumption, time‐dependent closed form solutions are presented for cases with even, weak and mixed substrate competition. The analytic framework should facilitate the development of computational fitting procedures for progress curves, simplifying the measuring process and increasing the reliability of reaction constant estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Asante-Appiah and W.W.-C. Chan, Analysis of the interactions between an enzyme and multiple inhibitors using combination plots, Biochem. J. 320 (1996) 17–26.

    CAS  Google Scholar 

  2. D.A. Barry, S.J. Barry and P.J. Culligan-Hensley, Algorithm 743: a Fortran routine for calculating real values of the W-function, ACM Trans. Math. Software 21 (1995) 172–181.

    Article  Google Scholar 

  3. D.A. Barry, P.J. Culligan-Hensley and S.J. Barry, Real values of the W-function, ACM Trans. Math. Software 21 (1995) 161–171.

    Article  Google Scholar 

  4. P.D. Boyer, Uses and limitations of measurements of rates of isotopic exchange and incorporation in catalyzed reactions, Arch. Biochem. Biophys. 82 (1959) 387–410.

    Article  CAS  Google Scholar 

  5. G.E. Briggs and J.B.S. Haldane, A note on the kinetics of enzyme action, Biochem. J. 19 (1925) 338–339.

    CAS  Google Scholar 

  6. W.W.-C. Chan, Combination plots as graphical tools in the study of enzyme inhibition, Biochem. J. 311 (1995) 981–985.

    CAS  Google Scholar 

  7. W.W. Cleland, The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations, Biochim. Biophys. Acta 67 (1963) 104–137.

    Article  CAS  Google Scholar 

  8. W.W. Cleland, The kinetics of enzyme-catalyzed reactions with two or more substrates or products. II. Inhibition: nomenclature and theory, Biochim. Biophys. Acta 67 (1963) 173–187.

    Article  CAS  Google Scholar 

  9. W.W. Cleland, The kinetics of enzyme-catalyzed reactions with two or more substrates or products. III. Prediction of initial velocity and inhibition patterns by inspection, Biochim. Biophys. Acta 67 (1963) 188–196.

    Article  CAS  Google Scholar 

  10. W.W. Cleland, Enzyme kinetics, Ann. Rev. Biochem. 36 (1967) 77–112.

    Article  CAS  Google Scholar 

  11. W.W. Cleland, The statistical analysis of enzyme kinetic data, Adv. Enzymol. 29 (1967) 1–32.

    CAS  Google Scholar 

  12. W.W. Cleland, Statistical analysis of enzyme kinetic data, Methods Enzymol. 63 (1979) 103–108.

    Article  CAS  Google Scholar 

  13. R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey and D.E. Knuth, On the Lambert W function, Adv. Comput. Math. 5 (1996) 329–359.

    Article  Google Scholar 

  14. I.G. Darvey, R. Shrager and L.D. Kohn, Integrated steady state rate equations and the determination of individual rate constants, J. Biol. Chem. 250 (1975) 4696–4701.

    CAS  Google Scholar 

  15. M. Dixon, The determination of enzyme inhibitor constants, Biochem. J. 55 (1953) 170–171.

    CAS  Google Scholar 

  16. M. Dixon, The graphical determination of K m and K i, Biochem. J. 129 (1972) 197–202.

    CAS  Google Scholar 

  17. M. Dixon and E.C. Webb, Enzymes, 3rd edition (Academic Press, New York, 1979).

    Google Scholar 

  18. J.E. Dowd and D.S. Riggs, A comparison of estimates of Michaelis–Menten Kinetic constants from various linear transformations, J. Biol. Chem. 240 (1965) 863–869.

    CAS  Google Scholar 

  19. R.G. Duggleby, Analysis of progress curves for enzyme-catalysed reactions: application to unstable enzyme, coupled reactions and transient-state kinetics, Biochim. Biophys. Acta 1205 (1994) 268–274.

    CAS  Google Scholar 

  20. M.T. El Gihani and J.M.J. Williams, Dynamic kinetic resolution, Curr. Opin. Chem. Biol. 3 (1999) 11–15.

    Article  CAS  Google Scholar 

  21. F.N. Fritsch, R.E. Shafer and W.P. Crowley, Algorithm 443: Solution of the transcendental equation wew = x, Comm. ACM 16 (1973) 123–124.

    Article  Google Scholar 

  22. C.T. Goudar, J.R. Sonnad and R.G. Duggleby, Parameter estimation using a direct solution of the integrated Michaelis–Menten equation, Biochim. Biophys. Acta 1429 (1999) 377–383.

    CAS  Google Scholar 

  23. K.J. Laidler, Theory of the transient phase in kinetics, with special reference to enzyme systems, Can. J. Chem. 33 (1955) 1614–1624.

    Article  CAS  Google Scholar 

  24. J. Ricard, G. Noat, C. Got and M. Borel, The theory of alternative substrates in enzyme kinetics and its applications to yeast hexokinase, Eur. J. Biochem. 31 (1972) 14–24.

    Article  CAS  Google Scholar 

  25. R.J. Ritchie and T. Prvan, A simulation study on designing experiments to measure the K m of Michaelis–Menten kinetics curves, J. Theor. Biol. 178 (1996) 239–254.

    Article  CAS  Google Scholar 

  26. S.I. Rubinow and J.L. Lebowitz, Time-dependent Michaelis–Menten kinetics for an enzyme–substrate–inhibitor system, J. Am. Chem. Soc. 92 (1970) 3888–3893.

    Article  CAS  Google Scholar 

  27. F.B. Rudolph and H.J. Fromm, Use of isotope competition and alternative substrates for studying the kinetic mechanism of enzyme action. I. Experiments with hexokinase and alcohol dehydronase, Biochemistry 9 (1970) 4661–4665.

    Google Scholar 

  28. F.B. Rudolph and H.J. Fromm, Use of isotope competition and alternative substrates for studying the kinetic mechanism of enzyme action. II. Rate equations for three substrates enzyme systems, Arch. Biochem. Biophys. 147 (1971) 515–526.

    Article  CAS  Google Scholar 

  29. S. Schnell and C. Mendoza, Closed form solution for time-dependent enzyme kinetics, J. Theor. Biol. 187 (1997) 207–212.

    Article  CAS  Google Scholar 

  30. S. Schnell and C. Mendoza, Time-dependent closed form solutions for fully competitive enzyme reactions, Bull. Math. Biol. 62 (2000) 321–336.

    Article  CAS  Google Scholar 

  31. A.R. Schulz, Enzyme Kinetics. From Diastase to Multi-enzyme Systems (Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  32. I.H. Segel, Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems (Wiley, New York, 1975).

    Google Scholar 

  33. L.A. Segel, On the validity of the steady state assumption of enzyme kinetics, Bull. Math. Biol. 50 (1988) 579–593.

    Article  CAS  Google Scholar 

  34. L.A. Segel and M. Slemrod, The quasi-steady-state assumption: a case study in perturbation, SIAM Rev. 31 (1989) 446–477.

    Article  Google Scholar 

  35. K. Yagi and T. Ozawa, Mechanism of inhibition of D-amino acid oxidase, Biochim. Biophys. Acta 39 (1960) 304–310.

    Article  CAS  Google Scholar 

  36. K. Yagi and T. Ozawa, Complex formation of apo-enzyme, coenzyme and substrate of D-amino acid oxidase. I. Kinetic analysis using indicators, Biochim. Biophys. Acta 42 (1960) 381–387.

    Article  CAS  Google Scholar 

  37. T. Yonetani and H. Theorell, Studies on liver alcohol dehydrogenase complexes. III. Multiple inhibition kinetics in the presence of two competitive inhibitors, Arch. Biochem. Biophys. 106 (1964) 243–251.

    Article  CAS  Google Scholar 

  38. J.L. Webb, Enzyme and Metabolic Inhibitors (Academic Press, New York, 1963).

    Google Scholar 

  39. G.N. Wilkinson, Statistical estimation in enzyme kinetics, Biochem. J. 80 (1961) 324–332.

    CAS  Google Scholar 

  40. J.T. Wong, On steady-state method of enzyme kinetics, J. Am. Chem. Soc. 87 (1965) 1788–1793.

    Article  CAS  Google Scholar 

  41. J.T.-F. Wong and C.S. Hanes, Kinetic formulation for enzymic reactions involving two substrates, Canad. J. Biochem. Physiol. 40 (1962) 763–804.

    CAS  Google Scholar 

  42. E.M. Wright, Solution of the equation z exp(z) = a, Proc. Roy. Soc. Edinburgh Sect. A 65 (1959) 193–203.

    Google Scholar 

  43. C.T. Zimmerle and C. Frieden, Analysis of progress curves by simulations generated by numerical integration, Biochem. J. 258 (1989) 381–387.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnell, S., Mendoza, C. Enzyme kinetics of multiple alternative substrates. Journal of Mathematical Chemistry 27, 155–170 (2000). https://doi.org/10.1023/A:1019139423811

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019139423811

Keywords

Navigation