Skip to main content
Log in

The Generalized Uncertainty Principle and Black Hole Remnants

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In the current standard viewpoint small black holes are believed to emit black body radiation at the Hawking temperature, at least until they approach Planck size, after which their fate is open to conjecture. A cogent argument against the existence of remnants is that, since no evident quantum number prevents it, black holes should radiate completely away to photons and other ordinary stable particles and vacuum, like any unstable quantum system. Here we argue the contrary, that the generalized uncertainty principle may prevent their total evaporation in exactly the same way that the uncertainty principle prevents the hydrogen atom from total collapse: the collapse is prevented, not by symmetry, but by dynamics, as a minimum size and mass are approached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Colella, R., Overhauser, A. W., and Werner, S. A. (1975). Observation of gravitationallyinduced quantum interference. Phys. Rev. Lett. 34, 1472–1474.

    Google Scholar 

  2. Amelino-Camelia, G. (1999). Gravity-waveinterferometers as quantum-ravity detectors. Nature 398, 216–218.

    Google Scholar 

  3. Ahluwalia, D. V. (1999). QuantumGravity: Testing time for theories. Nature 398, 199–200.

    Google Scholar 

  4. Alfaro, J., Morales-T´ecotl, H. A., and Urrutia, L.(2000). Quantum gravity corrections to neutrino propagation. Phys. Rev. Lett. 84, 2318–2321.

    Google Scholar 

  5. Fogli, G. L., Lisi, E., Marrone, A., and Scioscia, G. (1999). Phys. Rev. D. 60, 053006[1–9].

    Google Scholar 

  6. Lisi, E., Marrone, A., and Mantanino, D. (2000). Probing quantum gravity effects in atmospheric neutrino oscillations. Lanl archive preprint:hep-ph ?0002053. 7. Baebler, S. et al. (1999). Phys. Rev. Lett. 83, 3585- 3588. 8. Fischbach, E. and Krause, D. E. (1999). New limits on the coupling of light pseudoscalars from equivalence principle experiments. Phys. Rev. Lett. 82, 4753- 4756 (1999). 9. Hambye, T., Mann, R. B., and Sarkar, U. (1998). Tests of special relativity and equivalence principle from K physics. Phys. Rev. D. 58, 025003[1- 8]. 10. Viola, L. and Onofrio, R. (1997). Testing equivalence principle through freely falling quantum objects. Phys. Rev. D 55, 455- 462. 11. Smith, G. L. et al. (2000). Short-range tests of the equivalence principle. Phys. Rev. D 61, 022001. 12. Peters, A., Chung, K. Y., and Chu, S. (1999). Measurement of gravitational acceleration by dropping atoms. Nature 400, 849- 82. 13. Littrel, K. C., Allman, B. E., and Werner, S. A. (1997). Two-wavelength-difference measurement of gravitationally induced quantum interference phases. Phys. Rev. A 56, 1767- 1780. 14. Ahluwalia, D. V. (1997). On a new non-geometric element in gravity. Gen. Rel. Grav. 29, 1491- 1501. 15. Ahluwalia, D. V. and Burgard, C. (1996). Gravitationally induced neutrino-oscillation phases. Gen. Rel. Grav. 28, 1161- 1170. Erratum 29, 681 (1997). 16. Ahluwalia, D. V. and Burgard, C. (1998). Interplay of gravitation and linear superposition of different mass eigenstates. Phys. Rev. D 57, 4724- 4727. 17. Konno, K. and Kasai, M. (1998). General relativistic effects of gravity in quantum mechanics: a case of ultra-relativistic, spin 1 ?2 particles. Prog. Theor. Phys. 100, 1145- 1157. 18. Grossman, Y. and Lipkin, H. J. (1997). Flavor oscillations from a spatially localized source: a simple general treatment. Phys. Rev. D 55, 2760- 2767. 19. Camacho, A. (1999). Flavor-oscillation clocks, continuous quantum measurements and a violation of Einstein equivalence principle. Mod. Phys. Lett. A 14, 2245- 2556. 20. Gasperini, M. (1988). Testing the principle of equivalence with neutrino oscillations. Phys. Rev. D 38, 2635- 2637. 21. Gasperini, M. (1989). Experimental constraints on a minimal and nonminimal violation of the equivalence principle in oscillations of massive neutrinos. Phys. Rev. D 39, 3606- 3611. Adunas, Rodriguez-Milla, and Ahluwalia 19422. Gago, A. M., Nunokawa, H., and Zukanovich Funchal, R. (1999). preprint: hep-ph ?9909250. 23. Mansour, S. W. and Kuo, T. K. (1999). Solar neutrinos and violations of equivalence principle. Phys. Rev. D 60, 097301. 24. Mureika, J. R. (1997). An investigation of equivalence principle violations using solar neutrino oscillations in a constant gravitational potential. Phys. Rev. D 56, 2408- 2418. 25. Halprin, A., Leung, C. N., and Pantaleone, J. (1996). A possible violation of a equivalence principle by neutrinos. Phys. Rev. D 53, 5365- 5376. 26. Steinberg, A. M., Kwait, P. G., and Chaio, R. Y. (1993). Measurement of the single-photon tunneling time. Phys. Rev. Lett. 71, 708- 711. 27. Steinberg, A. M. et al. (1998). An atom optics experiment to investigate faster-than-light tunneling. Ann. Phys. (Leipzig) 7, 593- 601. 28. Olum, K. D. (1998). Superluminal travel requires negative energies. Phys. Rev. Lett. 81, 3567- 3570. 29. Nimtz, G. (1998). Superluminal signal velocity. Ann. Phys. (Leipzig) 7, 618 (1998). 30. Aharonov, Y., Reznik, B., and Stern, A. (1998). Quantum limitations on superluminal propagation. Phys. Rev. Lett. 81, 2190- 2193. 31. Polchinski, J., Susskind, L., and Toumbas, N. (1999). Negative energy, superluminosity, and holography. Phys. Rev. D. 60, 094006.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adler, R.J., Chen, P. & Santiago, D.I. The Generalized Uncertainty Principle and Black Hole Remnants. General Relativity and Gravitation 33, 2101–2108 (2001). https://doi.org/10.1023/A:1015281430411

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015281430411

Navigation