Skip to main content
Log in

Detonation Properties and Electrical Conductivity of Explosive–Metal Additive Mixtures

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

Detonation properties of mixtures of condensed high explosives with metal additives are studied. A scheme of measurement of high electrical conductivity of detonation products (σ > 10 Ω−1 · cm−1) with a time resolution of ∼ 10 nsec is developed. It is shown that the properties of detonation products depend significantly on the content of the additive in the HE and on dispersion and density of the mixture. The electrical conductivity of detonation products of the compositions examined reaches ∼ 5 · 103 Ω−1 · cm−1, which is more than three orders higher than the electrical conductivity of the HE without the additive. Significant variation of electrical conductivity of detonation products over the conducting region thickness has been found. The main conductivity corresponds to a sector ∼ 1 mm long near the detonation front. The overdriven state of the detonation wave has a strong effect on electrical conductivity and conducting region thickness. It is assumed that the behavior of electrical conductivity with time is caused by successive processes of shock compression of the HE, excitation of the chemical reaction (including the reaction of the additive with detonation products), and expansion of detonation products. The measurement technique used is highly informative due to the possibility of studying detonation in various regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. A. Brish, M. S. Tarasov, and V. A. Zukerman, “Electrical conductivity of explosion products of condensed high explosives” Zh. Éksp. Teor. Fiz., 37, No. 6 (12), 1543–1549 (1959).

    Google Scholar 

  2. M. A. Cook, The Science of High Explosives, Reinhold, New York (1959).

    Google Scholar 

  3. F. E. Allison, “Detonation studies in electric and magnetic fields” in: Proc. of the 3rd ONR Symp. on Detonation, Office of Naval Research, ACR-52, Vol. 1, Princeton (1960), pp. 112–119.

  4. R. L. Jameson, S. J. Lukasik, and B. J. Pernick, “Electrical resistivity measurements in detonating composition B and pentolite” J. Appl. Phys., 35, Part 1, No. 3, 714–720 (1964).

    Google Scholar 

  5. B. Hayes, “Electrical measurements in reaction zones of high explosives” in: Proc. of the 10th Symp. (Int.) on Combustion (Cambridge, England, 1964), Combustion Inst., Pittsburgh, Pa (1965), pp. 869–874.

    Google Scholar 

  6. B. Hayes, “On the electrical conductivity in detonation products” in: Proc. of the 4th Symp. (Int.) on Detonation (White Oak, MD, 1965), Office of Naval Research, ACR-126, Washington (1967), pp. 595–601.

  7. C. N. McKinnon, “Detonation product electrical conductance enhancement by metallic seeding” in: Proc. of the 10th Symp. on Engineering Aspects of Magneto-Hydrodynamics, M.I.T., Cambridge, Mass. (1969), pp. 91–94.

    Google Scholar 

  8. A. D. Zinchenko, V. N. Smirnov, and A. A. Chvileva, “Measurement of the electrical conductivity of the explosion products of cast 40/60 TNT/RDX” Combust. Expl. Shock Waves, 7, No. 3, 364–367 (1971).

    Google Scholar 

  9. A. N. Dremin, S. A. Koldunov, and K. K. Shvedov, “Changes in the electrical conductivity of shock-initiated explosives” Combust. Expl. Shock Waves, 8, No. 1, 123–125 (1972).

    Google Scholar 

  10. A. N. Dremin and A. N. Mikhailov, “Study of the process of initiation of detonation explosives by shock waves using the method of electrical conductivity” Combust. Expl. Shock Waves, 9, No. 3, 367–370 (1973).

    Google Scholar 

  11. A.! P. Ershov, P. I. Zubkov, and L. A. Luk'yanchikov, “Measurements of the electrical conductivity profile in the detonation front of solid explosives” Combust. Expl. Shock Waves, 10, No. 6, 776–782 (1974).

    Google Scholar 

  12. V. V. Yakushev and A. N. Dremin, “Nature of electrical conductivity of detonation products of condensed explosives” Dokl. Akad. Nauk SSSR, 221, No. 5, 1143–1144 (1975).

    Google Scholar 

  13. A. G. Antipenko, A. N. Dremin, and V. V. Yakushev, “Zone of electrical conductivity in detonation of condensed explosives” Dokl. Akad. Nauk SSSR, 225, No. 5, 1086–1088 (1975).

    Google Scholar 

  14. A. P. Ershov, “Ionization during detonation of solid explosives” Combust. Expl. Shock Waves, 11, No. 6, 798–803 (1975).

    Google Scholar 

  15. K. Tanaka, “Measurement of electrical conductivity in detonation products” Report on 5th Int. Colloquium on Gasdynamics of Explosions and Reactive Systems, Bourges, France (1975).

  16. A. G. Antipenko and V. V. Yakushev, “Nature of electrical conductivity of detonation products of condensed explosives” in: Detonation, Proc. 5th All-Union Symp. on Combustion and Explosion (Odessa, 1977), Joint Inst. Chem. Phys., Acad. Sci. of the USSR, Chernogolovka (1977), pp. 93–96.

    Google Scholar 

  17. A. P. Ershov, P. I. Zubkov, and L. A. Luk'yanchikov, “Nature of electrical conductivity behind the detonation front of condensed explosives” ibid., pp. 89–92.

    Google Scholar 

  18. A. G. Antipenko, A. N. Dremin, and V. V. Yakushev, “Electrical conductivity of tetranitromethane detonation products” Combust. Expl. Shock Waves, 16, No. 4, 458–461 (1980).

    Google Scholar 

  19. A. M. Staver, A. P. Ershov, and A. I. Lyamkin, “Study of detonations in condensed explosives by conduction methods” Combust. Expl. Shock Waves, 20, No. 3, 320–323 (1984).

    Google Scholar 

  20. A. P. Ershov, P. I. Zubkov, Yu. N. Il'yanovich, et al., “Interruption of current with arc shunting by conducting detonation products” in: V. M. Titov and G. I. Shvetsov (eds.), Superstrong Magnetic Fields: Physics, Technology, Application, Proc. 3rd Int. Conf. on Generation of Megagauss Magnetic Fields and Related Experiments (Novosibirsk, 1983), Nauka, Moscow (1984), pp. 397–401.

    Google Scholar 

  21. A. I. El'kind and F. N. Gusar, “SHF measurement of electrical conductivity behind a detonation wave front in TNT” Combust. Expl. Shock Waves, 22, No. 5, 632–636 (1986).

    Google Scholar 

  22. A. A. Reshetov, “Character of the electrical conductivity of detonation products of explosive mixtures” Combust. Expl. Shock Waves, 32, No. 6, 693–695 (1996).

    Google Scholar 

  23. A. P. Ershov, N. P. Satonkina, O. A. Dibirov, et al., “A study of the interaction between the components of heterogeneous explosives by the electrical-conductivity method” Combust. Expl. Shock Waves, 36, No. 5, 639–649 (2000).

    Google Scholar 

  24. S. D. Gilev and A. M. Ryabchun, “Current waves generated by detonation of an explosive in a magnetic field” Combust. Expl. Shock Waves, 37, No. 6, 698–706 (2001).

    Google Scholar 

  25. E. F. Lebedev, V. E. Ostashev, and G. A. Shvetsov, “Conversion of chemical energy in an explosive by a magnetohydrodynamic method” Combust. Expl. Shock Waves, 18, No. 5, 499–512 (1982).

    Google Scholar 

  26. A. P. Ershov, P. I. Zubkov, and L. A. Luk'yanchikov, “Electrophysical properties of a detonation plasma; high-speed explosive circuit breakers” J. Appl. Mech. Tech. Phys., 18, No. 6, 750–753 (1977).

    Google Scholar 

  27. E. I. Bichenkov, S. D. Gilev, and A. M. Trubachev, “Shock-induced conduction waves in electrophysical experiments” J. Appl. Mech. Tech. Phys., 30, No. 2, 291–302 (1989).

    Google Scholar 

  28. S. D. Gilev and A. M. Trubachev, “Shock-induced conduction waves in solids and their applications in high power systems” in: S. C. Schmidt and W. C. Tao (eds.), Shock Compression of Condensed Matter — 1995, Proc. of the Conf. of the Amer. Phys. Soc. Topical Group on Shock Compr. of Cond. Matter Held at Seattle (Washington, August 13–18, 1995), AIP Conference Proceedings 370, Part 2, AIP Press, Woodbury, New York (1996), pp. 933–936.

    Google Scholar 

  29. A. N. Dremin, P. F. Pokhil, and M. I. Arifov, “Effect of aluminum of TNT detonation parameters” Dokl. Akad. Nauk SSSR, 131, No. 5, 1140–1142 (1960).

    Google Scholar 

  30. A. N. Afanasenkov, V. M. Bogomolov, and I. M. Voskoboinikov, “Calculation of detonation-wave parameters in mixtures of high explosives and inert additives” Fiz. Goreniya Vzryva, 6, No. 2, 182–186 (1970).

    Google Scholar 

  31. A. I. Aniskin, “Detonation of aluminum-containing explosives” in: Detonation and Shock Waves [in Russian], Chernogolovka (1986), pp. 26–32.

  32. V. Yu. Davydov, A. M. Grishkin, and I. I. Feodoritov, “Experimental-theoretical investigation of the oxidation of aluminum in detonation waves” Combust. Expl. Shock Waves, 28, No. 5, 564–567 (1992).

    Google Scholar 

  33. A. M. Grishkin, L. V. Dubnov, V. Yu. Davydov, et al., “Effect of powdered aluminum additives on the detonation parameters of high explosives” Combust. Expl. Shock Waves, 29, No. 2, 239–241 (1993).

    Google Scholar 

  34. M. F. Gogulya, A. Yu. Dolgoborodov, and M. A. Brazhnikov, “Fine structure of detonation waves in HMX/Al mixtures” Khim. Fiz., 18, No. 1, 41–44 (1998).

    Google Scholar 

  35. S. D. Gilev and A. M. Trubachev, “Measurement of high electrical conductivity in silicon in shock waves” J. Appl. Mech. Tech. Phys., 29, No. 6, 818–823 (1988).

    Google Scholar 

  36. S. D. Gilev and T. Yu. Mikhailova, “Current wave in shock compression of a substance in a magnetic field” Zh. Tekh. Fiz., 66, No. 5, 1–9 (1996).

    Google Scholar 

  37. S. D. Gilev and T. Yu. Mikhailova, “Electromagnetic processes in a system of conductors formed by a shock wave” Zh. Tekh. Fiz., 66, No. 10, 109–117 (1996).

    Google Scholar 

  38. S. D. Gilev, “Electromagnetic methods for investigation of chemical and phase transformations of solids in a shock wave” in: L. E. Murr, K. P. Staudhammer, and M. A. Meyers (eds.), Metallurgical and Material Applications of Shock-Wave and High-Strain-Rate Phenomena, Proc. of the 1995 Int. Conf. (El Paso, Texas, U.S.A., August 6–10, 1995), Elsevier, Amsterdam (1995), pp. 785–792.

    Google Scholar 

  39. S. D. Gilev and T. Yu. Mihailova, “The development of a method of measuring a condensed matter electroconductivity for investigation of dielectric-metal transitions in a shock wave” J. Phys. IV, 5, C3-211-216 (1997).

    Google Scholar 

  40. K. P. Stanyukovich (ed.), Physics of Explosion [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  41. S. D. Gilev, “Application of the electromagnetic model for diagnosing shock-wave processes in metals” Combust. Expl. Shock Waves, 37, No. 2, 230–235 (2001).

    Google Scholar 

  42. S. D. Gilev, “Electromagnetic effects in a measurement cell for investigating the electrical properties of shock-compressed substances” Combust. Expl. Shock Waves, 30, No. 2, 204–208 (1994).

    Google Scholar 

  43. A. A. Bakanova, I. P. Dudoladov, and Yu. N. Sutulov, “Shock compressibility of porous tungsten, molybdenum, copper, and aluminum in the low pressure domain” J. Appl. Mech. Tech. Phys., 15, No. 2, 241–245 (1974).

    Google Scholar 

  44. A. N. Dremin, K. K. Shvedov, and O. S. Avdonin, “Compressibility and temperatures under shock loading of some explosives in a porous state” Fiz. Goreniya Vzryva, 6, No. 4, 520–529 (1970).

    Google Scholar 

  45. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford Univ. Press, London (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilev, S.D., Trubachev, A.M. Detonation Properties and Electrical Conductivity of Explosive–Metal Additive Mixtures. Combustion, Explosion, and Shock Waves 38, 219–234 (2002). https://doi.org/10.1023/A:1014963218200

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014963218200

Keywords

Navigation