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Abstract. A circulant is a Cayley graph of a cyclic group. Arc-transitive circulants of square-free order are clas-
sified. It is shown that an arc-transitive circulant � of square-free order n is one of the following: the lexicographic
product �[K̄b], or the deleted lexicographic �[K̄b] − b�, where n = bm and � is an arc-transitive circulant, or
� is a normal circulant, that is, Aut � has a normal regular cyclic subgroup.
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1. Introductory remarks

Throughout this paper, graphs are simple and undirected; the symbol Zn , where n is an
integer, will be used to denote the ring of integers modulo n as well as its (additive) cyclic
group of order n.

Let � be a graph and G a subgroup of its automorphism group Aut �. The graph � is said
to be G-arc-transitive if G acts transitively on the set of arcs of �. In particular, � is said to be
arc-transitive if � is Aut�-arc-transitive. Note that an arc-transitive graph � is necessarily
vertex-transitive, that is, its automorphism group acts transitively on the vertex set V � of �.

Given a group G and a symmetric subset S = S−1 of G which does not contain the identity
of G, the Cayley graph of G relative to S, denoted by Cay(G, S), has vertex set G and edges
of the form {g, gs}, for all g ∈ G and s ∈ S. By the definition, the group G acting by right
multiplication is a subgroup of Aut � and acts regularly on V � = G. The converse also
holds (see [6]). A circulant is a Cayley graph of a cyclic group. Thus a graph � is a circulant
of order n if and only if Aut � contains a cyclic subgroup of order n which is regular on V �.
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and financial support during his visit that led to the completion of this work.
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A classification of 2-arc-transitive circulants was given in [1]. (A sequence (u, v, w) of
distinct vertices in a graph is called a 2-arc if u, w are adjacent to v; a graph � is said to
be 2-arc-transitive if Aut � is transitive on 2-arcs of �.) It was proved that a connected,
2-arc-transitive circulant of order n, n ≥ 3, is one of the following graphs: the cycle Cn , the
complete graph Kn , the complete bipartite graph K n

2 , n
2
, n ≥ 6, or K n

2 , n
2
− n

2 K2 where n
2 ≥ 5

odd (the complete bipartite graph K n
2 , n

2
minus a 1-factor).

In this paper we take the next step in our pursuit of a classification of all arc-transitive
circulants, by classifying all such graphs of square-free order. To describe this classification,
a few words on the notation are in order. For two graphs � and �, denote by �[�] the
lexicographic product of � by �, that is, the graph with vertex set V � × V � such that
(u1, v1) is adjacent to (u2, v2) if and only if either u1 is adjacent in � to u2, or u1 = u2

and v1 is adjacent in � to v2. If in addition, � and � have the same vertex set then denote
by � − � the graph with vertex V � and having two vertices adjacent if and only if they
are adjacent in � but not adjacent in �. Furthermore, let �̄ denote the complement of �,
and for a positive integer m, denote by m� the graph which consists of m disjoint copies
of �. A circulant � is called a normal circulant if Aut � contains a cyclic regular normal
subgroup. The following is the main result of this paper.

Theorem 1.1 Let � be an arc-transitive circulant graph of square-free order n. Then one
of the following holds:

(1) � is a complete graph;
(2) � is a normal circulant graph;
(3) � = �[K̄b] or � = �[K̄b] − b�, where n = mb, and � is an arc-transitive circulant

of order m.

Remark 1.2 Let � be a connected arc-transitive circulant. If � = �[K̄b] or if � = �[K̄b] −
b�, then the graph � may be easily reconstructed from a smaller arc-transitive circulant
�. Thus the graphs in part (3) of Theorem 1.1 are well-characterized. As for arc-transitive
normal circulants, the following observations are in order. For two groups G and H , denote
by G · H an extension of G by H , and denote by G H a semidirect product of G by
H . Assume that � = Cay(R, S) is normal. Let Aut(R, S) = {σ ∈ Aut(R) | Sσ = S}. Then
by [4, Lemma 2.1], Aut � = R Aut(R, S), and since � is arc-transitive, Aut(R, S) is
transitive on S. Thus S may be written as {sσ | σ ∈ Aut(R, S)} where s ∈ S, that is, S is an
Aut(R, S)-orbit under the Aut(R)-action. As R is cyclic, 〈s〉 = R if and only if 〈S〉 = R.
Hence, since � is connected, s generates R. This provides us with a general method for
constructing connected arc-transitive normal circulants, that is, for any generating element
g of R and a subgroup H of Aut(R), Cay(R, gH ) is a connected arc-transitive normal
circulant. Note that, since R is cyclic, Aut(R) is abelian.

2. Proof of Theorem 1.1

This section is devoted to proving Theorem 1.1. We use a standard notation and terminology,
see for example [3]. Let � be a finite graph, and assume that G ≤ Aut � is transitive on
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V �. Let B = {B1, B2, . . . , Bm} be a G-invariant partition of V �, that is, for each Bi and
each g ∈ G, either Bg

i ∩ Bi = ∅, or Bg
i = Bi . A partition B′ is called a refined partition of

a partition B if a block of B′ is a proper subset of a block of B. For B ∈ B, denote by GB

the subgroup of G which fixes B setwise, and by G B
B the permutation group induced by

GB on B. The kernel N of G on B is the subgroup of G in which every element fixes all
B ∈ B. Clearly, N is a normal subgroup of G. A partition B is said to be minimal if B has
no refined partitions. It follows that if B is a minimal partition of �, then G B

B is primitive
for each block B ∈ B. For a G-invariant partition B of V �, the quotient graph �B of �

induced on B is the graph with vertex set B and Bi is adjacent in �B to B j if some u ∈ Bi

is adjacent in � to some v ∈ B j . Two blocks B, B ′ ∈ B are said to be adjacent if they are
adjacent in �B; denote by �[B, B ′] the subgraph of � with vertex set B ∪ B ′ and with two
vertices adjacent if and only they are adjacent in �.

As in Theorem 1.1, let n be a positive square-free integer, and let � be an arc-transitive
circulant of order n. We will complete the proof of Theorem 1.1 by proving the following
proposition, which is slightly stronger than Theorem 1.1.

Proposition 2.1 Let � be a G-arc-transitive circulant of square-free order, where G ≤
Aut � and let R be a cyclic regular subgroup of G. Then one of the following statements
holds.

(1) G is 2-transitive on V �, and � is a complete graph; or
(2) R is normal in G; or
(3) there exists a minimal G-invariant partition B of V � such that for the kernel N of the

G-action on B and for a block B ∈ B, either

(i) N is not faithful on B and � = �B[K̄b], or
(ii) K ∼= K B is 2-transitive on B and � = �B[K̄b] − b�B.

The proof of this proposition consists of a series of lemmas. As in the proposition, we
denote by G a subgroup of Aut � which is transitive on the set of arcs of �, and by R a cyclic
subgroup of G. First, assume that G is primitive on V �. Then by Schur’s theorem (see [3,
Theorem 3.5A, p. 95]), either G is 2-transitive, or |V �| = p and Zp ≤ G ≤ Zp Zp−1

for some prime p. Thus we have the following lemma.

Lemma 2.2 If G is primitive on V �, then either � is complete, or R is normal in G.

Hence we assume that G is imprimitive on V � in the rest of this section.

Lemma 2.3 Let B be a minimal G-invariant partition of V �, and let N be the kernel
of the G-action on B. Take B ∈ B, and let N B be the permutation group induced by N
acting on B. Then either N B is 2-transitive, or Zp ≤ N B ≤ Zp Zp−1, where B ∈ B; in
particular, in both cases N B is primitive.

Proof: It is clear that G B
B is primitive, N B� G B

B , and N contains the subgroup of R
of order |B|. Thus N B and so G B

B contains a cyclic regular subgroup on B. By Schur’s
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theorem, either G B
B is 2-transitive, or Zp ≤ G B

B ≤ Zp Zp−1. By Burnside’s theorem (see
[3, Theorem 4.1B, p. 107]), if G B

B is 2-transitive then soc(G B
B ) is nonabelian simple or

elementary abelian. It then follows, since n is square-free, that either T ≤ G B
B ≤ Aut(T )

for some nonabelian simple group T , or Zp ≤ G B
B ≤ Zp × Zp−1. If Zp ≤ G B

B ≤ Zp Zp−1,
then we have Zp ≤ N B� G B

B ≤ Zp Zp−1. Assume that T ≤ G B
B ≤ Aut(T ) with T non-

abelian simple. Then T is transitive, and furthermore, N B contains T . Suppose that N B is
imprimitive on B. Then there exists a N B-invariant partition B′ of B such that the regular
cyclic subgroup (on B) of N B is transitive and not faithful on B′. Thus N B has a nor-
mal subgroup which is intransitive on B, which is not possible since T is the unique
minimal normal subgroup of G B

B and transitive on B. Hence N B is primitive, and so
2-transitive. ✷

Next we deal with two different cases according to the actions of N on a block B ∈ B.

Lemma 2.4 Assume that there exists a minimal G-invariant partition B of V � such that
N is not faithful on B, where N is the kernel of the G-action on B, and B ∈B. Then
� = �B[K̄b], where b = |B|; as in part (3) (i).

Proof: Let M be the kernel of the N -action on B. Then 1 �= M� N , and so 1 �= M B ′� N B ′

for some B ′ ∈B. Since N B ′
and N B are isomorphic as permutation groups and N B is

primitive (by Lemma 2.3), it follows that M B ′
is transitive on B ′. As � is connected, there

exists a sequence of blocks B0 = B, B1, . . . , Bl = B ′ such that a vertex in B j is adjacent in �

to some vertices in B j+1 for each 0 ≤ j ≤ l −1, and there exists 0 ≤ i < l such that M B j = 1
for all j ≤ i and M Bi+1 �= 1. Then for u ∈ Bi , M Bi ∪Bi+1 is transitive on {{u, v} | v ∈ Bi+1}.
Since N Bi ∪Bi+1 is transitive on Bi and fixes Bi+1 (setwise), each vertex in Bi is adjacent to
all vertices in Bi+1. It follows that � = �B[K̄b], where b = |B|. ✷

Lemma 2.5 Assume that there exists a minimal G-invariant partition B of V � such
that N ∼= N B is 2-transitive on B, where N is the kernel of G on B, and B ∈B. Then
� = �B[K̄b] − b�B, where b = |B|; as in part (3) (ii).

Proof: We note that, since � is a circulant, we may label the vertices of � by elements
of Zn , in such a way that � = Cay(R, S), where S ⊆ Zn\{0} satisfies i ∈ S if and only if
n − i ∈ S. The subset S will be called a symbol of �.

We are now going to distinguish two different cases, depending on whether the actions
of the group N on the blocks in B are permutationally equivalent or not. (Recall that by [3,
Lemma 1.6B, p. 21] two transitive actions of a permutation group on two sets are equivalent
if and only if the point stabilizer of the action on the first set coincides with the stabilizer
of a point in the action on the second set.)

Case 1 The actions of N on the blocks in B are equivalent.

It follows that for each block B ′ ∈B, there exists v′ ∈ B ′ such that Nv′ = Nv , where
v ∈ B. Let Equiv(v) denote the collection of all such vertices v′, that is, Equiv(v) = {v′ ∈
V � | Nv′ = Nv}. Then the 2-transitivity of the action of N on each of the blocks in B implies
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that the stabilizer Nv has two orbits in B ′, namely {v′} and B ′\{v′}, or in other words,
B ′ ∩ Equiv(v) and B ′\Equiv(v). In particular, |Equiv(v) ∩ B ′| = 1 for each B ′ ∈B.

Assume first that �(v) ∩ Equiv(v) �= ∅, where �(v) denotes the set of neighbors
of v. Because of arc-transitivity we have that the bipartite graph induced by a pair of
adjacent blocks is a perfect matching. Moreover, it may be seen that �(v) ⊆ Equiv(v). But
Equiv(u) = Equiv(v) for any u ∈ Equiv(v) and so the subgraph induced by the set Equiv(v)

is a connected component of �, isomorphic to �B, a contradiction to the fact that � is
connected and b �= 1.

Assume now that �(v) ∩ Equiv(v) = ∅. Then for a block B ′ adjacent to B we must
have that �(v) ∩ B ′ = B ′\Equiv(v) = B ′\{v′}. Let �′ denote the graph obtained from � by
joining two non-adjacent vertices of � if and only if they belong to two adjacent blocks in
�B. In view of the comments of the previous paragraph �′ ∼= b�B and so � = �B[K̄b]−b�B.

Case 2 The actions of N on the blocks in B are not (all) equivalent.

Using the classification of 2-transitive groups (see [3, Section 7.7]) we deduce that a
group can have at most two inequivalent 2-transitive actions (of the same degree). Hence
the set B decomposes into subsets B0 and B1 such that the actions of N on B and B ′ ∈B
are equivalent when B ′ ∈B0 and inequivalent when B ′ ∈B1. Moreover, in view of the fact
that � is arc-transitive and thus the bipartite graphs induced by pairs of adjacent blocks
are all isomorphic, it follows that {B0,B1} is a bipartition of V �B with |B0| = |B1|. In
particular, |B| = m is an even number. Let ρ be a generator of the cyclic regular group R
of G. Letting Bi = Bρi , we have that B0 consists of all the blocks Bi with i ∈ Zm even
and B1 consists of all the blocks Bi with i ∈ Zm odd. Let v

j
i = ρi+mj, for all i ∈ Zm and all

j ∈ Zb.
Now the quotient graph �B is a circulant. Assume that 2i + 1 belongs to the symbol of

�B. (Note that the symbol of �B contains only odd numbers.) Let σ = ρ2i + 1 and consider
the blocks B0, B2i + 1 and B4i + 2. Let T be the subset of Zb consisting of all those t such that
v = v0

0 is adjacent to vt
2i+1. Then v0

2i+1 = vσ is adjacent to (vt
2i+1)

σ = vσρ2i+1+mt = vρ4i+2+mt =
vt

4i+2, where t ∈ T . Therefore

v
j
2i+1 ∼ vl

4i+2 ⇔ l − j ∈ T . (1)

Let a ∈ Zb be such that Nv = Nu , where u = va
4i+2. Recall that the bipartite graphs induced

by pairs of adjacent blocks are isomorphic, and moreover by the classification of 2-transitive
groups [3, Section 7.7], Nv has two orbits of different cardinalities on B2i+1. Hence u and v

must have the same neighbors in B2i+1 and so �(u) ∩ B2i+1 = {vt
2i+1 | t ∈ T }. Combining

this together with (1) we have that a − t ∈ T for each t ∈ T and so

a − T = T . (2)

Now because of the 2-transitivity of the action of N on each block, it follows that
|�(v0

0) ∩ �(v
j
0 ) ∩ B2i+1| is constant for all j ∈ Zb\{0}. This implies the existence of a
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positive integer λ such that |T ∩ (T + j)| = λ, for all j ∈ Zb\{0}. Hence, in view of (2),

|T ∩ (−T + a + j)| =
{

λ if j �= −a,

|T | if j = −a.
(3)

We now make the following observation about the intersection T ∩ (−T + l). (See
also [1, Lemma 2.1].) Whenever x ∈ T ∩ (−T + l) there must exist some y ∈ T such that
x = − y + l. Clearly, we get that y ∈ T ∩ (−T + l) by reversing the roles of x and y. So the
elements in the intersection T ∩ (−T + l) are paired off with one exception occuring when
l ∈ 2T . Then the equality l = 2x (x ∈ T ) gives rise to a unique element in the intersection
T ∩ (−T + l). Therefore the parity of |T ∩ (−T + l)| depends solely on whether l belongs to
2T or not. More precisely, |T ∩ (−T + l)| is an odd number if l ∈ 2T and an even number
if l /∈ 2T . Combining this fact with (3) we see that, in particular, Zb\{−a} is either a
subset of 2T or of Zb\2T . But then in the first case |T | = |2T | = b − 1 and in the second
case |T | = |2T | = 1. In both cases, a contradiction is derived from the assumption that the
actions of N on B0 and B2i+1 are inequivalent, completing the proof of Lemma 2.5. ✷

Remark 2.6 Let � be a bipartite graph with parts �1 and �2. Assume that some subgroup
G ≤ Aut � acts 2-transitively and inequivalently on �1 and �2. Then � is isomorphic to
the incidence graph of a symmetric block design with a 2-transitive automorphism group,
and thus such graphs are classified in [5]. By the proof of Lemma 2.5, such a graph � is
not isomorphic to a bipartite graph induced by two adjacent blocks of imprimitivity of the
automorphism group of an arc-transitive circulant of square-free order.

In view of Lemmas 2.2, 2.3, 2.4 and 2.5 above, to complete the proof of Proposition 2.1,
we may assume that

for each minimal G-invariant partition X of V �, letting F be the kernel of G on
X and X ∈X , F ∼= F X is not 2-transitive on X .

Now let B be a minimal G-invariant partition of V �, and let N be the kernel of the
G-action on B. Take a block B ∈ B. Then by Lemma 2.3,

Zp ≤ N ∼= N B < Zp Zp−1,

where p is a prime. Let M = soc(N ), which is isomorphic to Zp. Then M� G.

Lemma 2.7 There is a subgroup H of Zp−1 and a group C such that G = (M × C) · H
and M ≤ R ≤ M × C.

Proof: Take v ∈ V �, and denote by Gv the stabilizer of v in G. Let P be a Sylow
p-subgroup of Gv . Since n is square-free, p|P| is the maximal power of p dividing |G|,
and so 〈M, P〉 = M P is a Sylow p-subgroup of G, that is, a Sylow p-subgroup of G is
a split extension of M by P . By [7, Theorem 8.6, p. 232], G is a split extension of M by a
subgroup L of G, where L ∼= G/M , that is, G = M L . Let C = CL(M). Then M ∩C = 1,
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C� G, and G/(MC) is isomorphic to a subgroup of Aut(M) which is isomorphic to Zp−1.
Thus G = (M × C) · H , where H ≤ Zp−1. Since R is abelian and M < R, we have that
R < CG(M) = M × C . ✷

We are now ready to complete the proof of Proposition 2.1.

Proof of Proposition 2.1: By Lemma 2.7, G = (M0 × C0) · H0 such that M0 ≤ R ≤ M0 ×
C0 and H0 ≤ Zp0−1, where p0 is a prime. In particular, C0 is normal in G and intransitive
on V �. If C0 = 1, then R = M0 is normal in G, as required. Assume that C0 �= 1. Let C1 be
the set of the C0-orbits in V �. Then C1 is a G-invariant partition of V �. Let B(1) be a mini-
mal G-invariant partition of V � which is a refined partition of C. Take a block B(1) ∈B(1).
Let N1 be the kernel of G onB(1), and let M1 = soc(N1). By our assumption, N is faithful and
is not 2-transitive on B(1). Then by Lemma 2.3, M1

∼= Zp1 for some prime p1. By Lemma
2.7, G = (M1 × C1) · H1 such that M1 ≤ R ≤ M1 × C1. Now M0 × M1 ≤ R ≤ (M0 × C0) ∩
(M1 × C1). It follows that R ≤ (M0 × C0) ∩ (M1 × C1) = M0 × M1 × C ′

1, and G = (M0 ×
M1 × C ′

1) · H ′
1. If C ′

1 = 1, then R = M0 × M1 is normal in G, as required. Assume that
C ′

1 �= 1, and assume inductively that G = (M0 × M1 × · · · × Mi × C ′
i ) · H ′

i such that i ≥ 1,
Zp j

∼= M j ≤ R for each j , and R ≤ M0 × M1 × · · · × Mi × C ′
i . Now C ′

i is normal in G
and intransitive on V �, and hence we may repeat our arguments with C ′

i in place of C0 so
that we have G = (Mi+1 × Ci+1) · Hi+1 such that Mi+1

∼= Zpi+1 for some prime pi+1, and
Mi+1 ≤ R ≤ Mi+1 × Ci+1. Since M0, M1, . . . , Mi+1 ≤ R ≤ (M0 × M1 × · · · × Mi × C ′

i ) ∩
(Mi+1 × Ci+1), it follows that R ≤ (M0 × M1 × · · · × Mi × C ′

i ) ∩ (Mi+1 × Ci+1) = (M0 ×
M1 × · · · × Mi+1 × C ′

i+1) such that G = (M0 × M1 × · · · × Mi × Mi+1 × C ′
i+1) · H ′

i+1.
Therefore, repeating this argument, we finally obtain G = (M0 × M1 × · · · × Mk) · H such
that R = M0 × M1 × · · · × Mk , which is normal in G, as required. ✷

In view of the comments in the paragraph preceding the statement of Proposition 2.1,
this completes the proof of Theorem 1.1.
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