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Abstract. The area under the ROC curve, or the equivalent Gini index, is a widely used measure of performance
of supervised classification rules. It has the attractive property that it side-steps the need to specify the costs of
the different kinds of misclassification. However, the simple form is only applicable to the case of two classes. We
extend the definition to the case of more than two classes by averaging pairwise comparisons. This measure reduces
to the standard form in the two class case. We compare its properties with the standard measure of proportion
correct and an alternative definition of proportion correct based on pairwise comparison of classes for a simple
artificial case and illustrate its application on eight data sets. On the data sets we examined, the measures produced
similar, but not identical results, reflecting the different aspects of performance that they were measuring. Like
the area under the ROC curve, the measure we propose is useful in those many situations where it is impossible
to give costs for the different kinds of misclassification.
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1. Introduction

This paper is concerned with supervised classification problems, in which the aim is
to devise a method or construct a rule for assigning objects to one of a finite set of
classes on the basis of a vector of variables measured on the objects. The information
on which the rule is to be based is a design or training set of objects with known vec-
tors of measurements and known classifications. In particular, this paper discusses prob-
lems involving more than two classes, and is concerned with measures of performance
of such rules. We restrict ourselves to situations in which the rules yield estimates of the
probability that a point belongs to each class, or yield scores indicating strength of class
membership.

For the special case in which there are only two classes, there are many distinct criteria
for comparing the performance of classification rules (e.g., see the detailed discussions in
Hand, 1997, 2000). Amongst the most popular are misclassification (or error) rate, and
the criterion with which this paper is concerned, the area under the Receiver Operating
Characteristic (ROC) curve (e.g., see Hanley & McNeil, 1982; Zweig & Campbell, 1993;
Bradley, 1997).

Misclassification rate is simply the expected proportion of future cases which the rule
will classify incorrectly. More generally, if the cost of misclassifying a class i point
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is ci , i = 0, 1, then the overall expected loss is

L = π0 p0c0 + π1 p1c1 (1)

where pi is the probability of misclassifying a class i object, and πi is the probability that an
object comes from class i (we are assuming no costs associated with correct classifications).
Misclassification or error rate is the special case in which c0 = c1 (and both are then taken to
be equal to 1, without loss of generality). If p̂(x) is the estimated probability that an object
with measurement vector x belongs to class 0, then a standard result shows that minimum
loss is achieved by choosing the classification threshold such that points are classified into
class 0 if p̂ > t = c1/(c0 + c1).

This is all very well if one knows the values of the costs c0 and c1. Typically, however,
these costs are difficult to determine (e.g., see Bradley, 1997; Provost, Fawcett, & Kohavi,
1998; Adams & Hand, 1999, 2000) and the references in Turney (1996).

If the costs cannot be determined, an alternative strategy is simply to compare the overall
distributions of p̂(x) for class 0 points and class 1 points. The classification rule will
generally be better the more these two distributions differ. As we show in detail below,
the area under the ROC curve (AUC) is such a measure of the difference between these
two distributions. By focusing on a comparison of the distributions of the p̂(x), the AUC
ignores the costs and also (a consequence of the way costs and priors appear together in
Eq. (1) the class priors: it concentrates attention on how well the rule differentiates between
the distributions of the two classes, and is not influenced by external factors which depend
on the use to which the classification is to be put.

All of the above refers to the two class case. Often, however, we are faced with prob-
lems in which there are more than two classes. In principle, such problems may be tack-
led readily enough: one simply chooses a set of costs and defines a classification rule
which minimises a multiple class extension of Eq. (1). (For convenience, we shall use the
expression ‘multiple class’ to signify problems with more than two classes.) In practice,
however, this is almost never feasible. The major problems of choosing realistic costs in
the two class problem, described in Adams and Hand (1999), are compounded in the mul-
tiple class problem. The default (and, indeed, popular) choice of equal costs for the various
different kinds of misclassification, leading to overall misclassification rate, is in fact very
rarely really suitable. What is needed is a multiple class extension of the AUC approach,
which side-steps the problem of choosing costs altogether. This paper describes such a
method.

In Section 2, we formally define the AUC measure and show how to estimate it from a
sample of data. Common methods are based on explicit integration of areas under the ROC
curve, and these risk introducing unnecessary error into the estimate. An alternative, based on
the relationship to the Mann-Whitney-Wilcoxon test statistic is described. This relationship
is well-known (e.g., see Hanley & McNeil, 1982), but both it and the implications for
estimation seem not always to be appreciated, so we describe it here for completeness.

In Section 3, we describe a straightforward multiple class extensions of the AUC measure.
In Section 4 we illustrate some of the properties of the measure, and in Section 5 we present
some examples.
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2. Estimating the AUC coefficient

The AUC is defined in terms of the Receiver Operating Characteristic curve. Let p̂(x) be the
estimate of the probability that an object with measurement vector x belongs to class 0. Let
f ( p̂) = f ( p̂(x) | 0) be the probability function of the estimated probability of belonging
to class 0 for class 0 points, and let g( p̂) = g( p̂(x) | 1) be the probability function of the
estimated probability of belonging to class 0 for class 1 points. Let F( p̂) = F( p̂(x) | 0)

and G( p̂) = G( p̂(x) | 1) be the corresponding cumulative distribution functions. Then the
ROC curve is defined as a plot of G( p̂), on the vertical axis, against F( p̂), on the horizontal
axis. Clearly this plot lies in a unit square. A good classification rule is reflected by an
ROC curve which lies in the upper left triangle of the square. This follows since any point
above the diagonal corresponds to a situation in which G( p̂) > F( p̂), so that the class 1
points have lower estimated probability of belonging to class 0 than do the class 0 points.
This is equivalent to moving a threshold, t , from 0 to 1, and plotting G(t) against F(t) for
each value of t . The better such a curve is, the closer it gets to the top left corner: perfect
separation is indicated by a curve which follows the left hand and top edges of the square.
A classification rule no better than chance is reflected by an ROC curve which follows the
diagonal of the square, from the lower left corner to the top right corner. A classification rule
which is worse than chance would produce an ROC curve which lay below the diagonal—
but in this case performance superior to chance could be obtained by inverting the labels of
the class predictions. The AUC is then simply the area under the ROC curve.

Not all representations of ROC curves use the same axes, though the principles are the
same. In particular, some authors (e.g., Provost & Fawcett, 1997) plot F( p̂) (estimated
by the ‘true positive rate’) on the vertical axis and G( p̂) (estimated by the ‘false positive
rate’) on the horizontal axis—that is, our axes are interchanged in their plots. A simple
interchange of axes would result in a good ROC curve (one which does better than chance)
lying in the lower half of the ROC square. This is avoided by letting the threshold t referred
to in the previous paragraph move from 1 to 0. This seems artificial to us, and to go
against convention, which is why we choose the former strategy. However, both are merely
conventions.

The AUC measure of performance is closely related to the Gini coefficient, which is
sometimes used as an alternative measure. This is most commonly defined as twice the
area between the ROC curve and the diagonal (with this area being taken as negative in
the rare event that the curve lies below the diagonal). Elementary geometry shows that
Gini + 1 = 2 × AUC. In this paper we work in terms of AUC, but the results apply equally
to the Gini coefficient.

ROC curves are typically estimated either by applying the classification rule to a test set
of points with known classes, or by using a design sample reuse method, such as cross-
validation or bootstrap methods. In the examples in Section 4, we use a test set of points,
independent of the design set.

The most common way of estimating the AUC is to produce an explicit plot of the ROC
curve from the test set and estimate the area using quadrature. Let n0 be the number of
points in the test set which belong to class 0, and n1 be the number which belong to class 1.
Assuming that there are no ties in the estimated probabilities, then the ROC curve is a step
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function, moving 1/n0 units to the right whenever the threshold t above becomes equal to
p̂(x) for a member of class 0 and 1/n1 units up when t becomes equal to p̂(x) for a member
of class 1. Sometimes a smoother curve is plotted, either by taking several points at a time
(so that the horizontal and vertical steps of the curve are replaced by diagonal steps) or by
explicitly smoothing the curve. If the AUC is estimated from such smoothed curves, then
there is a risk of bias being introduced into the estimate of the area under the underlying
true ROC curve. For example, the strategy of taking several points at a time will typically
lead to underestimating the true AUC. Sometimes, however, the AUC is estimated directly
from the basic step function. We return to this below, but first consider a more fundamental
perspective.

For an arbitrary point p̂(x) = t , the probability that a randomly chosen class 1 point
will have a p̂(x) smaller than t is G(t). Suppose that t is chosen randomly according to
the distribution F . That is, t is the value of p̂(x) for points randomly chosen from the
distribution of class 0 points. Then the probability that the randomly chosen class 1 point
will have a smaller value of p̂(x) than the randomly chosen class 0 point is

∫
G(u) f (u) du.

However, from the definition of the ROC curve, we see that the area under this curve, the
AUC, is

∫
G(u) dF(u) = ∫

G(u) f (u) du. Thus the AUC is equivalent to the probability that
a randomly chosen member of class 1 will have a smaller estimated probability of belonging
to class 0 than a randomly chosen member of class 0.

To obtain an estimate of AUC we replace the theoretical functions G and f in this
integral by the observed distributions of sample values. Thus, let fi = p̂(xi ) be the esti-
mated probability of belonging to class 0 for the ith class 0 point from the test set, for
i = 1, . . . , n0. Define gi = p̂(xi ) similarly for the n1 test set points which belong to
class 1. Then {g1, . . . , gn1} and { f1, . . . , fn0} are samples from the g and f distributions,
respectively.

Rank the combined set of values {g1, . . . , gn1 , f1, . . . , fn0} in increasing order. Let ri be
the rank of the i th class 0 test set point. There are (ri − i) class 1 test points with estimated
probabilities of belonging to class 0 which are smaller than that of the ith class 0 test point.
Summing over the class 0 test points, we see that the total number of pairs of points, one from
class 0 and one from class 1, in which the class 1 point has smaller estimated probability
of belonging to class 0 than does the class 1 point, is

n0∑
i=1

(ri − i) =
∑

ri −
∑

i = S0 − n0(n0 + 1)/2 (2)

where S0 is the sum of the ranks of the class 0 test points. Since there are n0n1 such pairs of
points altogether, our estimate of the probability that a randomly chosen class 1 point has a
lower estimated probability of belonging to class 0 than a randomly chosen class 0 point is

Â = S0 − n0(n0 + 1)/2

n0n1
(3)

It is not difficult to see that the area under the raw step function ROC described above is
composed of elements of area (ri − i)/n0n1, with one element for each point from class 0.
Adding these over the class 0 points leads to Â as above.
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This provides a very straightforward way of estimating the AUC, and one which is
immune to errors introduced by smoothing procedures. Â is equivalent to the test statistic
used in the Mann-Whitney-Wilcoxon two sample test, thus demonstrating the equivalence
of the AUC and Gini coefficient to this test statistic.

The important point to note here is that no mention of a threshold has been made. The
measure Â is an overall measure of how well separated are the estimated distributions of
p̂(x) for class 0 and class 1.

Further insight into this is obtained from the following. Suppose we put a threshold at a
position p̂(x) = t , classifying all points with estimated probability (of belonging to class 0)
below t as class 1 and all those with estimated probability above t as class 0. Let class 0
have prior π0 and class 1 have prior π1. Then the Bayes correct rate (=1 − Bayes error rate)
is

rB = π1

∫ t

0
g(x) dx + π0

∫ 1

t
f (x) dx. (4)

If we now integrate this over the entire range of t , weighting the integral according to the
mixture distribution of the two classes, π1g(t) + π0 f (t), we obtain

r =
∫ 1

0

{
π1

∫ t

0
g(x) dx + π0

∫ 1

t
f (x) dx

}
{π1g(t) + π0 f(t)} dt

= 1

2

(
π2

1 + π2
0

) + 2π1π0 AUC (5)

Thus the measure r , which is an average of the Bayes correct rates over all possible values
of the classification threshold, is linearly related to the AUC measure. Put another way,
if we randomly chose the threshold from the overall mixture distribution π1g(t) + π0 f (t)
then the expected proportion correctly classified by the rule is given by r , a linear function
of the AUC.

The very advantage of the AUC as a measure of the performance of a classification rule,
that it is independent of choice of classification threshold, can sometimes be a disadvantage
when comparing rules. In particular, if two ROC curves cross each other, then (in general—
there are pathological exceptions) one will be superior for some values of the classification
threshold and the other will be superior for other values of the classification threshold
(see Hand, 1997 for details). The AUC is a global measure and it fails to take account
of this. Based on this observation, Provost and Fawcett (1997, 1998) and Scott (1999)
have independently suggested using the convex hull of a set of ROC curves for comparing
the performance of a set of rules and defined randomised rules, which involve choosing
randomly between rules which are both optimal at certain threshold values. Despite this,
the AUC can be useful and is very widely used: one should bear in mind that, as discussed
in detail in Hand (1997), there is no single perfect numerical performance measure for
rule comparison. Adams and Hand (1999, 2000) describe another approach to tackling the
problem of crossing ROC curves, based on taking a weighted sum of classification rules for
a range of classification thresholds.



176 D.J. HAND AND R.J. TILL

Referring to Hanley and McNeil (1982) we obtain the standard error of Â to be

se( Â) =
√

θ̂ (1 − θ̂ ) + (n0 − 1)(Q0 − θ̂2) + (n1 − 1)(Q1 − θ̂2)

n0n1
(6)

with

θ̂ = S0

n0n1
and Q0 = 1

6
(2n0 + 2n1 + 1)(n0 + n1 + 1)(n0 + n1) − Q1

where

Q1 =
n0∑

j=1

(r j − 1)2.

Alternatively, and we recommend this for the extension to more than two classes below,
one might use a bootstrap method to estimate the standard error.

3. Multiple class extensions

Broadly speaking, there are two kinds of approaches to choosing multiple class performance
measures. They differ according to whether or not the other classes are taken account of
when computing the difference between classes in each pair. Take overall error rate as
an example. The standard measure of this is obtained by dividing the sum of the off-
diagonal elements of the confusion matrix by the total number of test points. In this
calculation, each point is classified into the class which has the largest estimated probability
of class membership over all classes. Thus, even though each cell of the confusion matrix
makes reference to only two classes (it only includes class i points which are misclassified
as class j), this is in the context of estimated probabilities for all classes. An alternative
kind of confusion matrix could be defined in which each cell of the matrix was based solely
on whether the estimated probability of belonging to class i was larger than the estimated
probability of belonging to class j . This would lead to a measure which averaged the pair-
wise comparisons of the classes. For error rate, the first strategy seems more natural—it
yields a measure of the overall misclassification rate of the multiclass rule. However, for
measures such as AUC, which avoid choosing the largest estimated probability at each x
(since this requires specification of the priors and implicitly the costs), the second strategy
seems more natural. It yields an overall measure of how well each class is separated from
all of the others. The first approach is only feasible if priors can be specified for the class
sizes. Without this, different choices of prior could lead to different estimated distributions
dominating at any given p̂(x). The second approach sidesteps this necessity. For this reason,
this is the method we have adopted. This second kind of confusion matrix also allows one to
identify the fact that certain pairs of classes or certain pairs of groups of classes can be well
separated, even if, overall, the classes cannot be well separated. To illustrate, the overall
proportion correct of a diagnostic rule may be small, but if the rule can accurately assign
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patients to types of disease (these being groups of similar disease classes) then the rule may
be very valuable. Techniques for identifying rules which do well in separating groups of
classes are described in Taylor and Hand (1999).

Suppose that the multiple classes have been labelled 0, 1, 2, . . . , c − 1 (c > 2), with the
order of the labels not reflecting any intrinsic order to the classes. Our classification rule
will give us estimates of the probability that each test point belongs to each class p̂(i | x)

for i = 0, . . . , c − 1. For any pair of classes i and j , we can compute the measure Â using
either p̂(i | x) or p̂( j | x). We therefore define Â(i | j) as the probability that a randomly
drawn member of class j will have a lower estimated probability of belonging to class i
than a randomly drawn member of class i . Note that the first index serves as the base of
the estimated probability, so that Â( j | i) is the probability that a randomly drawn member
of class i will have a lower estimated probability of belonging to class j than a randomly
drawn member of class j . This means that, in the two class case, Â(0 | 1) = Â(1 | 0). In
general, however, for more than two classes Â(i | j) �= Â( j | i). Moreover, since any one-
to-one transformation of the class labels preserves their uniqueness and yields an equally
legitimate set of labels, we are unable to distinguish between Â(i | j) and Â( j | i). We tackle
both problems by adopting Â(i, j) = [ Â(i | j) + Â( j | i)]/2 as the measure of separability
between classes i and j .

The overall performance of the classification rule in separating the c classes is then the
average of this over all pairs of classes:

M = 2

c(c − 1)

∑
i< j

Â(i, j) (7)

Deriving an expression for the standard deviation of this multiclass measure is difficult
because of the relationships between the Â(i | j) terms. We therefore recommend the use
of bootstrap resampling methods (Efron & Tibshirani, 1993).

4. Properties of M

Classification rules often yield estimated probabilities, which are, of course, bounded by
0 and 1. However, one of the attractive properties of M (and, of course, AUC) is that it
is invariant to monotonic transformations of the estimated probabilities (which is why the
methods we are describing are not restricted to methods which yield probability estimates,
but also work for simple class membership ‘scores’). We take advantage of this fact, in
order to gain a feel for the properties of the M measure, by transforming the interval [0, 1]
to the real line, and assuming that the transformed estimated probabilities of belonging
to class 0 are normally distributed for each of the classes. This may seem artificial, but
no alternative is obviously more realistic—the untransformed distributions on the interval
[0, 1] will depend on the particular classification rule employed and on the properties of
the process producing the data, so that no generally valid distributions can be given. In
particular, to gain a feel for the behaviour of M , we will take the special case in which
the c classes are distributed as N (iµ, 1), for i = 0, . . . , c − 1, that is, univariate normal
distributions with unit variance and means which are integer multiples of µ. Note that the
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assumption of unit variance implies no loss of generality for the case in which the classes
have equal variance, since it is the ratio of mean to standard deviation which is relevant to
determining separability.

For the situation in which c = 2, so that the means are separated by µ, we have

M = Â(0, 1) = 1

2π

∫ ∞

−∞
e−(x−µ)2/2

∫ x

−∞
e−y2/2 dy dx = �

(
µ/

√
2
)

(8)

where �(z) is the cumulative standard normal distribution.
For c classes, applying this result to pairs of classes with means arranged as indicated

above yields

M = 2

c(c − 1)

[
(c − 1)�

(
µ√

2

)
+ (c − 2)�

(
2µ√

2

)

+ (c − 3)�

(
3µ√

2

)
+ · · · + �

(
(c − 1)µ√

2

)]
(9)

Figure 1(a) shows a plot of M (vertical axis) against µ for c = 2, . . . , 5 (from bottom curve
to top curve). As one would wish in a measure of separability, M increases with increasing µ.
When all classes coincide, for any pair of classes, i and j , the probability that a randomly
chosen point from class i will have a lower value than a randomly chosen point from class
j is 1/2. That is, Â(i, j) takes the value 1/2 for all pairs. Thus M = 1/2, as we observe in
figure 1(a). For fixed µ, as the number of classes increases so M increases. One can also see
from the figure that the rate of increase of M with µ is greater for larger c than for smaller c
when µ is small. One striking thing about this figure is the steep slope of the curves for
small µ. This means that a slight increase in µ will yield a quite substantial improvement in
separability. In terms of choosing between rules, this means that a rule which has slightly
better pairwise separability between the classes has substantially greater M score.

As we pointed out in Section 1, the AUC is an alternative measure to error rate. It has
distinct properties (in particular, not requiring the specification of costs and a classification
threshold). This means that the AUC and our M measure should not be regarded as com-
petitors to error rate, but as qualitatively distinct measures, tapping into different aspects of
performance. Nevertheless, it will help provide a feel for the properties of the generalised
AUC if we relate its behaviour to error rate. Despite the fact that they measure different
aspects of performance, it will be reassuring if they are not completely different. In fact,
it is more convenient to relate its behaviour to the proportion correctly classified, rather
than the proportion incorrectly classified, simply because both M and proportion correct
increase with increasing separation between the classes (whereas error rate decreases).

The Bayes proportion correct for the distributions described above is

C1 = 2(c − 1)

c
�

(
µ

2

)
− 1 + 2

c
(10)

Figure 1(b) shows the plots of these curves corresponding to the curves of M in figure 1(a).
Here the case of 2 classes corresponds to the top curve, and 5 classes to the bottom curve, the
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(a)

(b)

Figure 1. The M performance measure defined in this paper, and the two proportion correct measures, plotted
against µ for 2 to 5 classes.

(Continued on next page.)
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(c)

Figure 1. (Continued ).

opposite of the M case. Note also that, when there are c classes with equal priors, random
classification of points to classes leads to a Bayes proportion correct of 1/c, as observed in
the figure—not to the same value for all c, as is the case for the M measure.

In Section 3, we pointed out that there were two broad ways of defining multiclass
extensions for two-class separability measures. The standard measure of proportion correct,
as used in C1, assigns classes according to the dominant estimated probability. M , however,
combines the pairwise comparison of classes into a global measure. It is possible to define
a measure of proportion correct in a way analogous to that of the M measure. To do this
one simply averages over the proportions correct obtained by comparing classes a pair
at a time—that is, obtained from the ‘pairwise confusion matrix’ described in Section 3.
Adopting this approach leads to the measure

C2 = 2

c

[
(c − 1)�

(
µ

2

)
+ (c − 2)�

(
2µ

2

)

+ · · · (c − k)�

(
kµ

2

)
+ · · · �

(
(c − 1)µ

2

)]
(11)

for the distributions above.
Figure 1(c) shows plots of curves of C2 against µ corresponding to those of figure 1(a)

and (b). The similarity to those of figure 1(a) is striking, including the order of the curves,
although the curves for M are steeper. The close relationship between the M and C2 measures
is revealed in figure 2(b). They differ most at large values. The similarity between these
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(a)

(b)

Figure 2. Pairwise comparisons of the M measure and the two proportion correct measures for 2 to 5 classes.
(Continued on next page.)
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(c)

Figure 2. (Continued ).

measures explains why figure 2(a) and (c) are similar. These show M and C2, respectively,
plotted against C1 . From figure 2(a), (b), and (c), we see that the main difference (for
the special case we have looked at here) between the measures arises from the pairwise
comparisons used to define the confusion matrix, rather than the distinction between error
rate and AUC. A key reason for this is that we have taken equal priors—equal sizes—for the
classes. The M measure, being based on the AUC, is independent of class priors, so that the
curves in figure 1(a) would remain the same if the priors were changed. Indeed, this is one
of the important properties of the AUC, a property which is attractive in many situations.
This is not the case for the other two measures.

The differential impact on C2 and M of changing the priors is most simply illustrated by
considering the special case of two classes, labelled 0 and 1. Suppose that the distributions
of the classes are identical, apart from their locations, with the mean of class 0 being at 0
and the mean of class 1 being at µ. Suppose also that the priors, π0 and π1 are such that
π0 > π1. Then, when µ is large, C2 ≈ 1 and M = 1, as in figure 2(b), but when µ = 0,
C2 = π0 and M = 0.5. This means that, when π0 � π1, the curve corresponding to that in
figure 2(b) begins near the lower right hand corner of the square (and ends at the top right
hand corner). That is, the two measures give quite different indicators of performance: when
the prior for one class is very small, C2 indicates that a high proportion correct is obtained
while M indicates that (when the locations are similar) a randomly chosen member of class
1 has a probability of only about 1/2 of being greater than a randomly chosen member of
class 0.
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5. Examples

The merit of the M measure lies in the fact that it can be applied to situations involving
more than two classes, and that it is a cost-independent measure, in the same way that
the AUC is cost-independent. That is, its merits are intrinsic, and are not based on its
relative performance compared to any other measure (such as, for example, error rate).
Nonetheless, as remarked above, it is helpful to gain a feel for the behaviour of the measure
by comparing it to other measures which might be used. To achieve this, we applied M ,
C1, and C2 to eight data sets, with numbers of classes ranging from two to ten, using three
qualitatively very different kinds of classification rule, each off-the-shelf functions in Splus
(Venables & Ripley, 1994): multiple logistic regression, a k-nearest neighbour rule, and the
Splus implementation of the CART recursive partitioning rule (labelled ‘tree’ in the table)

Table 1. Rank orders of M , C1, and C2 on eight data sets using three classification rules.

Multiple K -nearest
No. of logistic neighbour
classes Data set Measure regression (K = 9) Tree

2 WDBC M 1 2 3

C1 1 3 2

C2 1 3 2

3 TAE M 1 2 3

C1 1 2 3

C2 2 1 3

3 IRIS M 1 2 3

C1 1 2.5 2.5

C2 1 2 3

4 CAR M 3 1 2

C1 1 2 3

C2 3 1.5 1.5

5 PEN M 2 1 3

C1 2 1 3

C2 2 1 3

5 GLASS M 2 3 1

C1 2 3 1

C2 2 3 1

7 OPTICAL M 1 2 3

C1 2 1 3

C2 1 3 2

10 CHRO’SOME M 1 2 3

C1 2 1 3

C2 2 1 3
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(Breiman et al., 1984). All except the CHROMOSOME data set were obtained from the UCI
Repository of Machine Learning Databases (Blake & Merz, 1998). The former is discussed
in Piper and Granum (1989). The abbreviations in Table 1 refer to the following data sets:
WDBC: Wisconsin diagnostic breast cancer; TAE: Teaching assistant evaluation; IRIS: Iris
plants; CAR: Car evaluation; PEN: Pen digits; GLASS: Glass identification; OPTICAL:
Optical recognition of handwritten digits; CHROMOSOME: Chromosome data. In these
comparisons, we used a simple split into roughly equal sized training and test sets, with,
of course, the same split being used for each classification rule and each measure. As we
noted above, in practical application of any of the measures, one would normally use a
more sophisticated estimation method, typically based on sample reuse (such as the 632+
bootstrap in error rate estimation (Efron & Tibshirani, 1995)). We chose not to do this here
for practical simplicity—our aim here is not to investigate how to estimate the different
measures.

The eight data sets were chosen to span a range of situations. The minimum and maximum
values for M over the eight data sets were 0.524 and 0.991, for C1 they were 0.237 and
0.971, and for C2 they were 0.491 and 0.970.

The rows of Table 1 show the ranks each measure gives to each of the three classification
rules. What is interesting is that, in four out of the eight data sets, measure M gives a
different rank ordering to the classifiers than does C1, and in four of the eight data sets,
measure M also gives a different rank ordering than does C2. That is, although the M and
C measures are both measuring performance, the different aspects are such that they will
sometimes favour different rules.

6. Conclusion

Misclassification rate is often a poor criterion by which to assess the performance of clas-
sification rules. It makes the implicit assumption that the costs of the different kinds of
misclassification are equal, an assumption which is rarely justified in practice. For the two
class case it is sometimes possible to provide more appropriate cost values, though this
is typically difficult. When there are more than two classes, it is extremely difficult, and
usually impossible, to provide realistic assessments of the relative severity of the different
kinds of misclassification which can arise.

Because of these problems, one frequently adopted measure of performance for the two
class case is the area under the ROC curve. This is equivalent to the probability that a
randomly chosen member of one class has a smaller estimated probability of belonging
to the other class than has a randomly chosen member of the other class, and so is a
natural measure of separability between the two estimated probability distributions. This
measure has the singular merit that it is independent of costs, priors, or (consequently)
any classification threshold. There is a huge literature associated with ROC curves, spread
across medicine, statistics, chemistry, psychology, and, most recently, machine learning and
data mining.

When expressed in the form of the area under the ROC curve, the measure has no obvious
generalisation to multiple classes. However, when expressed in its equivalent probabilis-
tic form, it has a straightforward generalisation obtained by aggregation over all pairs of
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classes. This reduces to the standard form in the case of two classes, and so is a natural
generalisation.

We showed, in an artificial situation, that the generalised form can behave in a way similar
to standard measures such as error rate, but the fact that it is independent of costs and priors
means that it is tapping different aspects of performance, and so will not always behave
in the same way. To illustrate this, we evaluated the performance of three classification
methods on eight real data sets, using the generalised measure developed above, and also
two versions of error rate. In half of the cases that we investigated (which were chosen
purely on the basis of the number of classes), the generalised measure produced a different
rank order for the three classification methods.
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