Skip to main content
Log in

Solubility of Refrigerants in Various Lubricants

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Solubility data of refrigerant/lubricant mixtures have been modeled with cubic equations of state (EOS): van der Waals (vdW), Soave-modified Redlich–Kwong (SRK), or Peng–Robinson (PR) types. The temperature dependence on the “a” parameter in the EOS is modeled with a common empirical function for pure refrigerants, including oils. For lubricants, a hypothetical oil (UniOIL) has been developed with universal oil EOS constants, and it is valid for any kind of lubricant oil. Only an average molecular weight is required for any type of oil. The mixing rules for the a and b parameters of EOS are more general than the ordinary van der Waals–Berthelot formula, and a justification of such mixing rules is discussed. The refrigerants studied are R-32, R-125, R-134a R-143a, R-152a, R-12, R-22, R-123 and R-13B1. The lubricants are naphthenic mineral (MO), alkylbenzene (AB/HAB), and polyol ester (POE) oils, as well as model compounds with pure component oils (hydrocarbons and POE). They are all analyzed with the UniOIL model. Good quality experimental solubility (PTx) data were selected from the literature and well correlated within their experimental uncertainties. All the cubic EOS (vdW, SRK, and PR) having the same type of mixing forms for the a and b parameters showed excellent fits to the experimental PTx data with essentially the same degree of accuracy. The results in this report are shown with the SRK type EOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Yokozeki, Proc. Int. Compressor Eng. Conference at Purdue, Vol. 1 (West Lafayette, Indiana, 1994), p. 335.

    Google Scholar 

  2. C. C. Allgood and A. Yokozeki, Proc. Int. Compressor Eng. Conference at Purdue, Vol. 1 (West Lafayette, Indiana, 1994), p. 323.

    Google Scholar 

  3. A. Wahlstrom and L. Vamling, J. Chem. Eng. Data 45:97 (2000).

    Google Scholar 

  4. A. Wahlstrom and L. Vamling, Can. J. Chem. Eng. 75:544 (1997).

    Google Scholar 

  5. A. Wahlstrom and L. Vamling, J. Chem. Eng. Data 44:823 (1999).

    Google Scholar 

  6. Y. Takaishi and K. Oguchi, Proc. 18th Int. Congress of Refrigeration, Vol. II (Montreal, Canada, 1991), p. 659.

    Google Scholar 

  7. Y. Takaishi and K. Oguchi, Proc. of the IIR Conference, Vol. B1/2 (Ghent, Belgium Commission, 1993), p. 141.

    Google Scholar 

  8. Y. Takaishi and K. Oguchi, Proc. 19th Int. Congress of Refrigeration, Vol. B1 (Hauge, Netherlands Comm., 1995), p. 568.

    Google Scholar 

  9. Y. Takaishi, H. Nakagawa, and K. Oguchi, Trans. JAR 9:85 (1992).

    Google Scholar 

  10. Y. Takaishi and K. Oguchi, Trans. JAR 7:75 (1990).

    Google Scholar 

  11. Y. Takaishi, M. Izumi, and K. Oguchi, Proc. IIR Conference on CFCs, The Day After (Padova, Itally, 1994), p. 99.

  12. C. M. Burton, A. M. Jacobi, and S. S. Mehendale, Int. J. Refrig. 22:458 (1999).

    Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, Statistical Physics. Part 1 (Pergamon Press, New York, 1980).

    Google Scholar 

  14. A. Vetere, Chem. Eng. J. 49:27 (1992).

    Google Scholar 

  15. G. S. Soave, Chem. Eng. Sci. 27:1197 (1972).

    Google Scholar 

  16. J. Schwartzentruber and H. Renon, Fluid Phase Equil. 67:99 (1991).

    Google Scholar 

  17. J. E. Mayer, J. Phys. Chem. 43:71 (1939).

    Google Scholar 

  18. R. Stryjek and J. H. Vera, Can. J. Chem. Eng. 64:820 (1986).

    Google Scholar 

  19. R. C. Reid, J. M. Prausnitz, and B. M. Poling, The Properties of Gases and Liquids, 4th ed. (McGraw–Hill, New York, 1987).

    Google Scholar 

  20. M. O. McLinden, E. W. Lemmon, S. A. Klein, and A. P. Peskin, Refprop6 Computer Program; NIST Standard Reference Database 23, Version 6.0 (National Institute of Standards and Technology, Gaithersburg, Maryland, 1998).

    Google Scholar 

  21. K. Takigawa, S. I. Sandler, and A. Yokozeki, submitted to Int. J. Refrig.

  22. W. L. Martz, C. M. Burton, and A. M. Jacobi, ASHRAE Trans. 102:367 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokozeki, A. Solubility of Refrigerants in Various Lubricants. International Journal of Thermophysics 22, 1057–1071 (2001). https://doi.org/10.1023/A:1010695705260

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010695705260

Navigation