Skip to main content
Log in

Cardiac Energy Metabolism―A Historical Perspective

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

For more than two millenniums, the beating heart is considered as a sign and symbol of life and vitality. Due to its central role for the individual life, both scientists as well as philosophers were engaged evolving concepts to explain cardiac function. This review gives an outline about the research performed and the concepts set up that finally yielded our current understanding of myocardial energy metabolism as integral part of cardiac function.

From simple experiments performed by early physiologists to highly sophisticated techniques currently employed, the researchers step by step succeeded in developing detailed and unifying concepts to explain cardiac function in physiological as well as in various pathological conditions. By elucidating cardiac energy metabolism in the failing heart, however, the scientists' explanations became almost as manifold as the setup and / or model used for investigation. This diversity did so far not allow to formulate an unifying metabolic hypothesis of heart failure, though the divergent results and concepts may fit to the clinical view, considering cardiac failure as the final stage of numerous cardiac diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bing R. Coronary circulation and cardiac metabolism. In: Fishman A, Richards D, eds. Circulation of the Blood: Men and Ideals. New York: Oxford University Press, 1964.

    Google Scholar 

  2. Gibbs C, Chapman J. Cardiac heat production. Ann Rev Physiol 1979;41:507–519.

    Google Scholar 

  3. Webster C. Medieval and renaissance interpretations, In: Schwartz C, Werthessen N, Wolf S, eds. Structure and Function of the Circulation. New York and London: Plenum Press, 1981:1–44.

    Google Scholar 

  4. Ringer S. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J Physiol (Lond) 1883;4:29–42.

    Google Scholar 

  5. Martin H. A new method of studying the mammalian heart. Stud Biol Lab Johns Hopkins Univ 1883;2:119–130.

    Google Scholar 

  6. Langendorff O. Untersuchungen am überlebenden Säugethierherzen. Pflügers Arch 1895;61:291–332.

    Google Scholar 

  7. Frank O. Zur Dynamik des Herzmuskels. ZBiol 1895;32:370.

    Google Scholar 

  8. Fick A. Mechanische Arbeit und Wärmeentwicklung bei der Muskeltätigkeit. Leipzig: FA Brockhaus, 1882.

    Google Scholar 

  9. Wiggers C. Some factors controlling the shape of the pressure curve in the right ventricle. Am J Physiol 1914;33:382–396.

    Google Scholar 

  10. Straub H. Dynamik des Säugetierherzens. Dtsch Arch Klin Med 1914;115:531–595.

    Google Scholar 

  11. Starling E. The Linacre Lecture on the Law of the Heart. London: Longman, Green, 1918.

    Google Scholar 

  12. Straub H. Dynamik des rechten Herzenz. Dtsch Arch Klin Med 1914;116:409–436.

    Google Scholar 

  13. Kronecker H, McGuire J. Ueber die Speisung des Froschherzens. Arch Anat Physiol Physiol Abt 1878;321.

  14. Winterstein L. Ñber die Säuerstoffatmung des isolierten Säugetierherzens. Z Allg Physiol 1904;4:333.

    Google Scholar 

  15. Rusch H. Experimentelle Studien ueber die Emaehrung des isolierten Säugertierherzens. Pflügers Arch Ges Physiol 1898;73:533.

    Google Scholar 

  16. von Pettenkofer M, von Voit C. Untersuchungen über den Sauerstoffverbrauch des normalen Menschen. Z Biol 1866;2: 459.

    Google Scholar 

  17. von Voit C. Das Isodynamiegesetz. MünchMed Wschr 1902; 49:233.

    Google Scholar 

  18. Rubner M. Die Quelle der thierischen Wärme. Z Biol 1894;30:73.

    Google Scholar 

  19. Locke F, Rosenheim O. Contributions to the physiology of the isolated heart. The consumption of dextrose by mammalian cardiac muscle. J Physiol (Lond) 1907;36:205–220.

    Google Scholar 

  20. Evans C. The metabolism of cardiac muscle. In: Newton W, eds. Recent Advances in Physiology. Philadelphia: Blakiston's Son & Co., 1939.

    Google Scholar 

  21. Lohmann K. Ñber die enzymatische Aufspaltung der Kreatinphosphorsäure; zugleich ein Beitrag zum Mechanismus der Muskelkontraktion. Biochem Z 1934;271:264.

    Google Scholar 

  22. Lundsgaard E. Untersuchungen über die Muskelkontraktion ohne Milchsäurebildung. Biochem Z 1930;217:162.

    Google Scholar 

  23. Lundsgaard E. Weitere Untersuchungen über Muskelkontraktion ohne Milchsäurebildung. Biochem Z 1930;227:51.

    Google Scholar 

  24. Engelhardt W, Ljubimova F. Myosine and adenosinetriphosphatase. Nature 1939;144:668.

    Google Scholar 

  25. Carlson F, Siger A. The mechanochemistry of muscular contraction. J Gen Physiol 1960;44:33.

    Google Scholar 

  26. Cain D, Davies R. Breakdown of adenosine triphosphate during a single contraction of working muscle. Biochem Biophys Res Comm 1962;8:361.

    Google Scholar 

  27. Fruton J. Molecules and Life: HistoricalEssayson the Interplay of Chemistry and Biology. New York: Wiley Interscience, 1972.

    Google Scholar 

  28. Kalckar H. Biological Phosphorylations: Development of Concepts. Englewood Cliffs: Prentice Hall, 1969.

    Google Scholar 

  29. Krebs H. The history of the tricarboxylic acid cycle. Perspect Biol Med 1970;14:154–170.

    Google Scholar 

  30. Krebs H. Control of metabolic process. Endeavour 1957;16: 125–132.

    Google Scholar 

  31. Krebs H, Johnson W. The role of citric acid in intermediate metabolism in animal tissues. Enzymologia 1937;4:148–156.

    Google Scholar 

  32. Lehninger A. The Mitochondrion:Molecular Basis of Structure and Function. NewYork: The Benjamin Co. Inc., 1964.

    Google Scholar 

  33. Tzagoloff A. Mitochondria. New York: Plenum Press, 1982.

    Google Scholar 

  34. Visscher M. Fat metabolism of isolated heart. Proc Soc Exptl Biol Med 1938;38:323.

    Google Scholar 

  35. Cruickshank E, Kosterlitz H. Utilization of fats by a glycaemic mammalian heart. J Physiol (Lond) 1936;86:1.

    Google Scholar 

  36. Barnes R, MacKay E, Visscher M. Utilization of betahydroxyburyric acid by isolated mammalian hearts and lungs. J Physiol (Lond) 1938;123:272.

    Google Scholar 

  37. Racker E. From Pasteur to Mitchell: A hundred years of bioenergetics. Fed Proc 1980;39:210–215.

    Google Scholar 

  38. Mitchell P. Vectorial chemistry and the molecular mechanics of chemiosmotic coupling: Power transmission by proticity. Trans Biochem Soc 1976;4:399–430.

    Google Scholar 

  39. Huxley HE. The mechanism of muscular contraction. Sci Amer 1965;213:18–27.

    Google Scholar 

  40. Bessmann S, Geiger P. Transport of energy in muscle: The phosphocreatine shuttle. Science 1981;211:448–452.

    Google Scholar 

  41. Katz A. Molecular biology in cardiology, a paradigmatic shift. J Mol Cell Cardiol 1988;20:355–366.

    Google Scholar 

  42. Sonnenblick E. The determinants of O2-consumption of the heart. In: Reindell H, Keul J, Doll E, eds. Herzinsuffizienz. Pathophysiologie und Klinik. Stuttgart: Georg Thieme Verlag, 1968:271–277.

    Google Scholar 

  43. Bing R. Cardiac metabolism. Physiol Rev 1965;45:171–213.

    Google Scholar 

  44. Braunwald E, Ross JJ. Applicability of Starling's law of the heart to man. Circ Res 1964;15(Suppl2):169–178.

    Google Scholar 

  45. Katz A. Physiology of the Heart. New York: Raven Press, 1992.

    Google Scholar 

  46. Gadian D. NMR and Its Application to Living Systems. Oxford: Clarendon Press, 1982.

    Google Scholar 

  47. Gilles R. Nuclear magnetic resonance and its applications to physiological problems. Ann Rev Physiol 1992;54:733–826.

    Google Scholar 

  48. Linzbach A. Heart failure from the point of view of quantitative anatomy. Am J Cardiol 1960;370–382.

  49. Hort W. Strukturelle Analyse akut insuffizienterHerzen. In: Reindell H, Keul J, Doll E, eds. Herzinsuffizienz. Pathophysiologie und Klinik. Stuttgart: Georg Thieme Verlag, 1968:6–11.

    Google Scholar 

  50. Linzbach J, Kyrieleis C. Strukturelle Analyse chronisch insufizienter menschlicher Herzen. In: Reindell H, Keul J, Doll E, eds. Herzinsuffizienz. Pathophysiologie und Klinik. Stuttgart: Georg Thieme Verlag, 1968:11–19.

    Google Scholar 

  51. Schaper J, Froede R, Hein S, Buck A, Hashizume H, Speiser B, Friedl A, Bleese N. Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 1991;83:504–514.

    Google Scholar 

  52. Francis G. Heart failure. J Am Coll Cardiol 1999;33: 291–294.

    Google Scholar 

  53. Allen D, Orchard C. Myocardial contractile function during ischemia and hypoxia. Circ Res 1987;60:153–168.

    Google Scholar 

  54. Reimer K, Jennings R. Myocardial ischemia, hypoxia, and infarction. In: Fozzard H, Haber E, Jennings R, Katz A, Morgan H, eds. The Heart and Cardiovascular System: Scientific Foundations. New York: Raven Press, 1992:1875–1973.

    Google Scholar 

  55. Scheuer J. Metabolism of the heart in heart failure. Prog Cardiovasc Dis 1970;13:24–54.

    Google Scholar 

  56. Kübler W, Haass M. Cardioprotection: Definition, classification, and fundamental principles. Heart 1996;75:330–333.

    Google Scholar 

  57. Blanchard E, Solaro R. Inhibition of the activation and troponin calcium binding of dog and cardiac myofibrils by acidic pH. Circ Res 1984;55:382–391.

    Google Scholar 

  58. Fabiato A, Fabiato F. Effects of pH on the myofilaments and the sarcoplasmatic reticulum of skinned cells from cardiac and skeletal muscles. J Physiol (Lond) 1978;276: 233–255.

    Google Scholar 

  59. Katz A, Hecht H. The early pump failure of the ischemic heart. Am J Med 1969;47:497–502.

    Google Scholar 

  60. Herzig J, Ruegg J. Myocardial cross-bridge activity and its regulation by Ca++, phosphate and stretch. In: Riecker G, Weber A, Goodwyn J, eds. Myocardial Failure. Berlin and Heidelberg: Springer, 1977:41–51.

    Google Scholar 

  61. Kentish J. The effects of inorganic phosphate on force production in skinned muscles from rat ventricle. J Physiol (Lond) 1986;370:585–604.

    Google Scholar 

  62. Lentz R, Harrizon CJ, Dewey J, Barnhorst D, Danielson G, Pluth J. Functional evaluation of cardiac sarcoplasmatic reticulum and mitochondral in human pathologic states. J Mol Cell Cadiol 1978;10:3–30.

    Google Scholar 

  63. Rabinowitz M, Zak R. Mitochondria and cardiac hypertrophy. Circ Res 1975;36:367–376.

    Google Scholar 

  64. Antozzi C, Zeviani M. Cardiomyopathies in disorders of oxidative metabolism. Cardiovasc Res 1997;35:184–199.

    Google Scholar 

  65. Anan R, Nakagawa M, Miyata M, Higuchi I, Nakao S, Suehara M, Osame M, Tanaka H. Cardiac involvement in mitochondrial diseases. Circulation 1995;91:955–961.

    Google Scholar 

  66. Vogt A, Kübler W. Heart failure: Is there an energy deficit contributing to contractile dysfunction? Basic Res Cardiol 1998;93:1–10.

    Google Scholar 

  67. Nägle S. Die Bedeutung von Kreatinphosphat und Adenosintriphosphat im Hinblick auf Energiebereitstellung,-transport und-verwertung im normalen und insuffizienten Herzmuskel. Klin Wschr 1970;48:333–341.

    Google Scholar 

  68. Neubauer S, Horn M, Naumann A, Tian R, Hu K, Laser M, Friedrich J, Gaudron P, Schnakerz K, Ingwall J, Ertl G. Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction. J Clin Invest 1995;95:1092–1100.

    Google Scholar 

  69. Tian R, Nascimbien L, Kaddurah-Dauok R, Ingwall J. Depletion of energy reserve via the creatine kinase reaction during the evolution of haert failure of cardiomyopathic hamsters. J Mol Cell Cardiol 1996;28:755–765.

    Google Scholar 

  70. Hamman B, Bittl J, Jacobus W, Allen P, Spencer R, Tian R, Ingwall J. Inhibition of creatine kinase reaction decreases the contractile reserve of isolated rat hearts. Am J Physiol 1995;269:H1030–1036.

    Google Scholar 

  71. Ingwall J, Kramer M, Fifer M, Lorell B, Sgemin R, Grossmann W, Allen P. The creatine kinase system in normal and diseased human myocardium. N Engl J Med 1985;313: 1050–1054.

    Google Scholar 

  72. Fleckenstein A, Döring H, Kammermeier H. Beziehung zwischen den Spiegeln an energiereichem Phosphat und verschiedenen Insuffizienzformen. In: Reindell H, Keul J, Doll E, eds. Herzinsuffizienz. Pathophysiologie und Klinik. Stuttgart: Georg Thieme Verlag; 1968:217–226.

    Google Scholar 

  73. Fleckenstein A. Physiologie und Pathophysiologie des Myokardstoffwechsels im Zusammenspiel mit den bioelektrischen und mechanischen Fundamentalprozessen. In: Bargmann W, Doerr W, eds. Das Herz des Menschen. Stuttgart: Thieme; 1962.

    Google Scholar 

  74. Chandler B, Sonnenblick E, Spann JJ, Pool P. Association of depressed myofibrillar adenosine triphosphatase and reduced contractility in experimental heart failure. Circ Res 1967;21:717–725.

    Google Scholar 

  75. Alpert N, Gordon M. Myofibrillar adenosine triphosphatase activity in congestive heart failure. Am J Physiol 1962;202: 940–946.

    Google Scholar 

  76. Jarcho J, McKenna W, Pare J, Solomon S, Holcombe R, Dickie S, Levi T, Donis-Keller H, Seidman J, Seidman C. Mapping a gene for familiar hypertrophic cardiomyopathy to chromosome 14q1. New Engl J Med 1989;321:1372–1378.

    Google Scholar 

  77. Tanigawa G, Jarcho J, Kass S, Solomon S, Vosberg H, Seidman J, Seidman C. A molecular basis for familiar hypertrophic cardiomyopathy: An alpha/beta cardiac myosin heavy chain hybrid gene. Cell 1990;62:991–998.

    Google Scholar 

  78. Fabiato A, Fabiato F. Calcium and cardiac excitation-contraction coupling. Annu Rev Physiol 1979;41:473–484.

    Google Scholar 

  79. Katz A. Congestive heart failure: Role of altered myocardial cellular control. New Engl J Med 1975;293:1184–1191.

    Google Scholar 

  80. Dhalla N, Dak P, Sharma G. Subcellular basis of cardiac contractile failure. J Mol Cell Cardiol 1978;10:363–385.

    Google Scholar 

  81. Dhalla N, Alto L, Heyliger C, Pierce G, Panagia V, Singal P. Sarcoplasmatic reticular Ca++-pump adaptation in cardiac hypertrophy due to pressure overload in pigs. Eur Heart J 1984;5(Suppl F):323–328.

    Google Scholar 

  82. Bristow M, Kantrowitz N, Ginsburg R, Fowler M. Beta-adrenergic function in heart muscle disease and heart failure. J Mol Cell Cardiol 1985;17(Suppl 2):41–52.

    Google Scholar 

  83. Bogaert M, Fraeyman N. Receptor function in heart failure. Am J Med 1991;90(Suppl 5B):S-10–S-13.

    Google Scholar 

  84. Stiles G. Adrenergic receptor responsiveness and congestive heart failure. Am J Cardiol 1991;67:13C–17C.

    Google Scholar 

  85. Neumann J, Scholz H, Döring V, Schmitz W, Meyerinck L, Kalmar P. Increase in myocardial Gi-proteins in heart failure. Lancet 1988;2(8617):936–937.

    Google Scholar 

  86. Feldman A. Modulation of adrenergic receptors and Gtransduction proteins in failing human ventricular myocardium. Circulation 1993;83(Suppl VI):IV-27–IV-34.

    Google Scholar 

  87. Bristow M, Ginsburg R, Strosberg A, Montgomery W, Minobe W. Pharmacology and inotropic potential of forskolin in the human heart. J Clin Invest 1984;74:212–223.

    Google Scholar 

  88. Braunwald E. Regulation of the circulation. New Engl J Med 1974;290:1420–1425.

    Google Scholar 

  89. Eckberg D, Drabinsky M, Braunwald E. Defective cardiac parasympathetic control in patients with heart disease. New Engl J Med 1971;285:877–883.

    Google Scholar 

  90. Higgins C, Vatner S, Braunwald E. Parasympathetic control of the heart. Pharmacol Rev 1973;25:119–155.

    Google Scholar 

  91. Braunwald E. Mechanics and energetics of the normal and failing heart. Trans Assoc Am Physicians 1971;84:63–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogt, A.M., Kübler, W. Cardiac Energy Metabolism―A Historical Perspective. Heart Fail Rev 4, 211–219 (1999). https://doi.org/10.1023/A:1009836822497

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009836822497

Navigation