Skip to main content
Log in

An Approximate Method of Calculating the Heat Transfer Coefficient in Metal Bars

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

A least‐squares method is used to determine the heat transfer coefficient H of a solid copper bar in air at constant temperature. For this purpose, twelve steady states and their corresponding cooling curves were measured with temperature excesses of the metal over the surrounding air in the range of 11–74°C and were compared to those calculated using a mathematical model to solve the equation for the heat flow in the bar. The model reduces an experimental double exponential law to an overall single exponential and gives similar behavior, within 10% of statistical uncertainty, for H in the steady state and in cooling. The values obtained in this study are in qualitative agreement with the values given in the literature under similar experimental conditions, but there it is not specified how they are obtained in solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. W. Dittus and L. M. K. Boelter, Univ. Calif., Berkeley, Publ. Eng., 2(1930), p.443.

    Google Scholar 

  2. W. H. McAdams, Heat Transmission (3rd. ed.), McGraw-Hill, New York (1954).

    Google Scholar 

  3. C. L. Ko and C. W. Bert, J. Thermophysics and Heat Transfer, 2, 209-217 (1988).

    Google Scholar 

  4. K. Kamiuto, Energy, 16, 701-706 (1991).

    Google Scholar 

  5. K. H. Spitzer, Int. J. Heat Mass Transfer 34, 1969-1974 (1991).

    Google Scholar 

  6. S. G. Viswanath, S. S. Umare, and M. C. Gupta, Thermochimica Acta, 233, 47-61 (1994).

    Google Scholar 

  7. R. P Nance, R. G. Wilmoth, B. Moon, H. A. Hassan, and J. Saltz, J. Thermophysics Heat Transfer, 9, 471-477 (1994).

    Google Scholar 

  8. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, Oxford (1978).

    Google Scholar 

  9. J. J. Morales, Thermochimica Acta, 185, 255-262 (1991).

    Google Scholar 

  10. J. J. Morales, Thermochimica Acta, 219, 343-353 (1993).

    Google Scholar 

  11. J. J. Morales, Thermochimica Acta, 194, 231-237 (1992).

    Google Scholar 

  12. M. L. Cancillo and J. J. Morales, J. Thermophysics Heat Transfer, 9, 560-562 (1995).

    Google Scholar 

  13. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, Cambridge University Press, England (1990).

    Google Scholar 

  14. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (3rd ed.), McGraw-Hill, Singapore (1987).

    Google Scholar 

  15. Available from Quantum Chemistry Program Exchange (QCPE). J. P. Chandler, I. U. Physics Department, Bloomington, Indiana (1965)

  16. G. W. C. and T. H. Laby, Tables of Physical and Chemical Constants, Longmans, London (1966).

    Google Scholar 

  17. M. N. Ózisik, Heat Transfer. A Basic Approach, McGraw-Hill, New York (1985).

    Google Scholar 

  18. V. Isachenko, V. Osipova, and A. Sukomel, Transmision del calor, Marcombo, Barcelona (1973).

    Google Scholar 

  19. P. M. Beckett, Int. J. Heat Mass Transfer 34, 2165-2166 (1991).

    Google Scholar 

  20. Y. Kurosaki, I. Satoh, and E. Nara, Exp. Heat Transfer, 7, 163-173 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cancillo, M.L., Morales, J.J., Gallego, M.C. et al. An Approximate Method of Calculating the Heat Transfer Coefficient in Metal Bars. Journal of Engineering Physics and Thermophysics 73, 1323–1331 (2000). https://doi.org/10.1023/A:1009415514356

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009415514356

Keywords

Navigation