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Abstract

We present in this article some questions related to risk classification. These are discussed depending on the infor-
mation used—either data on conditional characteristics or also including data on claim histories or on endogenous
insurance demand by the agents.
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1. Introduction

The significance of the econometric (or statistical) insurance analysis can be appraised by
considering the “production process” of an insurance company (see figure 1). An insurer is a
financial intermediary that offers and sells a set of contracts, which may be partly reinsured.
This activity entails some negative cash flows including the reinsurance premiums and
the residual costs of the insured claims, and some positive cash flows corresponding to
the premiums payed by the insured agents. These negative and positive cash flows do not
have symmetric patterns, and temporarily positive or negative balances may arise. These
divergences can be smoothed out by adequate hedging strategies on financial markets. In this
situation, the company has to determine jointly the selection of contracts, the reinsurance
policies, the pricing strategies, and the updating of the hedging portfolios. Clearly the right
decisions can only be taken if the firm has accurate information on its own costs, which
originate mainly from either direct or indirect1 costs of the claims. The main challenge for
the statistician is to predict the occurrence of claims, their severities, and their costs.

This prediction problem leads to the following issues:

1. Even if we are ultimately interested in the prediction of an aggregate, i.e., the final
outcome of the firm, the analysis of claims has to be carried out contract by contract and
not directly on the portfolio of contracts. This is the so-called risk classification. Indeed,
the insured agents involve various risks, which may be taken into account to eventually
differentiate the prices, the reinsurance policies, or the hedging strategies.2 Moreover,
to examine the evolution of the risk contained in a portfolio, it is crucial to distinguish
between the dynamics of the risk in each class and the modification of the partition
structure of the insured agents. Indeed, the second factor may be partly controlled by the
firm contract selection or by a differentiated pricing scheme.

2. While the properties of the basic financial assets are well summarized by the expected
returns and volatilities, i.e., by the first- and second-order (conditional) moments of the
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returns, it is necessary to consider in the insurance contracts the whole distribution of the
claim cost. There are two reasons: first, these distributions are far from Gaussian because
they admit a point mass at zero (no claim, zero cost); and second, in complex contracts
including deductibles or in partly reinsured contracts, the cost is a nonlinear transforma-
tion of the cost of the corresponding basic contract without deductible and reinsurance.
In some sense, these complex contracts are derivatives, and, typically in financial the-
ory, the analysis of derivatives requires the knowledge of the whole distribution of the
underlying asset cash flow.

In this article, we are essentially interested in the question of risk classification and in
the distributional assumptions that may be done. In Section 2, we first consider the static
case, where the contracts concern a given period. We define carefully the notion of class
of risks and discuss the criteria that may be followed to select a classification. The case of
a sequence of contracts is analysed in Section 3. We explain how the individual histories
may be taken into account to improve the risk classification under moral hazard and adverse
selection when more information becomes available. From the example of car insurance,
we show how the introduction of unobservable heterogeneity factors may be used to derive
simple updating formulas for the classification and the pure premium. Finally, in Section 4,
we consider the additional information that may be introduced under adverse selection by
proposing different contracts to the agent and considering which one has been selected.

2. Static risk classification

The basic models used in portfolio risk analysis are adapted to a static framework. A typical
setup consists of a population P of individuals, indexed by i, i = 1, . . . , n. The claims of
interest are defined as either a scalar or vector3 variable, say Yi , that has to be predicted by the
insurance company. The prediction is performed on the basis of some observed individual
variables xi that allows classification of the individuals. In practice, the covariates xi are
used to define a partition of the whole population:

P =
K⋃

k=1

Pk,

where Pk = {i : xi ∈ Ak}, k = 1, . . . , K , and Ak, k = 1, . . . , K is a partition of the set of
possible values of xi . The partition is defined by crossing some qualitative characteristics,
such as age, gender, occupation, and so on.

Clearly, this procedure involves some degree of arbitrariness. It has to be emphasized
that the selection of the partition is essential for a feasible, accurate, and robust assessment
of the portfolio risk. Below, we discuss general requirements that need to be satisfied for
this purpose (see Gourieroux [1999] for a more detailed discussion).

2.1. Homogenous classes of risks

The feasibility requirement concerns the possibility of aggregating the individual risk in
order to derive the portfolio risk and of estimating the unknown parameters of the model
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by averaging on subpopulations. This requirement determines the constraints imposed on
the partition structure for the statistical inference.

Definition 1: A partition is composed of homogenous classes of risks if and only if

(i) the conditional distribution of Y1, . . . ,Yn given X1, . . . , Xn coincides with the con-
ditional distribution of Y1, . . . ,Yn given Z1, . . . , Zn , where Zi indicates the class to
which individual i belongs;

(ii) Y1, . . . ,Yn are independent conditionally on Z1, . . . , Zn; and
(iii) the conditional distribution of Yi only depends on the class of i .

The first condition means that the information content of the partition is equivalent to
that of the initial personal characteristics x . The two remaining conditions are introduced
to simplify the aggregation procedure.

For illustration, let us consider a standard mean-variance framework, where the dis-
tribution of a scalar risk Y is summarized by its mean and variance, denoted µ and σ 2,
respectively. The above definition clearly implies heterogeneity, sinceµk, σ

2
k will generally

depend on the class Pk . Therefore the individual risks may be displayed in a mean-variance
graph for comparison (see figure 2).

Note that the term homogenous is used above with the following statistical interpretation:
in a given class, the individual risks are independent, with identical distributions. We em-
phasize that this does not mean that the individuals of a given class have identical claims.
Indeed, in the usual classifications, we may encounter some classes with small variances,
but also some groups for which the observed variables provide poor information. To give

Figure 2. Mean-variance representation of individual risks.
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Figure 3. Cost distributions in car insurance.

some idea of this heterogeneity effect between and within classes, we provide in figure 3 the
distribution of the annual cost of claims for car insurance. The data concern a population of
insured people from Quebec. The first graph provides the average cost in each group (a class
defined by the company) and the other ones the distribution within each retained group. It
may be noted that the (conditional) distributions present some regular form, with only one
mode and some asymmetry. A model may be based on either log-normal, log-logistic (see
Beirlandt et al. [1991]), or gamma distribution.

Let us now consider a portfolio containing nk contracts of type k, k = 1, . . . , K . The
global risk Y =∑i∈P Yi =

∑K
k=1(

∑
i∈Pk

Yi ) is summarized by its mean, µ =∑K
k=1 nkmk ,

and its variance, σ 2 = ∑K
k=1 nkσ

2
k . Hence, under this partition, standard aggregation for-

mulas apply.
At this point, it becomes clear why the risk analysis has to be primarily performed at the

individual rather than the portfolio level. Indeed, the difference between the characteristics
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of two portfolios at two different dates t and τ , namely,

µt =
K∑

k=1

nkt mkt , σ 2
t =

K∑
k=1

nktσ
2
kt ,

µτ =
K∑

k=1

nkτmkτ , σ 2
τ =

K∑
k=1

nkτ σ
2
kτ ,

may be due to any modification of the individual risks, reflected by the variation of mk and
σ 2

k , or any changes in the portfolio composition, i.e., nk, k = 1, . . . , K .

2.2. Precision and robustness

Common sense suggests that the thinner the partition, the more accurate is the evaluation
of the portfolio risk. However, in our setup this intuition turns out to be misleading for two
reasons.

By increasing the partition, we may lose some properties required for the classes of
risk, especially the conditional independence between the Yi variables; moreover, as the
size of the class decreases, the estimation of the unknown parameters µk, σ

2
k becomes less

precise.
In summary, the selection of an adequate partition involves a tradeoff between small

within variances, robustness, and feasibility.

2.3. The distributional specifications

As pointed out in the introduction, several insurance contracts may be considered as deriva-
tives, due to the deductible or reinsurance effects. For this reason, the distribution in each
class of risk has to be fully specified. It is usually selected from a standard family of dis-
tributions, depending on the interpretation of the Y variable—for example, the occurrence
of an accident, number of claims in a given period, duration before the first claim, severity,
cost, etc.

When these families are parameterized, they have to depend at least on two parameters
in order to cover all the positions in the mean-variance space. For example, let us consider
the standard Poisson model for count variables, where Yi ∼ P(λk), if i belongs to class k.

This distribution is such that the mean and variance coincide. Therefore, in the mean-
variance space the only admissible positions of this class are on the 45◦ line (see figure 4).
In order to avoid such a restrictive specification, several authors (see, e.g., Gourieroux,
Monfort, and Trognon [1984], Cameron and Trivedi [1986], [1999], Boyer, Dionne, and
Vanasse [1992], Lemaire [1995]) have proposed to enlarge this class by introducing an
additional error term. It is assumed that the term retains some heterogeneity on the λ
parameter for the individuals belonging to the same class k, i.e.,

Yi/µi ∼ P[λkµi ],
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Figure 4. The Poisson and negative binomial models in the mean-variance space.

where µi is some independent unobservable heterogeneity factor. If µi follows a gamma
distribution γ (Ak, Ak),which implies Eµi = 1, then Yi may be shown to follow a negative
binomial distribution, with two parameters depending on λk and Ak and in a one-to-one
relationship with µk, σ

2
k , where σ 2

k ≥ µk . Note that the use of a negative binomial distri-
bution should be the basis for a test of price discrimination in insurance. Indeed, if this
specification is not rejected, the heterogeneity factor should be priced and a price discrim-
ination should follow. The negative binomial model has been implemented in a number of
empirical studies (see, e.g., Richaudeau [1997], Pinquet [1997a]).

3. The risk dynamics

Agents are generally insured for several consecutive periods, either by the same company or
by different ones. In any case, the risk has to be considered in a dynamic framework, since
it is probably time varying and since the available information on individual behaviors
increases with time (see, e.g., Pinquet [1997b]). In particular, we may know the claims
submitted by the agent in the past.

There are three questions to be considered.

1. What is the informational content of the individual claim histories with respect to the
static individual characteristics?

2. How should risk evaluation be updated—for instance, every year?
3. What is the effect of the prediction horizon?

The natural answer to the first question is that the role of individual history increases
with time. Individual history may even reveal the effect of some unobserved individual
characteristics on the risk and may allow prediction of the values of these risks. Sometimes
this characteristic may be controlled by the individual. A typical example is vehicle speed in
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car insurance. This is strongly related to the notion of the effort variable usually introduced
to discuss moral hazard phenomena.

The updating of the predicted risks may be performed along different lines. We may
focus on some structural specification of the risk distribution, estimate it, and then derive
the updating formulas either analytically or numerically. Alternatively, we may directly
propose some updating formulas with simple interpretations that will only be optimal for a
specific underlying structural model. The modification of our knowledge of the individual
risk will generally imply a modification of the risk classification and of the insurance
premiums, the so-called bonus-malus in car insurance.

Finally, we have to study how the risk classification depends on the prediction horizon.
In the two next subsections, we illustrate these points by using some selected models

from car insurance analysis.

3.1. A model with unobserved heterogeneity

Let us consider the problem of car insurance. We denote by Zi,t the number of claims
submitted by individual i in period t , and by Yi,t the corresponding total cost.4 To simplify
the presentation, we assume that the only observed characteristics are individual variables
xi and past histories of claims, summarized by the lagged values of Zi,t , and Yi,t . We also
introduce some unobserved time-invariant individual variables µi , αi , which influence the
number of claims and the cost, respectively. Therefore, we have a double heterogeneity: the
first is directly observed (by xi ), and the second (µi , αi ) is hidden and partly revealed by
the observed driving.

We now introduce a set of distributional assumptions on the different unobserved variables
{(Zi,t , Yi,t ), t = 1, . . . , T, µi , αi }, i = 1, . . . , n.

A.1. The pairs (Zi,t , Yi,t ) t = 1, . . . , T, i = 1, . . . , n are independent conditionally on xi ,

µi , αi , i = 1, . . . , n.
A.2. The distribution of the number of claims Zi,t conditional on xi , µi , αi ,

i = 1, . . . , n is a Poisson distribution:

Zit/xi , µi , αi ∼ P[µi exp xi b], t = 1, . . . , T .

A.3. The distribution of the total cost Yi,t conditional on Zit , xi , µi , αi ,
i = 1, . . . , n is a gamma distribution:

Yi,t/Zi,t , xi , µi , αi ∼ γ (νZi,t , αi exp(−xi d)), t = 1, . . . , T .

A.4. The unobserved characteristicsµi , αi i = 1, . . . , n are independent, conditionally on
the observed characteristics. Their distributions are

µi/xi ∼ γ (A, A),

αi/xi ∼ γ (C + 1,C).

In these assumptions, b, d, A, C , and ν are parameters to be estimated: b and d give
the effects of the explanatory variables on the number of claims and the cost by claim,
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respectively; A and C measure the magnitude of heterogeneity. The distributions are selected
according to the type of variable, namely, Poisson for the count variable and gamma for the
variable with positive values. Moreover, the distributions are conjugate, which ensures a
simple analytical derivation of the marginal and conditional distributions and of the updating
formulas (see the Appendix).

Finally, note that the heterogeneity parametersµi and αi are defined up to a multiplicative
factor whenever a constant is introduced among the explanatory variables xi . Therefore,
we may impose restrictions on their gamma distributions. The normalizations have been
chosen such that E(µi ) = E(1/αi ) = 1.

We may deduce from the previous assumptions the p.d.f. of the observed endogenous
variables Zi,t , and Yi,t t = 1, . . . , T given the observed exogenous variables xi only. By
multiplying across the individuals, we derive the likelihood function for estimation of the
unknown parameters. The p.d.f. is (see the Appendix)

f (zi,t , yi,t , t = 1, . . . , T/xi )

=
T∏

t=1

{
exp(zit xi b)

zit !

yνzit−1
i t

0(νzit )

}

0
(∑T

t=1 zit + A
)

0(A)

AA

(T exp xi b + A)
∑T

t=1 zit+A

0
(
ν
∑T

t=1 zit + C + 1
)

0(C + 1)

CC+1

[exp(−xi d)
∑T

t=1 yit + C]ν
∑T

t=1 zit+C+1
,

where the small letters z, y are introduced for the observed values of the variables.
Let us now consider the updating formulas. We have two risk summaries, namely, the

number of claims and the cost by claim. This implies that the updating formulas will probably
require bivariate recursive equations. We essentially consider below the prediction of the
endogenous variables Zi,T and Yi,T , and not the evaluation of the prediction accuracy. Let
us define

Ẑi,T+1 = E[Zi,T+1/Zi,T , Yi,T , xi ],

Ŷi,T+1 = E[Yi,T+1/Zi,T , Yi,T , xi ],

where Zi,T = (Zi,T , Zi,T−1, . . .) and Yi,T = (Yi,T , Yi,T−1, . . .) are the observed individual
histories.

The modification of the predicted total cost between T and T + 1 is performed by the
double recursion

Ẑi,T+1 − Ẑi,T = exp xi b

T exp xi b + A
(zi,T − Ẑi,T ),

Ŷi,T+1

Ẑi,T+1

− Ŷi,T

Ẑi,T

= zi,T
(T−1) exp xi b+A

exp xi b
Ẑi,T−1 + C

ν
− A

(
yi,T

zi,T
− Ŷi,T

Ẑi,T

)
.
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This is an adaptive scheme in which the predicted number of claims and the predicted
cost by claim are updated on the basis of the most recent prediction errors. The adjustment
speeds are not fixed. For instance, for the number of claims, the prediction error is given
by exp xi b

T exp xi b+A , which clearly varies not only with the individual but also with the time of
the last observation. Hence the new prediction error matters relatively less in the update for
large T .

The predicted Yi,T generally depends simultaneously on xi , the individual histories, and
the parameters of the model. In the limiting case T →∞, we can see that

lim
T→∞

Ŷi,T = lim
T→∞

1

T

T∑
t=1

yit .

This prediction is determined only by the lagged observations on claims submitted by the
individual and does not involve data on the individuals belonging to the same class.

From a statistical point of view, a heterogeneity factor may be considered as an unknown
individual parameter, for which we have introduced a distribution to model our lack of
knowledge. Hence the approach may be considered to be of the Bayesian type and is
strongly related with the so-called credibility theory (see Buhlman [1967] and the list
of references therein). This approach has been applied above in the context of bivariate
nonlinear risks.

3.2. A model with stochastic conditional heterogeneity

The aforementioned prediction property in the limit arises as the consequence of the hetero-
geneity specified by the model. Recall that the two unobservable characteristicsµi , λi were
assumed to be time independent. Under the effort-variables interpretation, the individual
does not adapt his/her effort level to the time-varying information. This assumption is quite
unrealistic and probably not fulfilled. Moreover, it yields the result showed above, i.e., the
possibility of entirely individualized insurance when T is large.

The insurance premium corresponding to this model is a rough measure of the cost of
the insurance contract—a measure that does not accommodate the value of risk associated
with the time variation of the individual’s effort.

We propose below a method allowing an extension of the model in order to overcome
this difficulty. This approach was previously used to extend ARCH models into stochas-
tic variance models (see Ghysels, Harvey, and Renault [1997] for a complete discussion
of this question) or to define stochastic volatility duration models (Ghysels, Gourieroux,
and Jasiak [1997]). It has been described in a general framework by Gourieroux and
Jasiak [1999]. Since the simplest dynamic models applicable to error terms are the vec-
tor autoregressive models (VARs), we first transform the basic heterogeneity factors into
Gaussian variables. Let us denote by 8 the c.d.f. of the standard normal distribution
and by H(· ; A,C) the cumulative function of the γ (A,C) distribution. If ε follows the
γ (A,C) distribution, the transformed variable8−1[H(ε; A,C)] follows a standard normal
distribution.
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The previous set of assumptions is modified by introducing path-dependent heterogeneity
factors µi,t , αi,t such that

Zi,t/xi , µi,t , αi,t ∼ P[µi,t exp xi b],

Yi,t/Zi,t , xi , µi,t , αi,t ∼ γ [νZi,t , αi t exp(−xi d)].

In the next step, these heterogeneity factors are normalized and written as

µ∗i,t = 8−1[H(µi,t ; A, A)],

α∗i,t = 8−1[H(αi,t ;C + 1,C)].

A VAR structure (for instance, of order 1) can be directly imposed on these transformed
factors:(

µ∗i,t
α∗i,t

)
= ψ

(
µ∗i,t−1

α∗i,t−1

)
+ ui,t ,

where ψ is a 2× 2 matrix and (ui,t ) is Gaussian white noise. This approach allows pricing
of the instantaneous volatilities on the heterogeneity factors along with their persistence
degrees. Moreover, this specification requires modified summary statistics of individual
histories. Because of the autoregressive pattern followed by the heterogeneity factors, the
summary statistics will differentiate the past claims by associating larger weights with the
most recent ones. This is a way to introduce geometric weights in a nonlinear framework
(see Gerber and Jones [1973, 1975] and Sundt [1981] for this question in the context of
credibility theory).

3.3. A priori and a posteriori classifications

At the initial date, i.e., without information on past claims, the risk classification may only
be based on the individual variables xi . When more information becomes available, the
optimal predictions can be constructed from both xi and the summary statistics of the past
claims, i.e., either

x̃i,T = (Ẑi,T , Ŷi,T ),

or

x̃i,T =
(

1

T

T∑
t=1

zi,t ,
1

T

T∑
t=1

yi,t

)

(see the Appendix). In this case, the initial (or a priori) risk classification, based on xi only,
can be distinguished from the a posteriori classification determined jointly by (xi , x̃i,T ).

In such a framework, the information on individual past claims cannot be summarized by
a single bonus-malus coefficient, since x̃i,T has two components, and the past behaviors of
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the drivers cannot be totally ordered. The components can be ranked only when we consider
a specific insurance contract. Let us consider a policy for insuring the total cost Yi,T+1 with
a deductible level L . The corresponding pure premium is, say,

E[(Yi,t+1 − L)+/xi , x̃i,T ] = g(xi , x̃i,T ; L).

For each deductible level, the previous formula explains how to weight the two compo-
nents of x̃i,T . Some drivers may appear less risky than others for a small deductible level
and simultaneously more risky for a large deductible level.

The usefulness of considering two components for the risk and introducing the two
associated heterogeneity factors is now clear. Let us consider the standard model for car
insurance, which is based on the count variable only (or which assumes, alternatively, that the
cost by accident is independent of the occurrence and of the individual characteristics). The
risk characteristics are summarized by the moments conditional on the available information
Ii,T , namely,

E[Zi,T+1/Ii,T ], V (Zi,T+1/Ii,T ),

which are in a linear relationship (see the Appendix)

V [Zi,T+1/Ii,T ] = E(Zi,T+1/Ii,T )

{
1+ exp xi b

T exp xi b + A

}
.

Therefore, the locations in the mean-variance space are very constrained (see figure 5).
We may also note that these locations tend to the 45◦ line when T tends to infinity. At the
limit, the heterogeneity factor µi is entirely known, and we get the Poisson model.

Figure 5. Within risk for the count model.
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3.4. Self-predictive classification

The previous discussion essentially concerns the prediction of the individual claims one
period ahead. In practice, it is important to analyze also the properties of the portfolio over
larger horizons. Indeed, the predicted risk may be small one period ahead but may increase
considerably over two periods.

Let us denote by H the prediction horizon. To predict Zi,T+H and Yi,T+H using the
information available at time T , we compute

Ẑi,T,T+H = E[Zi,T+H/Zi,T , Yi,T , xi ],

Ŷi,T,T+H = E[Yi,T+H/Zi,T , Yi,T , xi ],

in our illustration. These predictions depend on the past history by means of summary
statistics, x̃ H

i,T , which may be functions of the horizon H . Whenever this is true, the risk
classifications also become H dependent.

It may be interesting to identify some models and variables such that the risk classifica-
tions are valid for all horizons. This can be done by imposing constraints on the classification
variables. We discuss this issue in the context of the car insurance example. From the iterated
expectations theorem, we have

Ẑi,T,T+H = E[Zi,T+H/Zi,T , Yi,T , xi ]

= E{E[Zi,T+H/Zi,T+H−1, Yi,T+H−1, xi ]/Zi,T , Yi,T , xi }
= E{E[Zi,T+H/x̃i,T+H−1, xi ]/Zi,T , Yi,T , xi }.

Therefore, we have to predict some function of the summary statistics at date T + H − 1
from the available information and to verify if the prediction depends on the information
through x̃i,T , xi only. We deduce that the classification remains valid over all the horizons
if it holds both for evaluating the risk at horizon 1 and for predicting the future dynamics
of the individual among the classes of risks (the condition of self-predictive classification).

Whenever the self-predictive classification condition is fulfilled, the risk at horizon H may
be predicted by first predicting the location of the individual among the classes of risk at date
T +H −1 and then predicting the risk at horizon 1 conditionally on this predicted location.

The condition may be fulfilled for some particular models. Let us consider the previous
Poisson–gamma model. We know that the conditional distribution for horizon 1 is such
that

l(yi,T+1, zi,T+1/Ii,T ) = l(yi,T+1, zi,T+1/x̃i,T , xi ).

We deduce that

l(yi,T+2, zi,T+2, yi,T+1, zi,T+1/Ii,T )

= l(yi,T+2, zi,T+2/Ii,T+1)l(yi,T+1, zi,T+1/Ii,T )

= l(yi,T+2, zi,T+2/x̃i,T+1, xi )l(yi,T+1, zi,T+1/x̃i,T , xi ).
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Since

x̃i,T+1 =
(

T+1∑
t=1

zi,t ,

T+1∑
t=1

yi,t

)
,

= x̃i,T + (zi,T+1, yi,T+1),

we get

l(yi,T+2, zi,T+2, yi,T+1, zi,T+1/IT )

= l(yi,T+2, zi,T+2/x̃i,T + (zi,T+1, yi,T+1), xi )l(yi,T+1, zi,T+1/x̃i,T , xi ).

By integrating with respect to zi,T+1, yi,T+1 conditionally on x̃iT , xi , we conclude that

l(yi,T+2, zi,T+2/Ii,T ) = l(yi,T+2/x̃i,T , xi ).

The same summary statistics x̃i,T may be used for horizons 1 and 2 in the Poisson–gamma
model.

4. Self-selectivity effects

An individual may select one particular insurance contract among the different ones pro-
posed by the insurance company; for instance, he or she may choose the deductible level.
An important question concerns the information on his or her risk, which may be deduced
from his or her choice.

4.1. Optimal behavior

For illustration, let us consider the example of car insurance with time-independent het-
erogeneity factors. Two types of contracts are proposed: the first without deductible for a
premium pi,t in period t and the second with a deductible level L for a premium qi,t . If the
individual is risk neutral, performs rational expectations, and has complete knowledge of
his or her characteristics xi and heterogeneity factors µi , αi , he or she will select the policy
without deductible at time t if and only if

pi,t − E[Yi,t+1/Yi,t , Zi,t , xi , µi , αi ]

< qi,t − E[(Yi,t+1 − L)+/Yi,t , Zi,t , xi , µi , αi ]. (1)

Let us denote by ξi,t the selection variable

ξi,t = 1, if no deductible is chosen at period t,
0, otherwise.
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We may write

ξi,t =
{

1, if g(Yi,t , Zi,t , xi , µi , αi , pit , qit ; θ) > 0,

0, otherwise,

where g is the function deduced from (1) and θ is the parameter of the initial model.
Under this optimal behavior, the observation of the selected alternative brings additional
information on the values of the unobservable heterogeneity factors.

4.2. Practical implementation

However, it is not clear that such asymmetric information between the insured agent and
the insurance company exists or that the agent has rational behavior, a full knowledge
of µi , αi , . . . , etc. Hence, in practice, we have to verify if the observed choice (possibly
including past choices) brings additional information. For this purpose, we may consider
the conditional distribution of Zi,t and Yi,t , given the past histories Zi,t−1, Yi,t−1, the current
and past choices ξi,t , and the observable individual characteristics xi . If the choices are
noninformative, the conditional distribution will be the same as in Section 3. Otherwise,
the current and past choices will be significant. Hence we may extend the basic model by
introducing ξi,t —for instance, as an additional explanatory variable, taking into account
some possible cross-effects with xi , x̃i,t−1—and look for the significance of the associated
coefficients. The conclusion depends on the risk classification initially introduced. The
available data show that in a sufficiently sharp class of risks, almost all individuals select
the same deductible level, which implies no additional information. This result is confirmed
by recent econometric studies by Chiappori-Salanie [1996] and Dionne, Gourieroux, and
Vanasse [1997], where it is interpreted as the absence of residual adverse selection.5

4.3. Dynamic analysis of the heterogeneity factors

The dynamic relation between the individual risk and demand may also be analyzed along
the following lines. Let us consider the model with stochastic conditional heterogeneity
introduced in Section 3.2. From the observable Zi,t , Yi,t , t = 1, . . . , T , and the model, we
may deduce some predicted values for the heterogeneity factors µ̂i,t , α̂i,t t = 1, . . . , T (say).
Then we get a bivariate time series, whose evolution may be compared to the evolution of the
demand performed by the agent ξi,t t = 1, . . . , T (say) and of the premiums pi,t , qi,t , t =
1, . . . , T . A complete causality analysis between these series may allow the detection of
some moral hazard phenomena.

5. Concluding remarks

We have presented in this article some questions related to risk classification. These
have been discussed depending on the information used—either data on conditional
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characteristics or also including data on claim histories or on endogenous insurance de-
mand by the agent.

From the example of car insurance, we have introduced several extensions, such as the
distinction of two risk components corresponding to the occurrence and the cost of the
claim, respectively, the two heterogeneity factors to capture the claim history by means of
at least two summary statistics, the possibility of a stochastic evolution of these underlying
factors, at the basis of moral hazard testing procedure. This example has been followed
to illustrate a progressive econometric analysis, and the same kind of approach may be
applied to more complex risks and contracts (see, e.g., Gourieroux and Scaillet [1997] for
an application to unemployment insurance on mortgages).

Appendix: Derivation of the marginal and conditional distributions

Distributions

Let us assume that

Zi,t/xi , µi , αi ∼ P[µi exp xi b],

Yi,t/Zi,t , xi , µiαi ∼ γ [νZi,t , αi exp(−xi d)],

µi ∼ γ (A, A), αi ∼ γ (C + 1,C).

The joint p.d.f. of Zi,1, . . . , ZiT , Yi,1, . . . ,Yi,T , µi , αi is

exp[−µ(A + T exp xi b)] µ
∑T

t=1 zit+A−1 (exp xi b)
∑T

t=1 zit AA∏T
t=1(zit !)0(A)

exp

[
− α

(
exp xi d

T∑
t=1

yit + C

)]
αν

∑T
t=1 zit+C(exp−xi d)

∑T
t=1 zit

CC+1∏T
t=1 0(νzit )0(C + 1)

T∏
t=1

[
yνzit−1

i t

]
.

We deduce the property below and the p.d.f. of the observable variables given in Section 3.

Property: The heterogeneity factors µi and αi are independent conditionally on Ii,T =
(Zi,t , Yi,t ) t = 1, . . . , T , with distributions

µi/Ii,T ∼ γ
(

T∑
t=1

zi,t + A, T exp xi b + A

)
,

αi/Ii,T ∼ γ
(
ν

T∑
t=1

zi,t + C + 1, exp(−xi d)
T∑

t=1

yit + C

)
.
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Prediction formulas

This property may be directly used to compute the predictions of Zi,T+1, Yi,T+1 at date T .
We have

E(Zi,T+1/Ii,T )

= E[E(Zi,T+1/Ii,T , µi , αi )/Ii,T ] (from the theorem of iterated expectations)

= E[µi exp(xi b)/Ii,T ]

= exp(xi b)

∑T
t=1 zit + A

T exp xi b + A
;

E(Yi,T+1/Ii,T )

= E[E(Yi,T+1/Ii,T , µi , αi )/Ii,T ]

= E

(
ν exp xi (b + d)

µi

αi

/
Ii,T

)
= ν exp xi (b + d)E(µi/Ii,T )E

(
1

αi

/
Ii,T

)
= ν exp xi (b + d)

∑T
t=1 zit + A

T exp xi b + A

exp(−xi d)
∑T

t=1 yit + C

ν
∑T

t=1 zit + C
.

The updating formulas follow.

Conditional variances

We can compute the conditional variances similarly. For instance, let us consider the count
variable Zi,T+1. We get

V (Zi,T+1/Ii,T )

= E[V (Zi,T+1/µi , Ii,T )/Ii,T ]+ V [E(Zi,T+1/µi , Ii,T )/Ii,T ]

= E[µi exp xi b/Ii,T ]+ V [µi exp xi b/Ii,T ]

= exp(xi b)E(µi/Ii,T )+ exp(2xi b)V [µi/Ii,T ]

= exp(xi b)

∑T
t=1 zi,t + A

T exp xi b + A

{
1+ exp xi b

T exp xi b + A

}
.

We then deduce the linear relationship between the two first conditional moments of the
count variable:

V [Zi,T+1/Ii,T ] = E[Zi,T+1/Ii,T ]

{
1+ exp xi b

T exp xi b + A

}
.
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Notes

1. Cost of reinsurance, control, and soforth.
2. The usual financial models applied to insurance assume a dynamic model for the value of the portfolio with a

small number of factors, generally one (see, e.g., Chang, Chung, and Kimsky [1989]). Such practice neglects
the time-varying risk heterogeneity.

3. Especially for multirisk analysis.
4. The risk data are assumed to be summarized by the two aggregates Z , Y . It would be possible to develop a

more complete approach by considering the disaggregate data, including the dates of the successive claims and
the observed cost by claim. This approach would require the introduction of dynamic duration models with
heterogeneity (see Ghysels, Gourieroux, and Jasiak [1998]).

5. See also Dahlby [1985, 1992] and Puelz and Snow [1994] for other studies concerning adverse selection.
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DIONNE, G., GAGNÉ, R., GAGNON, F., and VANASSE, C. [1997]: “Debt, Moral Hazard and Airline Safety:
An Empirical Evidence,” Journal of Econometrics, 79, 379–402.

DIONNE, G., GOURIEROUX, C., and VANASSE, C. [1997]: “The Informational Content of Household Decisions
with Application to Insurance Under Adverse Selection,” CREST DP 9701.



THE ECONOMETRICS OF RISK CLASSIFICATION IN INSURANCE 137

DIONNE, G., GOURIEROUX, C., and VANASSE, C. [1999]: “Evidence of Adverse Selection in Automobile
Insurance Markets,” in Automobile Insurance, G. Dionne and C. Laberge-Nadeau (Eds.), Boston: Kluwer Aca-
demic Publishers, 13–46.

DIONNE, G. and VANASSE, C. [1989]: “A Generalization of Actuarial Automobile Insurance Rating Models:
The Negative Binomial Distribution with a Regression Component,” Astin Bulletin, 19, 199–212.

DIONNE, G. and VANASSE, C. [1992]: “Automobile Insurance Ratemaking in the Presence of Asymmetrical
Information,” Journal of Applied Econometrics, 7, 149–165.
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