
Machine Learning, 38, 133–156, 2000.
c© 2000 Kluwer Academic Publishers. Printed in The Netherlands.

Multistrategy Theory Revision: Induction
and Abduction in INTHELEX

FLORIANA ESPOSITO esposito@di.uniba.it
GIOVANNI SEMERARO semeraro@di.uniba.it
NICOLA FANIZZI fanizzi@di.uniba.it
STEFANO FERILLI ferilli@di.uniba.it
Dipartimento di Informatica, Universitá degli Studi di Bari, Via E. Orabona 4, 70126 Bari, Italy

Editors: Ryszard Michalski & Lorenza Saitta

Abstract. This paper presents an integration of induction and abduction in INTHELEX, a prototypical incre-
mental learning system. The refinement operators perform theory revision in a search space whose structure is
induced by a quasi-ordering, derived from Plotkin’sθ -subsumption, compliant with the principle of Object Iden-
tity. A reduced complexity of the refinement is obtained, without a major loss in terms of expressiveness. These
inductive operators have been provenideal for this search space. Abduction supports the inductive operators in the
completion of the incoming new observations. Experiments have been run on a standard dataset about family trees
as well as in the domain of document classification to prove the effectiveness of such multistrategy incremental
learning system with respect to a classical batch algorithm.

Keywords: incremental learning, induction, abduction, object identity, theory revision

1. Introduction and motivations

Automatic revision of logic theories is a complex and computationally expensive task. In
fact, most systems for theory revision deal with propositional logic and try to modify an
existing incomplete or incorrect theory to fit a set of preclassified training examples. They
can integrate different reasoning methods and learning strategies. Among these systems we
find RTLS (Ginsberg, 1990), DUCE (Muggleton, 1987), DUCTOR (Cain, 1991) and, finally,
the system proposed by Matwin & Plante (1991) and EITHER (Mooney & Ourston, 1994),
which explicitly use a deductive-inductive method for modifying a given domain theory.
Empirical results have shown that revising an imperfect theory results in definitions that are
more accurate from fewer examples than pure induction. Moreover, some theoretical results
have been obtained by Mooney (1995) in analyzing theory revision by the formalization
of the concept of “closeness” of the initial theory to the correct one and in discussing the
problem of computational complexity in the propositional Horn-clause theory revision.

In the machine learning literature, there are also a number of systems that can revise first-
order theories. Most of these systems try to limit the search space by exploiting information
and, generally, require a wide, although incomplete, domain theory or a deep knowledge
acquired (possibly interactively) from the user: the consequence is that the revised theory
cannot be very dissimilar from the initial one. Some of them, such as MIS (Shapiro, 1983)

134 ESPOSITO ET AL.

and CLINT (De Raedt, 1992), strongly rely on the interaction with the user to reduce the
search space. Others, such as WHY (Saitta, Botta, & Neri, 1993), TRACEY (Bergadano
& Gunetti, 1994) and KBR (Botta, 1994), do not require any interaction with the user
during the induction process and adopt sophisticated search strategies or more informative
search structures. Other systems for theory revision, such as FORTE (Richards & Mooney,
1991), and AUDREY (Wogulis, 1991), do not allow negative information items (negative
literals) to be expressed in the theories because of computational complexity considerations.
Therefore, half of the whole search space is not explored.

Many of the cited first order logic learning systems adopt multistrategy approaches in-
tegrating several types of inferential mechanisms: in particular, two important strategies to
perform hypothetical reasoning (i.e., inferences from incomplete information) are induction
and abduction. Induction means inferring from a certain number of significant observations
regularities and laws valid for the whole population. Abduction, or “inference to the best
explanation”, is a kind of theory-forming or interpretive inference. In fact, it goes from
the data to a hypothesis that accounts for the data (Josephson & Josephson, 1996). Among
the systems that integrate different types of inferences are WHY, CLINT and AUDREY.
WHY is a knowledge intensive system which, besides the target knowledge, uses a causal,
a phenomenological and a control knowledge. It adopts an inference engine combining sev-
eral kinds of inferences and is able to acquire and refine a target knowledge base. CLINT
uses different types of inferences (abduction, induction, constructive induction by analogy,
shifting bias) in a multivalued logic framework.

This paper presents INTHELEX, a first order logic learning system, which limits the
search space by exploiting a bias on the generalization model. The system not necessarily
needs an initial theory; this is a fundamental issue, since in many cases deep knowledge
about the world is not available. The bias consists of the adoption ofθ -subsumption under
Object Identity(Esposito et al., 1996a) as a generalization model, which allows the definition
of refinement operators meeting the condition ofideality. Ideality is satisfied when three
desirable properties are fulfilled:Local finiteness—the operator must find the refinement,
when existing, in a finite number of steps—,completeness—if a refinement exists, the
operator must find it—andproperness—a refinement must not be equivalent to the original
knowledge.

The approach may be defined a “multistrategy” one since the system realizes the combi-
nation of two different forms of reasoning in the same symbolic paradigm: induction and
abduction. As logical inference operations, both induction and abduction embody a form
of “reversed” deduction: together with the background knowledge, the hypotheses should
entail a given set of observations. The difference is in the way they satisfy and use this
requirement. Induction is used to synthesize the information contained in the observations
into a hypothesis that can account for the whole set of observations in a common way and,
in addition, for other new observations. On the other hand, abduction is used to generate a
case for the truth of the observation in terms of hypotheses that are typically specific for the
situation and individual objects at hand. Hence, typically, an abductive hypothesis consists
of facts further describing the situation at hand, while an inductive hypothesis consists of
general rules pertaining to a whole class of situations.

MULTISTRATEGY THEORY REVISION 135

The major differences of INTHELEX with respect to similar systems working in the
refinement of first order theories, are in its incremental nature, in the reduced need of a deep
background knowledge, since the system is able to infer a theory from scratch, continuously
revising it on the grounds of new evidences (both positive and negative), and in the peculiar
bias on the generalization model, which reduces the search space and does not limit the
expressive power of the adopted representation language.

The plan of the paper is the following. In the next section, we give the basic definitions
of the language we use throughout this paper, together with the framework induced by
the concept of Object Identity. Then, in Section 3 the inductive refinement operators of
INTHELEX are introduced and, in Section 4, the abductive reasoning procedure is presented
and the way in which abduction has been integrated in the system is discussed. Experiments
on a standard dataset about family relationships as well as in the real world task of document
classification, performed with INTHELEX, are described and discussed in Section 5. Section
6 contains related work and, finally, in Section 7, we present some conclusions and outlines
for future work.

2. Basic notions and definitions

First, we recall some basic definitions (a complete reference can be found in (Lloyd, 1987)):

• Substitution: a finite set of the formθ = {x1/t1, . . . , xn/tn}, where each xi is a variable,
each ti is a term distinct from xi and the variables x1,. . , xn are distinct.
• Given an n-ary predicate symbol p and n terms t1, . . . , tn, we define A= p(t1, . . . , tn) an

atom; A and its negation¬A are, respectively, apositiveand anegative literal.
• A clauseis a disjunction of literals where the variables are assumed to be universally

quantified; the positive literals make up theheadof the clause, while the negative ones
make up itsbody. We will indifferently use the set notation and the Prolog notation.
• A clause is called definite clause if it contains one positive literal; a finite set of definite

clauses is called a definite program.
• A program clauseis a clause of the form:A :- L1, . . . , Ln, where A is an atom and

L1, . . . ,Ln are literals; anormal programis a finite set of program clauses.

In the paper, we are only concerned with logic theories expressed ashierarchical pro-
grams, that is, as programs for which it is possible to find alevel mapping(Lloyd, 1987) such
that, in every program clausep(t1, t2, . . . , tn) :- L1, L2, . . . , Lm, the level of any predicate
symbol occurring in the body is less than the level ofp. Such programs avoid any kind of
recursion.

Another constraint on the representation language is that, whenever we write about
clauses, we meanDatalog linkedclauses. Here, we refer to (Ceri, Gottlob, & Tanca, 1990;
Kanellakis, 1990) for the basic notions about Datalog. Informally, Datalog is a function-free
first order logic language (the only allowed terms are constants and variables). An argument
of a literal in a Datalog clause is linked if either the literal is the head of the clause or another
argument in the same literal is linked; in turn, a literal is linked if at least one of its arguments
is linked; lastly, a Datalog clause islinked if all of its literals are linked (Helft, 1987).

136 ESPOSITO ET AL.

As an example, a linked clause is

C ≡ bicycle(X) :- wheel(Y,X), tire(Z,Y), rim(W,Y).

Conversely, the clausesD≡ bicycle(X):- tire(Z,Y), rim(W,Y)andF ≡ bicycle(X):- tire(Z,Y),
rim(W,V)are not linked. Indeed,tire(Z,Y), rim(W,Y)are not linked inD, whereasrim(W,V)
is not linked inF .

In our framework we adopted thesingle representation trick, according to which the same
representation language is exploited both for examples and for hypotheses. The differences
existing between them are the following:

• each example is represented by one ground clause with a unique literal in the head;
• each hypothesis is a set of program clauses with the same head.

An example Eis positivefor a hypothesisH if its head has the same predicate letter and
sign as the head of the clauses inH . The exampleE is negativefor H if its head has the
same predicate, but opposite sign.

Specifically, examples cannot contain variables or negated literals in the body, while
clauses of a hypothesis can contain negated literals in the body.

It is possible to organize the concepts in the description language according to the fol-
lowing structure:

Definition (Dependency Graph). Adependency graphis a directed acyclic graph of pred-
icate letters, where an edge (p, q) indicates that atoms with predicate letterq are allowed
to occur in the hypotheses defining the concept denoted byp.

Since we are dealing with hierarchical theories, the dependency graph consists of a
directed acyclic graph of concepts (represented by the corresponding predicate letters), in
which parent nodes are assumed to be dependent on their offspring (in other words, offspring
can concur to the definition of their parent).
For example, the following tree represents the concept hierarchy for the induction of the
conceptbicycle:

An instance of a positive example is:

E ≡ bicycle(b):- wheel(r1,b), wheel(r2,b), saddle(s,b), handle−bar(h, b).

MULTISTRATEGY THEORY REVISION 137

which means “b is a bicyclesinceit has (at least) two wheels,r1 andr2, a saddles and a
handle-bar h”. A negative example could be:

N ≡ not(bicycle(b)):- wheel(w1,m), wheel(w2,m), engine(e,m).

to be read as “m is not a bicycle,sinceit has two wheelsw1 andw2 and an enginee”.
Furthermore, the following could be a clause in a hypothesis:

C ≡ bicycle(X) :- wheel(Y,X), wheel(Z,X), not(engine(W,X)).

to be interpreted as “Something that has two wheels and has not an engine is a bicycle”.
Here, we introduce a logic language, calledDatalogOI , whose basic notion is that ofobject

identity. This notion dates from the Machine Learning early years (Vere, 1975; Hayes-Roth
& McDermott, 1978); we recall here the definition previously given in (Esposito et al.,
1996a).

Definition (Object Identity). Within a clause, terms denoted with different symbols must
be distinct.

An effect of introducing such a notion is the modification of the standard quasi-ordering
upon Datalog clauses: indeed, the algebraic structure of the search space changes, with
consequences on the properties of the refinement operators that can be defined in it (van
der Laag & Nienhuys-Cheng, 1994). Moreover, it provokes the extension of the axiom set
of the underlying equational theory—in our case Clark’s Equality Theory (CET) (Lloyd,
1987)—with the addition of the following rewrite rule:
∀C ∈ L, ∀(t, s) ∈ terms(C)× terms(C), if t ands are distinct thent 6= s ∈ body(C)

whereL denotes the language of all the possible Datalog clauses built from a finite number
of predicates andterms(C)denotes the set of terms in the clauseC.

This new equational theory affects the inference rules of the calculus (resolution, factor-
ization and paramodulation) (Plotkin, 1972) in order to cope with thenegation-as- failure
rule (Clark, 1978).

We denote withCOI the result of adding the inequality literals, coming from this axiom,
to a clauseC. For example, the linked clauseC in Datalog form, given above, i.e.,

C ≡ bicycle(X):- wheel(Y,X), wheel(Z,X), not(engine(W,X)).

leads to:

COI ≡ bicycle(X):- wheel(Y,X), wheel(Z,X), not(engine(W,X)),

X 6= Y, X 6= Z, X 6= W,Y 6= Z,Y 6= W, Z 6= W.

In spite of such language bias, DatalogOI has the same expressive power as Datalog
(Semeraro et al., 1998), as stated by the two following results, where TP↑ω denotes the
Fixpoint characterization of the Least Herbrand Model (Lloyd, 1987):

138 ESPOSITO ET AL.

Proposition. ∀C ∈ Datalog∃C’ = {C1,C2, . . . ,Cn} ⊆ DatalogOI : TC ↑ ω = TC’ ↑ ω,
i.e., for each Datalog clause we can find a set of DatalogOI clauses which is equivalent to
it.

Corollary. ∀P ⊆ Datalog∃P’ ⊆ DatalogOI : TP ↑ ω = TP’ ↑ ω, i.e., for each Datalog
program we can find a DatalogOI program which is equivalent to it.

A generalization model is required to order the clauses in our representation language:

Definition Let C, D be two clauses of a languageL and≤ an ordering relation defined on
L. If C ≤ D we say thatD is more general than or equivalent to C. We writeC < D when
C ≤ D andnot(D ≤ C) and we say thatD is more general than Cor C is more specific
than D. We writeC ∼ D, and we say thatC andD areequivalent clauses, whenC ≤ D
andD ≤ C.

Other equivalent terminology, more appropriate in a theory revision framework, is that
D is an upward refinement of Cor C is a downward refinement of Dfor C ≤ D, and that
D is a proper upward refinement of CorC is a proper downward refinement of Dfor C < D.

For example, in the ordering induced by the classical relation ofθ -subsumption:

C ≡ bicycle(X) :- wheel(Y,X), wheel(Z,X), diameter(R,Y), diameter(S,Z),

less-or-equal(R,R).

is a proper downward refinement of:

D ≡ bicycle(X) :- wheel(Y,X), wheel(Z,X), diameter(R,Y), diameter(S,Z),

less-or-equal(R,W), less-or-equal(W,V),

less-or-equal(V,R).

andC is equivalent to:

E ≡ bicycle(X) :- wheel(Y,X), wheel(Z,X), diameter(R,Y), diameter(S,Z),

less-or-equal(R,R), less-or-equal(R,T),

less-or-equal(T,R).

We can now introduce the notion of refinement operators that perform the search for
revisions in a given search space.

Definition (Downward/Upward Refinement Operators). Given a quasi-ordered set (L ,≤),
a refinement operatoris a mapping fromL to 2L , such that:
∀C ∈ L : ρ(C) ⊆ {D ∈ L | D ≤ C} (downward refinement operator),
i.e., it computes a subset of the overall downward refinements ofC
∀C ∈ L : δ(C) ⊆ {D ∈ L |C ≤ D} (upwardrefinement operator),

MULTISTRATEGY THEORY REVISION 139

i.e., it computes a subset of the overall upward refinements ofC

We can now apply the closure operator to these functions:

Definition (Closure of a Refinement Operator). Letτ be a refinement operator andC a
clause inL , then theclosureof τ (in symbolsτ ∗) is

τ ∗(C) =
⋃
n≥0

τ n(C) = τ 0(C) ∪ τ 1(C) ∪ · · · ∪ τ n(C) ∪ · · ·

whereτ n(C) is inductively defined as follows:

τ 0(C) = {C}
τ n(C) = {D | ∃E ∈ τ n−1(C) andD ∈ τ(E)}

Definition (Locally Finite, Proper, Complete, Ideal Refinement Operator). Given a quasi-
ordered set (L ,≤):
ρ (resp. δ) is locally finite iff ∀C ∈ L : ρ(C) (respectivelyδ(C)) is finite and computable
ρ (resp. δ) is proper iff ∀C ∈ L : ρ(C) ⊆ {D ∈ L | D < C} (δ(C) ⊆ {D ∈ L |C < D})
i.e., the refinement is not equivalent to the original clause
ρ(δ) is completeiff ∀C, D ∈ L , if D < C then∃E such that (s.t.)E ∈ ρ∗(C) andE ∼ D

(if C < D then∃E s.t. E ∈ δ∗(C) andE ∼ D)
i.e., whenever a refinement exists it is able to find a clause that is equivalent to it.
ρ(δ) is ideal iff it is locally finite, proper and complete.

An ideal operator ensures the efficiency and effectiveness of the refinement process,
since it computes, with limited resources—both in time and in space (local finiteness)—,
all (completeness) the actual refinements (properness) of a given clause.

By applying object identity to the classicalθ -subsumption ordering, we obtain a new
ordering relation calledθ -subsumption under object identity—θOI-subsumption—upon the
set of Datalog clauses (Esposito et al., 1996a). This ordering defines the new search space
in which our operators shall work.

Let us define, now, the generalization model used in our learning framework:

Definition (θO I -subsumption ordering). Let C, D be two Datalog clauses. We say thatD
θ -subsumes C under object identity(or D θOI-subsumes C) if and only if (iff) there exists a
substitutionσ s.t. DOI · σ ⊆ COI . The ordering induced byθOI-subsumption is denoted by
≤OI .

The θOI-subsumption ordering,≤OI, has been proven to be a quasi-ordering upon the
space of the Datalog clauses (Semeraro et al., 1998).

Looking back at the previous example, in the≤OI orderingD is not comparable toC
which, in turn, is a proper upward refinement ofE. Only clauses obtained by a renaming
substitution are equivalent.

140 ESPOSITO ET AL.

Generally, the canonical inductive paradigm requires the synthesized theory to fulfill the
properties of completeness and consistency with respect to a given set of examples. In case
these properties do not hold, suitable refinement operators must be applied to restore them.
More formally, we introduce the following definitions, whereE− andE+ denote the sets
of all the available negative and positive examples, respectively.

Definition (Inconsistency and Incompleteness). Atheory Tis inconsistentiff ∃H ∈ T ,
∃N ∈ E−: H is inconsistent wrtN.
A hypothesis His inconsistentwrt N iff ∃C ∈ H : C is inconsistent wrtN.
A clause Cis inconsistentwrt N iff ∃σ :
1) body(CO I)·σ ⊆ body(NOI) 2)¬ head(COI)·σ=head(NOI).

If at least one of the two conditions above is not met, we say thatC is consistentwrt N.

A theory Tis incompleteiff ∃H ∈ T , ∃P ∈ E+: H is incomplete wrtP.
A hypothesis His incompletewrt P iff ∀C ∈ H : not(P ≤O I C). Otherwise, it iscomplete
wrt P.

When an inconsistent (incomplete) hypothesis is detected, a specialization (generaliza-
tion) of the hypothesis is required in order to restore this property of the theory. In the
former case, all the inconsistent clauses have to be revised by means of a downward refine-
ment operator; in the latter, the whole hypothesis has to be refined by means of an upward
refinement operator that generalizes an existing clause or introduces new ones.

In a logic framework for the revision of Datalog theories from facts, a fundamental
problem is the definition ofideal refinement operators. Indeed, when the aim is to develop
incrementally a logic theory, that should becorrectwith respect to theintended model, i.e.
the target knowledge base, at the end of the development process, it becomes relevant to
define operators that allow a stepwise (incremental) refinement oftoo weakor too strong
theories (Komorowski & Trcek, 1994). Theideality of the refinement operators plays a
key-role when the efficiency and the effectiveness of the revision process is an unnegligible
requirement. Unfortunately, when full Horn clause logic is chosen as representation lan-
guage and eitherθ -subsumptionor implication is adopted as generalization model, there
exist no ideal refinement operators (van der Laag & Nienhuys-Cheng, 1994). On the con-
trary, they do exist under the weaker, but more mechanizable and manageable, ordering
induced byθOI-subsumption, as proved in (Esposito et al., 1996a).

For these reasons, ideal operators are indeed useful notwithstanding some problems
waiting to be solved in the incremental learning paradigm. Revising a theory through re-
finement operators cannot answer for the quality of the induced hypotheses, since there
could be different theories, with the same logic consequences, but having different syn-
tactic characteristics such as compactness as well as human comprehensibility. Moreover,
difficult problems concern also noisy or incomplete information coming from the envi-
ronment. This is another line along which refinement operators should be developed that
requires the adoption of other theory revision strategies.

MULTISTRATEGY THEORY REVISION 141

Let us now briefly discuss the operators implemented in INTHELEX. The upward re-
finement operatorδOI extends the concept ofleast general generalization(lgg) introduced
by Plotkin (1970) to cope with the ordering induced byθOI-subsumption.

Definition (Least general generalization under object identity). A least general general-
ization underθOI-subsumption of two clauses is a generalization which is not more general
than any other such generalization, that is, it is either more specific than or not comparable
to any other such generalization.
Formally:

lggOI(C1,C2)={C |Ci ≤OI C, i = 1, 2 and∀D s.t. Ci ≤OI D, i = 1, 2: not(D<OI C)}

For example, given

C1 ≡ bicycle(a):- wheel(v,a), wheel(w,a), radius(r,v), radius(s,w).

C2 ≡ bicycle(b):- wheel(v,b), wheel(Y,b), radius(R,Y).

we have:

lggOI(C1,C2) = {bicycle(X):- wheel(v,X), wheel(Z,X), radius(T,Z).}

while the clauseE ≡ bicycle(X):- wheel(v,X), wheel(Z,X). is a generalization but not a least
general one.

The downward refinement operatorρOI relies on the addition of a non-redundant literal
to a clause that turns out to be inconsistent with respect to a negative example, in order to
restore the consistency property of the clause.

We can formally define the search space as the partially ordered set (poset) (L /∼OI,≤OI),
whereL/∼OI is the quotient set of the Datalog linked clauses and≤OI is the quasi ordering
relation defined above, which can be straightforwardly extended to equivalence classes
under∼OI.

3. Inductive refinement operators in INTHELEX

INTHELEX (INcremental THEory Learner from EXamples) is a learning system for the
induction of hierarchical theories from examples. INTHELEX isfully incremental: this
means that, in addition to the possibility of taking as input a previously generated version of
the theory, learning can also start from an empty theory and from the first available example.
A partial investigation on the way the knowledge base evolves depending on the initial theory
quality will be one of the aims of the experiments described later, where INTHELEX will
work both from scratch and starting from a pre-existing theory. INTHELEX can learn
simultaneously various concepts, possibly related to each other; furthermore, it is aclosed
loop learning system—i.e. a system in which the learned theory is checked to be valid on

142 ESPOSITO ET AL.

Figure 1. The architecture of INTHELEX.

any new example —, and in case of failure, a revision process is activated on it, in order to
restore the completeness and consistency properties.

Incremental learning is necessary when either incomplete information is available at the
time of initial theory generation, or the nature of the concepts evolves dynamically. The
latter situation is the most difficult to handle since time evolution needs to be considered.
In any case, it is useful to consider learning as aclosed loopprocess, where feedback on
performance is used to activate the theory revision phase (Becker, 1985).

INTHELEX learns theories, expressed as sets of DatalogOI clauses, from positive and
negative examples. It adopts a full memory storage strategy (Reinke & Michalski, 1985)—
i.e., it retains all the available examples, thus the learned theories are guaranteed to be valid
on the whole set of known examples—and it incorporates two refinement operators, one
for generalizing hypotheses that reject positive examples, and the other for specializing
hypotheses that explain negative examples.

Formally, we give the following definition regarding theories:

Definition (Answer set). Given a theory, itsanswer setis the set of examples it accounts
for.

Both the operators of our system, when applied, change the answer set of the theory.
Therefore, INTHELEX is a system for theory revision rather than fortheory restructuring,
according to the definition of theory restructuring as a process that does not change the
answer set of a theory (Wrobel, 1996).

The architecture of INTHELEX is shown in figure 1. INTHELEX takes a set of examples
of the concepts to be learned from theExpert/Environment. This set can be subdivided into
three subsets, namelytraining, tuning, andtest examples, according to the way in which ex-
amples are exploited during the learning process. Specifically, training examples, previously
classified by the Expert, are exploited by theRule Generatorto generate a theory that is able
to explain the provided examples. The initial theory can also be provided by theExpert/
Environment. Subsequently, the theory is used by theRule Interpreterto verify that the theory
continues to be valid even when new examples become available. The Rule Interpreter takes

MULTISTRATEGY THEORY REVISION 143

the set of inductive hypotheses and a tuning/test example as input and produces a decision.
TheCritic/Performance Evaluatorcompares the decision produced by the Rule Interpreter
to the correct one. In case of incorrectness, it can locate the cause of the wrong decision and
is able to choose the proper kind of correction, firing the theory revision process. In such a
case, tuning examples are exploited incrementally by theRule Refinerto modify incorrect
hypotheses according to adata-drivenstrategy. The Rule Refiner consists of two distinct
modules, aRule Specializerand aRule Generalizer, which attempt to correct too weak
and too strong hypotheses, respectively. Test examples are exploited to prove the predictive
capabilities of the theory, intended as the behavior of the theory on new observations.

Let us now briefly summarize the process of logic theory revision. A thorough descrip-
tion of such process can be found in (Semeraro et al., 1995). In order to perform its task,
INTHELEX uses a previous theory (optional), a graph describing the dependence relation-
ships among the concepts to be learned, and a historical memory of all the past (positive
and negative) examples that led to the current theory. It is important to note that a positive
example for a concept is not considered as a negative example for all the other concepts
(unless it is explicitly stated). This allows us to achieve more generality, since we do not
know if the dependency graph represents a “part of” or an “is a” hierarchy.

As regards the discussion of the operators that we have implemented in the learning
system, we will describe the phases that make up the refinement process, namely satura-
tion of the incoming examples, and tuning (through the generalization and specialization
algorithms) of the current theory.

Preliminarily, asaturation phaseis performed. Whenever a new example is taken into
account, it is first checked to see if other concepts in the dependency graph can be recognized
in its description, in which case literals concerning those concepts are added (opportunely
instantiated) to the body of the clause that represents the example.

For instance, if we have the example

computer(c) :- hasmonitor(c, m), hasprinter(c, p),

hascentral processingunit(c, u),

part of(c, k), haskeys(k, 102), italian(k).

and the following rule in the theory

keyboard(X) :- haskeys(X, Y), italian(X).

we can add the literalkeyboard(k)to the body of the example, by saturation.
The successivetuning phaseconcerns the possible revision of the current theory with

respect to the new examples. This tuning has no effect on the theory if the new example is
negative and not covered or positive and covered; in all the other cases, the theory needs to
be revised.

In particular, when a positive example is not covered, a generalization of the theory is
needed, starting from the current theory, the misclassified example along with the base of the
stored examples. It ends with a revised new theory after storing the problematic example in
the base of processed examples. Figure 2 shows a pseudo-code description of this process.

144 ESPOSITO ET AL.

Figure 2. The generalization algorithm.

First of all, the system performs a step ofblame assignment: a clause to be generalized
is chosen from those making up a concept description (we plan to find a heuristic for such
a choice, at this moment the function selects the next clause in the definition—see future
work). This functionality is specific of the Critic in figure 1 that was previously discussed.
Then, the system tries to compute the least general generalization under object identity
(lggOI) of this clause and the example.

The algorithm that computes the set of the least general generalizations underθOI-
subsumption of two any DatalogOI clauses is a straightforward extension to DatalogOI

of a similar algorithm given by Plotkin (1970). This extension is necessary since the space
of Datalog clauses is not a lattice when ordered byθOI-subsumption (Semeraro et al., 1998),
while it is a lattice when ordered byθ -subsumption (Plotkin, 1970).

If one of the lggOI’s is consistent with all the past negative examples, then it replaces the
chosen clause in the theory, or else a new clause is chosen to compute the lggOI. If no clause
in an incomplete hypothesis of a theory can be generalized so that the resulting theory is
complete and consistent (and does not exceed a generality limit, computed on the ground of
the notion ofsizeOI) (Esposito et al., 1996a), the system checks if the example itself, with
the constants properly turned into variables, is consistent with the past negative examples.
Such a clause is added to the theory, or else the example itself is added as an exception to
the theory. These functions are provided by the Rule Refiner module depicted in figure 1.

When, on the other hand, a negative example is covered, a specialization of the theory
must be performed. Starting from the current theory, the misclassified example and the base
of the processed examples, the specialization algorithm outputs a revised new theory after
storing the example that fired the revision process in the base of examples. The pseudo-code
procedure describing the algorithm above is given in figure 3.

Among the program clauses occurring in the SLD-derivation of the example, INTHELEX
tries to specialize one at the lowest possible level (which corresponds to a clause defining

MULTISTRATEGY THEORY REVISION 145

Figure 3. The specialization algorithm.

a concept whose level mapping is the lowest, according to the dependency graph), in order
to refine the concepts that are used in the definitions of other concepts, by adding to it one
(or more) positive literal(s), which can discriminate all the past positive examples from the
current negative one (again, currently this selection is randomly performed). The space in
which such a literal should be searched for is potentially infinite and, in any case, its size is so
large that an exhaustive search is infeasible. Thus, this operator is able to restrict the search
within that portion of the space containing the solution. We decided to specialize lower
level concepts since they may appear in the definition of many higher level concepts; the
underlying heuristic is that the latter will hopefully benefit from the revised/better definition
of the former.

In case of failure, it tries to add the negation of a literal, which discriminates the negative
example from all the past positive ones, to the first clause of the SLD-derivation (related to
the concept the example is an instance of). In our framework, specializing means merely
adding a proper literal to an inconsistent clause, in order to avoid it covering a negative
example.

This means that revisions performed by this operator are always minimal (Wrobel, 1994),
since all clauses in the theory contain only variables as arguments (a specialization obtained
by turning a variable into a constant is not provided for). Moreover, this operator has been
proven to be ideal (Esposito et al., 1996a), i.e. locally finite, proper and complete according
to the definition given by Nienhuys-Cheng & van der Laag (1994), in the space of constant-
free clauses.

If none of the clauses obtained makes the theory complete and consistent again, then
INTHELEX adds the negative example to the theory as an exception. An exception contains
an exact description of the observation it represents, as it occurs in the tuning set; new
incoming observations are always checked with respect to the exceptions before the rules
of the related concept. This does not lead to rules which do not cover any example, since
exceptions refer to specific objects, while rules contain variables, so they are still applicable
to other objects than those in the exceptions.

146 ESPOSITO ET AL.

It is worth noting that, in analogy with human behavior, INTHELEX never rejects exam-
ples, but always refines the theory. Moreover, it does not need to knowa priori what is the
whole set of concepts to be learned, but it learns a new concept as soon as positive/negative
examples about it are available. Before definitively incorporating the candidate refinements
of the rules, their correctness (in conjunction with the overall set of rules) with respect to
the entire set of examples is always checked.

4. Integration of abduction in INTHELEX

In this section, we discuss the role that abduction plays in our theory revision framework.
After defining a general paradigm that is common to both inductive and abductive reasoning
strategies, we specify the changes that were needed in our system to cope with an abductive
operator and list the issues raised by the integration with the refinement operators described
in the previous section and the decisions we took.

Theory revision generalizesinductive concept learningby using, apart from induction,
a variety of other operators such as rule deletion, rule synthesis, etc.

In the following, we intend to present potential ways to perform the integration of ab-
duction and induction in the context of theory revision. Indeed, abduction has been used in
this context, where a system is given different observations about the world (which does
not necessarily mean that they represent an explicit learning problem), and it is required to
assimilate them into its knowledge base. A limited form of revision consists in providing
an abductive explanation that was previously unknown and then adding it to the theory.
Hence, abduction can be one of the operators of theory revision systems. In addition, ab-
duction has been used in theory revision as a method for identifying the specific parts of
the theory that need to be revised. We intend to exploit this operator for dealing with cases
of incompleteness of the observations.

From a logic point of view, both induction and abduction are not truth-preserving. Thus,
their conclusions can be controversial; accordingly they are both non-monotonic. In Artifi-
cial Intelligence the inductive and abductive problems can be regarded as dual to each other
since they share the same basic formal specification (Dimopoulos & Kakas, 1996):
Given a theoryT and a hypothesisH for a set of examplesE concerning the same concept:

T ∪ H |= E.

The hypothesisH stands for the set of rules that define the target concept.
In the inductive learning framework, the set of observationsE consists of training exam-

ples and the aim is defining a proper hypothesisH , whose conditions refer to the predicates
in T . In the abductive learning framework, the role ofH andT is exchanged: the aim is
now to draw abductive explanations fromT such that, together with the hypothesisH , they
account for the examplesE.

In other words, abduction can be exploited in case of incompleteness, when some partially
undefined predicates are to be explained. Indeed, abduction is known also as a form of
reasoning to the best explanation. Thus, usually abduction has been used together with
causal theories.

MULTISTRATEGY THEORY REVISION 147

Starting from a purely inductive behaviour, INTHELEX has been developed further on by
providing it with an additional operator, namely anabductive proof procedurewhich could
help in managing situations in which not only the set of all observations is partially known,
but each observation could be incomplete too. In particular, we adopted and adapted to our
purposes the algorithm by Kakas & Mancarella (1990), in its modified version (Esposito
et al., 1996b; Lamma et al., 2000) to deal with exceptions and undefined predicates.

Some representational changes had to be made. We adapted the usual Abductive Logic
Programming (ALP) framework (Esposito et al., 1996b) to our theory revision problem.
An abductive logic program(theory) is a triple (P, A, IC) where:

• P is a normal logic program (Lloyd, 1987);
• A is the set of abducible predicates;
• IC is a set of integrity constraints.

In our case, we considered only the 0-level predicate letters in the dependency graph (see
Section 2) as members of the abducible setA. Moreover, in theIC set the abductive proof
procedure requires the explicit representation of constraints like:

ic([p1(x),p2(x), . . . , pn(x)]). to be interpreted as:

:-p1(x), p2(x), . . . , pn(x), !, fail.

In the procedure, integrity constraints of the form:

:- not p, p, !, fail

are implicitly assumed for the default negation.
An abductive derivationfrom the goal G1 to the goal Gn yielding a set of abductions1

is a sequence of goals with the form Gi = :- L1, L2, ..., Lm.
On each step from G1 to Gn, a literal Lj is chosen according to some selection rule, then:

1. if Lj is not abducible then Gi+1 is the resolvent of Gi and some clause of P
2. if Lj is abducible and has been previously abduced (Lj ∈ 1) then Lj is dropped from Gi

to giveGi+1

3. if L j is abducible and has not been previously abduced (Lj 6∈ 1) then, if aconsistency
derivation is possible from{Lj} to {}, Lj is dropped from Gi to give Gi+1 and1 is
augmented with Lj and the set of assumptions made in the consistency derivation.

A consistency derivation is started when new assumptions have to be made to prove
the current selected literal together with the previous assumptions (case 3): the abductive
derivation algorithm may be invoked during the consistency derivation when neither the
current selected literal nor its negation are in1.

The integration of this different form of reasoning with the inductive operators could not
be straightforward, due to issues about abduction that are still unclear. Thus, a number of
problems arose on which decisions had to be made since such integration can take place at
several degrees of interrelation.

148 ESPOSITO ET AL.

First of all, it was necessary to decide whether using it to add specific facts, related to
the observed examples, to the theory, as in many ALP systems, or using it to complete
the (possibly) partial information of the observations and then to generate/refine the theory
according to the “extended” (by abduction) examples obtained. We chose this latter option,
since it preserves a characteristic of INTHELEX: it does not allow specific facts in the
theory, but attaches the abduced information directly to the observation it belongs to.

Abduction can be exploited as a means for identifying learning problems hidden in the
new observation given to the system. This form of integration of abduction and theory
revision was referred to asIdentification Problemby Dimopoulos & Kakas (1996). This
learning process is stratified in two levels. In the former, abduction identifies the actual
training data to be supplied to a generalization problem. The observations are translated
into information that has some pattern and that can be identified as a generalization problem.
The latter involves a purely inductive process in which such observations are “synthesized”
in the knowledge base.

Therefore, another choice was to be made. We could integrate abduction in the two
refinement operators in order to obtain abductive theories (i.e., theories in which the classical
resolution proof is replaced by the abductive proof). Alternatively, we could regard it as
an identification problem, and complete the observations in such a way that they could
be either covered (if positive) or ruled out (if negative) by the already generated theory.
We tried this latter way, since it avoids, whenever possible, the use of the operators (and
the consequent modification of the theory) and preserves the characteristic that theories
generated by INTHELEX are also executable Prolog modules. Moreover, this solution
limits the influence of abduction when it is not necessary and, as a consequence, the amount
of information that was not directly subsumed by the theory but would be rather assumed
by abductive inference. Thus, in our system, abduction is preliminarily used to generate
suitable or relevant background data on which the inductive generalization is based.

The last issue concerned the set of literals that are abduced for supporting new observa-
tions (which will be added to their description). It could be a minimal set, or an enlarged set
of all literals that necessarily satisfy all the integrity constraints of the theory (even those
not involved in the observations). The former approach, followed in (Dimopoulos & Kakas,
1996), was chosen since it ensures that the inductive operators use abducibles only when
really needed.

The pseudo-code of the tuning algorithm, illustrating how abduction was integrated in
INTHELEX, is reported in figure 4. When a new observation is available, the abductive proof
procedure mentioned above is started, parameterized on the current theory, the example
and an empty set of abductive assumptions1. If the procedure succeeds, the resulting
set of assumptions1, that were necessary to correctly classify the observation, is added
to the example description before storing it (of course, being1 minimal by definition,
if no assumption is needed for the correct classification, the example description is not
affected). Otherwise the usual refinement procedure (generalization or specialization) is
performed.

The negative literals that might appear in the set1 in order to satisfy some integrity
constraints (Kakas & Mancarella, 1990) are not added to the description. Instead, they are
handled by means of the Closed World Assumption (Lloyd, 1987).

MULTISTRATEGY THEORY REVISION 149

Figure 4. Tuning algorithm.

5. Experimental results

A first experiment has been run on a standard dataset already used by the FORTE system
(Richards & Mooney, 1995), with the purpose of comparing the performance of INTHELEX
to that of other well-known learning systems.

The dataset we chose concerns some family relationships, namely:wife, husband,
father, mother, brother, sister, son, daughter, aunt, uncle, niece, and nephew. Starting
from a set of facts regarding sex, marriage and parenthood of people involved in a given
family tree, 744 examples were derived, by building their description in a uniform way
for all the concepts to be learned. This method consisted in taking all the known mar-
riage and parenthood facts involving the two persons of the example, then all the parent-
hood facts involving the persons newly introduced at the previous step and finally adding
the sex attributes for all these persons. Of course, it could be the case that such a method re-
sults weaker for the description of more “far” family relationships, such asaunt,
uncle, nieceand nephew, where the information in the description is more “sparse”.
However, a uniform procedure was necessary not to affect the experiment and this one
was estimated to be sufficient to give the necessary information for all the concepts to be
learned.

In this method, the original negated examples were not taken into account, since they
were implicit, due to the Closed World Assumption. The reduced dataset was made up of
collections of examples of the following sizes:wife (25),husband(25),father(60),mother
(60), brother (59), sister(47), son(66), daughter(54), aunt (82), uncle(92), niece(92),
nephew(82).

Then, 30 runs of the experiment were performed, each one with the whole learning set
given to INTHELEX, in order to generate a corresponding theory starting from an empty
one. In particular, for each run the learning set was built by randomly taking the 40% of
the examples for each concept and putting them together, while the remaining 60% were
put together to form the test set. As a Background Knowledge, in this case represented by
inference rules, INTHELEX was provided with the definition of “siblings” and “au” (this
last one corresponding to the uncle/aunt relationship, regardless of the person’s sex).

150 ESPOSITO ET AL.

Despite the low percentage of examples used to generate the theory and the incremental
fashion in which it was generated, we reached an average predictive accuracy of 94.27%
(standard deviation 2.45), with a maximum of 98% and a minimum of 90%.

A different experimental setting was used to perform the real-world task of document
classification.

Different experiments have been devised to analyze closely the effectiveness of the in-
cremental methodologies on the problem of classifying scientific papers, which consists in
classifying the documents into a set of distinct classes characterized by certain standard
layout and logical structures (Esposito, Malerba & Semeraro, 1994).

We considered a database of 92 front pages of scientific papers, whose description has
been automatically derived based on the geometrical properties and relationships of their
layout components. The documents in the database belong to three different classes: 30
instances of classISMIS(Proceedings of the International Symposium on Methodologies
for Information Systems), 34 of classPAMI (IEEE Transactions on Pattern Analysis and
Machine Intelligence) and 28 of classICML (Proceedings of the International Conference
on Machine Learning). Each paper is a positive example for the class it belongs to and, at
the same time, is a negative example for all the other classes. For each class, the learning
process has been performed both in abatchand in anincrementalway.

We performed 33 runs of the experiments, by randomly splitting the database of 92 papers
into a learning set and atestset, composed respectively of 70% and 30% of the whole
dataset. In turn, the learning set has been subdivided intotraining andtuningsets, made up
respectively of 30% and 70% of the whole learning set. In each run the learning set has been
exploited in three distinct ways, according to the mode—batch or incremental—adopted
for the learning process. In the first case, this set has been entirely given to INDUBI/H
(Esposito, Malerba and Semeraro, 1994), an empirical learning system operating in a batch
way, as its input. In the second case, it has been entirely given to INTHELEX in order to
generate a corresponding theory for classification by starting from the empty one (simulating
in this way the batch learning). Finally, for the incremental mode, only the training set has
been used by INDUBI/H in order to produce the first version of the classification theory,
and then the resulting rules were refined in an incremental way by INTHELEX, in case of
incompleteness or inconsistency, by means of the tuning set. The tuning set is made up of
both positive and negative examples in each run. Lastly, the test set has been exploited to
evaluate the predictive accuracy of the learned theories on unclassified documents.

The average results of the experiments, as regards the predictive accuracy of the generated
theories (expressed as percentages) on the test set are graphically shown in Table 1.

According to our expectations, the batch theories generated by INDUBI/H were more
accurate than those generated incrementally by INTHELEX starting from the empty theory,
even though, as regards the class PAMI, the difference was not considerable.

This is probably due to the fact that, being PAMI a journal, it has a strict layout standard
imposed by the publisher, while both the other classes are printed from camera ready copies
provided by the authors, and thus suffer from more variability in following the guidelines.
For this reason, few examples are sufficient to characterize the class PAMI, while for
the other classes, having all the examples available at once allows to focus on the most
characterizing features.

MULTISTRATEGY THEORY REVISION 151

The worse predictive accuracy of the theories produced by the incremental system, when
compared to the accuracy of the theories produced in batch mode, starting from the empty
theory, probably suffers from the order in which examples are presented to the system; we
gave INTHELEX all the positive examples first, and then the negative ones, but probably a
study about a more varied distribution interweaving positive and negative examples would
lead to better results.

On the other hand, predictive accuracy when INTHELEX refines a theory initially gener-
ated by INDUBI/H, is very close to that obtained by running the batch system on the whole
learning set.

Table 2 illustrates the results of thet test, exploited to evaluate the significance of the
observed differences as to predictive accuracy for each class. This test has been performed
as a two-sided paired test at a 0.05 level of significance, by considering the predictive
accuracy achieved by the theories produced in each run along the modes already mentioned
and comparing them couplewise.

From Tables 1 and 2, it is possible to note that in five cases there is a statistically significant
difference (framed boxes in Table 2) and they are in favor of INDUBI/H, which showed an
higher average predictive accuracy throughout all of the runs. It is worthwhile to note that,
for the PAMI class, where INTHELEX showed a better performance on the average, both
starting from an empty theory and even more when refining a starting theory previously
generated by INDUBI/H, the results are not statistically significant.

As to the efficiency of the system, it is noteworthy the fact that the computational timings
obtained on a SUN SparcStation 10 architecture are far in favor of the incremental system,
both refining first versions of the theories and starting from the empty one.

Table 1. Results on document classification.

Predictive accuracy %

INDUBI INTHELEX INDUBI+INTHELEX

ISMIS 89,63 82,17 91,33

PAMI 88,93 86,70 88,87

ICML 96.23 83 90,13

Table 2. t-test significance results on the document classification experiment outcomes

INDUBI INDUBI INTHELEX

INDUBI+ INDUBI+
INTHELEX INTHELEX INTHELEX

ISMIS 2,42E-06 0,28802 0,000159

PAMI 0,203127 0,970127 0,399112

ICML 4,43E-06 0,002864 0,02268

152 ESPOSITO ET AL.

Figure 5. A theory generated for the three classes ICML, ISMIS and PAMI.

These results are very encouraging, since there are tasks whose nature, for instance
because of the variability of the observations, is such that they are infeasible in batch mode
and call for continuous refinement of the generated theories.

An example of generated theory for the three classes ICML, ISMIS and PAMI, is given
in figure 5. It is possible to note the straight readability and understandability of the clauses,
in addition to the presence of some exceptions (coded through the “!, fail” couple in the
body).

Here, longer clauses are those generated by INTHELEX. Even if shorter ones are more
practical, it should be noted that domain experts, when presented with automatically gener-
ated theories, place generally more confidence in longer clauses, probably because shorter
ones seem to have poor characterization power.

6. Related work

A thorough survey of the work related to the learning systems available in the theory
revision framework, both in the propositional and first-order learning (as well as in other
areas like belief revision and qualitative modeling) has been already carried out by Richards
& Mooney (1995). For this reason, in the following we will analyze our system, with respect
to this discussion, and in particular compared to FORTE.

Many systems for theory revision deal with propositional logic. They can integrate differ-
ent reasoning methods and learning strategies. These systems, such as EITHER (Mooney
& Ourston, 1994) that is FORTE’s conceptual predecessor, can deal with the use of a
deductive-inductive method for modifying a given domain theory, but they cannot handle
relations and so are limited as regards their expressive power.

MULTISTRATEGY THEORY REVISION 153

Conversely, INTHELEX is a learning system, which is able to handle a first-order knowl-
edge representation. In particular, as described in Section 2, it exploits the Datalog language,
i.e. a function-free first-order language, with the Object Identity bias: the advantage is that
ideal operators have been proven to exist in this reduced search space (Esposito et al.,
1996a). In addition, such reduction leaves unchanged the expressive power with respect
to an unbiased relation language (Semeraro et al., 1998). Thus, our system, as FORTE, is
fully automatic since it avoids the need for user interaction that is exploited by many ILP
systems as an external oracle for reducing the search space.

Some knowledge-based systems exploit first-order domain theories to bias the learning of
operational conceptual descriptions without a modification of the domain theory. FORTE
allows the definition of a portion of the domain theory as correcta priori. Similarly to
FORTE, our system has a conservative behaviour, aiming at preserving as much as possible
the initial theory. The “closeness” to the starting theory guarantees for the comprehensibility
of the revisions when compared to purely inductive methods. Moreover in our framework
both the rules and the examples share the same nature of Datalog clauses. In INTHELEX
the whole theory is modifiable and, though a set of meta-rules is definable, it does not need
for a theory coming from an external source. Rather than being thought as a system for
“repairing” incorrect theories like FORTE, our system adopts a fully incremental learning
algorithm to the extent that the starting theory might even be empty.

Other systems perform learning in one step, through an algorithm that starts from scratch
and does not actually refine an initial theory. However, if a (good) initial theory is available,
we can expect theory refinement to perform better as to their efficiency. Compared to
FORTE, our system is inherently incremental, by which we mean that it does not assume
the availability of the whole training set and processes the incoming new examples one at a
time. As a consequence, the learned theory is ensured—at any moment—to be correct with
respect to the entire set of examples taken into account.

It is also claimed that FORTE is able to perform the refinement of recursive theories.
The mechanism relies on the positive examples of a concept recursively defined as its
extensional definition. However, this approach suffers from the need of complete example
sets for such concepts (all the possible instances below a certain size must be given). This
is another reason why it cannot be considered an inherently incremental system. Moreover,
FORTE requires the initial theory to contain such concepts already in recursive form: it
cannot learn them otherwise. “This approach is not foolproof”, but it is claimed to be “often
effective”, with the exception of three cases which cannot be automatically detected by the
system.

FORTE can refine rules referring to subconcepts and related concepts for which examples
are not explicitly provided by “abducing” them through the application of the rules for
higher-lever concepts to the training examples. This requires these rules to be correctly
defined at the moment when such process is carried out. However, it is not clear how such
rules can be validated, since the lower-level concepts are possibly incorrect while being
learnt; even declaring these rules as belonging to the “fundamental domain theory” (i.e.
correct and, thus, not modifiable) would not explain why examples are given for concepts
that are not to be learnt. For such reason, INTHELEX performs refinements by exploiting
only the examples explicitly given for each concept and subconcept.

154 ESPOSITO ET AL.

Systems that performed the theory refinement in one direction only (specializing/gener-
alizing) have been improved (like GOLEM) by plugging in the dual operator to be exploited
in case the former operator produces over-refinements. It is claimed that FORTE behaves
better for it integrates both kinds of operators from the start and thus needs fewer examples.
Our system adopts the same strategy, but only one of the possible refinements in the version
space is kept as the current correct theory, instead of exploiting the training examples to
converge to a correct theory. We can be sure that the current theory belongs to the set of
correct theories, so far, in the version space since, for the full-memory policy adopted,
we always validate any candidate refinement with respect to all the processed examples.
The navigation along this space is guided by some heuristics, namely the generality of the
candidate generalization, measured by thesizeOI , and the depth, in the erroneous proof of
the negative example, of the clause to be specialized.

As regards the specialization operator implemented in FORTE, named relational pathfind-
ing, we point out that because of the bias oflinkednessof the clauses refined by our operators,
also in our framework the choice of antecedents added to a clause in order to refine it is
restricted to the linked ones.

Differently from INTHELEX, many other systems, including FORTE, do not allow
negative information items (negative literals) to be expressed in the theories because of
computational complexity considerations. As a consequence, half of this potential search
space is left not explored.

7. Conclusions and future work

This paper described the incremental learning system INTHELEX, a first order logic system
able to acquire and revise its theory, defined as a set of concepts, in a completely automated
way, on the grounds of positive and negative instances of the concepts. INTHELEX is
a multi-conceptual system, being able to learn simultaneously different possibly related
concepts, and integrates ideal refinement operators defined on the search space induced by
the θOI-subsumption ordering together with an abductive refinement operator. Moreover,
the system maintains the coherence of the revised theory with all the past and new instances,
restoring the completeness and consistency properties when necessary.

There is currently no sophisticate method for localizing the causes of erroneous theories.
One of the directions of our future research will be defining and implementing new heuristics
for this purpose. Moreover, the possibility of introducing the recursion is being studied,
trying to make use of the techniques developed in ATRE (Malerba, Esposito & Lisi, 1998),
a first order logic learning system which learns recursive theories.

We reported the results of some experiments performed with INTHELEX, both with a
standard dataset and with data concerning a real world application in the field of document
classification. Other experiments are being carried out with the aim of comparing the perfor-
mance of INTHELEX, in terms of predictive accuracy and computational time, to the ones
of other multistrategy learning systems. New experiments are currently being carried out
in the field of document understanding, concerning the possibility of acquiring information
on the content of parts of documents basing on spatial layout. In this case, we have to learn

MULTISTRATEGY THEORY REVISION 155

models of the logical components that refer to a part of the document rather than to the
whole document.

Future work will concern also the use of a distance measure for a twofold purpose. First,
we can exploit it when choosing the next candidate clause to be generalized, according to the
strategy proposed by Mooney in the propositional case (1995). Second, to face the problem
of selecting the most promising example when more than one observation contradicts the
theory (Esposito, Malerba & Semeraro, 1992).

References

Becker, J. M. (1985).Inductive learning of decision rules with exceptions: methodology and experimentation. B.S.
diss., UIUCDCS-F-85-945, Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana,
Illinois.

Bergadano, F. & Gunetti, D. (1994). Learning clauses by tracing derivations. In S. Wrobel (Ed.),Proceedings of
the 4th International Workshop on Inductive Logic Programming, ILP-94(pp.1–29).

Botta, M. (1994). Learning first order theories. In Z. W. Ras & M. Zemankova (Eds.), Methodologies for Intelligent
Systems,Lecture Notes in Artificial Intelligence(Vol. 869: pp. 356–365). Springer-Verlag.

Cain, T. (1991). The Ductor: a theory revision system for propositional domains.Proceedings of the Eighth
International Workshop on Machine Learning(pp. 485–489). San Mateo, CA: Morgan Kaufmann).

Ceri, S., Gottlob, G., & Tanca, L. (1990).Logic programming and databases. Springer-Verlag.
Clark, K. L. (1978). Negation as failure. In H. Gallaire & J. Minker (Eds.),Logic and databases, Plenum Press.
De Raedt, L. (1992).Interactive theory revision—an inductive logic programming approach. AP.
Dimopoulos, Y. & Kakas, A. (1996) Abduction and learning. In L. De Raedt (Ed.),Advances in inductive pro-

gramming(pp. 144–171). IOS Press.
Esposito, F., Malerba, D., & Semeraro, G. (1992). Classification in noisy environments using a distance measure

between structural symbolic descriprions.IEEE Transactions on Pattern Analysis and Machine Intelligence,
14, 390–402.

Esposito, F., Malerba, D., & Semeraro, G. (1994). Multistrategy learning for document recognition.Applied
Artificial Intelligence: An International Journal, 8, 33–84.

Esposito, F., Laterza, A., Malerba, D., & Semeraro, G. (1996a). Locally Finite, Proper and complete operators for
refining datalog programs. In Z. W. Ras & M. Michalewicz (Eds.),Lecture Notes in Artificial Intelligence(Vol.
1079: Foundations of Intelligent Systems) (pp. 468–478) Springer.

Esposito, F., Lamma, E., Malerba, D., Mello, P., Milano, M., Riguzzi, F., & Semeraro, G. (1996b). Learning
abductive logic programs.ECAI 96 Workshop on Abductive and Inductive Reasoning, Workshop Notes (pp.
23–30).

Ginsberg, A. (1990). Theory reduction, theory revision, and retranslation.Proceedings of the 8th National Con-
ference on Artificial Intelligence (AAAI-90)(pp. 777–782).

Hayes-Roth, F. & McDermott, J. (1978). An interference matching technique for inducing abstractions.Commu-
nications of the ACM, 21, 401–410.

Helft, N. (1987). Inductive Generalization: A logical framework. In I. Bratko & N. Lavrac (Eds.),Progress in
machine learning—proceedings of EWSL 87: 2nd European Working Session on Learning(pp. 149–157).
Wilmslow: Sigma Press.

Josephson, J. R. & Josephson, S. G. (Eds.), (1996).Abductive inference. Cambridge University Press.
Kakas, A. C. & Mancarella, P. (1990). On the relation of truth maintenance and abduction.Proceedings of the 1st

Pacific Rim International Conference on Artificial Intelligence, PRICAI 90, Nagoya, Japan.
Kanellakis, P. C. (1990). Elements of relational database theory. In J. Van Leeuwen (Ed.),Handbook of Theoretical

Computer Science(Volume B, Formal Models and Semantics, pp. 1073–1156). Elsevier Science Publishers.
Komorowski, J. & Trcek, S. (1994). Towards refinement of definite logic programs. In Z. W. Ras & M. Zemankova

(Eds.),Lecture Notes in Artificial Intelligence(Vol. 869:Methodologies for Intelligent Systems). (pp. 315–325)
Springer-Verlag.

Lamma, E., Mello, P., Milano, M., Riguzzi, F., Esposito, F., Ferilli, S., & Semeraro, G. (2000). Cooperation of
abduction and induction in logic programming.Abductive and Inductive Reasoning: Essays on their Relation

156 ESPOSITO ET AL.

and Integration. Kluwer.
Lloyd, J. W. (1987).Foundations of logic programming2nd edn. Springer-Verlag.
Malerba, D., Esposito, F., & Lisi, F. A. (1998). Learning recursive theories with ATRE.Proceedings of 13th

European Conference on Artificial Intelligence, Brighton (pp. 435–439). John Wiley & Sons.
Matwin, S. & Plante, B. (1991). A deductive-inductive method for theory revision.Proceedings of the 1st Inter-

national Workshop on Multistrategy Learning, Harper’s Ferry, WVA (pp. 160–174). GMU Press.
Mooney, R. & Ourston, D. (1994) A multistrategy approach to theory refinement. In R. S. Michalski & G. Tecuci

(Eds.),Machine learning: a multistrategy approach(Vol. 4), pp. 141–164 San Mateo, CA: Morgan Kaufman.
Mooney, R. (1995) A preliminary PAC analysis of theory revision. In T. Petsche, S. J. Hanson, & J. Shavlik (Eds.),

Computational learning theory and machine learning systems. (Vol. 3, pp. 43–53),MIT Press.
Muggleton, S. (1987). Duce, an Oracle based approach to constructive induction.Proceedings of the 10th Inter-

national Joint Conference on Artificial Intelligence, IJCAI87(pp. 287–292).
Plotkin, G. D. (1970). A note on inductive generalization. In B. Meltzer & D. Michie (Eds.),Machine Intelligence

(Vol. 5, pp. 153–163). Edinburgh University Press.
Plotkin, G. D. (1972). Building-in equational theories. In B. Meltzer & D. Michie (Eds.),Machine Intelligence,

(Vol. 7, pp. 73–90). Edinburgh University Press.
Reinke, R. E. & Michalski, R. S. (1985). Incremental learning of concept descriptions: a method and experimental

results. In D. Michie (Ed.),Machine Intelligence, (Vol. 11). Edinburgh University Press.
Richards, B. L. & Mooney, R. J. (1991). First-order theory revision.Proceedings of the 8th International Workshop

on Machine Learning(pp. 447–451).
Richards, B. L. & Mooney, R. J. (1995). Refinement of first-order Horn-clause domain theories.Machine Learning,

19(2), 95–131.
Saitta, L., Botta, M., & Neri, F. (1993). Multistrategy learning and theory revision.Machine Learning,11, 153–172.
Semeraro, G., Esposito, F., Fanizzi, N., & Malerba, D. (1995). Revision of logical theories. In M. Gori & G.

Soda (Eds.),LECTURE NOTES in ARTIFICIAL INTELLIGENCE. (Vol 992: Topics in Artificial Intelligence),
pp. 365–376. Springer-Verlag.

Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., & Ferilli, S. (1998). A logic framework for the Incremental
Inductive Synthesis of Datalog Theories. In N. E. Fuchs (Ed.),Proceedings of the 7th International Workshop on
Logic Program Synthesis and Transformation(pp. 300–321).Lecture Notes in Computer Science(Vol. 1463),
Springer-Verlag.

Shapiro, E. Y. (1983).Algorithmic program debugging. MIT Press.
van der Laag, P. R. J. & Nienhuys-Cheng, S.-H. (1994). Existence and nonexistence of complete refinement

operators. In F. Bergadano & L. De Raedt (Eds.),Machine Learning: ECML-94-Proceedings of the Euro-
pean Conference on Machine Learning(pp. 307–322).LECTURE NOTES in ARTIFICIAL INTELLIGENCE
(Vol. 784), Springer-Verlag.

Vere, S. A. (1975). Induction of concepts in the predicate calculus.Proceedings of the 4th International Joint
Conference on Artificial Intelligence, IJCAI-75(pp. 281–287).

Wogulis, J. (1991). Revising relational domain theories.Proceedings of the 8th International Workshop on Machine
Learning(pp. 462–466).

Wrobel, S. (1994).Concept formation and knowledge revision. Kluwer Academic Publishers.
Wrobel, S. (1996). First order theory refinement. In L. De Raedt (Ed.),Advances in Inductive Logic Programming

(pp. 14–33). Amsterdam: IOS Press.

Received Dec 22. 1998

Accepted June 18, 1999

Final manuscript June 18, 1999

