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Abstract. Prequential model selection and delete-one cross-validation are data-driven methodologies for choos-
ing between rival models on the basis of their predictive abilities. For a given set of observations, the predictive
ability of a model is measured by the model’s accumulated prediction error and by the model’s average-out-of-
sample prediction error, respectively, for prequential model selection and for cross-validation. In this paper, given
i.i.d. observations, we propose nonparametric regression estimators—based on neural networks—that select the
number of “hidden units” (or “neurons”) using either prequential model selection or delete-one cross-validation.
As our main contributions: (i) we establish rates of convergence for the integrated mean-squared errors in estimat-
ing the regression function using “off-line” or “batch” versions of the proposed estimators and (ii) we establish
rates of convergence for the time-averaged expected prediction errors in using “on-line” versions of the proposed
estimators. We also present computer simulations (i) empirically validating the proposed estimators and (ii) empir-
ically comparing the proposed estimators with certain novel prequential and cross-validated “mixture” regression
estimators.
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1. Introduction

Let {Xi ,Yi }∞i=−∞ be independent and identically distributed (i.i.d.) random variables on
a probability space(Ä,F, P) such thatX0 takes values inRq andY0 takes values inR.
Define the regression function as

s(x)= E[Y0 | X0 = x], x ∈Rq.

Givenn observations{Xi ,Yi }ni=1, we are interested in estimating the regression functions.
We do not assume that the regression functions is a member of a finite-dimensional

parametric model, hence it is natural to estimates using a countable sequence of finite-
dimensional parametric models with increasing dimensions, say{Sm}m∈M, which approxi-
matess more accurately as the dimensionm increases. As an example,Sm may represent
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a class of neural networks withm hidden units andM may represent the set of natural
numbers. In practice, for finite number of observationsn, it is common to estimates using
a modelSm, m∈Mn, where the set of dimensionsMn⊂M grows with the sample sizen at
an appropriate rate. As an example,Mn may be{1, 2, . . . ,Mn} for some finite numberMn.

Statistical risk in estimating the regression functions using a finite-dimensional para-
metric modelSm,m∈Mn, has two components: approximation error and estimation error.
Roughly speaking, a model with a larger dimension has a smaller approximation error but a
larger estimation error, whereas a model with a smaller dimension has a smaller estimation
error but a larger approximation error. The problem of model selection is to empirically
select the finite-dimensional parametric model (from the permissible collection of models
{Sm}m∈Mn) that achieves the best tradeoff between the competing approximation error and
estimation error components—and, consequently, achieves the smallest possible statistical
risk in estimatings. For previous theoretical work on model selection in the context of non-
parametric regression estimation, see, for example, Barron (1991, 1994), Barron, Birg´e,
& Massart (1996), Birg´e & Massart (1994b), Baum & Haussler (1989), Haussler (1992),
Lugosi & Nobel (1995), Lugosi & Zeger (1996), McCaffrey & Gallant (1994), Modha &
Masry (1996, 1998), Rissanen (1989), Shen & Wong (1994), Vapnik (1982, 1995), and
White (1989).

In this paper, we study model selection in the context of nonparametric regression esti-
mation using prequential model selection due to Dawid (1984, 1991, 1992) and Rissanen
(1986a, 1986b, 1989) and also using delete-one cross-validation (or cross-validation for
short) due to Mosteller & Tukey (1968) and Stone (1974, 1977).1 Prequential and cross-
validated regression estimators are attractive for practical application, in that, they require
minimal inputs from the user: a set of observations{Xi ,Yi }ni=1, a suitable set of dimensions
Mn, and a sequence of finite-dimensional parametric models{Sm}m∈Mn . From this per-
spective, prequential model selection and cross-validation represent exciting steps towards
automatic (or completely data-driven) model selection.

In this paper, we examine prequential and cross-validated regression estimators based
on neural networks. As our main contributions: (i) we establish rates of convergence for
the integrated mean-squared errors in estimating the regression function using “off-line” or
“batch” versions of the prequential and the cross-validated estimators (Theorem 2.1) and (ii)
we establish rates of convergence for the time-averaged expected prediction errors in using
“on-line” versions of the prequential and the cross-validated estimators (Corollary 2.1). To
the best of our knowledge, no such rates of convergence results have been previously estab-
lished for prequential or cross-validated regression estimators in a nonparametric setting.
We also present computer simulations (i) empirically validating the proposed estimators
and (ii) empirically comparing the proposed estimators with certain novel prequential and
cross-validated “mixture” regression estimators.

1.1. Prequential model selection

Prequential model selection is a data-driven methodology for choosing between rival models
on the basis of their predictive abilities. In figure 1, we present a generic estimation scheme
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Inputs: Sample sizen and observations{Xi ,Yi }ni=1
a set of model dimensionsMn := {1, 2, . . . ,Mn}
a sequence of finite-dimensional parametric models{Sm}m∈Mn

Estimation Scheme:
for m := 1 to Mn step 1

Choose a fixed initial estimatorŝ(m,0) ∈ Sm

PREQ(m, 1) := [Y1 − ŝ(m,0)(X1)]2

for j := 2 to n step 1

compute the least-squares estimator based on{Xi ,Yi } j−1
i=1

ŝ(m, j−1) := arg ming∈Sm

{∑ j−1
i=1 [Yi − g(Xi )]2

}
∈ Sm

update the prequential loss
PREQ(m, j ) := PREQ(m, j − 1)+ [Yj − ŝ(m, j−1)(X j )]2

endfor;
endfor;

Output: Compute the model dimension and the prequential regression estimator, respectively, as

m̂(p) ≡ m̂(p)
n := arg min

1≤m≤Mn

PREQ(m, n) (1)

ŝ(p)n ≡ ŝ(m̂(p),n) := arg min
g∈S

m̂(p)

{
n∑

i=1

[Yi − g(Xi )]
2

}
∈ Sm̂(p) (2)

Figure 1. Scheme for computing the prequential regression estimator.

for computing prequential regression estimators. Intuitively, the term

[Yj − ŝ(m, j−1)(X j )]
2

in figure 1 denotes the prediction error incurred on the next observationYj , given X j ,
by a least-squares estimator with dimensionm based on previous( j − 1) observations
{Xi ,Yi } j−1

i=1 . Consequently, the prequential loss PREQ(m, n) in figure 1 represents the
“accumulated prediction error” committed by am-dimensional model onn observations
{Xi ,Yi }ni=1, and prequential model selection chooses the dimensionm̂(p)

n that minimizes
the accumulated prediction error.

The estimation scheme in figure 1 operates on a fixed set (or batch) ofn observations
{Xi ,Yi }ni=1, and hence is off-line. However, prequential model selection as conceived by
Dawid (1984, 1991, 1992) is quint-essentially on-line—where the observations are assumed
to arrive sequentially. Specifically, in the on-line case, for eachk ≥ 1, having seenk
observations{Xi ,Yi }ki=1, one is interested in predictingYk+1 givenXk+1. It is easy to apply
the estimation scheme in figure 1 to the on-line case by observing that for eachk one can use
the prequential regression estimatorŝ(p)k based onk observations{Xi ,Yi }ki=1. Specifically,
ŝ(p)k is obtained by replacingn by k in figure 1.
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The notion of the accumulated prediction error is closely related to the notion of “pre-
dictive code-length” considered in Rissanen (1986b, 1989), Rissanen, Speed, & Yu (1992)
and Yu & Speed (1992) and to the notion of “Shannon information gain” considered in
Haussler, Kearns, & Schapire (1994).

For finite-dimensional Gaussian regression problem, Rissanen (1986a) has established
order consistency of prequential model selection. However, our regression function may
neither be linear (in observations or parameters) nor finitely parameterized. Furthermore,
Rissanen did not address the issue of establishing rates of convergence for the statistical
risk. Yu & Speed (1992) (also see Rissanen, Speed, & Yu, 1992) considered a prequential
density estimator based on histograms and established almost sure rate of convergence for
the excess code-length incurred by their estimator. Their results, however, are specific to
density estimation using histograms.

In this paper, assuming that the regression functions satisfies a certain Fourier-transform
type representation (Assumption 2.3), we examine a prequential regression estimator based
on neural networks. We establish rates of convergence for the statistical risks in using
off-line (Theorem 2.1) and on-line (Corollary 2.1) versions of this estimator.

1.2. Cross-validation

Cross-validation is a data-driven methodology for choosing between rival models on the
basis of their predictive abilities. In figure 2, we present a generic estimation scheme for
computing cross-validated regression estimators. Intuitively, the term[

Yj − ŝ( j )
(m,n−1)(X j )

]2
in figure 2 denotes the prediction error incurred on the observationYj , givenX j , by a least-
squares estimator with dimensionm based on(n− 1) observations{Xi ,Yi }ni=1,i 6= j . Conse-
quently, the cross-validation loss CV(m, n) in figure 1 represents the “average out-of-sample
prediction error” committed by am-dimensional model onn observations{Xi ,Yi }ni=1, and
cross-validation chooses the dimensionm̂(c)

n that minimizes the average out-of-sample pre-
diction error.

Unlike prequential model selection, cross-validation is inherently an off-line estimation
scheme in that it operates on a fixed set (or batch) ofn observations{Xi ,Yi }ni=1, as can
be seen from figure 2. Nonetheless, it is possible to coerce cross-validation to operate
in an on-line fashion by observing that for eachk one can use the cross-validated regression
estimator̂s(c)k based onk observations{Xi ,Yi }ki=1. Specifically,̂s(c)k is obtained by replacing
n by k in figure 2.

The literature concerning cross-validation and its variants is rather vast, see, for example,
Li (1987), Stone (1984), and Stone (1974, 1977); in this paper, we restrict attention to
cross-validated model selection applied to sequences of parametric models such as neural
networks. In a setting closely related to ours, White (1989) established weak consistency of
cross-validated regression estimators based on neural networks without rates. We focus on
obtaining rates of convergence. Birg´e & Massart (1994a) established rates of convergence
specifically for cross-validated projection density estimators based on linear models (such as
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Inputs: Sample sizen and observations{Xi ,Yi }ni=1
a set of model dimensionsMn := {1, 2, . . . ,Mn}
a sequence of finite-dimensional parametric models{Sm}m∈Mn

Estimation Scheme:
for m := 1 to Mn step 1

for j := 1 to n step 1
delete j -th observation from{Xi ,Yi }ni=1
compute the least-squares estimator based on{Xi ,Yi }ni=1,i 6= j

ŝ( j )
(m,n−1) := arg ming∈Sm

{∑n
i=1,i 6= j [Yi − g(Xi )]2

}
∈ Sm

endfor;
compute the cross-validation loss

CV(m, n) :=∑n
j=1[Yj − ŝ( j )

(m,n−1)(X j )]2

endfor;

Output: Compute the model dimension and the cross-validated regression estimator, respectively, as

m̂(c) ≡ m̂(c)
n := arg min

1≤m≤Mn

CV(m, n) (3)

ŝ(c)n ≡ ŝ(m̂(c),n) := arg min
g∈Sm̂(c)

{
n∑

i=1

[Yi − g(Xi )]
2

}
∈ Sm̂(c) (4)

Figure 2. Scheme for computing the cross-validated regression estimator.

wavelets). Their results do not extend to cross-validated regression estimators. Recently,
Kearns (1997) considered a cross-validation scheme (based on saving out a fraction of
the available data as an independent test set) for model selection, and established rates of
convergence for his estimators. Here, we focus on a different estimation scheme: delete-one
cross-validation. His results do not extend to delete-one cross-validation.

Assuming that the regression functions satisfies a certain Fourier-transform type rep-
resentation (Assumption 2.3), we examine a cross-validated regression estimator based on
neural networks. We establish rates of convergence for the statistical risks in using off-line
(Theorem 2.1) and on-line (Corollary 2.1) versions of this estimator.

This paper is organized as follows: In Section 2, we propose prequential and cross-
validated regression estimators based on neural networks, and establish our main results
(Theorem 2.1 and Corollary 2.1). We also compare the proposed estimators to certain
complexity-regularized least-squares estimators. Inspired by Bayesian mixture density es-
timation of Dawid (1991), we propose in Section 2 certain prequential and cross-validated
mixture regression estimators. In Section 3, we present the advertised computer simulation
study. In Section 4, we examine prequential and cross-validated regression estimators based
on a sequence of abstract parametric models, and establish abstract upper bounds on the in-
tegrated mean-squared errors in estimatings using these abstract estimators (Theorem 4.1).
Theorem 2.1 follows by adapting Theorem 4.1 to neural networks. We note that Theorem 4.1
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is fairly general, and may extend to prequential and cross-validated regression estimators
based, for example, on wavelets, polynomials, splines, and Fourier series.

2. Regression estimation using neural networks

2.1. Neural networks

Assumption 2.1. X0 takes values in[−1, 1]q.

Assumption 2.2. Y0 takes values in[−ξ, ξ ] for some knownξ > 0.

We assume that the regression functions satisfies the following Fourier-transform-type
representation due to Barron (1993). Forw, x ∈ Rq, letw · x denote the usual inner product
onRq and let‖w‖1 denote thè 1-norm onRq.

Assumption 2.3. There exists a complex valued functions̃ onRq such that for x∈
[−1, 1]q, we have

s(x)− s(0) =
∫
Rq

(eiw·x − 1)s̃(w) dw

and that
∫
Rq ‖w‖1|s̃(w)| dw≤C′<∞ for some known C′ > 0. Set C= max{1,C′}.

For examples of functions satisfying Assumption 2.3, we refer the interested reader to
Barron (1993). A function satisfying Assumption 2.3 can be approximated, without the
curse of dimensionality (in terms of approximation error rates), using the sequence of
parametric models based on neural networks presented below. Letφ :R → [0, 1] denote
a Lipschitz continuous sigmoidal function such that its tails approach the tails of the unit
step function at least polynomially fast.2

Assumption 2.4. The functionφ :R→ [0, 1] is such that
(a)φ(u)→ 1 as u→∞ andφ(u)→ 0 as u→−∞.
(b) |φ(u)| ≤1 and|φ(u)− φ(v)| ≤ |u− v| for all u, v ∈ R.
(c) |φ(u)− 1{u>0}| ≤ A′1/|u|A2 for u∈R\{0}, and for some A′1, A2> 0. Set

A1 = max{1, A′1}.

Define

τm = 2(2A2+1)/A2 A1/A2
1 m(A2+1)/(2A2), (5)

whereA1 andA2 are as in Assumption 2.4. For dimensionm, let

S̄m=
{

c0+
m∑

j=1

cjφ(aj · x− bj )

∣∣∣∣∣ c0∈ [−ξ, ξ ],
m∑

j=1

|cj | ≤ C, and

||aj ||1, |bj | ≤ τm for 1≤ j ≤m

}
, (6)
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denote the class of neural networks withm hidden units (or neurons) whereτm denotes the
rate at which the hidden unit weights, namelyaj andbj , are allowed to grow as a function
of m. It follows from Assumption 2.2 that, for allx ∈ [−1, 1]q, |s(x)| ≤ ξ . Define a
clipped subset of̄Sm as

Sm = {[g∨ (−ξ)] ∧ ξ | g ∈ S̄m}, (7)

where∨ = max and∧ = min. Define a set of dimensions as

Mn =
{
m | 1≤ m≤ κ1

√
n/(ln n)κ2 ≡ Mn

}
, (8)

where ln= loge and the constants

κ1 ≥ 1 (9)

and

κ2 =
{

0 for prequential estimation

1 for cross-validated estimation
(10)

are selected with hindsight to establish the rates of convergence given in Theorem 2.1.

2.2. Prequential and cross-validated regression estimators

Given the set of model dimensionsMn defined in (8) and the parametric model class defined
in (7), compute the prequential regression estimatorŝ(p)n by proceeding as in figure 1 and
compute the cross-validated regression estimatorŝ(c)n by proceeding as in figure 2.

We now establish rates of convergence for the integrated mean squared errors of the
estimatorŝs(p)n andŝ(c)n . Let PX denote the marginal distribution ofX0.

Theorem 2.1. Suppose Assumptions2.1, 2.2, 2.3, and 2.4 hold. Then, the following
bounds hold for each n≥ 2.

(prequential regression estimation)

E
∫
Rq

[
s(x)− ŝ(p)n (x)

]2
dPX(x) ≤ (constant)

ln n√
n
. (11)

(cross-validated regression estimation)

E
∫
Rq

[
s(x)− ŝ(c)n (x)

]2
dPX(x) ≤ (constant)

√
ln n

n
. (12)

The proof can be found in Section 4.2. The abstract upper bounds established in Section 4
(see Theorem 4.1) are a key step in establishing Theorem 2.1.
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So far, we have dealt with the off-line versions of the prequential and the cross-validated
regression estimators. We now consider on-line versions of these estimators. In the on-line
case, for eachk ≥ 1, having seenk observations{Xi ,Yi }ki=1, one is interested in predicting
Yk+1 given Xk+1. We can apply the estimation schemes in figures 1 and 2 to the on-line
case by observing that for eachk one can use the prequential regression estimatorŝ(p)k or
the cross-validated regression estimatorŝ(c)k based onk observations{Xi ,Yi }ki=1.

In the on-line case, one is interested in measuring the performance of the sequence
of prequential regression estimators{ŝ(p)k }nk≥1 or the sequence of cross-validated regression
estimators{ŝ(c)k }nk≥1 and not in measuring the performance of the regression estimatorsŝ(p)n

or ŝ(c)n as considered in Theorem 2.1. Hence, in the on-line case, an appropriate measure of
performance is the time-averaged expected prediction error.

We now establish upper bounds on the time-averaged expected prediction errors of the
sequences of estimators{ŝ(p)k }nk≥1 and{ŝ(c)k }nk≥1.

Corollary 2.1. Suppose Assumptions2.1, 2.2, 2.3, and 2.4 hold. Then, the following
bounds hold for each n≥ 2.

(prequential regression estimation)

1

n

n∑
k=1

E
[
Yk+1− ŝ(p)k (Xk+1)

]2
< E[Y0− s(X0)]

2+ (constant)
ln n√

n
. (13)

(cross-validated regression estimation)

1

n

n∑
k=1

E
[
Yk+1− ŝ(c)k (Xk+1)

]2
< E[Y0− s(X0)]

2+ (constant)

√
ln n

n
. (14)

The proof can be found in Section 4.2.
Observe that the left-hand sides of (13) and (14) represent the time-averaged expected

prediction errors of the sequence of prequential estimators{ŝ(p)k }nk≥1 and the sequence of
cross-validated estimators{ŝ(c)k }nk≥1, respectively. The first-terms on the right-hand sides of
(13) and (14) represent the smallest possible expected prediction error. Thus, one may inter-
pret Corollary 2.1 as establishing finite-sample upper bounds on theexcesstime-averaged
expected prediction errors of{ŝ(p)k }nk≥1 and{ŝ(c)k }nk≥1.

Remark 2.1. In this remark, fix the model dimensionm. Suppose that we have computed
the prequential loss PREQ(m, n) and the cross-validation loss CV(m, n) using figures 1
and 2, respectively. Now, suppose that we have one additional observation{Xn+1,Yn+1}
and would like to compute PREQ(m, n+ 1) and CV(m, n+ 1).

To calculate the prequential loss, we first compute the least-squares estimator

ŝ(m,n) = arg min
g∈Sm

{
n∑

i=1

[Yi − g(Xi )]
2

}
∈ Sm,
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and then write

PREQ(m, n+ 1) = PREQ(m, n)+ [Yn+1− ŝ(m,n)(Xn+1)
]2
. (15)

To calculate the cross-validation loss, we first compute(n+ 1) least-squares estimators

ŝ( j )
(m,n) = arg min

g∈Sm

{
n+1∑

i=1,i 6= j

[Yi − g(Xi )]
2

}
∈ Sm, j = 1, 2, . . . , (n+ 1),

and then write

CV(m, n+ 1) =
n+1∑
j=1

[
Yj − ŝ( j )

(m,n)(X j )
]2

(16)

Observe that it is not possible to use the cross-validation loss CV(m, n) in computing
CV(m, n+ 1) in (16). For each new observation we must compute the cross-validation loss
from scratch. In contrast, for the prequential loss, for each new observation we only need
to compute the second quantity on the right-hand side of (15). Hence, in an on-line setting,
prequential model selection is computationally more efficient.

Note that, for both prequential model selection and cross-validation, the model dimen-
sionsm̂(p)

n+1 andm̂(c)
n+1 must be recomputed using (1) and (3), respectively, and cannot be

written as recursive updates to the previous model dimensionsm̂(p)
n andm̂(c)

n .

Remark 2.2(upper bounds on the number of hidden units). Note that the prequential
regression estimator selects the number of hidden units, in a data-driven fashion, from the
range

1≤ m≤ √n.

Similarly, the cross-validated regression estimator selects the number of hidden units, in a
data-driven fashion, from the range

1≤ m≤
√

n/(ln n).

The choices of the upper limits of the above ranges (roughly
√

n) are the appropriate values
needed to establish the rates of convergence given in Theorem 2.1 for the specific class of
regression functions satisfying Assumption 2.3. These upper bounds arise from the upper
bounds on the complexity of the model classSm that we derive in the proof of Theorem 2.1.
For the class of regression functions satisfying Assumption 2.3, the imposition of a cap on
the number of hidden units limits the data-driven search for the model dimension, and is
thus computationally appealing. For a different smoothness assumption on the regression
function, a different model class and a correspondingly different set of dimensions must be
used to obtain the appropriate rate of convergence under that assumption.
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Remark 2.3(computational complexity of nonlinear least-squares). The least-squares es-
timators ŝ(m, j−1) and ŝ( j )

(m,n−1) employed in figures 1 and 2, respectively, are clearly and
unambiguously defined—and hence exist. Implicitly, while establishing the rates of con-
vergence results in Theorem 2.1 and Corollary 2.1, we assumed that these least-squares
estimators can indeed be computed. Such an assumption is the very basis for apply-
ing Vapnik’s empirical risk minimization theory to neural networks, and has been widely
used in the literature dealing with rates of convergence results for neural networks and
other models, see, for example, Barron (1994), Barron, Birg´e, & Massart (1996), Breiman
(1993), Haussler (1992), Kearns (1997), Lugosi & Nobel (1995), Lugosi & Zeger (1996),
McCaffrey & Gallant (1994), Modha & Masry (1996, 1998), Vapnik (1982, 1995), and
White (1989).

In the context of neural networks, the problem of finding the (nonlinear) least-squares
estimators is known to be computationally intractable, see, for example, Jones (1997). In
practice, it is common to use heuristic “approximations” to the least-squares estimators
obtained by repeatedly applying the error backpropagation algorithm (Sarkar, 1995) started
from a number of initial weights. To quote Kearns (1997): “The extent to which the theory
presented here applies to such heuristics will depend in part on the extent to which they
approximate training error minimization for the problem under consideration”. In any case,
the backpropagation algorithm seems to work quite well in our simulation study presented
in Section 3.

Remark 2.4(comparison with complexity-regularized least squares estimator). Assum-
ing that Assumptions 2.1, 2.2, 2.3, and 2.4 hold, Barron (1994) proposed a complexity-
regularized least squares estimator, sayŝ(b)n , based on neural networks, and established
that

E
∫
Rq

[
s(x)− ŝ(b)n (x)

]2
dPX(x) ≤ (constant)

√
ln n

n
. (17)

It follows from (11) and (17) that the rate of convergence achieved by the prequential
regression estimators is within a logarithmic factor of that achieved by the complexity-
regularized regression estimator. Similarly, it follows from (12) and (17) that the rate
of convergence achieved by the cross-validated regression estimator is identical to that
achieved by the complexity-regularized regression estimator.

Suppose that the underlying regression functions is parametric, that is, is a member of a
finite-dimensional parametric model, saySm? . In this case, it is known that the complexity-
regularized regression estimator isorder-universal, that is, the complexity-regularized re-
gression estimator, which does not know the true dimensionm?, delivers the same rate of
integrated mean-squared error as that delivered by an estimator that knows the true dimen-
sion. See Barron (1994), Barron, Birg´e, & Massart (1996), and Modha & Masry (1998).
Establishing order-universality results for prequential and cross-validated regression esti-
mators currently remains an open problem.

Remark 2.5(almost sure convergence). An important open problem is to establish that the
excess time-averaged prediction error of the sequence of prequential estimators{ŝ(p)k }nk≥1
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converges almost surely to zero, that is,

1

n

n∑
k=1

{[
Yk+1− ŝ(p)k (Xk+1)

]2− [Yk+1− s(Xk+1)]
2
}→ 0 almost surely asn→∞.

In addition, it would be interesting to determine the almost sure rate of convergence.
Finally, similar results will also be interesting for the sequence of cross-validated esti-
mators{ŝ(c)k }nk≥1.

2.3. Prequential and cross-validated mixture regression estimators

In the context of density estimation, Dawid (1991) has proposed a Bayesian mixture density
estimator. Here, we extend his ideas to regression estimation.

For m ≥ 1, let log?2(m) = dlog2(m)e+ dlog2dlog2(m)ee+ · · · where the sum involves
only the non-negative terms. Intuitively, log?2(m) denotes the number of bits in a self-
delimiting code for the integerm. For m ≥ 1, let Q(m) = c?2− log?2(m) denote a prior
density on the set of natural numbers, where the normalization constantc? ensures that∑

m≥1 Q(m) = 1. The precise value ofc? is not required in the sequel. The prior densityQ
is a slightly modified version of the universal prior density proposed by Rissanen (1983).

Suppose we are given a set of observations{Xi ,Yi }ni=1, a suitable set of dimensions
Mn = {1, 2, . . . ,Mn}, and a sequence of finite-dimensional parametric models{Sm}m∈Mn .

Define the prequential mixture regression estimator as

ŝ(pmix)
n =

Mn∑
m=1

αm,n ŝ(m,n), (18)

whereŝ(m,n) ∈ Sm denotes the least-squares estimator based on observations{Xi ,Yi }ni=1
and the weightsαm,n are defined as

αm,n =
α′m,n∑Mn
k=1 α

′
k,n

. (19)

where fork = 1, 2, . . . ,Mn,

α′k,n = Q(k)
n∏

j=1

1√
2πσ̂ 2

(k, j−1)

exp
(− [Yj − ŝ(k, j−1)(X j )

]2/(
2σ̂ 2

(k, j−1)

))
=
(

c?

(2π)n/2

)
2− log?2(k)

n∏
j=1

1√
σ̂ 2
(k, j−1)

exp
(− [Yj − ŝ(k, j−1)(X j )

]2/(
2σ̂ 2

(k, j−1)

))
(20)

whereŝ(k, j−1) ∈ Sk denotes the least-squares estimator based on observations{Xi ,Yi } j−1
i=1

and σ̂ 2
(k,0) is set to a constant value, say 1, and, forj > 1, σ̂ 2

(k, j−1) denotes the residual
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least-squares error

σ̂ 2
(k, j−1) =

1

j − 1

j−1∑
i=1

[
Yi − ŝ(k, j−1)(Xi )

]2
. (21)

Observe that for computational purposes we can safely replace the constant factorc?/(2π)n/2

in (20) by 1, since it appears in both the numerator and denominator of (23).
Now, define the cross-validated mixture regression estimator as

ŝ(cmix)
n =

Mn∑
m=1

βm,n ŝ(m,n), (22)

whereŝ(m,n) ∈ Sm denotes the least-squares estimator based on observations{Xi ,Yi }ni=1
and the weightsβm,n are defined as

βm,n =
β ′m,n∑Mn
k=1 β

′
k,n

. (23)

where fork = 1, 2, . . . ,Mn,

β ′k,n = Q(k)
n∏

j=1

1√
2π
(
σ̂
( j )
(k,n)

)2 exp
(− [Yj − ŝ( j )

(k,n)(X j )
]2/(

2
(
σ̂
( j )
(k,n)

)2))

=
(

c?

(2π)n/2

)
2− log?2(k)

n∏
j=1

1√(
σ̂
( j )
(k,n)

)2 exp
(− [Yj − ŝ( j )

(k,n)(X j )
]2/(

2
(
σ̂
( j )
(k,n)

)2))
(24)

whereŝ( j )
(k,n) ∈ Sk denotes the least-squares estimator based on observations{Xi ,Yi }ni=1,i 6= j

and(σ̂ ( j )
(k,n))

2 denotes the residual least-squares error

(
σ̂
( j )
(k,n)

)2 = 1

n− 1

n∑
i=1,i 6= j

[
Yi − ŝ( j )

(k,n)(Xi )
]2
. (25)

Observe that for computational purposes we can safely replace the constant factorc?/(2π)n/2

in (24) by 1, since it appears in both the numerator and denominator of (23).
Establishing rates of convergence for the statistical risks of the prequential and the cross-

validated mixture regression estimators currently remains an open problem. In the next
section, we empirically assess the performance of these estimators.

3. Computer simulations

We now empirically demonstrate the performance of prequential model selection and cross-
validation via two simple, simulated examples. We also empirically compare prequential
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and cross-validated regression estimators with prequential and cross-validated mixture re-
gression estimators.

For various appealing computer simulation studies demonstrating prequential model
selection (i) in the context of ARMA order selection (see Dawid, 1991; Rissanen, 1989);
(ii) in the context of density estimation using histograms (see Dawid, 1991; Rissanen,
Speed, & Yu, 1992); (iii) in the context of linear least-squares regression (see Rissanen,
1986a); and (iv) in the context of nonlinear ARMA order selection using neural networks
(see Rissanen, 1994; Lehtokangas et al., 1996).

Throughout this section, we let the sigmoidal functionφ to be the logistic sigmoidal
function, namely

φ(u) = 1

1+ exp(−u)
.

3.1. Learning a smooth regression function

We generatedn = 300 independent samples{Xi ,Yi }ni=1, where, fori = 1, 2, . . . ,n, each
Xi was uniformly distributed in the interval [−1, 1] and each

Yi = s(Xi )+ σ Zi ,

whereσ = 0.15, Zi ∼ N (0, 1), and the regression functions was selected to be a fifth-
degree polynomial

s(x) = 7(x − 1)(x − 0.5)(x − 0.25)(x + 0.5)(x + 1). (26)

Clearly, E[Yi | Xi ] = s(Xi ). Our goal is to learn the true regression functions from the
observations{Xi ,Yi }ni=1. We plot the observations{Xi ,Yi }ni=1 and the regression function
s in figure 3.

We compute the prequential regression estimator by proceeding as in figure 1 with the
set of dimensionsMn ≡M300 = {1, 2, . . . ,20} and the set of parametric models in (7).
To reduce the amount of computation, we divided the set of observations{Xi ,Yi }ni=1 into
12 consecutive blocks each of size` = 25. Specifically, we use the following modified
“block” prequential estimation scheme:

for m := 1 to Mn step 1
Choose a fixed initial estimatorŝ(m,0) ∈ Sm

PREQ(m, `) :=∑`
k=1[Yk − ŝ(m,0)(Xk)]2

for j := 2` to n step `
compute the least-squares estimator

ŝ(m, j−`) := arg ming∈Sm

{∑ j−`
i=1 [Yi − g(Xi )]2

} ∈ Sm

update the prequential loss
PREQ(m, j ) :=PREQ(m, j − `)

+
∑̀
k=1

[
Yj−`+k− ŝ(m, j−`)(X j−`+k)

]2
endfor;

endfor;
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Figure 3. Noisy observations and the true regression function.

The computations were done using the neural networks toolbox in MATLAB, which in-
cludes a routine (“initff”) for selecting the initial estimatorŝ(m,0). The least-squares step in
the above estimation scheme was computed using traditional error backpropagation with
learning rate= (0.15)/( j − `). In other words, the learning rate was lowered with the
increasing number of observations. Furthermore, to computeŝ(m, j−`) we used̂s(m, j−2`) as
the initial starting point for the backpropagation procedure.

In figure 4, we plot the prequential loss PREQ(m, n) and the least-squares loss∑n
i=1[Yi − ŝ(m,n)(Xi )]2 as a function of the number of hidden unitsm. It can be seen

from figure 4 that the least-squares loss essentially decreases with increasingm, and hence
is not a good yardstick for model selection. On the other hand, the prequential loss de-
creases initially and then increases with increasingm. The prequential loss achieves a clear
minimum atm̂(p)

n = 6.
In figure 5, we plot the true regression function and the prequential regression estimator

corresponding tom̂(p)
n . It can be seen from figure 5 that there is an excellent agreement

between the true regression function and the prequential regression estimator.
We compute coefficients{αm,n}20

m=1 of the prequential mixture regression estimator by
proceeding essentially as in (19), (20), and (21). (In fact, we slightly modified these equations
to reflect that block sizè = 25. For the sake of brevity, we omit the presentation of
the modified estimation scheme.) We plot{αm,n}20

m=1 in figure 6. It can be seen that the
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Figure 4. Prequential loss (solid line) and least-squares loss (dotted line).

Figure 5. The true regression function (solid line) and the prequential regression estimator (dotted line). In this
case, the prequential mixture regression estimator is identical to the prequential regression estimator.
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Figure 6. Weights of various hidden units in the prequential mixture regression estimator.

prequential mixture regression estimator assigns all the weight to the neural network with
m= 6 hidden units. Consequently, in this case, the prequential mixture regression estimator
is identical to the prequential regression estimator.

We now compute the cross-validated regression estimator by proceeding as in figure 2
with the set of dimensionsMn≡M300={1, 2, . . . ,20} and the set of parametric models
as in (7). To reduce the amount of computation involved, we divided the set of observations
{Xi ,Yi }ni=1 into 12 consecutive blocks each of size` = 25. Specifically, we use the following
modified “block” cross-validated estimation scheme:

for m := 1 to Mn step 1
for j := ` to n step `

delete observations{Xk,Yk} jk= j−`+1 from {Xi ,Yi }ni=1

compute the least-squares estimator based on{Xi ,Yi }ni=1,i 6∈{ j−`+1,···, j }
ŝ( j−`+1,···, j )
(m,n−1) := arg ming∈Sm

{∑n
i=1,i 6∈{ j−`+1,···, j }[Yi − g(Xi )]2

}∈ Sm

endfor;
compute the cross-validation loss

CV(m, n) :=∑bn/`cj ′=1, j= j ′`
∑`

k=1[Yj−`+k − ŝ( j−`+1,···, j )
(m,n−`) (X j−`+k)]2

endfor;
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Figure 7. Cross-validation loss (solid line) and least-squares loss (dotted line).

The computations were done using the neural networks toolbox in MATLAB. The least-
squares step in the above estimation scheme was computed using traditional error back-
propagation with learning rate= (0.15)/(n − `). For each fixed dimensionm, the same
initial starting weight was used for all differentj . In figure 7, we plot the cross-validation
loss CV(m, n) and the least-squares loss

∑n
i=1[Yi − ŝ(m,n)(Xi )]2 as a function of the number

of hidden unitsm. Although not evident to the naked eye from figure 7, the cross-validation
loss achieves a rather shallow minimum atm̂(c)

n = 8. Please see Remark 3.1 for a comparison
of figures 4 and 7.

In figure 8, we plot the true regression function and the cross-validated regression estima-
tor corresponding tôm(c)

n . It can be seen from figure 8 that there is a fairly good agreement
between the true regression function and the cross-validated regression estimator.

We compute coefficients{βm,n}20
m=1 of the cross-validated mixture regression estimator

by proceeding essentially as in (23), (24), and (25). (In fact, we slightly modified these
equations to reflect that block size` = 25. For the sake of brevity, we omit the presentation
of the modified estimation scheme.) We plot{βm,n}20

m=1 in figure 9. It can be seen that the
cross-validated mixture regression estimator assigns a large weight to the neural network
with m= 8 hidden units and relatively small weights to the rest.

The cross-validated mixture regression estimator corresponding to coefficients{βm,n}20
m=1

is plotted in figure 8. Once again, there is an excellent agreement between the true regression
function and the cross-validated mixture regression estimator.
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Figure 8. The true regression function (solid line), the cross-validated regression estimator (dotted line), and the
cross-validated mixture regression estimator (dash-dotted line).

Figure 9. Weights of various hidden units in the cross-validated mixture regression estimator.
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3.2. Learning a piecewise continuous regression function

We now present simulation results for a piecewise continuous regression function with two
discontinuities, namely

s′(x) =


s(x)− 1 if −1≤ x ≤ −0.2,

s(x)+ 1 if −0.2< x ≤ 0.4,

s(x)− 1 if 0.4< x ≤ 1,

(27)

where the functions is as in (26). We generatedn = 300 independent samples{Xi ,Yi }ni=1,
where, fori = 1, 2, . . . ,n, eachXi was uniformly distributed in the interval [−1, 1] and
each

Yi = s′(Xi )+ σ Zi ,

whereσ = 0.15, Zi ∼ N (0, 1), ands′ is as in (27). We plot the observations{Xi ,Yi }ni=1
and the regression functions′ in figure 10. We computed the prequential regression estimator,
the prequential mixture regression estimator, the cross-validated regression estimator, and
the cross-validated mixture regression estimator by proceeding exactly as in the previous
subsection except withMn ≡M300= {1, 2, . . . ,18}.

We found that the behavior of the prequential loss and the cross-validation loss was
essentially the same as that depicted in figures 4 and 7, respectively. We omit the plots for

Figure 10. Noisy observations and the true regression function.
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Figure 11. The true regression function (solid line), the prequential regression estimator (dotted line), and the
cross-validated regression estimator (dash-dotted line).

brevity. The prequential loss achieves a minimum atm̂(p)
n = 12, while the cross-validation

loss achieves a minimum atm̂(c)
n = 18.

In figure 11, we plot the true regression function, the prequential regression estimator
corresponding tôm(p)

n , and the cross-validated regression estimator corresponding tom̂(c)
n .

It can be seen from figure 11 that there is an excellent agreement between the true regression
function and both the estimators.

In figures 12 and 13, we plot the coefficients{αm,n}18
m=1 and the coefficients{βm,n}18

m=1,
respectively. It can be seen from figure 12 that the prequential mixture regression estimator
assigns all the weight to the neural network withm = 12 hidden units. Also, it can be
seen from figure 13 that the cross-validated mixture regression estimator assigns a large
weight to the neural network withm= 16 hidden units and relatively small weights to the
rest.

3.3. Discussion

Remark 3.1(comparisons between prequential and cross-validated regression estimators).
Theoretically, both the prequential and the cross-validated regression estimators enjoy sim-
ilar rates of convergence (see Theorem 2.1 and Corollary 2.1). Also, empirically, it can be
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Figure 12. Weights of various hidden units in the prequential mixture regression estimator.

Figure 13. Weights of various hidden units in the cross-validated mixture regression estimator.
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seen from figures 5, 8, and 11 that in both the examples there is an excellent agreement
between the true regression function and both the estimators.

Nonetheless, it can be seen from figures 4 and 7, figures 6 and 9, and also from figures 12
and 13 that prequential model selection generates a clear and unequivocal estimate of the
model dimension while cross-validation does not. For example, in figure 7, the cross-
validation loss achieved by the neural network withm= 20 hidden units is only marginally
higher than that achieved by the neural network withm = 8 hidden units. However, the
estimator corresponding tom= 20 is a considerably poorer estimate of the true regression
function than the estimator corresponding tom = 8. This leads us to conjecture that pre-
quential model selection is order-consistent and that cross-validation is not order-consistent.
Furthermore, in the above examples, we found that computing the cross-validated regres-
sion estimator was roughlỳ-times (wherè = 12) more expensive than computing the
prequential regression estimator. In this light, we believe that in practice prequential model
selection is more reliable and useful than cross-validation.

Remark 3.2. Observe that Theorem 2.1 assumes that the block size` = 1, whereas, in this
section, we used a computationally more convenient block size` = 25. A close examination
of our proofs reveals that the rates of convergence results established in Theorem 2.1
continue to hold if̀ grows slower thann.

Remark 3.3. Statistically speaking, it would be desirable to generate a number of in-
dependent data sets, and to compute the prequential and the cross-validated regression
estimators for each of the data set. One would then plot average results over these multiple
(Monte Carlo) runs—and not simply plot results over a single data set as we do. However,
the training of neural networks being computationally expensive, we limit our experiments
to a single data set. This is not an uncommon practice in neural network literature. Moreover,
it can be argued that, in practice the user will most often have only one set of observations.

Remark 3.4. Consider the following generic problem. Given a fixed dimensionm and
observations{Xi ,Yi }ni=1, we are interested in computing the least-squares estimator

ŝ(m,n) = arg min
g∈Sm

{
n∑

i=1

[Yi − g(Xi )]
2

}
.

Directly computingŝ(m,n) using traditional error backpropagation is a computationally ex-
pensive exercise. We empirically found that the following procedure—inspired by the
prequential approach—is computationally much more efficient.

Choose a fixed initial estimatorŝ(m,0) ∈ Sm

for j := 2` to n step `
compute the least-squares estimator starting fromŝ(m, j−2`)

ŝ(m, j−`) := arg ming∈Sm

{∑ j−`
i=1 [Yi − g(Xi )]2

} ∈ Sm

endfor;
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where we lower the learning rate of the backpropagation procedure with the increasing sam-
ple sizej . Intuitively, the sequential least-squares minimization scheme outlined above is a
heuristic for successively refining the error surface on which gradient descent is performed.

4. Abstract estimation framework and derivations

In this section, we estimate the regression functions using prequential and cross-validated
estimators based on an abstract list of parametric models, say{Sm}m∈Mn , whereMn is
allowed to grow as a function of the sample sizen. We establish deterministic upper bounds
on the integrated mean-squared errors of these estimators in Theorem 4.1. Theorem 4.1
is then employed to establish Theorem 2.1. This approach leads to shorter proofs and
simultaneously permits a considerable degree of generality. For example, Theorem 4.1 is
not limited to neural networks, but may also apply to wavelets, polynomials, splines, and
Fourier series.

We now briefly sketch the main ideas involved in the proof of Theorem 4.1. Following
Vapnik (1982, 1995), exponential probability bounds derived from Bernstein and Hoeffding
inequalities (Hoeffding, 1963) have become a standard tool in obtaining rates of convergence
results for nonparametric estimators, see, for example, Barron (1991), Barron, Birg´e, &
Massart (1996), Haussler (1992), Lugosi & Nobel (1995), McCaffrey & Gallant (1994),
and Modha & Masry (1996, 1997). Here, we utilize one such exponential probability bound
(see (42)) derived in Barron, Birg´e, & Massart (1996)—referred to as BBM hereafter. It
should be noted that our results are not an obvious consequence of the result in BBM.
To be sure, their work is focussed entirely on establishing rates of convergence results for
various complexity-regularized estimators; they considered neither the prequential nor the
cross-validated regression estimators. We now briefly explain the purpose and the mode of
action of various technical assumptions and highlight the main steps leading to the proof
of Theorem 4.1 which is quite lengthy.

1. The exponential bound (see (42)) requires that for each fixedm ∈Mn, the setSm is not
too “fat.” This condition is precisely captured in Assumptions 4.1 and 4.2. The expo-
nential bounds are derived in BBM using the classical Bernstein inequality (Hoeffding,
1963). The boundedness condition required by the Bernstein inequality is furnished in
Assumptions 2.2 and 4.3.

2. We harness the exponential bounds in (42) for the analysis of prequential regression
estimators in (47) by using the fact that the least-squares loss is upper bounded by the
prequential loss (see Lemma 4.1). Also, see Lemma 4.2 where we establish that the
least-squares loss is upper bounded by the cross-validation loss.
Figures 4 and 7 serve as an empirical validation of Lemmas 4.1 and 4.2, respectively.

3. The technical condition in Assumption 4.4 allows us to employ a simple probability
inequality in Lemma A.6 of Modha and Masry (1996) to derive the bounds in (49).

4. Finally, we exploit special structures of the prequential loss and the cross-validation
loss, respectively, in sequences of inequalities (51) and (53) to complete the proof of
Theorem 4.1.
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Having derived the abstract bounds in Theorem 4.1, we adapt these bounds to estimators
based on neural networks by employing Example 4.1 (see (54) and step (a) of (57)). Finally,
since Assumptions 2.1, 2.3, and 2.4 hold, by appealing to the approximation error bounds
derived in Corollary 1 of Barron (1994) in step (b) of (57), we complete the proof of
Theorem 2.1.

4.1. Abstract estimation framework

We introduce an abstract sequence of finite-dimensional models. LetMn denote an arbitrary
collection of model dimensions. For each fixed dimensionm ∈ Mn, let Sm ⊂ L2(PX)

denote a finite-dimensional parametric family of functions, wherePX denotes the marginal
distribution of X0. For example, see (7) and (8).Dm denotes the number of parameters
necessary to describe the elements ofSm in the following precise sense.

Assumption 4.1. For each sample size n and for each dimension m, there exists constants
1 ≤ Bm,n < ∞, 1 ≤ Dm < ∞, and0 < rm < ∞ such that for eachδ > 0 and for each
ballB ⊂ Sm with radiusσ ≥ [5δ∨(Dm/n)1/2] there exists a finite set T= T(m, δ,B) ⊂ B
with

cardinality(T) ≤ (Bm,nσ/δ)
Dm

such that

sup
g∈B

inf
f ∈T
‖g− f ‖∞ ≤ rmδ.

Assumption 4.1 is essentially Assumption M
′
2,∞ of BBM specialized to least-squares

regression estimation. More generally, it may be possible to replace Assumption 4.1 by
Assumption M of BBM, however, for the sake of simplicity and brevity we do not pursue
such generalizations here.

Example 4.1(neural networks). It follows from Sections 3.2.2 and 5.5 of BBM that
Assumption 4.1 holds for the parametric family of functionsSm based on neural networks
(see (6) and (7)) with

rm = 1, Bm,n = (8eC)
[√

n/Dm ∨ (1/5)
]
, andDm = 1+m(q + 2). (28)

For eachm ∈Mn, let

Lm = 5

2
ln
[
12Bm,n(1+ rm

√
Dm/n)

]
. (29)

A certain factorLm, which is roughly the logarithm of the number of parametric families
with dimensionDm included in the set{Sm}m∈Mn , will also be needed below.
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Assumption 4.2 (Assumption S of BBM). There exists a family of weights{Lm}m∈Mn

such that1≤ Lm <∞ for each m∈Mn, and∑
m∈Mn

exp[−LmDm] = 6 <∞.

Example 4.1(continued). Assumption 4.2 holds forSm based on neural networks with

Lm = 1. (30)

Assumption 4.3. The elements ofSm are uniformly bounded byξ, where ξ is as in
Assumption2.2.

Example 4.1(continued). It follows from (7) that Assumption 4.3 holds for neural net-
works.

Assumption 4.4. For each fixed n≥ 1, the set of dimensionsMn is such that

sup
m∈Mn

Dm <∞, sup
m∈Mn

Lm <∞, sup
m∈Mn

Lm <∞.

Example 4.1(continued). It follows from (8), (9), (10), (28), (30), and (29) that Assump-
tion 4.4 holds for neural networks.

Define abstract prequential estimatorŝ(p)n as in (1) and (2) (see figure 1) and abstract
cross-validated estimatorŝ(c)n as in (3) and (4) (see figure 2), where{Sm}m∈Mn represents
a sequence of abstract finite-dimensional models. We now establish deterministic upper
bounds on the integrated mean-squared errors of these estimators.

Theorem 4.1. Suppose that Assumptions2.2, 4.1, 4.2, 4.3, and4.4 hold. For each m,
let sm be such that d2(sm, s) = inft∈Sm d2(t, s). Letκ5, κ6, andλ denote positive constants.
Then, for each n≥ 2, the following upper bounds hold.

(prequential regression estimation)

E
∫
Rq

[
s(x)− ŝ(p)n (x)

]2
dPX(x)

≤ inf
m∈Mn

{
κ5d2(sm, s)+ [κ6(2+Lm)(ln(n− 1)+ 1)+ (λLm ∨ 1)+ λLm]

Dm

n

}
+ E

[
[(λLm̂ ∨ 1)+ λLm̂]

Dm̂

n

]
+ 8ξ2+ 4.16λ

n
, (31)

wherem̂= m̂(p) andŝ(p)n = ŝ(m̂,n).
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(cross-validated regression estimation)

E
∫
Rq

[
s(x)− ŝ(c)n (x)

]2
dPX(x)

≤ inf
m∈Mn

{
κ5d2(sm, s)+ [2κ6(2+ Lm)+ (λLm ∨ 1)+ λLm]

Dm

n

}
+ E

[
[(λLm̂ ∨ 1)+ λLm̂]

Dm̂

n

]
+ 4.16λ

n
, (32)

wherem̂= m̂(c)
n andŝ(c)n = ŝ(m̂,n).

The proof can be found in the next sub-section.

Remark 4.1. For the reader’s convenience, we note that our symbolsBm,n, Lm, and
χ2(m,m′) correspond, respectively, to the symbolsB′m, L′m, andx2(m,m′) in BBM.

4.2. Derivations

For the sake of brevity, throughout this subsection, we writeZ j = (X j ,Yj ), j = 1, 2, . . . ,n,
write

γ (Z j , g) = [Yj − g(X j )]
2, (33)

write

γn(g) = n−1
n∑

j=1

γ (Z j , g), (34)

and write

d2(g, f ) =
∫
Rd

[g(x)− f (x)]2 dPX(x), (35)

whereg and f are functions inL2(PX). The following two simple lemmas are important
steps in establishing Theorem 4.1.

Lemma 4.1. For each n≥ 1 and for each m,

n∑
j=1

γ
(
Z j , ŝ(m,n)

) ≤ n∑
j=1

γ
(
Z j , ŝ(m, j−1)

)
.

Proof: Observe that for anyi ≥ 1, since ŝ(m,n) minimizes the least-squares error∑n
j=1 γ (Z j , ·) we have that

i∑
j=1

γ
(
Z j , ŝ(m,i )

) ≤ i−1∑
j=1

γ
(
Z j , ŝ(m,i−1)

)+ γ (Zi , ŝ(m,i−1)
)
. (36)

The lemma follows by applying (36)n-times withi = n, n− 1, . . . ,1. 2
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Lemma 4.2. For each n≥ 2 and for each m,

n∑
j=1

γ
(
Z j , ŝ(m,n)

) ≤ n∑
j=1

γ
(
Z j , ŝ

( j )
(m,n−1)

)
.

Proof: Observe that for any 1≤ i ≤ n, sinceŝ(m,n) minimizes the least-squares error∑n
j=1 γ (Z j , ·) we have that

n∑
j=1

γ
(
Z j , ŝ(m,n)

) ≤ n∑
j=1

γ
(
Z j , ŝ

(i )
(m,n−1)

)
, (37)

and sincês(i )(m,n−1) minimizes the least-squares error
∑n

j=1, j 6=i γ (Z j , ·) we have that

n∑
j=1, j 6=i

γ
(
Z j , ŝ

(i )
(m,n−1)

) ≤ n∑
j=1, j 6=i

γ
(
Z j , ŝ(m,n)

)
. (38)

And, now it follows from (37) and (38) that

γ
(
Zi , ŝ(m,n)

) ≤ γ (Zi , ŝ
(i )
(m,n−1)

)
. (39)

The lemma now follows by applying (39)n-times withi = 1, 2, . . . ,n. 2

Proof of Theorem 4.1: We first establish bounds on the risk of the prequential estimator
ŝ(p)n = ŝ(m̂(p),n). For the sake of brevity, we writês= ŝ(p)n and m̂ = m̂(p). Let a fixed
dimensionm ∈Mn be a given. For anym′ ∈Mn, write

nχ2(m,m′) = θ + (nσ 2
m ∨ nσ 2

m′
) ∨ λ(LmDm ∨ Lm′Dm′) (40)

whereθ ≥ 0, Lm andLm′ are as in Assumption 4.2,Dm andDm′ are as in Assumption 4.1,
andσ 2

m andσ 2
m′ are obtained from

σ 2
m = [λLm ∨ 1]

Dm

n
, (41)

whereλ > 0 is an appropriate constant arising in Proposition 7 of BBM. Precise value of
λ is not important in implementing the estimators considered in this paper.

By proceeding as in the proof of Theorem 9 in BBM, it can be checked that our Assump-
tions 2.2 and 4.3 imply that Assumption Lip of BBM holds.

Now, since our Assumptions 4.1 and 4.2, and Assumption Lip of BBM hold, we have
from Eq. (5.17) of BBM that, for any fixedsm ∈ Sm,

P

{
sup

m′∈Mn

sup
g∈Sm′

{γn(sm)− E[γn(sm)]} − {γn(g)− E[γn(g)]}
d2(s, g) ∨ d2(sm, s) ∨ χ2(m,m′)

>
1

2

}
≤ 4.16 exp(−θ/λ),

(42)
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whereγn(sm) andγn(g) are obtained from (34) andd2(s, g) andd2(sm, s) are obtained
from (35). For completeness, we note that (42) is obtained from Eq. (5.17) of BBM
by suitably adapting the latter to the specific case of least-squares regression estima-
tion. Since (42) holds for any fixedsm∈ Sm, from now onwards letsm be such that
d2(sm, s) = inft∈Sm d2(t, s). Now, for any f ∈ L2(PX),

E[γn(s)− γn( f )]

= n−1E
n∑

j=1

{[Yj − s(X j )]
2− [Yj − f (X j )]

2}

=−n−1
n∑

j=1

E{[s(X j )− f (X j )]
2− 2[s(X j )−Yj ][ f (X j )− s(X j )]}

=−E[s(X j )− f (X j )]
2+ 2n−1

n∑
j=1

E{E[(s(X j )−Yj ) | X j ][ f (X j )− s(X j )]}

(a)= −d2(s, f ). (43)

Thus, it follows from (43) that

E[γn(g)]− E[γn(sm)] = E[γn(g)− γn(s)]− E[γn(sm)− γn(s)]

= d2(s, g)− d2(s, sm), (44)

and from (42) and (44) that

P

{
sup

m′∈Mn

sup
g∈Sm′

γn(sm)− γn(g)+ d2(s, g)− d2(s, sm)

d2(s, g) ∨ d2(sm, s) ∨ χ2(m,m′)
>

1

2

}
≤ 4.16 exp(−θ/λ).

(45)

Now, it follows from (45) withm′ = m̂ andg = ŝ that

P{2(γn(sm)− γn(ŝ)+ d2(s, ŝ)− d2(s, sm)) ≥ d2(s, ŝ)+ d2(sm, s)+ χ2(m, m̂)}
≤ 4.16 exp(−θ/λ). (46)

Observe that

γn(ŝ) = 1

n

n∑
j=1

γ (Z j , ŝ) = 1

n

n∑
j=1

γ
(
Z j , ŝ(m̂,n)

) (a)≤ 1

n

n∑
j=1

γ
(
Z j , ŝ(m̂, j−1)

)
(b)≤ 1

n

n∑
j=1

γ
(
Z j , ŝ(m, j−1)

)
(47)
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where (a) follows from Lemma 4.1 and (b) follows from (1). Write

Wm,n = d2(s, ŝ)− 3d2(sm, s)− σ 2
m − σ 2

m̂ −
λLmDm +λLm̂Dm̂

n

− 2[γn(s)− γn(sm)] − 2n−1
n∑

j=1

[
γ
(
Z j , ŝ(m, j−1)

)− γ (Z j , s)
]
,

and observe that we have added and subtracted 2γn(s) = 2n−1∑n
j=1 γ (Z j , s). We now

have from (40), (46), and (47) that

P{Wm,n ≥ θ/n} ≤ 4.16 exp(−θ/λ). (48)

For each fixedn ≥ 1 and for eachm ∈Mn, it follows from Assumptions 2.2 and 4.3 that∣∣∣∣∣d2(s, ŝ)− 3d2(sm, s)− 2[γn(s)− γn(sm)]− 2

n

n∑
j=1

[
γ
(
Z j , ŝ(m, j−1)

)− γ (Z j , s)
]∣∣∣∣∣ <∞,

and, sinceBm,n, Dm, rm, andLm are finite constants (see Assumptions 4.1 and 4.2), we
have that

σ 2
m +

λLmDm

n
<∞.

Also, for each fixedn ≥ 1, we have from Assumption 4.4 that

σ 2
m̂ +

λLm̂Dm̂

n
<∞.

Consequently, we have that|Wm,n|< Fm,n<∞ a.s. for some finite constantFm,n. This
implies thatE|Wm,n| < ∞, hence we now have from Lemma A.6 of Modha & Masry
(1996) and from (48) that

E[Wm,n] ≤
∫ ∞

0
P{Wm,n ≥ θ ′} dθ ′ ≤ 4.16

∫ ∞
0

exp(−nθ ′/λ) dθ ′ = 4.16λ

n
.

More explicitly, we have that

E[d2(s, ŝ)]≤ 3d2(sm, s)+ σ 2
m +

λLmDm

n
+ E

[
σ 2

m̂ +
λLm̂Dm̂

n

]
+ 2E[γn(s)− γn(sm)] + 2

n
E

[
n∑

j=1

[
γ
(
Z j , ŝ(m, j−1)

)− γ (Z j , s)
]]+ 4.16λ

n
.

(49)
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We have from (43) that

E[γn(s)− γn(sm)] = −d2(s, sm) ≤ 0. (50)

Also, we have that

2

n
E

n∑
j=1

[
γ
(
Z j , ŝ(m, j−1)

)− γ (Z j , s)
]

= 2

n

n∑
j=1

E
{[

ŝ(m, j−1)(X j )− s(X j )
]2− 2[s(X j )− Yj ]

[
s(X j )− ŝ(m, j−1)(X j )

]}
(a)= 2

n

n∑
j=1

E
[
ŝ(m, j−1)(X j )− s(X j )

]2
= 2

n

n∑
j=1

E
[
E
[(

ŝ(m, j−1)(X j )− s(X j )
)2 ∣∣ X1, X2, . . . , X j−1

]]
= 2

n

n∑
j=1

E
[
d2
(
ŝ(m, j−1), s

)]
= 2

n
E
[
d2
(
ŝ(m,0), s

)]+ 2

n

n∑
j=2

E
[
d2
(
ŝ(m, j−1), s

)]
(b)≤ 8ξ2

n
+ 2

n

n∑
j=2

κ ′9

{
d2(s, sm)+ κ9

(2+ Lm)Dm

j − 1

}
(c)≤ 8ξ2

n
+ 2κ ′9d2(s, sm)+ κ6(2+ Lm)Dm

n
(1+ ln(n− 1)) (51)

where (a) follows since

E
{[

s(X j )− Yj
][

s(X j )− ŝ(m, j−1)(X j )
]}

= E
{
E
[
(s(X j )− Yj )

∣∣ X1, X2, . . . , X j
] [

s(X j )− ŝ(m, j−1)(X j )
]}

= E
{
E
[
(s(X j )− Yj )

∣∣ X j
] [

s(X j )− ŝ(m, j−1)(X j )
]}

= 0;

(b) the bound on the first term follows from Assumptions 2.2 and 4.3 and, since Assump-
tions 2.2, 4.1, 4.2, and 4.3 hold, the bound on the second term follows from Theorem 9 of
BBM whereκ9 andκ ′9 are positive constants; (c) follows since, for eachn ≥ 2,

n∑
j=2

1

j − 1
=

n−1∑
j=1

1

j
≤ 1+

∫ n−1

1

1

a
da= 1+ ln(n− 1).

Also, we writeκ6 = 2κ ′9κ9.
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After simple algebraic manipulations, it follows from (41), (49), (50), and (51) that

E
∫
Rq

[
s(x)− ŝ(p)n (x)

]2
dPX(x)

≤ κ5d2(sm, s)+ [κ6(2+ Lm)(ln(n− 1)+ 1)+ (λLm ∨ 1)+ λLm]
Dm

n

+ E

[
[(λLm̂ ∨ 1)+ λLm̂]

Dm̂

n

]
+ 8ξ2+ 4.16λ

n
, (52)

The desired bound on the risk of the prequential estimator, namely (31), now follows by
observing that the left-hand side of (52) does not depend onm.

The bound on the risk of the cross-validated estimator (32) follows in a similar fashion,
but by employing Lemma 4.2 instead of Lemma 4.1 and by employing (3) instead of (1) in
step (47), and by observing that

2

n
E

n∑
j=1

[
γ
(
Z j , ŝ

( j )
(m,n)

)− γ (Z j , s)
]

= 2

n

n∑
j=1

E
{[

ŝ( j )
(m,n)(X j )− s(X j )

]2− 2[s(X j )− Yj ]
[
s(X j )− ŝ( j )

(m,n)(X j )
]}

(a)= 2

n

n∑
j=1

E
[
ŝ( j )
(m,n)(X j )− s(X j )

]2
= 2

n

n∑
j=1

E
[
E
[(

ŝ( j )
(m,n)(X j )− s(X j )

)2 ∣∣ X1, . . . , X j−1, X j+1, . . . , Xn
]]

= 2

n

n∑
j=1

E
[
d2
(
ŝ( j )
(m,n), s

)]
(b)≤ 2

n

n∑
j=1

κ ′9

{
d2(s, sm)+ κ9

(2+ Lm)Dm

n− 1

}

= 2κ ′9d2(s, sm)+ κ6(2+ Lm)Dm

n− 1
(53)

where (a) follows since

E
{
[s(X j )− Yj ]

[
s(X j )− ŝ( j )

(m,n)(X j )
]}

= E
{
E
[
(s(X j )− Yj )

∣∣ X1, X2, . . . , Xn
] [

s(X j )− ŝ( j )
(m,n)(X j )

]}
= E

{
E
[
(s(X j )− Yj )

∣∣ X j
] [

s(X j )− ŝ( j )
(m,n)(X j )

]}
= 0;

(b) since Assumptions 2.2, 4.1, 4.2, and 4.3 hold the bound follows from Theorem 9 of BBM
for eachn ≥ 2, whereκ9 andκ ′9 are positive constants. Also, as before, writeκ6 = 2κ ′9κ9.

The proof of Theorem 4.1 is now complete. 2
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Proof of Theorem 2.1: We first establish bound (11) on the risk of the prequential estima-
tor. Throughout this proof, let symbolsK1, K2, . . . , represent generic positive constants.

It follows from Assumption 2.2 and from Example 4.1 that all the hypotheses of
Theorem 4.1 hold, hence we have from (31) that

E
∫
Rq

[
s(x)− ŝ(p)n (x)

]2
dPX(x)

≤ inf
m∈Mn

{
κ5d2(sm, s)+ [κ6(2+ Lm)(ln(n− 1)+ 1)+ (λLm ∨ 1)+ λLm]Dm

n

}
+ E

[
[(λLm̂ ∨ 1)+ λLm̂]

Dm̂

n

]
+ 8ξ2+ 4.16λ

n
, (54)

where, for brevity, we writêm= m̂(p).
For eachn ≥ 2, it follows from (8) and (30) that

sup
m∈Mn

Lm = 1,

and from (8), (28), and (29) that

sup
m∈Mn

Lm ≤ sup
m∈Mn

{
5

2
ln

[
12(8en)

√
n

1+m(q + 2)

(
1+

√
1+m(q + 2)

n

)]}
≤ K2 ln n.

Consequently, for eachn ≥ 2, we have—after some algebraic manipulations—that

sup
m∈Mn

[(λLm ∨ 1)+ λLm] ≤ K3 ln n, (55)

sup
m∈Mn

[κ6(2+ Lm)(ln(n− 1)+ 1)] ≤ K4(ln n)2. (56)

For brevity, write

Mn = κ1

√
n/(ln n)κ2.

Now,

inf
m∈Mn

{
κ5d2(s, sm)+ [κ6(2+ Lm)(ln(n− 1)+ 1)+ (λLm ∨ 1)+ λLm]Dm

n

}
(a)≤ inf

1≤m≤Mn

{
κ5d2(s, sm)+ K5

(ln n)2Dm

n

}
(b)≤ inf

1≤m≤Mn

{
K7

m
+ K6(ln n)2m

n

}
(c)≤ K8

ln n√
n

(57)



P1: SAD

Machine Learning KL641-01-Modha September 9, 1998 18:3

PREQUENTIAL PRINCIPLE AND CROSS-VALIDATION 37

where (a) follows from (55) and (56); (b) follows from Corollary 1 of Barron (1994) by
utilizing Assumptions 2.1, 2.3, and 2.4, and (5) and follows from (28); and (c) follows by
settingm= b

√
n

ln nc and by checking that, for eachn ≥ 2, 1≤ b
√

n
ln nc ≤ Mn = κ1

√
n/(ln n)κ2

if we setκ2 ≤ 2 and if we setκ1 ≥ 1 (as prescribed in (9)).
Now,

E

[
[(λLm̂ ∨ 1)+ λLm̂]

Dm̂

n

]
(a)= E

[
[(λLm̂ ∨ 1)+ λLm̂]

1+ m̂(q + 2)

n

]
(b)≤ E[(λLm̂ ∨ 1)+ λLm̂]

K9(ln n)−κ2/2

√
n

(c)≤ K10
(ln n)1−κ2/2

√
n

, (58)

where (a) follows from (28); (b) follows, for eachn ≥ 2, since the number of hidden units
m̂ is selected to be in the range 1≤ m̂≤ κ1

√
n/(ln n)κ2; and (c) follows from (55).

The desired rate of convergence for the prequential regression estimator based on neural
networks, namely (11), now follows from from (54), (57), and (58) if we setκ2 = 0 (as
prescribed in (10)).

The desired rate of convergence for the cross-validated regression estimator based on
neural networks, namely (12), follows similarly if we setκ1 ≥ 1 andκ2 = 1. 2

Proof of Corollary 2.1: We first establish bound (13) on the excess time-averaged ex-
pected prediction error of the sequence of prequential estimators{ŝ(p)k }nk≥1.

1

n

n∑
k=1

E
[
Yk+1− ŝ(p)k (Xk+1)

]2− E[Y0− s(X0)]
2

(a)= 1

n

n∑
k=1

(
E
[
Yk+1− ŝ(p)k (Xk+1)

]2− E[Yk+1− s(Xk+1)]
2
)

(b)= 1

n

n∑
k=1

E
[
s(Xk+1)− ŝ(p)k (Xk+1)

]2
= 1

n
E
[
s(X2)− ŝ(p)1 (X2)

]2+ 1

n

n∑
k=2

E
[
s(Xk+1)− ŝ(p)k (Xk+1)

]2
(c)≤ 4ξ2

n
+ (constant)

1

n

n∑
k=2

ln k√
k

(d)
<

4ξ2

n
+ (constant)

ln n√
n

(59)

where (a) follows since we assume the random variables{Xi ,Yi }∞i=−∞ to be i.i.d.; (b) follows
by probabilistic manipulations similar to those carried out in step (a) of (51); (c) the bound
on the first term follows from Assumptions 2.2 and 4.3 and, since Assumptions 2.1, 2.2,
2.3, and 2.4 hold, the bound on the second term follows from Theorem 2.1; (d) follows
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since, for eachn ≥ k ≥ 2,

n∑
k=2

ln k√
k
≤ (ln n)

n∑
k=2

1√
k
< (ln n)

∫ n

1

1√
a

da= (ln n)(
√

n− 1).

The desired result for the sequence of cross-validated regression estimators, namely (14),
follows similarly. 2
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Notes

1. As an important aside, we point out prequential model selection procedure for least-squares regression estima-
tion problem represents one manifestation of Dawid’s prequential principle—which can be applied to a variety
of statistical problems. Also, note that Rissanen refers to prequential model selection as predictive minimum
description length principle.

2. Note that we may letφ to be the cosine function, a wavelet ridge function (Hornik et al., 1994; Yukich,
Stinchcombe, & White, 1995), or the hinged hyperplane (Breiman, 1993) by using Proposition 7 of Barron,
Birgé, & Massart (1996) and by appropriately modifying Assumptions 2.3 and 2.4 in each case.

References

Barron, A.R. (1991). Complexity regularization. In G. Roussas (Ed.),Proceedings NATO Advanced Study Institute
on Nonparametric Functional Estimation. Dordrecht, The Netherlands: Kluwer Academic Publishers.

Barron, A.R. (1993). Universal approximation bounds for superpositions of a sigmoidal function.IEEE Trans.
Inform. Theory, 39(3), 930–945.

Barron, A.R. (1994). Approximation and estimation bounds for artificial neural networks.Machine Learning, 14,
115–133.
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