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Abstract. Prequential model selection and delete-one cross-validation are data-driven methodologies for choo
ing between rival models on the basis of their predictive abilities. For a given set of observations, the predictiv
ability of a model is measured by the model's accumulated prediction error and by the model's average-out-o
sample prediction error, respectively, for prequential model selection and for cross-validation. In this paper, give
i.i.d. observations, we propose nonparametric regression estimators—based on neural networks—that select
number of “hidden units” (or “neurons”) using either prequential model selection or delete-one cross-validation
As our main contributions: (i) we establish rates of convergence for the integrated mean-squared errors in estim
ing the regression function using “off-line” or “batch” versions of the proposed estimators and (ii) we establish
rates of convergence for the time-averaged expected prediction errors in using “on-line” versions of the propost
estimators. We also present computer simulations (i) empirically validating the proposed estimators and (ii) empi
ically comparing the proposed estimators with certain novel prequential and cross-validated “mixture” regressio
estimators.
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1. Introduction

Let {X;, Yi}72_., be independent and identically distributed (i.i.d.) random variables on

a probability spacéS2, 7, P) such thatX, takes values ifRY and Y, takes values ifR.
Define the regression function as

s(xX)=E[Yo| Xo=x], xeRY%.

Givenn observationgX;, Y }i'_;, we are interested in estimating the regression funation
We do not assume that the regression funcda a member of a finite-dimensional
parametric model, hence it is natural to estimatgsing a countable sequence of finite-
dimensional parametric models with increasing dimensions{ Salyn- ¢, Which approxi-
matess more accurately as the dimensionincreases. As an examplg, may represent
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a class of neural networks witin hidden units and\ may represent the set of natural
numbers. In practice, for finite number of observationi is common to estimatg using
amodelS,, me M, where the set of dimensiong, C M grows with the sample sizeat
an appropriate rate. As an examphd,, may be{l, 2, ..., M} for some finite numbeM,,.

Statistical risk in estimating the regression funct@onsing a finite-dimensional para-
metric modelS;,, m € M, has two components: approximation error and estimation error.
Roughly speaking, a model with a larger dimension has a smaller approximation error but
larger estimation error, whereas a model with a smaller dimension has a smaller estimatic
error but a larger approximation error. The problem of model selection is to empirically
select the finite-dimensional parametric model (from the permissible collection of model:
{Sn}me.m,) that achieves the best tradeoff between the competing approximation error an
estimation error components—and, consequently, achieves the smallest possible statisti
risk in estimatings. For previous theoretical work on model selection in the context of non-
parametric regression estimation, see, for example, Barron (1991, 1994), Barras, Birg
& Massart (1996), Birg’& Massart (1994b), Baum & Haussler (1989), Haussler (1992),
Lugosi & Nobel (1995), Lugosi & Zeger (1996), McCaffrey & Gallant (1994), Modha &
Masry (1996, 1998), Rissanen (1989), Shen & Wong (1994), Vapnik (1982, 1995), an(
White (1989).

In this paper, we study model selection in the context of nonparametric regression est
mation using prequential model selection due to Dawid (1984, 1991, 1992) and Rissane
(1986a, 1986b, 1989) and also using delete-one cross-validation (or cross-validation f
short) due to Mosteller & Tukey (1968) and Stone (1974, 197Pyequential and cross-
validated regression estimators are attractive for practical application, in that, they requir
minimal inputs from the user: a set of observati¢Xs, Y;}_;, a suitable set of dimensions
M., and a sequence of finite-dimensional parametric mod&l$ner,. From this per-
spective, prequential model selection and cross-validation represent exciting steps towatr
automatic (or completely data-driven) model selection.

In this paper, we examine prequential and cross-validated regression estimators bas
on neural networks. As our main contributions: (i) we establish rates of convergence fc
the integrated mean-squared errors in estimating the regression function using “off-line” c
“batch” versions of the prequential and the cross-validated estimators (Theorem 2.1) and (
we establish rates of convergence for the time-averaged expected prediction errors in usi
“on-line” versions of the prequential and the cross-validated estimators (Corollary 2.1). T
the best of our knowledge, no such rates of convergence results have been previously est
lished for prequential or cross-validated regression estimators in a nonparametric settin
We also present computer simulations (i) empirically validating the proposed estimator
and (ii) empirically comparing the proposed estimators with certain novel prequential an
cross-validated “mixture” regression estimators.

1.1. Prequential model selection

Prequential model selection is a data-driven methodology for choosing between rival mode
on the basis of their predictive abilities. In figure 1, we present a generic estimation schen
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Inputs: Sample sizen and observationgX;, Y i,
a set of model dimension$t, :={1,2,..., Mn}
a sequence of finite-dimensional parametric Mo@&{g me .,

Estimation Scheme:
for m:=1to My step 1
Choose a fixed initial estimat@m, o) € Sn
PREQM, 1) := [Y1 — &m0 (X1)]?
for j:=21to n step1 )
compute the least-squares estimator basedony; }i’;ll
&m,j—1) = arg miry.g, { YUY - g(Xi)]Z} € Sn
update the prequential loss
PREQmM, j) := PREQM, j — 1) +[Y] — §m, j—1 (X))]?
endfor;
endfor;

Output: Compute the model dimension and the prequential regression estimator, respectively, as

m® = m(P := arg minPREQmM, n) 1)
lfmen
n
&P = 8p ) == arg mini Z[Yi - Q(Xi)]Z] SISO @
9S8 |i=1

Figure L Scheme for computing the prequential regression estimator.

for computing prequential regression estimators. Intuitively, the term
[Yj — &m.j—n (X)]?

in figure 1 denotes the prediction error incurred on the next observagiogiven X;,
by a least-squares estimator with dimensinrbased on previousj — 1) observations
{Xi,Yi}i':_ll. Consequently, the prequential loss PREQN) in figure 1 represents the
“accumulated prediction error” committed bynadimensional model om observations
{Xi, Yi}i_,, and prequential model selection chooses the dimerﬁaf,ﬁhthat minimizes
the accumulated prediction error.

The estimation scheme in figure 1 operates on a fixed set (or batchdlzdervations
{Xi.Yi}'_;, and hence is off-line. However, prequential model selection as conceived by
Dawid (1984, 1991, 1992) is quint-essentially on-line—where the observations are assum
to arrive sequentially. Specifically, in the on-line case, for elach 1, having seerk
observation$X;, ; }!‘zl, one isinterested in predicting, ; given Xy, 1. Itis easy to apply
the estimation scheme in figure 1 to the on-line case by observing that fok eaelcan use
the prequential regression estima&b“? based ork observationg X;, Y, }}‘:1. Specifically,
sﬁp) is obtained by replacing by k in figure 1.
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The notion of the accumulated prediction error is closely related to the notion of “pre-
dictive code-length” considered in Rissanen (1986b, 1989), Rissanen, Speed, & Yu (199
and Yu & Speed (1992) and to the notion of “Shannon information gain” considered in
Haussler, Kearns, & Schapire (1994).

For finite-dimensional Gaussian regression problem, Rissanen (1986a) has establist
order consistency of prequential model selection. However, our regression function ma
neither be linear (in observations or parameters) nor finitely parameterized. Furthermor
Rissanen did not address the issue of establishing rates of convergence for the statisti
risk. Yu & Speed (1992) (also see Rissanen, Speed, & Yu, 1992) considered a prequent
density estimator based on histograms and established almost sure rate of convergence
the excess code-length incurred by their estimator. Their results, however, are specific
density estimation using histograms.

In this paper, assuming that the regression functisatisfies a certain Fourier-transform
type representation (Assumption 2.3), we examine a prequential regression estimator bas
on neural networks. We establish rates of convergence for the statistical risks in usin
off-line (Theorem 2.1) and on-line (Corollary 2.1) versions of this estimator.

1.2. Cross-validation

Cross-validation is a data-driven methodology for choosing between rival models on th
basis of their predictive abilities. In figure 2, we present a generic estimation scheme fc
computing cross-validated regression estimators. Intuitively, the term

[Y; — 80y (XD

in figure 2 denotes the prediction error incurred on the observajiomiven X, by a least-
squares estimator with dimensionbased or(n — 1) observationgX;, Y}, ; ;. Conse-
guently, the cross-validation loss @Y, n) in figure 1 represents the “average out-of-sample
prediction error” committed by m-dimensional model on observationgX;, Y }i';, and
cross-validation chooses the dimensity? that minimizes the average out-of-sample pre-
diction error.

Unlike prequential model selection, cross-validation is inherently an off-line estimation
scheme in that it operates on a fixed set (or batch) observationdX;, Y;i}i_;, as can
be seen from figure 2. Nonetheless, it is possible to coerce cross-validation to opera
in an on-line fashion by observing that for edchne can use the cross-validated regression
estimatorsic) based otk observation$X;, V; }:‘:1. Specifically,ﬁﬁc) is obtained by replacing
n by k in figure 2.

The literature concerning cross-validation and its variants is rather vast, see, for exampl
Li (1987), Stone (1984), and Stone (1974, 1977); in this paper, we restrict attention t
cross-validated model selection applied to sequences of parametric models such as nel
networks. In a setting closely related to ours, White (1989) established weak consistency
cross-validated regression estimators based on neural networks without rates. We focus
obtaining rates of convergence. Bir§ Massart (1994a) established rates of convergence
specifically for cross-validated projection density estimators based on linear models (such
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Inputs: Sample sizen and observationgX;, Y }'_;
a set of model dimension§t, :={1,2, ..., Mp}
a sequence of finite-dimensional parametric mog&ig me v,

Estimation Scheme:
for m:=1to My step 1
for j:=1to n step 1
deletej-th observation fromX;, Y; }'_;
compute the least-squares estimator basedony; }{‘zl’i#i

g((rjn),n—l) = arg minyeg { Zin=1<i;&j [Yi — 9(Xi )]2} € Sn
endfor;
compute the cross-validation loss )
cvm. ) ==Y )_y[Y; - 80 ) (X2
endfor;

Output: Compute the model dimension and the cross-validated regression estimator, respectively, as

m© = M := arg minCV(m, n) 3
1<m=<Mp
n
§9 = 840 =arg min{ DY - g(Xi)]z} € Sho 4
9€S40 i=1

Figure 2 Scheme for computing the cross-validated regression estimator.

wavelets). Their results do not extend to cross-validated regression estimators. Recent
Kearns (1997) considered a cross-validation scheme (based on saving out a fraction
the available data as an independent test set) for model selection, and established rate:
convergence for his estimators. Here, we focus on a different estimation scheme: delete-o
cross-validation. His results do not extend to delete-one cross-validation.

Assuming that the regression functiersatisfies a certain Fourier-transform type rep-
resentation (Assumption 2.3), we examine a cross-validated regression estimator based
neural networks. We establish rates of convergence for the statistical risks in using off-lin
(Theorem 2.1) and on-line (Corollary 2.1) versions of this estimator.

This paper is organized as follows: In Section 2, we propose prequential and cros:
validated regression estimators based on neural networks, and establish our main rest
(Theorem 2.1 and Corollary 2.1). We also compare the proposed estimators to certa
complexity-regularized least-squares estimators. Inspired by Bayesian mixture density e
timation of Dawid (1991), we propose in Section 2 certain prequential and cross-validate
mixture regression estimators. In Section 3, we present the advertised computer simulati
study. In Section 4, we examine prequential and cross-validated regression estimators ba:
on a sequence of abstract parametric models, and establish abstract upper bounds on the
tegrated mean-squared errors in estimasinging these abstract estimators (Theorem 4.1).
Theorem 2.1 follows by adapting Theorem 4.1 to neural networks. We note that Theorem 4
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is fairly general, and may extend to prequential and cross-validated regression estimatc
based, for example, on wavelets, polynomials, splines, and Fourier series.

2. Regression estimation using neural networks
2.1. Neural networks

Assumption 2.1. X takes values ifi—1, 1]9.
Assumption 2.2. Y, takes values if—&, &] for some knowy§ > 0.

We assume that the regression functisatisfies the following Fourier-transform-type
representation due to Barron (1993). korx € RY, letw - x denote the usual inner product
onRY and let|w||; denote the&!-norm onRY.

Assumption 2.3. There exists a complex valued functi®ronRY such that for x €
[—1, 1]9, we have

s(x) — s(0) = / (€"* — 1)3(w) dw
Rd

and that [, [lw||1]8(w)| dw < C" < oo for some known C> 0. Set C= max1, C'}.

For examples of functions satisfying Assumption 2.3, we refer the interested reader t
Barron (1993). A function satisfying Assumption 2.3 can be approximated, without the
curse of dimensionality (in terms of approximation error rates), using the sequence
parametric models based on neural networks presented below. : [Ret> [0, 1] denote
a Lipschitz continuous sigmoidal function such that its tails approach the tails of the uni
step function at least polynomially fast.

Assumption 2.4. The functionp : R — [0, 1] is such that

(@¢u) - lasu— ccande(u) - 0asu— —oo.

(b) |¢p(u)| <Lland|p(u) — ¢ (v)| <|u—v|forallu,v € R.

(©) |9 (U) — L= < A}/|u|? for u e R\{0}, and for some A A, > 0. Set
A = max{1, A}}.

Define

T = 2R D/ A2 pVAe (o)) @A), (5)
whereA; and A, are as in Assumption 2.4. For dimensionlet
_ m m
Sn=1co+ Y cip(a -x—bj) |coe[—£.£]. > Igl < C. and
=1 =1

llajll;, Ibj| < tmforl<j<mg, (6)
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denote the class of neural networks witthidden units (or neurons) whetg denotes the
rate at which the hidden unit weights, namajyandb;, are allowed to grow as a function
of m. It follows from Assumption 2.2 that, for alt € [—1, 1]9, |s(x)| < &. Define a
clipped subset 0§, as

Sn={lgV (-O]AElge S, (7
wherev = max andAa = min. Define a set of dimensions as

M ={m]1<m<wiy/n/(Inny = My}, (8)
where In= log, and the constants

k1> 1 9)
and

0 for prequential estimation
Ko = . . . (10)
1 for cross-validated estimation

are selected with hindsight to establish the rates of convergence given in Theorem 2.1.

2.2. Prequential and cross-validated regression estimators

Given the set of model dimensiond,, defined in (8) and the parametric model class defined
in (7), compute the prequential regression estimaf8rby proceeding as in figure 1 and
compute the cross-validated regression estimitoby proceeding as in figure 2.

We now establish rates of convergence for the integrated mean squared errors of t
estimatorﬁﬂ”) andé,(f). Let Px denote the marginal distribution &,.

Theorem 2.1. Suppose Assumptiorsl, 2.2, 2.3, and 2.4 hold. Then the following
bounds hold for each & 2.

(prequential regression estimation)

_alm 12 I”_”
E/]Rq [s(0) — §P (0] dPx(x) < (constan):ﬁ. (11)

(cross-validated regression estimation)
A©) 2 Inn
E [ [s(0—82(x)] dPx(x) < (constant - (12)
Ra

The proof can be found in Section 4.2. The abstract upper bounds established in Sectior
(see Theorem 4.1) are a key step in establishing Theorem 2.1.
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So far, we have dealt with the off-line versions of the prequential and the cross-validate
regression estimators. We now consider on-line versions of these estimators. In the on-li
case, for eack > 1, having seek observation$X;, Y; }ikzl, one is interested in predicting
Yka1 given Xg1. We can apply the estimation schemes in figures 1 and 2 to the on-line
case by observing that for eaklone can use the prequential regression estirré?bnr
the cross-validated regression estim#ﬂrbased ork observationgX;, Y; }¥_,.

In the on-line case, one is interested in measuring the performance of the sequen
of prequential regression esstimatc{)§)}ﬂ>1 or the sequence of cross-validated regression
estimators{si‘:’}ﬂ>l and not in measuring the performance of the regression estinggtbrs
or§© as considered in Theorem 2.1. Hence, in the on-line case, an appropriate measure
performance is the time-averaged expected prediction error.

We now establish upper bounds on the time-averaged expected prediction errors of ti
sequences of estimatoi&” 7, and{§°}p_,.

Corollary 2.1. Suppose Assumptior2sl, 2.2, 2.3, and 2.4 hold. Then the following
bounds hold for each & 2.

(prequential regression estimation)

1¢ A Inn

=5 E[Yiers — 47 %ks)]” < E[Yo — S(X0)]? + (constant —. (13)

N VN

(cross-validated regression estimation)

13 NE) 2 2 Inn

- > E[Yie1 — §7(Xie)]” < E[Yo — s(X0)]® + (constant o (14)
k=1

The proof can be found in Section 4.2.

Observe that the left-hand sides of (13) and (14) represent the time-averaged expect
prediction errors of the sequence of prequential estimagﬁ?§}2>l and the sequence of
cross-validated estimatof§” )7 ,, respectively. The first-terms on the right-hand sides of
(13) and (14) represent the smallest possible expected prediction error. Thus, one may int
pret Corollary 2.1 as establishing finite-sample upper bounds oexttesgime-averaged
expected prediction errors (&}, and{§°}1_,.

Remark 2.1 In this remark, fix the model dimension. Suppose that we have computed
the prequential loss PRE®, n) and the cross-validation loss ©W, n) using figures 1
and 2, respectively. Now, suppose that we have one additional obser{Ation Y1}
and would like to compute PRE®, n + 1) and CMm, n + 1).

To calculate the prequential loss, we first compute the least-squares estimator

i=1

Smn = argsrr:in{Z[Yi - g(Xi)]z} € Sy,
ge
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and then write
PREQm, n+ 1) = PREqm, n) + [Yn+1 - é(m,n)(xn+1):|2- (15)

To calculate the cross-validation loss, we first comguate- 1) least-squares estimators

n+1
Sy = arg mm{ SIv —g(xi)]z} €Sm i=12....(n+1),
€S |i=Li#j

and then write

n+1

cvimn+1 = > [y -8h xp]? (16)
j=1

Observe that it is not possible to use the cross-validation losgCW) in computing
CV(m, n+ 1) in (16). For each new observation we must compute the cross-validation los:
from scratch. In contrast, for the prequential loss, for each new observation we only nee
to compute the second quantity on the right-hand side of (15). Hence, in an on-line settin
prequential model selection is computationally more efficient.

Note that, for both prequential model selection and cross-validation, the model dimer
smnsmﬁ’jr)l and mﬁf}rl must be recomputed using (1) and (3), respectively, and cannot be
written as recursive updates to the previous model dlmensné‘?']sandm<°>

Remark 2.2(upper bounds on the number of hidden unitsNote that the prequential
regression estimator selects the number of hidden units, in a data-driven fashion, from t
range

l<m<.n

Similarly, the cross-validated regression estimator selects the number of hidden units, in
data-driven fashion, from the range

l<m=<n/(nn).

The choices of the upper limits of the above ranges (rougfilyare the appropriate values
needed to establish the rates of convergence given in Theorem 2.1 for the specific class
regression functions satisfying Assumption 2.3. These upper bounds arise from the upp
bounds on the complexity of the model cl&sthat we derive in the proof of Theorem 2.1.
For the class of regression functions satisfying Assumption 2.3, the imposition of a cap o
the number of hidden units limits the data-driven search for the model dimension, and i
thus computationally appealing. For a different smoothness assumption on the regressi
function, a different model class and a correspondingly different set of dimensions must b
used to obtain the appropriate rate of convergence under that assumption.



14 D. MODHA AND E. MASRY

Remark 2.3computational complexity of nonlinear least-squaresThe least-squares es-
timators§m, j—1 and éf,‘n)’nfl) employed in figures 1 and 2, respectively, are clearly and
unambiguously defined—and hence exist. Implicitly, while establishing the rates of con
vergence results in Theorem 2.1 and Corollary 2.1, we assumed that these least-squa
estimators can indeed be computed. Such an assumption is the very basis for app
ing Vapnik’s empirical risk minimization theory to neural networks, and has been widely
used in the literature dealing with rates of convergence results for neural networks an
other models, see, for example, Barron (1994), BarroneBiggMassart (1996), Breiman
(1993), Haussler (1992), Kearns (1997), Lugosi & Nobel (1995), Lugosi & Zeger (1996),
McCaffrey & Gallant (1994), Modha & Masry (1996, 1998), Vapnik (1982, 1995), and
White (1989).

In the context of neural networks, the problem of finding the (nonlinear) least-square
estimators is known to be computationally intractable, see, for example, Jones (1997). |
practice, it is common to use heuristic “approximations” to the least-squares estimatol
obtained by repeatedly applying the error backpropagation algorithm (Sarkar, 1995) start
from a number of initial weights. To quote Kearns (1997): “The extent to which the theory
presented here applies to such heuristics will depend in part on the extent to which the
approximate training error minimization for the problem under consideration”. In any case
the backpropagation algorithm seems to work quite well in our simulation study presente
in Section 3.

Remark 2.4comparison with complexity-regularized least squares estimatokssum-

ing that Assumptions 2.1, 2.2, 2.3, and 2.4 hold, Barron (1994) proposed a complexity
regularized least squares estimator, §&; based on neural networks, and established
that

E/ [s(x) — §rﬁb)(x)]2dPx(x) < (constan),/lnTn. (17)
Ra

It follows from (11) and (17) that the rate of convergence achieved by the prequentia
regression estimators is within a logarithmic factor of that achieved by the complexity-
regularized regression estimator. Similarly, it follows from (12) and (17) that the rate
of convergence achieved by the cross-validated regression estimator is identical to th
achieved by the complexity-regularized regression estimator.

Suppose that the underlying regression functimparametric, that is, is a member of a
finite-dimensional parametric model, s8y-. In this case, it is known that the complexity-
regularized regression estimatoigler-universal that is, the complexity-regularized re-
gression estimator, which does not know the true dimensigrdelivers the same rate of
integrated mean-squared error as that delivered by an estimator that knows the true dime
sion. See Barron (1994), Barron, Birg& Massart (1996), and Modha & Masry (1998).
Establishing order-universality results for prequential and cross-validated regression es
mators currently remains an open problem.

Remark 2.5almost sure convergence Animportant open problem is to establish that the
excess time-averaged prediction error of the sequence of prequential esti(ﬁ,&i’f@{@
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converges almost surely to zero, that is,
= Z [Yie1 — 8”7 Xy ]* = [Yips — S(Xis1)]%} — 0 almost surely a — oc.

In addition, it would be interesting to determine the almost sure rate of convergence
Finally, similar results will also be interesting for the sequence of cross-validated esti
mators{§°}1. ;.

2.3. Prequential and cross-validated mixture regression estimators

In the context of density estimation, Dawid (1991) has proposed a Bayesian mixture densi
estimator. Here, we extend his ideas to regression estimation.

Form > 1, let log(m) = [log,(m)] + [log,[log,(M)1] + - - - where the sum involves
only the non-negative terms. Intuitively, @) denotes the number of bits in a self-
delimiting code for the integem. Form > 1, let Q(m) = ¢*2-'°%(™ denote a prior
density on the set of natural numbers, where the normalization corstanisures that
> m=1 Q(M) = 1. The precise value af is not required in the sequel. The prior density
is a slightly modified version of the universal prior density proposed by Rissanen (1983).

Suppose we are given a set of observatipds Yi}{L;, a suitable set of dimensions
M,y =1{1,2,..., My}, and a sequence of finite-dimensional parametric md®&sne v, -

Define the prequential mixture regression estimator as

Mn
Qﬁpmm = Z Omn é(m,n)a (18)
m=1

where§m ) € Sy denotes the least-squares estimator based on observgXiang}i' ;
and the weights, , are defined as

a/
Umn = (19)
k=1 %k n

wherefork =1,2, ..., M;,

= QU] 7@@(— [Yi — Ski—n(XD]*/ (265 -1))

cr A A
()2 " T1 o 1Y~ S X0 /05 )

(k i-b
(20)

whereS§y j_1) € S denotes the least-squares estimator based on observ{a)ﬁpnﬁ;}ij;ll
and(}(zkﬁo) is set to a constant value, say 1, and, fox 1, 6<2k,j_1) denotes the residual
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least-squares error

[uy

1 & X 5
61y = =7-1 [Yi — Sk j-n(XD]" (21)

Il
AN

Observe that for computational purposes we can safely replace the constamtfa@oy"/2
in (20) by 1, since it appears in both the numerator and denominator of (23).
Now, define the cross-validated mixture regression estimator as

M,
éécmlx) = Z ﬂm,n é(m,n), (22)
m=1

where§mn € Sy denotes the least-squares estimator based on observgXong}!'_;
and the weight$,, , are defined as

Bmn = P (23)

Z ﬁkn

wherefork =1,2, ..., M;,

Bin = QU0 [ ] === exp(~[¥; — 8, XD]'/(2(6((1)"))
i=1 2”( (kn))

c* o n .
N <(27T)”/2> : 92<k>1_[1 50 ) eXp(—[ I ((ﬂ)n)(X )] /(2(6 <(kj)n>)2))
! (Gien

(24)

whereé(ﬂi)n) € S denotes the least-squares estimator based on observi@ions}; ;

and(a((k”n))2 denotes the residual least-squares error

1 n A
( ((|<J)n))2 = n—1 Z [ (. ((li)n)(x )] (25)
i=Lli#]j

Observe that for computational purposes we can safely replace the constamtfaetoy"/2

in (24) by 1, since it appears in both the numerator and denominator of (23).
Establishing rates of convergence for the statistical risks of the prequential and the cros

validated mixture regression estimators currently remains an open problem. In the ne

section, we empirically assess the performance of these estimators.

3. Computer simulations

We now empirically demonstrate the performance of prequential model selection and cros
validation via two simple, simulated examples. We also empirically compare prequentia
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and cross-validated regression estimators with prequential and cross-validated mixture |
gression estimators.

For various appealing computer simulation studies demonstrating prequential mod
selection (i) in the context of ARMA order selection (see Dawid, 1991; Rissanen, 1989)
(i) in the context of density estimation using histograms (see Dawid, 1991; Rissaner
Speed, & Yu, 1992); (iii) in the context of linear least-squares regression (see Rissane
1986a); and (iv) in the context of nonlinear ARMA order selection using neural networks
(see Rissanen, 1994; Lehtokangas et al., 1996).

Throughout this section, we let the sigmoidal functiprio be the logistic sigmoidal
function, namely

1

¢(u) = Tt exp—u)’

3.1. Learning a smooth regression function

We generated = 300 independent sampléX;, Y;}''_;, where, fori = 1,2,...,n, each
X; was uniformly distributed in the intervaHl, 1] and each

Yi =s(Xi) + 07,

wheres = 0.15, Z; ~ N(0, 1), and the regression functiamwas selected to be a fifth-
degree polynomial

s(X) =7(x — 1)(Xx — 0.5)(x — 0.25 (X + 0.5)(x + 1). (26)

Clearly, E[Y; | Xi] = s(X;j). Our goal is to learn the true regression functgofiom the
observationgX;, Y;}i_;. We plot the observations<;, Y; }{'_; and the regression function
sin figure 3.

We compute the prequential regression estimator by proceeding as in figure 1 with th
set of dimensiong, = M3z00 = {1, 2, ..., 20} and the set of parametric models in (7).
To reduce the amount of computation, we divided the set of observdtiony; }i'_; into
12 consecutive blocks each of size= 25. Specifically, we use the following modified
“block” prequential estimation scheme:

for m:=1to M, step 1
Choose a fixed initial estimat@fy, o) € Sy
PREQM, £) := 34 [ Yk — &m0 (X)]?
for j:=2¢ to n step ¢
compute the least-squares estimator
Smj-v = arg ming {35 — (X2} € Sy
update the prequential loss
PREQmM, j):=PREQmM, | — ¢)
4

+ Z [Yi—e— é(m,i—ﬁ)(xj—u—k)]z
k=1

endfor;
endfor;
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Figure 3 Noisy observations and the true regression function.

The computations were done using the neural networks toolbox in MATLAB, which in-
cludes a routine (“initff”) for selecting the initial estimat&f, o). The least-squares step in
the above estimation scheme was computed using traditional error backpropagation wi
learning rate= (0.15)/(j — ¢). In other words, the learning rate was lowered with the
increasing number of observations. Furthermore, to comipute ) we usetbm j_2) as

the initial starting point for the backpropagation procedure.

In figure 4, we plot the prequential loss PR&@&®Qn) and the least-squares loss
YIYi — &mn(X)]? as a function of the number of hidden units It can be seen
from figure 4 that the least-squares loss essentially decreases with increasimgdjhence
is not a good yardstick for model selection. On the other hand, the prequential loss d¢
creases initially and then increases with increasind@ he prequential loss achieves a clear
minimum ath’? = 6.

In figure 5, we plot the true regression function and the prequential regression estimat
corresponding tahy”. It can be seen from figure 5 that there is an excellent agreement
between the true regression function and the prequential regression estimator.

We compute coefficientgrmn}22_, of the prequential mixture regression estimator by
proceeding essentially asin (19), (20), and (21). (In fact, we slightly modified these equatior
to reflect that block sizé = 25. For the sake of brevity, we omit the presentation of
the modified estimation scheme.) We plat, »}22, in figure 6. It can be seen that the
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Figure 4  Prequential loss (solid line) and least-squares loss (dotted line).
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Figure 5 The true regression function (solid line) and the prequential regression estimator (dotted line). In thi
case, the prequential mixture regression estimator is identical to the prequential regression estimator.
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Figure 6 Weights of various hidden units in the prequential mixture regression estimator.

prequential mixture regression estimator assigns all the weight to the neural network wit
m = 6 hidden units. Consequently, in this case, the prequential mixture regression estimat
is identical to the prequential regression estimator.

We now compute the cross-validated regression estimator by proceeding as in figure
with the set of dimensiond1,, = M3p=1{1, 2, ..., 20} and the set of parametric models
asin (7). To reduce the amount of computation involved, we divided the set of observatior
{Xi. Yi}{'_; into 12 consecutive blocks each of size- 25. Specifically, we use the following
modified “block” cross-validated estimation scheme:

for m:=1to M, step 1l
for j:=¢ to n step ¢ .
delete observationsX, Yk}ﬂ(:j_[+l from {Xi, Yi}l',
compute the least-squares estimator base®onYi iy i _¢41.. )

ali—t+1) . _ i n 4 12
Smnp U i=argmingeg { 3o ern y[Yi — 9(XDI?) € Sn
endfor;
compute the cross-validation loss
. n/e £ ali—t+1, 1)
Ccv(m, n) = ,L/if,j:juz ScalYicek = 8mnse TV (X _e0]?

endfor;
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Figure 7. Cross-validation loss (solid line) and least-squares loss (dotted line).

The computations were done using the neural networks toolbox in MATLAB. The least-
squares step in the above estimation scheme was computed using traditional error ba
propagation with learning rate (0.15)/(n — £). For each fixed dimensiom, the same
initial starting weight was used for all differeit In figure 7, we plot the cross-validation
loss CMm, n) and the least-squares Ig8y_,[Y; —&m.n) (Xi)]? as a function of the number

of hidden unitsn. Although not evident to the naked eye from figure 7, the cross-validation
loss achieves arather shallow minimuniét = 8. Please see Remark 3.1 for acomparison
of figures 4 and 7.

Infigure 8, we plot the true regression function and the cross-validated regression estim
tor corresponding td(©. It can be seen from figure 8 that there is a fairly good agreement
between the true regression function and the cross-validated regression estimator.

We compute coefficient§8m n}22_; of the cross-validated mixture regression estimator
by proceeding essentially as in (23), (24), and (25). (In fact, we slightly modified these
equations to reflect that block size= 25. For the sake of brevity, we omit the presentation
of the modified estimation scheme.) We plgt.n}22 , in figure 9. It can be seen that the
cross-validated mixture regression estimator assigns a large weight to the neural netwc
with m =8 hidden units and relatively small weights to the rest.

The cross-validated mixture regression estimator corresponding to coeffigignis®_,
is plotted in figure 8. Once again, there is an excellent agreement between the true regress
function and the cross-validated mixture regression estimator.
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Figure 8 The true regression function (solid line), the cross-validated regression estimator (dotted line), and th
cross-validated mixture regression estimator (dash-dotted line).
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Figure 9 Weights of various hidden units in the cross-validated mixture regression estimator.
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3.2. Learning a piecewise continuous regression function

We now present simulation results for a piecewise continuous regression function with tw
discontinuities, namely

s(x)—1 if—-1<x<-02,
SX)={sx)+1 if-02<x <04, 27)
s(x)—1 if04d4<x<1,

where the functios is as in (26). We generated= 300 independent samplX;, Y} ;,
where, fori = 1, 2, ..., n, eachX; was uniformly distributed in the intervaHl, 1] and
each

Y, =5 (X)) +0Z,

whereo = 0.15,Z; ~ N (0, 1), ands’ is as in (27). We plot the observatiof);, Yi }i'_;
and the regression functishin figure 10. We computed the prequential regression estimator,
the prequential mixture regression estimator, the cross-validated regression estimator, &
the cross-validated mixture regression estimator by proceeding exactly as in the previol
subsection except with, = M3z ={1,2,...,18}.

We found that the behavior of the prequential loss and the cross-validation loss wa
essentially the same as that depicted in figures 4 and 7, respectively. We omit the plots f

1.5 T T T T T T < T T

0.5

_2 1 1 1 ] 1 1 1 1 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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Figure 10 Noisy observations and the true regression function.
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Figure 11 The true regression function (solid line), the prequential regression estimator (dotted line), and the
cross-validated regression estimator (dash-dotted line).

brevity. The prequential loss achieves a minimumhg! = 12, while the cross-validation
loss achieves a minimum &t® = 18.

In figure 11, we plot the true regression function, the prequential regression estimatc
corresponding ton”, and the cross-validated regression estimator correspondin'to
It can be seen from figure 11 that there is an excellent agreement between the true regress
function and both the estimators.

In figures 12 and 13, we plot the coefficieritsn n}18 ; and the coefficient§fm )18 ,,
respectively. It can be seen from figure 12 that the prequential mixture regression estimat
assigns all the weight to the neural network with= 12 hidden units. Also, it can be
seen from figure 13 that the cross-validated mixture regression estimator assigns a lar
weight to the neural network withhn = 16 hidden units and relatively small weights to the
rest.

3.3. Discussion

Remark 3.Xcomparisons between prequential and cross-validated regression estimators
Theoretically, both the prequential and the cross-validated regression estimators enjoy sil
ilar rates of convergence (see Theorem 2.1 and Corollary 2.1). Also, empirically, it can b
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Figure 12 Weights of various hidden units in the prequential mixture regression estimator.
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18

25



26 D. MODHA AND E. MASRY

seen from figures 5, 8, and 11 that in both the examples there is an excellent agreeme
between the true regression function and both the estimators.

Nonetheless, it can be seen from figures 4 and 7, figures 6 and 9, and also from figures
and 13 that prequential model selection generates a clear and unequivocal estimate of
model dimension while cross-validation does not. For example, in figure 7, the cross
validation loss achieved by the neural network with= 20 hidden units is only marginally
higher than that achieved by the neural network with= 8 hidden units. However, the
estimator corresponding ta = 20 is a considerably poorer estimate of the true regression
function than the estimator correspondingro= 8. This leads us to conjecture that pre-
guential model selection is order-consistent and that cross-validation is not order-consiste
Furthermore, in the above examples, we found that computing the cross-validated regre
sion estimator was roughlg-times (wheref = 12) more expensive than computing the
prequential regression estimator. In this light, we believe that in practice prequential mode
selection is more reliable and useful than cross-validation.

Remark 3.2 Observe that Theorem 2.1 assumes that the block siz&, whereas, in this
section, we used a computationally more convenient blocksiz€5. A close examination

of our proofs reveals that the rates of convergence results established in Theorem 2
continue to hold if¢ grows slower tham.

Remark 3.3 Statistically speaking, it would be desirable to generate a number of in-
dependent data sets, and to compute the prequential and the cross-validated regres:
estimators for each of the data set. One would then plot average results over these multi
(Monte Carlo) runs—and not simply plot results over a single data set as we do. Howeve
the training of neural networks being computationally expensive, we limit our experiment:
toasingle dataset. Thisisnotanuncommon practice in neural network literature. Moreove
it can be argued that, in practice the user will most often have only one set of observation

Remark 3.4 Consider the following generic problem. Given a fixed dimensioand
observationgX;, Y;}'_;, we are interested in computing the least-squares estimator

n
Smm = argmin{ Y [V — g(X)]* .
9eSn  |i=1
Directly computingsm ny using traditional error backpropagation is a computationally ex-
pensive exercise. We empirically found that the following procedure—inspired by the
prequential approach—is computationally much more efficient.

Choose a fixed initial estimat@fy, o) € Sy
for j:=2¢ to n step ¢
compute the least-squares estimator starting Bm._ o,
§m.j—e = arg miny.g { Y — g(XD1?} € Su
endfor;
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where we lower the learning rate of the backpropagation procedure with the increasing sar
ple sizej. Intuitively, the sequential least-squares minimization scheme outlined above is
heuristic for successively refining the error surface on which gradient descent is performe

4. Abstract estimation framework and derivations

In this section, we estimate the regression funcsiosing prequential and cross-validated
estimators based on an abstract list of parametric models{ &dpecrr,, Where M, is
allowed to grow as a function of the sample sizéVe establish deterministic upper bounds
on the integrated mean-squared errors of these estimators in Theorem 4.1. Theorem -
is then employed to establish Theorem 2.1. This approach leads to shorter proofs al
simultaneously permits a considerable degree of generality. For example, Theorem 4.1
not limited to neural networks, but may also apply to wavelets, polynomials, splines, an
Fourier series.

We now briefly sketch the main ideas involved in the proof of Theorem 4.1. Following
Vapnik (1982, 1995), exponential probability bounds derived from Bernstein and Hoeffding
inequalities (Hoeffding, 1963) have become a standard tool in obtaining rates of convergen
results for nonparametric estimators, see, for example, Barron (1991), Barroa, &irg”
Massart (1996), Haussler (1992), Lugosi & Nobel (1995), McCaffrey & Gallant (1994),
and Modha & Masry (1996, 1997). Here, we utilize one such exponential probability bounc
(see (42)) derived in Barron, Bieg'& Massart (1996)—referred to as BBM hereafter. It
should be noted that our results are not an obvious consequence of the result in BBI
To be sure, their work is focussed entirely on establishing rates of convergence results f
various complexity-regularized estimators; they considered neither the prequential nor tf
cross-validated regression estimators. We now briefly explain the purpose and the mode
action of various technical assumptions and highlight the main steps leading to the proc
of Theorem 4.1 which is quite lengthy.

1. The exponential bound (see (42)) requires that for each fixedM,,, the setS; is not
too “fat.” This condition is precisely captured in Assumptions 4.1 and 4.2. The expo-
nential bounds are derived in BBM using the classical Bernstein inequality (Hoeffding,
1963). The boundedness condition required by the Bernstein inequality is furnished i
Assumptions 2.2 and 4.3.

2. We harness the exponential bounds in (42) for the analysis of prequential regressi
estimators in (47) by using the fact that the least-squares loss is upper bounded by tl
prequential loss (see Lemma 4.1). Also, see Lemma 4.2 where we establish that t
least-squares loss is upper bounded by the cross-validation loss.

Figures 4 and 7 serve as an empirical validation of Lemmas 4.1 and 4.2, respectively.

3. The technical condition in Assumption 4.4 allows us to employ a simple probability
inequality in Lemma A.6 of Modha and Masry (1996) to derive the bounds in (49).

4. Finally, we exploit special structures of the prequential loss and the cross-validatio
loss, respectively, in sequences of inequalities (51) and (53) to complete the proof ¢
Theorem 4.1.
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Having derived the abstract bounds in Theorem 4.1, we adapt these bounds to estimat
based on neural networks by employing Example 4.1 (see (54) and step (a) of (57)). Finall
since Assumptions 2.1, 2.3, and 2.4 hold, by appealing to the approximation error bounc
derived in Corollary 1 of Barron (1994) in step (b) of (57), we complete the proof of
Theorem 2.1.

4.1. Abstract estimation framework

We introduce an abstract sequence of finite-dimensional modeld/L eenote an arbitrary
collection of model dimensions. For each fixed dimensioe M, let S, C L2(Px)
denote a finite-dimensional parametric family of functions, whgr@enotes the marginal
distribution of Xo. For example, see (7) and (8P, denotes the number of parameters
necessary to describe the element§gin the following precise sense.

Assumption 4.1. For each sample size n and for each dimensigmirare exists constants
1< Bnn <00,1< Dy < o0, and0 < ry < oo such that for eacld > 0 and for each
ball B ¢ S, withradiuse > [58 v (Dm/Nn)Y?] there exists a finite set = T(m, §, B) C B
with

cardinalityT) < (Bmno/8)Pm
such that

sup

inf — f <Imd.
supint g — fllc < rm

Assumption 4.1 is essentially Assumption’zw of BBM specialized to least-squares
regression estimation. More generally, it may be possible to replace Assumption 4.1 b
Assumption M of BBM, however, for the sake of simplicity and brevity we do not pursue
such generalizations here.

Example 4.1(neural networks It follows from Sections 3.2.2 and 5.5 of BBM that
Assumption 4.1 holds for the parametric family of functicgsbased on neural networks
(see (6) and (7)) with

rm=1, Bnn = (8eC)[{/n/Dm Vv (1/5)], andDpm = 1+ m(q + 2). (28)

For eachm € M, let

L= g In[12Bm (1 + rmy/ Dm/M)]. (29)

A certain factorL ,, which is roughly the logarithm of the number of parametric families
with dimensionDy, included in the setSn}men,, Will also be needed below.
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Assumption 4.2 (Assumption S of BBM). There exists a family of weightt m}mem,
such thatl < L, < oo for each me M,,, and

> expl-LmDn] = T < co.
meMy

Example 4.Xcontinued. Assumption 4.2 holds fo&, based on neural networks with
Lm=1 (30)

Assumption 4.3. The elements af, are uniformly bounded b¥, where§ is as in
Assumptior2.2.

Example 4.1(continued. It follows from (7) that Assumption 4.3 holds for neural net-
works.

Assumption 4.4. For each fixed r= 1, the set of dimension#1, is such that

sup Dy <00, Sup Ly < o0, sup Ly < oo.
meMy meMp meMp

Example 4.Xcontinued. It follows from (8), (9), (10), (28), (30), and (29) that Assump-
tion 4.4 holds for neural networks.

Define abstract prequential estima&y? as in (1) and (2) (see figure 1) and abstract
cross-validated estimatgf® as in (3) and (4) (see figure 2), whel8n}mes, represents
a sequence of abstract finite-dimensional models. We now establish deterministic upp
bounds on the integrated mean-squared errors of these estimators.

Theorem 4.1. Suppose that AssumptioB2, 4.1, 4.2, 4.3, and4.4 hold. For each m
let sy be such that &(sy, s) = infcs, d?(t, s). Letks, k6, and A denote positive constants.
Then for each n> 2, the following upper bounds hold.

(prequential regression estimation
E / [s00 = &P 0] dPx (%)
Ra

< irJ\fA {stz(sﬂ, S) +[ke(2+ Lm)(IN(N = 1) +1) + (AL Vv 1) +)\Lm]%}

2
+ 413\
| 87l

- : (31

+ E[[(Kﬁm v+ XLm]%]

whererh = m® and&\” = &)
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(cross-validated regression estimation)
E f [s() — §0 (%)]? dPx (%)
RA
. 2 Dm
< inf {«sd (Sm, S) + [2/(6(2 +Ln)+ALmVD + )\Lm]—
meM, n

+E|:[(k£mv1)+ALm]%] + 4'12'\, (32)

n
whererh = M© and§© = §x p).
The proof can be found in the next sub-section.

Remark 4.1 For the reader’s convenience, we note that our symBglg, £, and
x2(m, m') correspond, respectively, to the symbBJs, £/, andx?(m, m') in BBM.

4.2. Derivations

Forthe sake of brevity, throughout this subsection, we vidjte= (X;, Yj),j =12,...,n
write

v(Zj,9) =1[Y; —9(XpI%, (33)
write

¥n(Q) = n*liy(zj,g), (34)
and write -

(g, 1) = | 900 = 1001 dPx0, (35)

whereg and f are functions inL?(Px). The following two simple lemmas are important
steps in establishing Theorem 4.1.

Lemma4.1. Foreachn> 1and foreach m

n n

> v (Zi &mm) =D v(Z. dmi-n)-

j=1 j=1
Proof: Observe that for anyi >1, since §mn minimizes the least-squares error
Y1 ¥(Z;. ) we have that

i i—1

Y 7(Zi&mi) = Y v(Z) dmi-n) + 7 (Zi Smi-n)- (36)

i=1 i=1

The lemma follows by applying (36)-times withi =n,n—1, ..., 1. a
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Lemma 4.2. For each n> 2 and for each m

n n

Z v(Zj, &mm) < Z v(Z;, é((rjn),nfl))'

j=1 j=1

Proof: Observe that for any k i < n, since§mn minimizes the least-squares error
> i_1v(Z;, ) we have that

n n

> v(Zi8mn) < Y v(Z) 8y 37)

j=1 j=1

and sinceé((an_l) minimizes the least-squares ero},_, ;_; ¥ (Z;, -) we have that

n ) n
Z v(Z;, §((:T)1,n—l)) = Z v(Zj, &mm)- (38)
i=1j# i=1j#

And, now it follows from (37) and (38) that

V(Zi s é(m.,n)) = V(Zi s §<(ri-r)1,n_1))~ (39)
The lemma now follows by applying (3&)}times withi =1,2,...,n. o

Proof of Theorem 4.1: We first establish bounds on the risk of the prequential estimator
&P =8mn. For the sake of brevity, we writ=34" andm = m®. Let a fixed

dimensiorm € M,, be a given. For anyn’ € M, write
nx?(m,m) =6 + (no3 v noZ) vV A(LmDm V Ly D) (40)

wheref > 0, L, andL, are as in Assumption 4.3, andDy, are as in Assumption 4.1,
ando?2 ands 2, are obtained from

D
02 =[ALmV 1]7m, (41)

wherei > 0 is an appropriate constant arising in Proposition 7 of BBM. Precise value of
A is not important in implementing the estimators considered in this paper.

By proceeding as in the proof of Theorem 9 in BBM, it can be checked that our Assump
tions 2.2 and 4.3 imply that Assumption Lip of BBM holds.

Now, since our Assumptions 4.1 and 4.2, and Assumption Lip of BBM hold, we have
from Eq. (5.17) of BBM that, for any fixed, € Sy,

Pi sup sup () — EDnEwl = 0@ — Ebn@1 _ L] _ o000

MMy geSy d?(s, g) v d?(sm, S) vV x2(m, )
(42)
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where y,(sn) andy,(g) are obtained from (34) and?(s, g) andd?(sy, S) are obtained
from (35). For completeness, we note that (42) is obtained from Eq. (5.17) of BBM
by suitably adapting the latter to the specific case of least-squares regression estin
tion. Since (42) holds for any fixed, € S,, from now onwards les, be such that
d2(sm, S) = infes, d?(t, s). Now, for any f € L2(Py),

E[¥n(S) — v ()]

=n"tE Y (1Y - sOXDI2 - [Y) — f(Xp1?)
j=1

J_

=—n"" Y E{[s(X)) — FXPI? = 2[s(X)) = Y[ (X)) —s(X))]}
j=1

=—E[s(Xj) — F(XPIP+2n"" > “E(E[S(X)) — YD | XL F (X)) = s(X])
j=1
@ 4%, ). (43)
Thus, it follows from (43) that

E[¥n (9] — E[¥a(sn)] = E[¥n(9) — ¥n(S)] — E[¥a(Sn) — ¥ (S)]
= d%(s, g) — d?(s, sm), (44)

and from (42) and (44) that

_ 2 42
Pl sup sup ¥n(Sm) — ¥n(Q) + d?(s, @) — d(S, Sm) _ 1
meMygesy 025, @)V d3(sm, S) V x2(m, 1) 2

} <413 exp(—0/1r).

(45)
Now, it follows from (45) withm' = rh andg = § that

P{2(yn(Sm) — ¥n(8) + (s, §) — d?(s, sm) > d?(s, 8) + d%(sm, S) + x2(m, M)}

< 413 exp(—6/A). (46)
Observe that
L1 L1 . @ 1 .
Mm@ == vZ,9 =23 v(Zi&nn) = =D v(Z8mi0)
=1 j=1 j=1

S |l

INT
Sl

v(Zj, &mj-1) (47)
j=1
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where (a) follows from Lemma 4.1 and (b) follows from (1). Write

ALmDm +ALsDs

Winn = d?(s, §) — 3d?(Sm, S) — 02 — 04 — -

n

—2[m(S) = ya(sm] — 2072 " [¥(Z). &mi-1) — ¥(Z;. 9)].
=1

and observe that we have added and subtractg@R= 2n—! ZT:l y(Z;j,s). We now
have from (40), (46), and (47) that

P{Wmn > 6/n} < 4.1 exp(—6/1). (48)

For each fixedh > 1 and for eaclm € M, it follows from Assumptions 2.2 and 4.3 that

n

2
d%(s,8) — 3d(sm, $) — 2[yn(9) — yn(sm] = = > [(Zj, &mj-1) —¥(Z;, 9]| < o,
j=1

and, sinceBn n, D, 'm, and L, are finite constants (see Assumptions 4.1 and 4.2), we
have that

ALmD
rﬁ—i— r:]m<oo

0,

Also, for each fixedh > 1, we have from Assumption 4.4 that

AL Dy
ar%—i— r:] m

< Q.

Consequently, we have thAVm n| < Fmn < oo a.s. for some finite constaft, ,. This
implies thatE|Wn, n| < oo, hence we now have from Lemma A.6 of Modha & Masry
(1996) and from (48) that

E[Wmnn] < /OOO P{Wnn > 0'}d0" <4.1% /:O exp(—nd’ /1) do’ = 41&
More explicitly, we have that
E[07(s, 9] <30(sn, 9) + 05 + T 4 [Ur% N )‘LT]Dm:|
+2E[n(S) = ya(Swl + %E [JX:; [v(Z). 8mj-v) = V(Zj,s)]} + 41%

(49)
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We have from (43) that

Elyn(S) — vn(sm)] = —d*(s,sm) < 0. (50)

Also, we have that
—EZ (Zj.8mj-v) — 7(Z;.9)]

2 n
== E{[Smi-v(X) - sOX] = 208(X)) = Y1[s(X)) = &m.j -1 (X)]}

E[d*(8m.j-1.9)]

3 B[ (&m 1. 9]

=2

(0 8t2 n 2+ Ly)D
i Zkgidz(s S) + 1eg 2T £m) P +j m) D

E[d*(Smo. 5)] +

SN

n 1

¢ 2
2% s s + CETEWEn g o ) (5)

where (a) follows since

E{[s(Xj) = Yj][s(Xj) = &m,j-n(Xp]}
— E{E[(S(X}) = Yj) | X1, Xz, ..., X; ] [S(X) = &mj—n (X)]}
=E{E[(s(X)) = YD) | X;] [s(X}) = &m.j-n(X)]}

(b) the bound on the first term follows from Assumptions 2.2 and 4.3 and, since Assump
tions 2.2, 4.1, 4.2, and 4.3 hold, the bound on the second term follows from Theorem 9 c
BBM wherexg andkg are positive constants; (c) follows since, for each 2,

n 1 n—11 n—ll
: 22751+/ —da=1+In(n-1).
n ] 1 a

Also, we writexg = 2kgkg.
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After simple algebraic manipulations, it follows from (41), (49), (50), and (51) that
E / [s00 — 8P (0 ]” dPx (%)
Ra

< stz(s“, S) + [ke(P+ Ln)(INN—D + 1)+ ALV D + ALm]%

D 24413
+E|:[(A£mvl)+ALm]T] +85+, (52)

The desired bound on the risk of the prequential estimator, namely (31), now follows b
observing that the left-hand side of (52) does not deperm.on

The bound on the risk of the cross-validated estimator (32) follows in a similar fashion
but by employing Lemma 4.2 instead of Lemma 4.1 and by employing (3) instead of (1) ir
step (47), and by observing that

_EZ ZJ’ ((rjn)n) y(Zj,S)]
——ZE [[80, (X)) = sXD]? = 2[s(X)) — Y{1[s(X)) — &1 (Xp])
@ 2 &) 2

ZE Sy (X)) = s(X))]
=HZE[ (80 X)) = S(XD)? | Xas oy Xjo1s Xt s Xa]]
__ZE dz S((rln)n)’ ]
b 2 (2+£m)Dm
= HZKQ{dZ(S Sm) + QT}

i=1 1

k(2 + Lm)Dm

= 2ic4d?(s, Sm) + —

(53)
where (a) follows since
E{[s(X)) — Yi1[s(Xj) — &y XD]}
E{E[S(X)) = Y)) | X1, Xz, ..., Xa] [8(X}) = 8 (X)]}
= E{E[s(X)) = YD) | X1 [s(X)) — & (X])
=0;

(b) since Assumptions 2.2, 4.1, 4.2, and 4.3 hold the bound follows from Theorem 9 of BBV
for eachn > 2, wherexg and« are positive constants. Also, as before, wkige= 2«gio.
The proof of Theorem 4.1 is now complete. m|



36 D. MODHA AND E. MASRY

Proof of Theorem 2.1:  We first establish bound (11) on the risk of the prequential estima-
tor. Throughout this proof, let symbol§;, Ko, . .., represent generic positive constants.

It follows from Assumption 2.2 and from Example 4.1 that all the hypotheses of
Theorem 4.1 hold, hence we have from (31) that

E / [s00 — 8 (0 ]? dPx (%)
Ra

< {stz(sm o 4 62+ LN = D) + ? + LV D)+ ALn] Dm}

2
+ 41321
| 824415

- : (54)

Dy
+ E[[(Aﬁm v+ ,\Lm]T"‘]
where, for brevity, we writgh = rh(P,
For eacm > 2, it follows from (8) and (30) that

sup Lp =1,
meM;,

and from (8), (28), and (29) that

5 n 1+m@+2
Lm < —In|12(8 — |1 e B
Sup —:;az{zn[<e“>\/1+m<q+z>(+¢ " )”
< Kzlnn.

Consequently, for eaal > 2, we have—after some algebraic manipulations—that

sup[(ALm VD) + Aly] < Kzlnn, (55)
meMp
sup [ke(2 + Lm)(IN(n — 1) + 1] < Ka(Inn)y2, (56)

meM,

For brevity, write

Mp = k1/Nn/(Inn)xz,

Now,

3 {"sdz(s, s 4 HeCHLmUINM =D+ D) + *Ln VD + ALm] D }

n

@ . 2
< inf ksd“(S, sm) + Ks

T 1<m<M,

(Inn)2Dp,
n

inf
1<m<M, m n

() {& N Ke(In n)zm}

© Inn

< Ksﬁ (57)
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where (a) follows from (55) and (56); (b) follows from Corollary 1 of Barron (1994) by
utilizing Assumptions 2.1, 2.3, and 2.4, and (5) and follows from (28); and (c) follows by
settingm = L%J and by checking that, for each> 2, 1 < L%J < Mp = k1/n/(INny<2
if we setk, < 2 and if we sek; > 1 (as prescribed in (9)).

Now,

E[[(Aﬁm v+ ALm]%] @ E[[(Aﬁm v+ ALMW}

(0 Kg(In n)—*2/2

< E[ALs VD + ALy —————=———

< E[(ALm VD) + L] NG

© (In n)1—+2/2

< _— 58
= Ko7z (58)

where (a) follows from (28); (b) follows, for each> 2, since the number of hidden units
rh is selected to be in the range<lrh < «14/n/(Inn)<z; and (c) follows from (55).

The desired rate of convergence for the prequential regression estimator based on net
networks, namely (11), now follows from from (54), (57), and (58) if werset= 0 (as
prescribed in (10)).

The desired rate of convergence for the cross-validated regression estimator based
neural networks, namely (12), follows similarly if we sgt> 1 andk, = 1. |

Proof of Corollary 2.1:  We first establish bound (13) on the excess time-averaged ex-
pected prediction error of the sequence of prequential estimﬁﬁ@rﬁzl.

1 n
- Z E[Yir1— sip)(xkﬂ)]z — E[Yo — s(Xo)]?
k=

(i) - Z Yk+1 _ (Xk+1)] — E[Yks1 — S(Xk+1)]2)

L - 3 E[s0e — &7 X
k=1

1 ) 1d .
= E[s(Xa) - P (X)) + - ; E[s(Xkr1) — &P (X )|

© 4¢&? 1 Ink
< — 4 (constant— —
-+ ( )tnk; N

2 |
(i) 457 + (constanlﬂ (59)

J/n
where (&) follows since we assume the random varigidgsy; }>° ___ tobei.i.d.; (b) follows
by probabilistic manipulations similar to those carried out in step (a) of (51); (c) the bounc
on the first term follows from Assumptions 2.2 and 4.3 and, since Assumptions 2.1, 2.2
2.3, and 2.4 hold, the bound on the second term follows from Theorem 2.1; (d) follows



38 D. MODHA AND E. MASRY

since, for eacim > k > 2,

n

Ink n.o1 noa
J— | — | —da=(l —1).
E:ﬁs(nmk}:zﬁﬁqnm/l 5 da= (i~ 1

k=2

The desired result for the sequence of cross-validated regression estimators, namely (1
follows similarly. O
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Notes

1. As animportant aside, we point out prequential model selection procedure for least-squares regression estir
tion problem represents one manifestation of Dawid’s prequential principle—which can be applied to a variet
of statistical problems. Also, note that Rissanen refers to prequential model selection as predictive minimur
description length principle.

2. Note that we may lep to be the cosine function, a wavelet ridge function (Hornik et al., 1994; Yukich,
Stinchcombe, & White, 1995), or the hinged hyperplane (Breiman, 1993) by using Proposition 7 of Barron.
Birgé, & Massart (1996) and by appropriately modifying Assumptions 2.3 and 2.4 in each case.
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