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Abstract. We provide analytical expressions governing changes to the bias and variance of the lookup table
estimators provided by various Monte Carlo and temporal difference value estimation algorithms with offline
updates over trials in absorbing Markov reward processes. We have used these expressions to develop software
that serves as an analysis tool: given a complete description of a Markov reward process, it rapidly yields an
exact mean-square-error curve, the curve one would get from averaging together sample mean-square-error curves
from an infinite number of learning trials on the given problem. We use our analysis tool to illustrate classes of
mean-square-error curve behavior in a variety of example reward processes, and we show that although the various
temporal difference algorithms are quite sensitive to the choice of step-size and eligibility-trace parameters, there
are values of these parameters that make them similarly competent, and generally good.
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1. Introduction

Many different algorithms have been developed for predicting the expected outcome, or
value, of uncontrolled Markov reward processes: Monte Carlo (MC) algorithms (e.g., Wa-
sow, 1952) and maximum-likehood (ML) algorithms (e.g., Kumar & Varaiya, 1986) in
statistics and control, and temporal difference (TD) algorithms (Sutton, 1988; Barto et al.,
1983) in machine learning. For most such algorithms, a theory of asymptotic convergence
with probability one is available under suitable conditions on algorithm parameters. How-
ever, what is not available is a theory of learning behavior of the kind that is available
in some supervised learning problems (e.g., Haussler et al., 1994). For example, which
algorithm and problem parameters are key determinants of learning behavior?1 How do
different parameters for the Markov reward process, such as the mixing rate, the amount of
determinism, acyclicity, etc., change learning curves? How do these problem parameters
interact with algorithm parameters such as the step-size,α, and, in the case of TD, the
eligibility-trace parameter,λ? Understanding the effects of these parameters is also crucial
to making useful comparisons between algorithms, as it is quite likely that no one algo-
rithm dominates the others for all problems. This understanding will also form a basis for
developing hybrid algorithms, and for developing methods that set algorithm parameters
automatically for faster learning.

One could address the above questions empirically by studying the learning curves for
various algorithms applied to specific, carefully chosen, problems. The difficulty is that
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the sequence of value estimates produced by both MC and TD algorithms is random, and
therefore the learning curves themselves are random. Nevertheless, one could hope to draw
sensible conclusions by studying “mean” learning curves produced by averaging a large
number of random learning curves. However, one would expect this to be computationally
infeasible, except for small problems, and indeed we show below that even for very small
problems (e.g., with just5 states) the distribution of random learning curves may be such
as to render the empirical method infeasible. In this paper we provide an analytical way of
computing mean learning curves.

We focus on the mean squared error (MSE) between the estimated and true predictions.2

Our main contribution is in deriving the analytical update equations for the two components
of the MSE, the bias and the variance, for popular MC and TD algorithms. Given the mean
and covariance matrix of a current guess for the true value and a particular choice of algo-
rithm parameters, our results tell us precisely what the expected MSE is after another trial
as a function of the problem parameters. These derivations are based on five assumptions:
that the Markov reward process is absorbing, i.e., has terminal states, that lookup tables are
used, that the algorithm parametersα andλ are functions of the trial number alone rather
than also depending on the state, that the estimated values are updated offline (after the
end of each trial), and that the only non-zero payoffs are on the transitions to the terminal
states. The effect of violating any of these assumptions on the general nature of our results
is not known. With the above caveats, given a complete description of a Markov reward
process, our results allow us to rapidly computeexactMSE learning curves for MC or TD
algorithms as a function of trial number — the same curves one would get by averaging an
infinite number of sample MSE learning curves obtained by repeatedly running the learning
algorithm on the same Markov reward process.

While our analysis method does not suggest a new learning algorithm, we use it in
this paper to produce analytical learning curves for a number of specific Markov reward
processes chosen to highlight the effect of various problem and algorithm parameters, in
particular different choices ofα andλ. Using these learning curves, we also compare the
relative performance of different forms of eligibility traces in TD algorithms, as well as the
relative performance of TD and MC algorithms. These results are on specific problems,
and any conclusions drawn from them are valid only on the problems presented. However,
we believe that many of the conclusions are intuitive or have previous empirical support,
and may be more generally applicable.

The remainder of the paper is organised as follows. Section 2 describes the problem of
estimating the values of states in absorbing, Markov reward processes, and the various MC
and TD algorithms we have considered. Section 3 introduces the main results of the paper,
namely the update equations for bias and variance of the estimates, which are given in full
in the appendix and in the associated software. Section 4 applies the software to certain
specific Markov reward processes to determine the effects of the different parameters of the
algorithms. Section 5 analyses what these bias and variance update formulæ imply about
the asymptotic convergence rates for the algorithms, at least for constant learning rates.
Finally, section 6 draws together the conclusions.
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2. The Value Prediction Problem and Learning Algorithms

We consider absorbing Markov reward processes with a finite set of non-terminal states
s = 1, . . . , n. The probability of a transition from non-terminal statei to non-terminal
statej is denoted byQij and the probability of absorption fromi is denoted byqi. There
is no payoff on transitions between non-terminal states. On absorption from statei there
is a random payoff, denotedri, whose expected value is a function ofi. The prediction
problem is to determine the value of every non-terminal statei, denotedv∗i , defined as the
expected terminal payoff when the start state isi. Therefore,v∗i = E{r|s1 = i}, wheresk
is the state at stepk, andr is the random terminal payoff.

Both TD and MC algorithms begin with an initial guess of the value function and use
learning trials to update their guesses. A learning trial consists of a random walk that starts
in statei with probabilityµi and produces a sequence of non-terminal states followed by a
terminal payoff. The update equations of all of the algorithms analyzed take the following
general form, for alli:

vi(t) = vi(t− 1) + α(t)δi(t), (1)

where the vectorv(t) = {vi(t)} is the estimate of the value function aftert trials,δi(t) is
the estimate of the error invi(t− 1) for statei based on trialt, and the scalar step-sizeα(t)
determines how the error is used to improve the old estimate. The estimate of the error
δi(t) might depends on all the valuesv(t − 1). The algorithms differ in theδs produced
from a trial. In general, the initial estimatev(0) could be a random vector drawn from
some distribution, but oftenv(0) is fixed to some initial value such as zero. In either case,
subsequent estimates,v(t), t > 0, are random vectors because of the randomδs.

The bias in the estimate aftert trials,b(t), is defined asE{v(t)− v∗}, i.e., the expected
difference between the estimated and the true value. Similarly, the covariance matrix of
the estimate aftert trials,C(t), is defined asE{(v(t)−E{v(t)})(v(t)−E{v(t)})T }. If
v(0) is fixed,b(0) = v(0)− v∗ andC(0) is the null matrix (with all entries zero). A key
scalar quantity of interest is the weighted MSE as a function of trial numbert:

MSE(t) =
∑
i

pi(E{(vi(t)− v∗i )2}) =
∑
i

pi(b2i (t) + Cii(t)), (2)

where the expected squared error for statei is weighted by a scalarpi. Hereafter, we will
only consider weighted MSE and refer to it simply as MSE. We takepi to be the expected
number of visits toi in a trial divided by the expected length of a trial:

pi
def=

(µT [I −Q]−1)i∑
j(µT [I −Q]−1)j

.

Other reasonable choices for the weights,{pi}, would not change the nature of the results
presented here.

2.1. Learning Algorithms

This section presents all the learning algorithms we study in this paper. Let the indicator
variableKi(t) be one if statei is visited at least once in trialt, and zero otherwise; letκi(t)
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be the number of visits to statei in trial t; and letτ(t) denote the number of time steps in
trial t. Note that trialt produces a sequence ofτ(t) states followed by a random terminal
payoff r(t).
Monte Carlo (MC)

Monte Carlo algorithms use the terminal payoff that results from a trial to define theδ
in Equation 1. Therefore in MC algorithms the estimated value of one state is unaffected
by the estimated value of any other state. We study two MC algorithms (Singh & Sutton,
1996):

first-visit MC:

vi(t) = vi(t− 1) + α(t)Ki(t) (r(t)− vi(t− 1)) , and (3)

every-visit MC:

vi(t) = vi(t− 1) + α(t)κi(t) (r(t)− vi(t− 1)) . (4)

In the case of Markov reward processes with only terminal payoffs, as above, the only
difference between first-visit MC and every-visit MC is in the random rescaling of the
step-sizes3 in every-visit MC.
Temporal Difference (TD)

The main difference between TD algorithms (Sutton, 1988) and MC algorithms is that
the former update the value of a state based not only on the terminal payoff but also on the
the estimated values of the intervening states. When a state is first visited it initiates a short-
term memory process, a state-specific eligibility trace, which then decays exponentially
over time with parameterλ. The manner in which the values of intervening states are
combined with the terminal payoff is determined in part by the magnitudes of the eligibility
traces. We study three TD algorithms differing only in the method by which the eligibility
trace for a state is updated onrevisits to the state before termination. As shown in Figure 1,
accumulateTD adds a new trace to the existing trace,replaceTD replaces the old trace
by a new trace, whilefirst TD’s trace ignores revisits. Accumulate TD is the original TD
algorithm defined by Sutton (1988), replace TD was defined by Singh & Sutton (1996), and
we introduce first TD here.

The estimated error for statei after trialt, δi(t) in Equation 1, takes the following form
for all three TD algorithms:

δi(t) =
τ(t)−1∑
n=1

[
vsn+1(t− 1)− vsn(t− 1)

]
ei(n) +

[
r(t)− vsτ(t)(t− 1)

]
ei(τ(t)),

whereei(n) is the value of the eligibility trace for statei at stepn. The explicit dependence
of sn andei(n) ont, the trial number, is dropped for improved readability. At the beginning
of each trial, the eligibility trace is zero for all states. It is updated for the three different
algorithms as follows (also see Figure 1):

accumulate TD:

ei(n) =
{
λei(n− 1) + 1 if i = sn,
λei(n− 1) if i 6=sn;



ANALYTICAL MEAN SQUARED ERROR CURVES 9

replace TD:

ei(n) =
{

1 if i = sn,
λei(n− 1) if i 6=sn;

first TD:

ei(n+ 1) =
{

1 if i = sn and this is the first visit toi in this trial,
λei(n− 1) else.

In the appendix we present the above three TD algorithms in a different form that is more
suited to the MSE calculations but is less intuitive because it does not separate out the
calculation of the eligibility trace from the calculation of theδs.

Eligibility Traces

Accumulate
TD

Replace

TD

First

TD

visits to

state

Figure 1. Three Different Eligibility Traces. In accumulate TD, each visit adds another eligibility trace to the
previous trace. In replace TD, each visit to a state terminates the previous eligibility trace and initiates another
trace. In first TD, only the first visit to a state in a trajectory initiates an eligibility trace.

There are interesting relationships between the MC and TD algorithms (Singh & Sutton,
1996; Barto & Duff, 1994) and among the different TD algorithms: every-visit MC is
identical to accumulate TD(1), first-visit MC is identical to replace TD(1), accumulate
TD(0) is identical to replace TD(0), and first TD(1) is identical to replace TD(1). Therefore
for small values ofλ, accumulate TD and replace TD are similar, while for large values of
λ, replace TD and first TD are similar. This is reflected in the learning curves presented
below (e.g., Figures 7 and 8).

All of the above MC and TD algorithms are known to converge asymptotically tov∗ with
probability one under the following conditions: a)α(t) decreases to0 in an appropriate way,
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b) every state is visited infinitely often, and c) lookup tables are used to store the estimated
value function.4 In this paper we are less interested in asymptotic convergence than we are
in the MSE performance in the shortterm under conditions of fixed or time varyingα(t)
andλ(t).

3. Analytical Bias, Variance, and MSE Update Equations

This section provides equations that computeb(t), C(t), and hence MSE(t), after trialt,
based on the values of these same quantities at the start of the trial and as a function of the
algorithm and the problem and their parameters. Instead of working directly with the bias
b(t) and covarianceC(t) of the estimatev(t), we work with the meanm(t) = E{v(t)},
and the mean square matrixS(t) = E{v(t)vT (t)}. Clearly, b(t) = v∗ − m(t), and
C(t) = S(t) − m(t)mT (t). To preserve readability, only the form of the final update
equations are presented in this section (see the appendix for details).

The mean update equations of all the above algorithms take the form:

mi(t) = mi(t− 1) + α(t)Γi(t), (5)

and theS updates take the form:

Sij(t) = Sij(t− 1) + α(t)∆ij(t) + α(t)2Υij(t), (6)

whereΓ(t), ∆(t) andΥ(t) depend onm(t − 1) (and∆(t) andΥ(t) depend onS(t −
1)), differ for the different algorithms, and are distinguished when necessary by adding
superscripts:FV for first-visit MC, EV for every-visit MC,A for accumulate TD,F
for first TD, andR for replace TD. Throughout this paper use of these quantities without
superscripts in an equation implies that it holds for all the algorithms with the appropriate
superscripts appended.ΓFV ,∆FV ,ΥFV are defined in Section A.1;ΓEV ,∆EV ,ΥEV are
defined in Section A.2;ΓA,∆A,ΥA are defined in Section A.3;ΓF ,∆F ,ΥF are defined
in Section A.4; andΓR,∆R,ΥR are defined in Section A.5. The details of theS update
equation take a considerable amount of space and, unfortunately, do not lead us to any
direct conclusions about the effect of different parameters. The effect of the step-size,α,
however, is clear from Equations 5 and 6: the bias update depends linearly on the step-size,
while the covariance update has both linear and quadratic dependence on the step-size.

Given the update equations form(t) andS(t), the update equation for MSE is derived as
follows:

MSE(t) =
∑
i∈s

pi(b2i (t) + Cii(t))

=
∑
i∈s

pi((v∗i −mi(t))2 + (Sii(t)−m2
i (t)))

=
∑
i∈s

pi(v∗i
2 − 2v∗imi(t) + Sii(t))

=
∑
i∈s

pi(v∗i
2 − 2v∗i (mi(t− 1) + α(t)Γi(t))

+(Sii(t− 1) + α(t)∆ii(t) + α2(t)Υii(t)))
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=
∑
i∈s

pi(v∗i
2 − 2v∗imi(t− 1) + Sii(t− 1))

+α(t)
∑
i∈s

pi(−2v∗i Γi(t) + ∆ii(t)) + α2(t)
∑
i∈s

piΥii(t)

= MSE(t− 1) + α(t)
∑
i∈s

pi(−2v∗i Γi(t) + ∆ii(t))

+α2(t)
∑
i∈s

piΥii(t). (7)

4. Learning Curves on Specific Markov Reward Processes

We coded the analytical MSE update equations in theC programming language to develop
a software analysis tool that, for a fixed Markov reward process, computes exact MSE
curves forL trials inO(|s|3L) steps regardless of the behavior of the variance and bias
curves. The analysis tool is simple to use. It takes as input the transition probability matrix
and the mean and the variance of the terminal rewards of any Markov reward process that
satisfies the assumptions of Section 2, the initial bias vector and covariance matrix (null, if
the initial value function is fixed), a choice forα, λ, and the number of trials. Its output
is a sequence of exact MSE values, one for each trial. Our software is available from
ftp://ftp.cs.colorado.edu/users/baveja/AMse.tar.gz via anonymous ftp.

We applied our software to two classes of problems: a symmetric random walk (SRW;
Figure 2), and a Markov reward process with a cyclicity parameter that controls the expected
length of a trial by controlling the expected number of revisits to each non-terminal state
(Figure 3). We use the first problem to explore the space of possible learning curve behaviors,
the effect of increasing step-sizes, increasingλs, the relative performance of the three TD
algorithms, and the relative performance of TD and MC algorithms. The latter problem is
used to explore the effect of initial bias and chain cyclicity on optimal schedules ofα and
λ for the three TD algorithms.

4.1. Analytical and Empirical MSE Curves

First, we present empirical confirmation of our analytical equations by comparing analytical
and empirical MSE curves on the19 state SRW problem. Empirical MSE curves average
a number of sample MSE curves obtained through simulation runs. A simulation run
sets a seed for the random number generator and then performs a specified number of
trials. Different seeds are used for different simulation runs. Figure 4a shows analytical
MSE curves for the three TD algorithms (see Figure 4 caption for details aboutα and
λ). Figure 4b shows the difference between the analytical curves and the empirical curves
produced by averaging more than three million simulation runs. The match after three
million simulation runs was within four decimal places for all three algorithms.
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1 2

T

N

N−1(N+1)/2

Start  State

+1 −1

Figure 2. Symmetric Random Walk (SRW) Problem. The number of non-terminal states,N , is an odd number.
T is the terminal state. In each non-terminal state there is equal probability of a transition to the left or to the
right. Absorption from the left-end of the process rewards+1 while absorption from the right-end rewards−1.
All other rewards are zero. All trials start in the middle state.

1−c

T

1 N2

c * c * c * c *

c *

1−c 1−c 1−c

1−N
N−1

3−N N−3

Figure 3. Parameterised Markov Reward Process. There areN non-terminal states labeled1, . . . , N . T is the
terminal state. The parametersc andφ together control the cyclicity of the Markov reward process. The closer
the productc∗φ is to one, the higher the cyclicity. For each statei, the remaining transition probability,c−φ∗ c,
is distributed equally among all other transitions (not shown here) out of statei. The reward for terminating from
statei is 2i−N − 1, and there is equal probability of starting in any non-terminal state.
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Figure 4. Comparing Analytical and Empirical MSE Curves. a) Analytical learning curves obtained on the19
state SRW problem with parametersα = 0.01, andλ = 0.9 for accumulate TD and replace TD, andα = 0.6,
andλ = 0.9 for first TD. b) The difference between the analytically-obtained MSE curves and the empirically
obtained MSE curves. Values forλ andα were chosen to produce both monotonic and non-monotonic MSE
curves. The empirical curves were obtained by averaging more than three million simulation runs. For each
algorithm, the analytical and empirical MSE curves agree up to the fourth decimal place.

4.2. Long Tail Behavior in Empirical MSE Curves

In Figure 5 we present a case showing that the empirical simulation method for approxi-
mating MSE curves does not work well for some parameters for the algorithms. Figure 5a
compares the analytical MSE curve with the empirical MSE curve obtained from more than
12 million simulation runs on a small five-state SRW problem. The algorithm parameters
were chosen such that the asymptotic variance was high. The poor match and the spikiness
of the empirical learning curve are explained by Figure 5b, which shows the empirical MSE
after198 trials as a function of the number of simulation runs averaged into the empirical
MSE estimate. The sharp jump in the plot close to6.5 million simulation runs is strong
evidence of the long tails of the distribution of estimated values for these parameter choices.
Figure 5c plots the distribution of the sample MSE values at trial198. The inset graph shows
that very large values of MSE occasionally occur. The mean MSE over15.5 million trials
is 0.3133, the variance over these trials is9950.9 (standard error is2.529). Straightforward
averaging of samples from such distributions is known to be very slow to converge to the
mean.5

The above demonstration that the distribution of estimated values can have a long tail un-
derscores the need for caution in interpreting comparisons of algorithms based on empirical
MSE curves, particularly results that compare algorithms over a wide range of algorithm
parameters. Unfortunately, our analysis is unable to distinguish between the circumstances
under which high asymptotic variance implies long tails and the circumstances under which
it does not, for we found instances of both cases. In addition, the long tail of the distribu-
tion of estimated values does not explain the apparent low ‘underlying’ asymptote in the
empirical MSE curve of Figure 5a.
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Figure 5. Long Tails of the Distribution of Estimated Values. a) A case in which the empirical method badly failed
to match the analytical learning curve after more than12 million simulation runs on a small5 state SRW problem
for parametersα = 0.432 andλ = 0.5. The empirical learning curve is also very spiky. The real problem is
illustrated in (b), which plots the estimated MSE on trial198 as a function of the number of runs averaged to form
the estimate. The big impulse around6.5 million runs implies that within10, 000 runs the MSE was large enough
to take the average from0.3 to 2.4. This implies that the distributions of the estimated values can have very long
tails making the straight averaging method very slow. c) Empirical MSE data for the estimate at trial198. The
main graph shows the empirical distribution over15.5 million simulation runs (based on a different set of seeds
for the random number generator than for (a) and (b)). The inset shows impulses at actual sample values greater
than100. The largest value is greater than200000.

4.3. Effect ofα andλ on TD Algorithms

In this section we study the effect ofα andλ on TD algorithms. Figure 6 presents examples
of the different kinds of bias, variance, and MSE (the sum of bias-square and variance)
curves that are obtained from the19 state SRW problem for fixedα andλ. Figure 6(a) and
Figure 6(b) show examples of learning curves in which bias and variance both converge and
in which bias converges while variance diverges. Figure 6c shows a case where both the
bias and the variance diverge in accumulate TD. Figure 6d shows a case where both the bias
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and the variance converge in first TD. There are four classes of MSE curve behavior that
result from the different combinations of bias and variance curve behavior: monotonically
decreasing MSE that asymptotes to a non-zero value (e.g., replace TD in Figure 6a); first
decreasing and then increasing MSE that asymptotes to a non-zero value (e.g., first TD in
Figure 6d); and MSE first decreasing and then increasing to infinity (e.g., replace TD in
Figure 6b). A fourth behavior in which the bias starts off so near to0 that the MSE increases
monotonically, is rarer.
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Figure 6. Different Kinds of Bias-Square, Variance and MSE Learning Curves (from the19 state SRW problem).
In all panels the labels A:b, R:b, and F:b, when present, denote the bias-square curve for accumulate TD, replace
TD and first TD respectively, the labels A:v, R:v, and F:v denote the variance curve for accumulate TD, replace
TD, and first TD respectively, and the labels A:m, R:m, and F:m denote the MSE curve for accumulate TD, replace
TD and first TD respectively. (a,b) Examples of two cases: the bias and variance both converge, and the bias
converges while the variance diverges. (c) Both the bias and the variance diverge, the bias more slowly than the
variance. (d) An MSE curve with an interesting knee, or local minimum. In each panel, the MSE curve is the sum
of the weighted bias-square and the weighted variance curves.
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In Figures 7 and 8 we summarize the effect of varyingα andλ in the 19 state SRW
problem. Each graph of Figure 7 plots MSE curves for a single constantλ and for allα ∈
{0.001, 0.01, 0.075, 0.1, 0.6}. Each row corresponds to a differentλ ∈ {0.0, 0.5, 0.9, 1.0},
while the different columns correspond to different algorithms. Figure 8 presents similar
data, except that each graph plots MSE for allλ ∈ {0.0, 0.2, 0.6, 0.8, 0.9, 1.0} and a single
constantα. The initial value function was0.0 for all graphs.

We define the maximalfeasibleα for a givenλ to be the largest value such that the MSE
has a finite asymptote. For graphical convenience, all the graphs in Figures 7 and 8 have
the same upper limit on MSE, and so it is not always clear for some values ofλ andα
whether the MSE diverges or whether it converges to a value greater than0.2. We address
this explicitly in Figure 16.

The following summary hypotheses for TD algorithms can be formulated from the data
shown in Figures 7 and 8:

H1 For a fixed Markov reward process and a constantλ, increasingαhas two general effects
on the learning curve: there is a largest value ofα below which the bias converges to
zero and above which the bias diverges (Sutton, 1988; Dayan, 1992), and there is a
largest value ofα below which the variance converges to a non-zero value and above
which it diverges. These largestfeasiblevalues ofα need not be the same for bias and
variance. Based on our limited investigation of learning curves, we conjecture that the
largest feasible value ofα for bias is greater than or equal to the corresponding value
for variance (Figure 9).

H2 For each algorithm, increasingα while holdingλ fixed increases the asymptotic value
of MSE. This is most clearly seen in the graphs forλ = 0.9 (Figure 7g,h,i) for all three
algorithms. Similarly, increasingλ in the feasible range while holdingα fixed increases
the asymptotic value of MSE. This is most clearly seen in the graphs forα = 0.075
(Figure 8g,h,i) for all three algorithms. Therefore, the smaller the constantα andλ, the
smaller the asymptotic MSE.

H3 For each algorithm, larger values ofα orλ lead to faster convergence to the asymptotic
value of MSE if there exists one. Examples of this are seen in theλ = 0.9 graphs of
Figure 7 and theα = 0.075 graphs of Figure 8. This may break down forλ very near
to 1.

H4 In general, for each algorithm as one decreasesλ, the feasible range ofα shrinks, i.e.,
largerα can be used with largerλ without causing excessive MSE. We explore this
issue in Section 5.1 and Figure 16.

An apparent effect of varyingλ andα in Figures 7 and 8 is the increasing stability as one
moves from accumulate TD to replace TD and from replace TD to first TD. For the same
small value ofλ, larger values ofα are feasible for replace TD compared with accumulate
TD and for first TD compared with replace TD. This is also seen in Figure 6a,b where for the
sameλ andα, accumulate TD diverges while replace TD converges, and for anotherλ and
α, replace TD diverges while first TD converges. However, note that the magnitude of the
update in value function in all three TD algorithms depends on bothα and the magnitude of
the eligibility trace. The eligibility trace should in general be larger for accumulate TD than
for replace TD, and larger for replace TD than for first TD, and this may account for the
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Figure 7. MSE Curves for Different Values ofλ andα. The first column is for accumulate TD, the second for
replace TD, and the third for first TD. Each row contains graphs for the same value ofλ, with theλs increasing
as we go down the columns. Each curve is for the givenα. Note that for each column, as we increaseλ, larger
values ofα become feasible (stable). For graphical convenience, all the graphs in Figures 7 and 8 have the same
upper limit on MSE, and so it is not always clear for some values ofλ andαwhether the MSE diverges or whether
it converges to a value greater than0.2.
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Figure 8. MSE Curves for Different Values ofλ andα. Each panel is for a fixedα, and the individual curves are
generated using the given value ofλ. MSE curves for larger values ofα andλ asymptote in fewer trials to larger
asymptotic values. For graphical convenience, all the graphs in Figures 7 and 8 have the same upper limit on
MSE, and so it is not always clear for some values ofλ andα whether the MSE diverges or whether it converges
to a value greater than0.2.
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Bias Converges to 0

Bias Converges to 0

Bias Diverges Variance Diverges

Variance Converges to >0

increasing constant step−size

Variance Diverges

Figure 9. A Conjecture on Increasing Step-Sizes and Convergence in MC and TD Algorithms. It is known that
there exists a small enoughα below which the bias and variance converge to zero and a non-zero value respectively.
It is also trivial to find a large enoughα beyond which both the bias and variance diverge. The conjecture is that
the largest feasibleα for the bias is greater than or equal to the largest feasibleα for the variance. Our admittedly
limited empirical experience supports this result (see Figure 6 for an example.). Note that these critical values of
α depend on the Markov reward process.

effect entirely. A rescaling ofα in Figures 7 and 8 to take the maximum possible magnitude
of eligibility traces into account may be appropriate (Sutton, personal communication). The
greatest resulting difference would be for values ofλ nearλ = 1.

4.4. One-step Optimalα andλ

An advantage of having the analytical forms of the equations for the update of the mean
and variance is that it is possible to optimize schedules for settingα andλ. Choosing the
optimal schedules is useful in eliminating the effect of the choice ofα when studying the
effect of theλ parameter and vice versa. It is also useful in determining how problem
parameters such as cyclicity and initial bias should affect our choice ofα andλ schedules,
and in determining whether one of the algorithms is to be preferred.
One-step Optimal Schedule forα

Given a particularλ, the effect on the MSE of a single step for any of the algorithms is
quadratic inα. It is therefore straightforward to calculate the value ofα that minimizes
MSE after the next trialt, which we denoteαg(t):

αg(t) =
∑
i∈s pi(2v

∗
i Γi(t)−∆ii(t)))

2.0
∑
i∈s piΥii(t)

.

This is called the one-step optimal, orgreedy, value ofα. It is not clear that if one were
interested in minimizing MSE(t + t′), one would choose successiveα(t), α(t + 1); . . .
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that greedily minimize MSE(t),MSE(t + 1), . . .. In general, one could use our formulæ
and dynamic programming to optimize a whole schedule forα, but this is computationally
challenging.

Note that this technique for setting greedyα assumes complete knowledge of the Markov
reward process and the initial bias and covariance ofv(0), and is therefore not directly
applicable to realistic applications of reinforcement learning.
One-step Optimal Schedule forλ

Calculating analytically theλ that would minimize MSE(t) given the bias and variance
at trial t− 1, which we denoteλg(t), is substantially harder than calculatingαg(t) because
terms such as(I − λD)−1 for various matricesD enter Equation 7 when the details are
filled in from the appendix. However, given any choice ofλ, it is possible to compute the
corresponding MSE(t). Therefore, we compute the one-step optimal, orgreedy, value of
λ to a desired accuracy by searching over appropriately-spacedλ-values between zero and
one for theλ that yields minimum MSE. This is possible only because MSE(t) can be
computed very cheaply using our analytical equations. The caveats about greediness in
choosingαg(t) also apply toλg(t).

4.5. Performance as a Function ofλ
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Figure 10. MSE Curves as a Function ofλ. This figure plots the MSE as a function of bothλ and trial number
for α = 0.05. For each trial number, the value ofλ that achieves the minimum MSE is shown as a black line
superimposed on the surface plot. These plots show that the minimum-errorλ is not constant as a function of
trial number, and that it generally shifts from a high initial value to lower values with increasing trial number.
Decreasing the initial bias2 would lower the initial bestλs. Note that c) has a different rotation of the trial-number
× λ plane.

Sutton (1988) and others have investigated the effect ofλ on the empirical MSE at small
trial numbers. The effect is usually summarized by U-shaped curves of empirical MSE at
trial N as a function ofλ. These curves provide evidence of the utility of eligibility traces,
becauseλ > 0 gives minimum error, and also of the utility of TD over MC, because the
minimum errorλ is strictly less than one. We plot similar graphs here using our analytical
MSE curves, except that we are also interested in the value of the minimum errorλ as a
function of trial number.

Figure 10 plots the MSE as a function of bothλ and trial number forα = 0.05. Note
that in each panel of Figure 10, slices corresponding to fixed trial numbers are U-shaped.
For each trial number, the value ofλ that achieves the minimum MSE is shown as a black
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line superimposed on the surface plot. These plots show that the minimum-errorλ is not
constant as a function of trial number, and that it generally shifts from a high initial value
to lower values with increasing trial number. Because larger values ofλ converge to their
asymptote faster (H3), for small trial number they tend to be winners in the race for smaller
MSE. Values ofλ that are too large, on the other hand, lead to rapid divergence. This
explains the U-shaped curves for a fixed trial number as in Figure 10. Furthermore, because
the asymptotes are smaller for smallerλ (H2), smaller values ofλ tend to win for larger
t. This may account for the decreasing value of the minimum-errorλ as a function oft.
However, this is all forα’s that do not vary with trial number.
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Figure 11. Greedyα Curves. These figures plot MSE for various values ofλ using greedy (one-step optimal)
step-sizes. The minimum-errorλ starts high but then moves towards smaller values with increasing trial number.

We observe the same effects whenα is allowed to vary with trial number,t. Ideally,
one should search over all possibleα schedules. Instead, for computational convenience,
Figure 11 plots the MSE forλ ∈ {0.0, 0.8, 0.9, 0.99, 1.0} using greedyα schedules. It is
clear from this figure that no oneλ dominates for all trial numbers. Further, more evidence
is seen for U-shaped MSE curves as a function ofλ at a fixed trial number by considering
the MSE values at specific trial numbers in Figure 11. For example, in accumulate TD,
λ = 0.8 has the smallest MSE for smallt, for largert, λ = 0.9 has the smallest MSE and
then finally near the endλ = 0.0 has the smallest MSE. Similar effects are present in the
replace TD and first TD graphs. Sutton’s (personal communication) point made above that
1/(1 − λ) might be a more reasonable scale thanλ also applies to the discussion in this
section.

Our results provide additional evidence for, and suggest an explanation for, the advantage
of intermediate values ofλ. However, we should note at least two reasons to be cautious
about such empirical evidence presented by picking an arbitrary stopping point, especially
based on a small trial number:1) the MSE for the minimum (λ, α) pair so determined
may actually diverge for larger trial numbers, and2) if the variance of the value function is
high at the stopping trial, then empirical MSE values obtained from averaging even a very
large number of simulated trials may be very inaccurate (e.g., Figure 5). We show below
in Figure 13 that in fact the drop in MSE may be very insensitive to the value ofλ except
in the very first few trials, given the ability to scheduleα appropriately.
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4.6. Effect of Cyclicity and Initial Bias

In this section we consider a small5 state process of the kind shown in Figure 3. The goal
is to study the effect of varying cyclicity and initial bias on greedyλ andα schedules. The
four rows of Figure 12 correspond to the four combinations of high and low values of both
cyclicity and initial bias. The first column plots the MSE curves for all the algorithms, the
second plots the greedyλ schedules, while the third plots the greedyα schedules. These
results suggests the following conjecture (Sutton, 1988; Watkins, 1989) about the relation-
ship between initial bias and greedyλ:
H5 If the initial value function has a high bias, one should begin with a largeλ, while if

the initial value function has a low bias, one should begin with a smallλ. Over time the
effect of the initial bias weakens and the asymptoticλ should depend mainly on other
problem parameters.

With a largeλ all three algorithms put greater trust in the payoff data than in the estimated
values of intervening states. Conversely, with a smallerλ the estimated values of states
are trusted more than the payoff data. Therefore, hypothesis H5 is intuitively reasonable
because with a high initial bias, estimated values should be trusted less than payoff data.
Similarly, with a low initial bias estimated values are close to correct and therefore should be
trusted more than noisy payoff data. Clear evidence for hypothesis H5 is seen in Figure 12.
The first and third rows correspond to high initial bias, and in both cases the initialλs are
close to one. Rows two and four correspond to low initial bias and have low initialλs. We
observe that theλ values after75 trials are nearly the same if the amount of cyclicity is the
same. The sharp jump of theλ value for first TD in Figure 12e is explained below.

Further evidence for hypotheses H3 and H4 is also seen in Figure 12. We suspect from
hypothesis H3 that larger values ofα lead to faster convergence to the associated asymptote
and so one should want to use largeαs, at least in the beginning. However, H4 suggests
that the largest feasibleα is larger for largerλ. Accordingly, we see high initialαs in rows
1 and 3 of Figure 12 that have high initialλs, and we see low initialαs in rows 2 and 4 that
have lower initialλs.

The effect of cyclicity on the different algorithms is less clear. Increasing cyclicity should
lead to more revisits to states before termination and should therefore amplify the relative
differences between accumulate TD and replace TD, as well as between replace TD and
first TD. However, from the results in Figure 12a,d,g,j it seems that by choosing theα and
λ schedules wisely, the differences between the algorithms largely disappear. Of course, in
practice the knowledge required to choose optimal, or even greedy,α andλ is not available
and so for practical choices ofα andλ, the differences may be more prominent (e.g., Singh
& Sutton, 1996). Higher cyclicity also resulted in larger asymptoticλg (compare rows 1
and 2 of Figure 12 with rows 3 and 4), because it leads to longer trials and therefore requires
largerλ to obtain the same mix of the random payoff in the estimator than it would with
shorter trials.

But how sensitive is the rate of convergence to the choice ofλ? Figure 13 suggests that
careful choice of this parameter is only rewarded very near the beginning, and that over
time the drop in MSE is relatively insensitive to choice ofλ. Figure 13 plots the sensitivity
to λ as a function of trial number. We measure sensitivity as the ratio of the resulting MSE
whenλ is used instead ofλg. The step-size used is the greedyα associated with eachλ. A
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Figure 12.Effect of Problem Parameters. These figures show the behavior of the algorithms on a5 state Markov
reward process whose cyclicity (probability of revisits) is controlled by parametersφ andc. The parameterc was
fixed to0.9. Initial bias (β) was controlled separately. Greedy choices ofα andλ were used. High initial bias
leads to high initialλ. High cyclicity leads to high asymptotic values ofλ. MSE curves for first-visit MC (fmc) and
every-visit MC (emc) are also shown. In (j), the curves for replace TD and accumulate TD are indistinguishable.
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Figure 13. Sensitivity toλ. These surfaces show the ratios between the one-step MSE for all values ofλ and
the one-step MSE for the one-step optimal value ofλ (all values of the ratios are≥ 1). Each value ofλ uses its
own greedy value ofα. On each successive trial, the bestλ is chosen and then the MSEs are calculated for the
next trial starting from the bias-square and variance that results from this choice. The white lines mark the bestλ.
These ratios are all close to1 for trial numbers greater than10.

white line is superimposed on the surface plot to mark theλg schedule. All three algorithms
start out by being very sensitive to the choice ofλ but soon the surface becomes very flat.
This helps explain the sudden jump inλg in Figure 12e.

4.7. Comparing Algorithms

The first column of Figure 12 also compares the performance of the two MC algorithms
with the three TD algorithms. In all cases, first-visit MC performs better than every-visit
MC, and this is consistent with Singh & Sutton’s (1996) theoretical results. In all cases, TD
algorithms performed better than, or at least no worse than, MC algorithms. The difference
between the MC and TD curves becomes small if the initial few greedyλg are close to1, for
in such cases there is little difference between MC and TD algorithms. Figure 14 compares
the performances of MC and TD algorithms on the5 state SRW problem. Figure 14
also plots the empirical MSE curve for the maximum-likelihood (ML) algorithm. The ML
algorithm uses the trials to build a maximum-likelihood model of the transition probabilities
and the rewards. Its estimate aftern trials is the value function that would be correct if
its estimated model aftern trials were correct. The ML algorithm is computationally very
expensive for large problems and is therefore of interest only as an ideal to compare against.
As expected, it forms a lower bound to all the other MSE curves.

5. Analysis of Asymptotic Convergence Rates

Given the analytical forms of the equations for the update of the mean,m, and the mean
square matrix, S, it is possible, for fixedλ andα, to compute the asymptotic rates of
convergence form andS. To do so we rewrite Equations 5 and 6 in the following form:

m(t) = am +Bmm(t− 1) (8)

S(t) = AS +BSS(t− 1) +DSm(t− 1), (9)

whereBm depends linearly onα, andAS ,BS andDS depend at most quadratically onα.
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Figure 14.Comparing TD, MC and ML Algorithms. Comparison of the TD algorithms with the MC algorithms
and the Maximum-Likelihood (ML) algorithm on the five state SRW problem. For the TD algorithms the greedy
α andλ schedules were used. For the first-visit MC (fmc) and every-visit MC (emc) algorithms the greedyα
schedules were used. The ML empirical MSE curve was obtained by averaging19 million simulation runs.

The maximum moduli of the eigenvalues ofBm andBS determine the fact and speed
of convergence of the algorithms to finite endpoints. If either is greater than1, then the
algorithms will not converge in general. As illustrated below, we observed that the mean
update is more stable than the mean-square update, i.e., the larger values ofα still lead to
eigenvalues ofBm that satisfy the convergence criteria.

Further, we know that forα sufficiently small, the mean converges tov∗, and therefore
we can determine the asymptoticS(∞) as:

S(∞) =
[
I −BS

]−1 [
AS +DSv∗

]
. (10)

This formula is only true, of course, if the eigenvalues ofBS are less than1 in modulus.
We can calculate the value ofα at which this ceases being true, a value we call the largest
feasibleα.

Just like the LMS algorithm (Widrow & Stearns, 1985), these algorithms converge at
best with probability 1 to anε-ball aroundv∗ for a constant finite step-size. This amounts
to the MSE converging to a fixed value which is determined by Equation 10. One can
therefore use Equation 10 to determine which values ofα lead to which terminal MSE,
and, by calculating the eigenvalues ofBm, one can determine an upper bound to the rate
of decrease of the error in the mean of the estimate.
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5.1. Eigenvalue Analysis

We applied this eigenvalue analysis to accumulate TD on the 19 state SRW problem.
Figure 15a shows the smallest and largest eigenvalue of the matrixBm which governs the
convergence of the bias to0. The eigenvalues are real since the problem is symmetric. The
smaller the moduli of these eigenvalues, the faster the mean can be guaranteed to converge.
We observe that the bias reduces fastest forλ = 1.

Figure 15b shows the equivalent reduction rates for the matrixBS , which governs the
convergence of the mean squareS. These maximal rates are only valid once the bias has
converged to0. However, we have always observed that the bias converges more rapidly
than the mean square, at least if either converges. The algorithm diverges if the reduction
rate is greater than one. Forα = 0.075, the smallest value ofλ that ensures that the mean
square converges is approximately0.3, and is shown as limiting the region of instability in
Figure 15a.

Figure 15c combines eigenvalue analysis for the mean with terminal MSE analysis from
the mean square. For a givenλ andα, we can solve Equation 9 withm = v∗ to calculate
the terminalS and consequently the terminal MSE. We used numerical methods to find the
step-size,α, that would give particular terminal MSE, and then found, for thisα, the largest
eigenvalue of the mean update matrixBm. For some values ofλ, there may be noα that
gives a convergentS for a given MSE – indeed this is apparent in the graph. We show the
consequent maximal mean reduction rate as a function ofλ for two different terminal MSEs.
Obviously, the more lax one is about the terminal MSE, the faster the convergence can be
expected to be. Note that using an intermediate value ofλ < 1 is optimal even though
for any fixed value ofα, Figure 15a implies that the largerλ the better. The explanation
comes from Figure 16b, which shows the terminal MSE as a function of bothλ andα. It is
apparent that settingλ very near to1 means that very small values ofα must be used, thus
reducing the maximal mean reduction rate.

Figure 16a shows the (numerically calculated) largest value ofα for which S does not
diverge. Note the kink in the curve forλ near1 (amplified in the inset) which is a reason
why larger values ofλ are not always better. Figure 16b’s plot of the terminal MSE as a
function ofα andλ shows that it is not only the largest feasibleα that is important, but also
the terminal MSE that results. This also has anomalous behavior asλ→ 1.

6. Conclusions

We have provided analytical expressions for calculating how the bias and variance of various
TD and Monte Carlo algorithms change over iterations. The expressions themselves seem
not to be very revealing, but we provided many illustrations of their behavior in some
particular Markov reward processes. We have also used the analysis to calculate one-step
optimal (greedy) values of the step-size,α, and the eligibility-trace parameter,λ. Using
these values makes the algorithms quite similar. Further, we calculated terminal mean
square errors and maximal bias reduction rates.

Since all these results depend on the precise Markov reward processes chosen, it is hard
to make generalizations. We have nevertheless posited four broad conjectures:

• for constantλ, the largerα, the larger the terminal MSE;
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Figure 15.Eigenvalue Analyses of Bias and Mean Square Reduction. All three graphs are for the 19 state SRW and
accumulate TD. a) Maximal and minimal eigenvalues of the bias update matrix as a function ofλ for α = 0.075.
The mean square update is divergent forλ in the region of instability. b) Maximal modulus of the eigenvalues
for the mean square update matrix for three values ofα. Values greater than1 lead to instability. c) Maximal
modulus of the eigenvalues for the bias update matrix as a function ofλ whereα is chosen so that the terminal
MSE is less than or equal to0.1 or 0.01. Note thatλ = 1 is not optimal.
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• the largerα or λ (except forλ very close to1), the faster the convergence to the
asymptotic MSE, provided that this is finite;

• the smallerλ, thesmallerthe range ofα for which the terminal MSE is not excessive;

• higher values ofλ are good for cases with high initial biases.

The third of these is somewhat surprising because the effective value of the step-size is
reallyα/(1− λ) and so one would expect to be able to uselarger α asλ gets further from
1. However, the lowerλ, the more the value of a state is based on the value estimates for
nearby states. We conjecture that with smallλ, largeα can quickly lead to high correlation
in the value estimates of nearby states and result in runaway variance updates. However,
with largerλ, largerα stay feasible in part because of the larger influence of both farther
away (and hence less correlated in value estimates) states and particularly because of the
uncorrelated payoffs. We saw evidence for a side-effect of this in Figure 12 where higher
cyclicity led to higher asymptoticλg because it compounds the problem of dependence on
nearby states for smallλ.

Two issues require comment: the role ofλ and the relative merits of the algorithms that
we studied. Two main lines of evidence suggest that using values ofλ other than1 (i.e.,
using a temporal difference rather than a Monte-Carlo algorithm) can be beneficial. First,
the greedyvalue ofλ chosen to minimize the MSE at the end of the step (whilst using
the associated greedyα) remains away from1 (see Figure 12). Interestingly, it remains
away from0 also. As the bias tends to0, one might expect that the greedyλ would tend
to 0 too, since the smaller the (fixed)λ, the smaller the asymptotic MSE. However, the
smaller theλ, the lower the feasible step-sizeα, and so the less the one-step reduction in
the MSE. The curves in Figure 12 suggest that the greedy value ofλ converges to a value
intermediate between0 and1 with the number of trials, but this conclusion is not supported
by any analysis. In any event, in this limit, the differences between different values ofλ
are extremely small (as shown in Figure 13). Note that the greedy value ofα tends slowly
to 0, as one might expect. The second piece of evidence favoringλ 6= 1 comes from the
eigenvalue analysis in Figures 15 and 16. For fixedα, the terminal variance is higher for
λ = 1; the largest value ofα that can be used is higher forλ < 1; and the asymptotic speed
with which the bias can be guaranteed to decrease fastest is higher forλ < 1.

We had expected that there would be large differences between the three different TD
algorithms: accumulate TD, replace TD and first TD. Singh & Sutton (1996) analyzed
slightly different versions of accumulate TD and replace TD forλ = 1, showing that the
MSE of accumulate TD is lower at the start of learning, but becomes higher than that of
replace TD after some number of trials. However, our results show that given suitable
choices ofα andλ, the algorithms are essentially indistinguishable – we have cases in
which accumulate TD does better, worse, or the same as replace TD. Of course, we used
complete knowledge of the Markov reward process to calculate the appropriate parameters,
and we have not addressed the sensitivity of the MSE to inappropriate choices.

This analysis clearly provides only an early step toward understanding the course of
learning for TD algorithms, and has focused exclusively on prediction rather than control.
The analytical expressions for MSE might lend themselves to general conclusions over
whole classes of Markov reward processes. In addition, it would be useful to understand
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the conditions leading to the apparent long tails in Figure 5 and to the convergence of greedy
values ofλ in Figure 12.
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Appendix

MSE Calculations

The three TD algorithms can be defined without separating out the eligibility trace calcu-
lations (as in Section 2.1). However, we will need additional notation:sm(t);m ≥ 1 is
the state at stepm of trial t, τ(t) is the number of steps in trialt, andni(t; d) is the step in
trial t at which thedth visit to statei occurs.Ki(t;n) is one if statei is visited at stepn of
trial t, and is zero otherwise. If a trial lastsk steps then it results in a sequence ofk states
followed by a payoff. Hereafter, whenever it leads to no ambiguity, we drop the explicit
dependence of various quantities on the trial numbert.

accumulate TD:

vi(t) = vi(t− 1) + α(t)
( τ(t)∑
n=1

Ki(t;n)
[ τ(t)∑
m=n+1

(1− λ)λm−n−1vsm(t− 1)

+λτ(t)−nr(t)
]
− κi(t)vi(t− 1)

)
replace TD:

vi(t) = vi(t− 1) + α(t)
( [ κi(t)−1∑

d=1

ni(t;d+1)∑
m=ni(t;d)+1

(1− λ)λm−ni(t;d)−1vsm(t− 1)
]

+
[ τ(t)∑
m=ni(t;κi(t))+1

(1− λ)λm−ni(t;κi(t))−1vsm(t− 1)
]

+λτ(t)−ni(t;κi(t))r(t)− κi(t)vi(t− 1)
)

first TD:

vi(t) = vi(t− 1) + α(t)
( [ τ(t)∑

m=ni(t;1)+1

(1− λ)λm−ni(t;1)−1vsm(t− 1)
]
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+λτ(t)−ni(t;1)r(t)−Ki(t)vi(t− 1)
)

As in the main text, consider absorbing Markov reward processes with state sets, with only
terminal payoffs, and offline updating. We repeat the definitions of several basic quantities
in Table A.1 and define other useful symbols that serve as labels for often repeated pieces
of formulæ in Table A.2. Below,δij is the Kronecker delta function, and⊗ denotes the
element wise product. To enhance readability, we drop the dependence ofm andS on trial
numbert− 1 on the right hand sides of most equations below.

Table A.1.Definitions Revisited

transition matrix for non-terminals Q
probability of termination fromi qi
reward for terminating fromi ri
variance of the reward fromi h2

i
random value function after trialt v(t)
step-size for trialt α(t)
trace parameter for trialt λ(t)
mean value function after trialt m(t) = E{v(t)}
mean squared value function after trialt Sij(t) = E{vi(t)vj(t)}
covariance of value function after trialt Cij(t) = Sij(t)−mi(t)mj(t)
bias of value function after trialt bi(t) = v∗i − vi(t)
squared error of value function εi(t) = b2i (t) + Cii(t)

Table A.2.Some Useful Intermediate Quantities

transition matrix with Q−i
ith row set to0

transition matrix withith Q−i,−j
andjth rows set to0

expected one-step payoff;(r1) r1 = q⊗ r
expected one-step squared r2 = q⊗ (r⊗ r + h2)

payoff; (r2)
true value function;(v∗) v∗ = [I −Q]−1r1
exp. number of visits to statei; ni nT = µT [I −Q]−1

Distribution over states in a trial pi = ni∑
j
nj

exp. number of visits toj without (D−i)j = (µT [I −Q−i]−1)j
visiting i

exp. number of visits tok without (D−i,−j)k = (µT [I −Q−i,−j ]−1)k
visiting i, j

for i, j ∈ s DDi,j = (D−i,−j)i[Q−j [I −Q−j ]−1]ij
+(D−j,−i)j [Q−i[I −Q−i]−1]ji

for i ∈ s Ki = (1.0− λ(t))(Q[I − λ(t)Q−1]m)i
+([I − λ(t)Q]−1r1)i

for i, j ∈ s KVij = (1.0− λ(t))[Q[I − λ(t)Q−1]S]ij
+(([I − λ(t)Q]−1r1)imj

for i, j ∈ s KSij = (µT [I + [Q−i,−j ][I −Q−i,−j ]−1])i
×[[Q−j ][I −Q−j ]−1]]ij

Weighted mean squared error MSE(t) =
∑

i∈s piεi(t)
after trialt
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A.1. Bias & Covariance calculations for first-visit MC

The mean of the value function gets updated as follows:

mi(t) = mi(t− 1) + α(t)ΓFVi (t),

where

ΓFVi (t) = (µT [I + [[Q−i][I −Q]−1]])i(v∗i −mi(t− 1)) (A.1)

TheS update is as follows:

Sij(t) = Sij(t− 1) + α(t)∆FV
ij (t) + α(t)2ΥFV

ij (t), (A.2)

where

∆FV
ij (t) = 2δij

(
(µT [I + [[Q−i][I −Q]−1]])i(v∗imi − Sii)

)
+(1.0− δij)

(
(µT [I + [[Q−i][I −Q]−1]])j(v∗jmi − Sij)

+(µT [I + [[Q−i][I −Q]−1]])i(v∗imj − Sij)
)
, and (A.3)

ΥFV
ij (t) = δij

(
(µT [I + [[Q−i][I −Q]−1]])i(Sii + ([I −Q]−1r2)i − 2v∗imi)

)
+KSij(Sij + ([I −Q]−1r2)j −miv

∗
j −mjv

∗
j )

+KSji(Sji + ([I −Q]−1r2)i −mjv
∗
i −miv

∗
i ) (A.4)

(A.5)

A.2. Bias & Covariance Calculations for every-visit MC

The mean of the value function gets updated as follows:

mi(t) = mi(t− 1) + α(t)ΓEVi (t),

where

ΓEVi (t) = ni(v∗i −mi(t− 1)). (A.6)

TheS update is as follows:

Sij(t) = Sij(t− 1) + α(t)∆EV
ij (t) + α(t)2ΥEV

ij (t), (A.7)

where

∆EV
ij (t) = δij [2ni(miv

∗
i − Sii)]

+(1.0− δij)[nimj + njmi −minjv
∗
j −mjniv

∗
i ], and (A.8)
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ΥEV
ij (t) = δij [(2ni[Q[I −Q]−1]ii)(([I −Q]−1r2)i − 2v∗imi + Sii)]

+(1.0− δij)
(

(ni[Q[I −Q]−1]ij([I −Q]−1r2)j

+nj [Q[I −Q]−1]ji([I −Q]−1r2)i)
−((mi +mj)(ni[Q[I −Q]−1]ijv∗j + nj [Q[I −Q]−1]jiv∗i ))

+Sij(ni[Q[I −Q]−1]ij + nj [Q[I −Q]−1]ji)
)

(A.9)

A.3. Bias & Covariance Calculations for accumulate TD

The mean of the value function gets updated as follows:

mi(t) = mi(t− 1) + α(t)ΓAi (t),

where

ΓAi (t) = ni

(
(1.0− λ(t))([Q][I − λ(t)[Q]]−1m(t− 1))i

+([I − λ(t)Q]−1r1)i −mi(t− 1)
)

(A.10)

TheS update is as follows:

Sij(t) = Sij(t− 1) + α(t)∆A
ij(t) + α(t)2ΥA

ij(t), (A.11)

where

∆A
ij(t) = ni(KVij − Sij(t− 1)) + nj(KVji − Sji(t− 1)), (A.12)

ΥA
ij(t) = Sij(ni[Q[I −Q]−1]ij + nj [Q[I −Q]−1]ji)

+δijniSii
−nj [Q[I −Q]−1]jiKVij − (1.0− λ(t))ni[Q[I − λ(t)Q]−1]ijSjj
−λ(t)ni[Q[I − λ(t)Q]−1]ijKVjj

−
∑
k∈s

(1.0− λ(t))ni[Q[I − λ(t)Q]−1]ik[Q[I −Q]−1]kjSkj

−δijniKVii
−ni[Q[I −Q]−1]ijKVji − (1.0− λ(t))nj [Q[I − λ(t)Q]−1]jiSii
−λ(t)nj [Q[I − λ(t)Q]−1]jiKVii

−
∑
k∈s

(1.0− λ(t))nj [Q[I − λ(t)Q]−1]jk[Q[I −Q]−1]kiSki

−δijniKVii
+
∑
k∈s

∑
m∈s

(
(1.0− λ(t))2ni[Q[I − λ(t)Q]−1]ik[Q[I −Q]−1]kj

[Q[I − λ(t)Q]−1]jmSkm
)
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+
∑
k∈s

(
(1.0− λ(t))ni[Q[I − λ(t)Q]−1]ik[Q[I −Q]−1]kj

([I − λ(t)Q]−1r1)jmk

)
+(1.0− λ(t))ni[Q[I − λ(t)Q]−1]ijKVjj

+
∑
k∈s

(1.0− λ(t))2niλ(t)[Q[I − λ(t)Q]−1]ij [Q[I − λ(t)2Q]−1]jkSkk

+niλ(t)[Q[I − λ(t)Q]−1]ij([I − λ(t)2Q]−1r2)j

+
∑
k∈s

∑
m∈s

(1.0− λ(t))2λ(t)ni[Q[I − λ(t)Q]−1]ij(
[Q[I − λ(t)2Q]−1]jkλ(t)[Q[I − λ(t)Q]−1]km

+[Q[I − λ(t)2Q]−1]jmλ(t)[Q[I − λ(t)Q]−1]mk
)
Smk

+
∑
k∈s

(
2.0(1.0− λ(t))niλ2(t)[Q[I − λ(t)Q]−1]ij

[Q[I − λ(t)2Q]−1]jk([I − λ(t)Q]−1r1)kmk

)
+
∑
k∈s

∑
m∈s

(
(1.0− λ(t))2nj [Q[I − λ(t)Q]−1]jk[Q[I −Q]−1]ki

[Q[I − λ(t)Q]−1]imSkm
)

+
∑
k∈s

(
(1.0− λ(t))nj [Q[I − λ(t)Q]−1]jk[Q[I −Q]−1]ki

([I − λ(t)Q]−1r1)imk

)
+(1.0− λ(t))nj [Q[I − λ(t)Q]−1]jiKVii

+
∑
k∈s

(1.0− λ(t))2njλ(t)[Q[I − λ(t)Q]−1]ji[Q[I − λ(t)2Q]−1]ikSkk

+njλ(t)[Q[I − λ(t)Q]−1]ji([I − λ(t)2Q]−1r2)i

+
∑
k∈s

∑
m∈s

(1.0− λ(t))2λ(t)nj [Q[I − λ(t)Q]−1]ji(
[Q[I − λ(t)2Q]−1]ikλ(t)[Q[I − λ(t)Q]−1]km

+[Q[I − λ(t)2Q]−1]imλ(t)[Q[I − λ(t)Q]−1]mk
)
Skm

+
∑
k∈s

(
2.0(1.0− λ(t))njλ2(t)[Q[I − λ(t)Q]−1]ji[Q[I − λ(t)2Q]−1]ik

([I − λ(t)Q]−1r1)kmk

)
+δij

∑
k∈s

(1.0− λ(t))2ni[Q[I − λ(t)2Q]−1]ikSkk
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+δijni([I − λ(t)2Q]−1r2)i

+δij
∑
k∈s

∑
m∈s

(1.0− λ(t))2ni

([
[Q[I − λ(t)2Q]−1]ik

λ(t)[Q[I − λ(t)Q]−1]km
]

+[Q[I − λ(t)2Q]−1]imλ(t)[Q[I − λ(t)Q]−1]mk
)
Smk

+δij
∑
k∈s

(
2.0(1.0− λ(t))niλ(t)[Q[I − λ(t)2Q]−1]ik

([I − λ(t)Q]−1r1)kmk

)
. (A.13)

A.4. Bias & Covariance Calculations for first TD

The mean of the value function gets updated as follows:

mi(t) = mi(t− 1) + α(t)ΓFi (t),

where

ΓFi (t) = (D−i)i(Ki −mi(t− 1)) (A.14)

TheS update is as follows:

Sij(t) = Sij(t− 1) + α(t)∆F
ij(t) + α(t)2ΥF

ij(t), (A.15)

where

∆F
ij(t) = (D−i)i(KVij − Sij(t− 1)) + (D−j)j(KVji − Sji(t− 1)), (A.16)

and

ΥF
ij(t) = DDi,jSij

−(1− δij)(D−i,−j)i[[Q−j ][I −Q−j ]−1]ijKVji

−(1− δij)
∑
k∈s

(
(1.0− λ(t))(D−i,−j)j [[Q−i][I − λ(t)Q−i]−1]jk

[[Q−i][I −Q−i]−1]kiSki
)

−(1− δij)
(

(D−i,−j)j [[Q−i][I − λ(t)Q−i]−1]ji

((1.0− λ(t))Sii + λ(t)KVii)
)

−δij(D−i)iKVii
−(1− δij)(D−j,−i)j [[Q−i][I −Q−i]−1]jiKVij

−(1− δij)
∑
k∈s

(
(1.0− λ(t))(D−j,−i)i[[Q−j ][I − λ(t)Q−j ]−1]ik
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[[Q−j ][I −Q−j ]−1]kjSkj
)

−(1− δij)
(

(D−j,−i)i[[Q−j ][I − λ(t)Q−j ]−1]ij

((1.0− λ(t))Sjj + λ(t)KVjj)
)

−δij(D−i)iKVii
+(1− δij)

∑
km

(
(1.0− λ(t))2(D−i,−j)i[[Q−j ][I − λ(t)Q−j ]−1]ik

[[Q−j ][I −Q−j ]−1]kj [Q[I − λ(t)Q]−1]jmSkm
)

+(1− δij)
∑
k

(
(1.0− λ(t))(D−i,−j)i[[Q−j ][I − λ(t)Q−j ]−1]ik

[[Q−j ][I −Q−j ]−1]kj([I − λ(t)Q]−1r1)jmk

)
+(1− δij)(1.0− λ(t))(D−i,−j)i[[Q−j ][I − λ(t)Q−j ]−1]ijKVjj

+(1− δij)
∑
k

(
(1.0− λ(t))2(D−i,−j)iλ(t)[[Q−j ][I − λ(t)Q−j ]−1]ij

[Q[I − λ(t)2Q]−1]jkSkk
)

+(1− δij)
(

(D−i,−j)iλ(t)[[Q−j ][I − λ(t)Q−j ]−1]ij

([I − λ(t)2Q]−1r2)j
)

+(1− δij)
∑
km

(1.0− λ(t))2λ(t)(D−i,−j)i[[Q−j ][I − λ(t)Q−j ]−1]ij(
[Q[I − λ(t)2Q]−1]jkλ(t)[Q[I − λ(t)Q]−1]km

+[Q[I − λ(t)2Q]−1]jmλ(t)[Q[I − λ(t)Q]−1]mk
)
Smk

+(1− δij)
∑
k

2.0(1.0− λ(t))(D−i,−j)iλ(t)[[Q−j ][I − λ(t)Q−j ]−1]ij

λ(t)[Q[I − λ(t)2Q]−1]jk([I − λ(t)Q]−1r1)kmk

+(1− δij)
∑
km

(1.0− λ(t))2(D−j,−i)j [[Q−i][I − λ(t)Q−i]−1]jk

[[Q−i][I −Q−i]−1]ki[Q[I − λ(t)Q]−1]imSkm

+(1− δij)
∑
k

(1.0− λ(t))(D−j,−i)j [[Q−i][I − λ(t)Q−i]−1]jk

[[Q−i][I −Q−i]−1]ki([I − λ(t)Q]−1r1)imk

+(1− δij)(1.0− λ(t))(D−j,−i)j [[Q−i][I − λ(t)Q−i]−1]jiKVii

+(1− δij)
∑
k

(
(1.0− λ(t))2(D−j,−i)jλ(t)[[Q−i][I − λ(t)Q−i]−1]ji
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[Q[I − λ(t)2Q]−1]ikSkk
)

+(1− δij)(D−j,−i)jλ(t)[[Q−i][I − λ(t)Q−i]−1]ji([I − λ(t)2Q]−1r2)i

+(1− δij)
∑
km

(1.0− λ(t))2λ(t)(D−j,−i)j [[Q−i][I − λ(t)Q−i]−1]ji(
[Q[I − λ(t)2Q]−1]ikλ(t)[Q[I − λ(t)Q]−1]km

[Q[I − λ(t)2Q]−1]imλ(t)[Q[I − λ(t)Q]−1]mk
)
Smk

+(1− δij)
∑
k

2(1.0− λ(t))(D−j,−i)jλ(t)[[Q−i][I − λ(t)Q−i]−1]ji

λ(t)[Q[I − λ(t)2Q]−1]ik([I − λ(t)Q]−1r1)kmk

+δij
∑
k

(1.0− λ(t))2(D−i)i[Q[I − λ(t)2Q]−1]ikSkk

+δij(D−i)i([I − λ(t)2Q]−1r2)i

+δij
∑
km

(1.0− λ(t))2(D−i)i
(

[Q[I − λ(t)2Q]−1]ik

λ(t)[Q[I − λ(t)Q]−1]km

+[Q[I − λ(t)2Q]−1]imλ(t)[Q[I − λ(t)Q]−1]mk
)
Skm

+δij
∑
k

(
2.0(1.0− λ(t))(D−i)iλ(t)[Q[I − λ(t)2Q]−1]ik

([I − λ(t)Q]−1r1)kmk

)
. (A.17)

A.5. Bias & Covariance Calculations for replace TD

We need to define some additional quantities here:

Mij =

(
(1.0− λ(t))

∑
k 6=j [Q[I − λ(t)Q−j ]−1]jk(Ski(t− 1)− Sji(t− 1))

)
1− [Q[I −Q−j ]−1]jj

+
r1jmi(t− 1)− qjSji(t− 1)

1− [Q[I −Q−j ]−1]jj

+

(
λ(t)

∑
k 6=j [Q[I − λ(t)Q−j ]−1]jk(r1kmi(t− 1)− qkSji(t− 1))

)
1− [Q[I −Q−j ]−1]jj

The mean of the value function gets updated as follows:

mi(t) = mi(t− 1) + α(t)ΓRi (t),

where

ΓRi (t) = (D−i)i

(∑
j [Q[I − λ(t)Q−i]−1]ij(mj(t− 1)−mi(t− 1))

1− [Q[I −Q−i]−1]ii
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(1.0− λ(t))
1− [Q[I −Q−i]−1]ii

)
+(D−i)i

(
λ(t)

∑
j 6=i[Q[I − λ(t)Q−i]−1]ij(r1j − qjmi(t− 1))

1− [Q[I −Q−i]−1]ii

+
r1i − qimi(t− 1)

1− [Q[I −Q−i]−1]ii

)
. (A.18)

TheS update is as follows:

Sij(t) = Sij(t− 1) + α(t)∆R
ij(t) + α(t)2ΥR

ij(t), (A.19)

where

∆R
ij(t) = (D−j)jMij + (D−i)iMji. (A.20)

To defineΥR, we need to compute the following intermediate quantities:

Eij(t) =
∑
l 6=i,j

∑
k 6=i,j

(1.0− λ(t))2λ(t)[[Q−i][I − λ2(t)Q−i,−j ]−1]jl

[[Q−i,−j ][I − λ(t)Q−i,−j ]−1]lk
(Sk,l(t) + Si,j(t)− Si,l(t)− Sk,j(t))

+
∑
l 6=i,j

(1.0− λ(t))2[[Q−i][I − λ2(t)Q−i,−j ]−1]jl

(Sl,l(t) + Si,j(t)− Si,l(t)− Sl,j(t))
+
∑
l 6=i,j

∑
k 6=j

(1.0− λ(t))2λ(t)[[Q−i][I − λ2(t)Q−i,−j ]−1]jl

[[Q−j ][I − λ(t)Q−j ]−1]lk
(Sl,k(t) + Si,j(t)− Si,k(t)− Sl,j(t))

+
∑
l 6=i,j

∑
k 6=j

(1.0− λ(t))λ(t)[[Q−i][I − λ2(t)Q−i,−j ]−1]jl

[I − λ(t)Q−j ]−1
lk

(
r1k(ml −mi)− qk(Sjl − Sij)

)
+
∑
l 6=i,j

(1.0− λ(t))[[Q−i][I − λ(t)Q−i,−j ]−1]jl[[Q−j ][I −Q−j ]−1]lj

(Mlj −Mij)

+
∑
l 6=i,j

∑
k 6=i,j

(1.0− λ(t))λ(t)[[Q−i][I − λ2(t)Q−i,−j ]−1]jl

[I − λ(t)Q−i,−j ]−1
lk

(
r1k(ml −mj) + qk(Sij − Sil)

)
+
∑
l 6=i,j

λ2(t)[[Q−i][I − λ2(t)Q−i,−j ]−1]jl(
r2l − r1l(mj +mi) + qlSij

)
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+r2j − r1j(mj +mi + qjSij

+
∑
l 6=i,j

(1.0− λ(t))2λ(t)[[Q−i][I − λ2(t)Q−i,−j ]−1]jl

[[Q−i,−j ][I − λ(t)Q−i,−j ]−1]lj
(Sl,j(t) + Sj,i(t)− Sj,j(t)− Sl,i(t))

+
∑
l 6=i,j

∑
k 6=i

(1.0− λ(t))2λ(t)[[Q−i][I − λ2(t)Q−i,−j ]−1]jlλ(t)

[[Q−i][I − λ(t)Q−i]−1]jk[[Q−i,−j ][I − λ(t)Q−i,−j ]−1]lj
(Sk,l(t) + Si,j(t)− Si,l(t)− Sk,j(t))

+
∑
l 6=i,j

∑
k 6=i

(
(1.0− λ(t))λ2(t)[[Q−i][I − λ2(t)Q−i,−j ]−1]jl

[[Q−i,−j ][I − λ(t)Q−i,−j ]−1]ljλ(t)[[Q−i][I − λ(t)Q−i]−1]jk(
r1k(ml −mj) + qk(Sij − Sil)

)
+
∑
l 6=i,j

(1.0− λ(t))[[Q−i][I − λ2(t)Q−i,−j ]−1]jl

λ(t)[[Q−i,−j ][I − λ(t)Q−i,−j ]−1]lj(
r1j(ml −mj) + qj(Sij − Sil)

)
+(1.0− λ(t))[[Q−i][I − λ(t)Q−i,−j ]−1]jj(Mjj −Mij), (A.21)

where

Cij(t) =
Eij(t)

1.0− λ(t)[[Q−i][I − λ(t)Q−i,−j ]−1]jj
,

and

Fij(t) =
∑
l 6=i,j

(1.0− λ(t))[[Q−i][I − λ(t)Q−i,−j ]−1]jl

[[Q−i,−j ][I −Q−i,−j ]−1]lj [[Q−i][I −Q−i]−1]ji(Mli −Mij)

+
∑
l 6=i,j

(1.0− λ(t))[[Q−i][I − λ(t)Q−i,−j ]−1]jl

[[Q−i,−j ][I −Q−i,−j ]−1]li(Mli −Mji)
+(1.0− λ(t))[[Q−i][I − λ(t)Q−i,−j ]−1]ji(Mii −Mji)

Hij(t) =
(
Fij(t) + λ(t)[[Q−i][I − λ(t)Q−i,−j ]−1]jiCji(t)

)
(1.0− [[Q−j ][I −Q−j,−i]−1]ii)

+[[Q−i][I −Q−i,−j ]−1]ji(
Fji(t) + λ(t)[[Q−j ][I − λ(t)Q−j,−i]−1]ijCij(t)

)
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Xij(t) = (1− [[Q−i][I −Q−i,−j ]−1]jj)(1− [[Q−j ][I −Q−j,−i]−1]ii)
−[[Q−i][I −Q−i,−j ]−1]ji[[Q−j ][I −Q−j,−i]−1]ij

Gij(t) =
∑
k 6=i,j

(1.0− λ(t))[[Q−j ][I − λ(t)Q−j,−i]−1]ik

[[Q−j ][I −Q−j ]−1]kj(Mkj −Mij)
+(1.0− λ(t))[[Q−j ][I − λ(t)Q−j,−i]−1]ij(Mjj −Mij)
+λ(t)[[Q−j ][I − λ(t)Q−j,−i]−1]ijCij(t)

+[[Q−j ][I −Q−j,−i]−1]ij
Hij(t)
Xij(t)

.

Finally,

ΥR
ij(t) = (D−i,−j)i

Gij
1− [[Q−j ][I −Q−j,−i]−1]ii

+(D−j,−i)j
Gji

1− [[Q−i][I −Q−i,−j ]−1]jj
.

Notes

1. See Saul & Singh (1996) for learning curve bounds for an interesting Markov decision process that are derived
using techniques from statistical mechanics.

2. There are other criteria for comparing algorithms, e.g., large deviation rates (Bucklew, 1990), but they are
hard to compute for the TD algorithms, and in any case MSE is often reported.

3. Note that limiting the step-size to be a function of trial number alone prohibitsαi(t) = 1∑t

τ=1
Ki(τ)

or

αi(t) = 1∑t

τ=1
κi(τ)

, as would be used in conventional first-visit MC and every-visit MC respectively.

For these state dependent choices ofα, Singh & Sutton (1996) showed that first-visit MC is unbiased while
every-visit MC is biased but consistent, and that the variance of every-visit MC starts off less than or equal to
the variance of first-visit MC but eventually becomes higher.

4. For convergence of accumulate TD, see Dayan & Sejnowski (1994), Jaakkola et al. (1994), Tsitsiklis (1994),
Barnard (1993); and for convergence of replace TD, first-visit MC, and every-visit MC, see Singh & Sutton
(1996). First TD converges appropriately because although its estimator uses aλ-weighted sum of multi-step
returns that is different from replace TD and accumulate TD, its estimator remains a contraction in expected
value, and therefore Jaakkola et al.’s (1994) convergence proof applies.

5. There are “importance sampling” methods for dealing with “difficult” distributions (see e.g., Bucklew, 1990),
but it is not clear how they could be applied here.
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