;=‘ Machine Learning, 32, 5-40 (1998)
' © 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Analytical Mean Squared Error Curves for
Temporal Difference Learning

SATINDER SINGH baveja@cs.colorado.edu
Department of Computer Science, University of Colorado, Boulder, CO 80309-0430

PETER DAYAN dayan@ai.mit.edu
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139

Editor: Andrew G. Barto

Abstract. We provide analytical expressions governing changes to the bias and variance of the lookup table
estimators provided by various Monte Carlo and temporal difference value estimation algorithms with offline
updates over trials in absorbing Markov reward processes. We have used these expressions to develop software
that serves as an analysis tool: given a complete description of a Markov reward process, it rapidly yields an
exact mean-square-error curve, the curve one would get from averaging together sample mean-square-error curve:
from an infinite number of learning trials on the given problem. We use our analysis tool to illustrate classes of
mean-square-error curve behavior in a variety of example reward processes, and we show that although the various
temporal difference algorithms are quite sensitive to the choice of step-size and eligibility-trace parameters, there
are values of these parameters that make them similarly competent, and generally good.
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1. Introduction

Many different algorithms have been developed for predicting the expected outcome, or
value, of uncontrolled Markov reward processes: Monte Carlo (MC) algorithms (e.g., Wa-
sow, 1952) and maximum-likehood (ML) algorithms (e.g., Kumar & Varaiya, 1986) in
statistics and control, and temporal difference (TD) algorithms (Sutton, 1988; Barto et al.,
1983) in machine learning. For most such algorithms, a theory of asymptotic convergence
with probability one is available under suitable conditions on algorithm parameters. How-
ever, what is not available is a theory of learning behavior of the kind that is available
in some supervised learning problems (e.g., Haussler et al., 1994). For example, which
algorithm and problem parameters are key determinants of learning beRadion?do
different parameters for the Markov reward process, such as the mixing rate, the amount of
determinism, acyclicity, etc., change learning curves? How do these problem parameters
interact with algorithm parameters such as the step-sizand, in the case of TD, the
eligibility-trace parameter,? Understanding the effects of these parameters is also crucial
to making useful comparisons between algorithms, as it is quite likely that no one algo-
rithm dominates the others for all problems. This understanding will also form a basis for
developing hybrid algorithms, and for developing methods that set algorithm parameters
automatically for faster learning.

One could address the above questions empirically by studying the learning curves for
various algorithms applied to specific, carefully chosen, problems. The difficulty is that
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the sequence of value estimates produced by both MC and TD algorithms is random, and
therefore the learning curves themselves are random. Nevertheless, one could hope to draw
sensible conclusions by studying “mean” learning curves produced by averaging a large
number of random learning curves. However, one would expect this to be computationally
infeasible, except for small problems, and indeed we show below that even for very small
problems (e.g., with jusi states) the distribution of random learning curves may be such

as to render the empirical method infeasible. In this paper we provide an analytical way of
computing mean learning curves.

We focus on the mean squared error (MSE) between the estimated and true predictions.
Our main contribution is in deriving the analytical update equations for the two components
of the MSE, the bias and the variance, for popular MC and TD algorithms. Given the mean
and covariance matrix of a current guess for the true value and a particular choice of algo-
rithm parameters, our results tell us precisely what the expected MSE is after another trial
as a function of the problem parameters. These derivations are based on five assumptions
that the Markov reward process is absorbing, i.e., has terminal states, that lookup tables are
used, that the algorithm parameterand\ are functions of the trial number alone rather
than also depending on the state, that the estimated values are updated offline (after the
end of each trial), and that the only non-zero payoffs are on the transitions to the terminal
states. The effect of violating any of these assumptions on the general nature of our results
is not known. With the above caveats, given a complete description of a Markov reward
process, our results allow us to rapidly compeectMSE learning curves for MC or TD
algorithms as a function of trial number — the same curves one would get by averaging an
infinite number of sample MSE learning curves obtained by repeatedly running the learning
algorithm on the same Markov reward process.

While our analysis method does not suggest a new learning algorithm, we use it in
this paper to produce analytical learning curves for a number of specific Markov reward
processes chosen to highlight the effect of various problem and algorithm parameters, in
particular different choices af and\. Using these learning curves, we also compare the
relative performance of different forms of eligibility traces in TD algorithms, as well as the
relative performance of TD and MC algorithms. These results are on specific problems,
and any conclusions drawn from them are valid only on the problems presented. However,
we believe that many of the conclusions are intuitive or have previous empirical support,
and may be more generally applicable.

The remainder of the paper is organised as follows. Section 2 describes the problem of
estimating the values of states in absorbing, Markov reward processes, and the various MC
and TD algorithms we have considered. Section 3 introduces the main results of the paper,
namely the update equations for bias and variance of the estimates, which are given in full
in the appendix and in the associated software. Section 4 applies the software to certain
specific Markov reward processes to determine the effects of the different parameters of the
algorithms. Section 5 analyses what these bias and variance update formulee imply about
the asymptotic convergence rates for the algorithms, at least for constant learning rates.
Finally, section 6 draws together the conclusions.
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2. The Value Prediction Problem and Learning Algorithms

We consider absorbing Markov reward processes with a finite set of non-terminal states
s = 1,...,n. The probability of a transition from non-terminal stat& non-terminal
statej is denoted byy);; and the probability of absorption froiris denoted by;;. There

is no payoff on transitions between non-terminal states. On absorption from state

is a random payoff, denoted, whose expected value is a functioniof The prediction
problem is to determine the value of every non-terminal stadenotedy;, defined as the
expected terminal payoff when the start statée iShereforep’ = E{r|s; = i}, wheresy,

is the state at stef, andr is the random terminal payoff.

Both TD and MC algorithms begin with an initial guess of the value function and use
learning trials to update their guesses. A learning trial consists of a random walk that starts
in statei with probability ;; and produces a sequence of non-terminal states followed by a
terminal payoff. The update equations of all of the algorithms analyzed take the following
general form, for ali:

where the vectov (t) = {v;(¢)} is the estimate of the value function afterials, §;(t) is
the estimate of the error i (¢ — 1) for state; based on triat, and the scalar step-siz€t)
determines how the error is used to improve the old estimate. The estimate of the error
0;(t) might depends on all the valuegt — 1). The algorithms differ in thés produced
from a trial. In general, the initial estimatg0) could be a random vector drawn from
some distribution, but oftem(0) is fixed to some initial value such as zero. In either case,
subsequent estimates(t), ¢ > 0, are random vectors because of the randsm

The bias in the estimate aftetrials, b(t), is defined agt{v(¢) — v*}, i.e., the expected
difference between the estimated and the true value. Similarly, the covariance matrix of
the estimate aftertrials, C(t), is defined a2 {(v(t) — E{v(t)})(v(t) — E{v(t)})T}. If
v(0) is fixed,b(0) = v(0) — v* andC(0) is the null matrix (with all entries zero). A key
scalar quantity of interest is the weighted MSE as a function of trial number

MSE(t) = va:(E{(w(t) —v)*h) = Zpi(b?(t) + Cu(t)), )

where the expected squared error for sidteweighted by a scalar;. Hereafter, we will
only consider weighted MSE and refer to it simply as MSE. We takte be the expected
number of visits ta in a trial divided by the expected length of a trial:

b & (W =Q1™ Y
W =@l

Other reasonable choices for the weigHts,}, would not change the nature of the results
presented here.

2.1. Learning Algorithms

This section presents all the learning algorithms we study in this paper. Let the indicator
variableK;(t) be one if staté is visited at least once in triaJ and zero otherwise; lef; (¢)
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be the number of visits to staten trial ¢; and letr(¢) denote the number of time steps in
trial ¢. Note that trialt produces a sequence «ft) states followed by a random terminal
payoffr(t).
Monte Carlo (MC)

Monte Carlo algorithms use the terminal payoff that results from a trial to definé the
in Equation 1. Therefore in MC algorithms the estimated value of one state is unaffected
by the estimated value of any other state. We study two MC algorithms (Singh & Sutton,
1996):

first-visit MC:
vi(t) = vi(t — 1) + () K;(t) (r(t) —vi(t — 1)), and 3)

every-visit MC:
vi(t) = vit = 1) + a(t)ri(t) (r(t) —vi(t —1)). (4)

In the case of Markov reward processes with only terminal payoffs, as above, the only
difference between first-visit MC and every-visit MC is in the random rescaling of the
step-size$in every-visit MC.

Temporal Difference (TD)

The main difference between TD algorithms (Sutton, 1988) and MC algorithms is that
the former update the value of a state based not only on the terminal payoff but also on the
the estimated values of the intervening states. When a state is first visited it initiates a short-
term memory process, a state-specific eligibility trace, which then decays exponentially
over time with parametek. The manner in which the values of intervening states are
combined with the terminal payoff is determined in part by the magnitudes of the eligibility
traces. We study three TD algorithms differing only in the method by which the eligibility
trace for a state is updated mvisits to the state before termination. As shown in Figure 1,
accumulateTD adds a new trace to the existing traceplaceTD replaces the old trace
by a new trace, whilérst TD’s trace ignores revisits. Accumulate TD is the original TD
algorithm defined by Sutton (1988), replace TD was defined by Singh & Sutton (1996), and
we introduce first TD here.

The estimated error for statefter trialt, ¢;(¢) in Equation 1, takes the following form
for all three TD algorithms:

T(t)—1
0i(t) = (Vs (E=1) =5, (t = D] es(n) + [r(t) = vs,, (t = D] es(7(2)),

n=

—

wheree; (n) is the value of the eligibility trace for stat@t stepr. The explicit dependence

of s, ande; (n) ont, the trial number, is dropped for improved readability. At the beginning
of each trial, the eligibility trace is zero for all states. It is updated for the three different
algorithms as follows (also see Figure 1):

accumulate TD:

(n) = Aei(n—1)+1 ifi = s,,
Giln) = Aei(n—1) if i£5,;
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replace TD:

(n) = 1 if i = s,,
ein) = dei(n —1) if i£sy;
first TD:

ei(n+1) = 1 if i = s,, and this is the first visit t@ in this trial,
! T dei(n—1) else

In the appendix we present the above three TD algorithms in a different form that is more
suited to the MSE calculations but is less intuitive because it does not separate out the
calculation of the eligibility trace from the calculation of th&

Eligibility Traces

Accumulate
TD

Replace

D TP\\J\
First J\
TD

visits to ‘ H ‘ ‘
state

Figure 1. Three Different Eligibility Traces. In accumulate TD, each visit adds another eligibility trace to the
previous trace. In replace TD, each visit to a state terminates the previous eligibility trace and initiates another
trace. In first TD, only the first visit to a state in a trajectory initiates an eligibility trace.

There are interesting relationships between the MC and TD algorithms (Singh & Sutton,
1996; Barto & Duff, 1994) and among the different TD algorithms: every-visit MC is
identical to accumulate TDYJ, first-visit MC is identical to replace T}, accumulate
TD(0) is identical to replace T, and first TD{) is identical to replace TO{. Therefore
for small values of\, accumulate TD and replace TD are similar, while for large values of
A, replace TD and first TD are similar. This is reflected in the learning curves presented
below (e.g., Figures 7 and 8).

All of the above MC and TD algorithms are known to converge asymptoticaily twith
probability one under the following conditions: @t) decreases ®in an appropriate way,
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b) every state is visited infinitely often, and c) lookup tables are used to store the estimated
value functiort In this paper we are less interested in asymptotic convergence than we are
in the MSE performance in the shortterm under conditions of fixed or time varyitig
and\(t).

3. Analytical Bias, Variance, and MSE Update Equations

This section provides equations that comphite), C(t), and hence MSE), after trialt,
based on the values of these same quantities at the start of the trial and as a function of the
algorithm and the problem and their parameters. Instead of working directly with the bias
b(t) and covarianc€’(t) of the estimatev(t), we work with the meamn(t) = E{v(¢)},
and the mean square matit(t) = E{v(t)vI(¢t)}. Clearly,b(t) = v* — m(t), and
C(t) = S(t) — m(¢t)m7(t). To preserve readability, only the form of the final update
equations are presented in this section (see the appendix for details).

The mean update equations of all the above algorithms take the form:

and theS updates take the form:
Sij(t) = Sij(t — 1) + Oz(t)Aij(t) + Oé(t)QTij(t), (6)

whereI'(t), A(t) and Y (¢) depend orm(t — 1) (and A(¢) and Y (¢) depend onS (¢ —
1)), differ for the different algorithms, and are distinguished when necessary by adding
superscripts: F'V for first-visit MC, E'V for every-visit MC, A for accumulate TDF'
for first TD, andR for replace TD. Throughout this paper use of these quantities without
superscripts in an equation implies that it holds for all the algorithms with the appropriate
superscripts appendeB YV, ATV TFV are defined in Section A.T.FV , APV TEV are
defined in Section A.2F4, A4, T4 are defined in Section A. T, AF TF are defined
in Section A.4; and*, AR T% are defined in Section A.5. The details of theupdate
equation take a considerable amount of space and, unfortunately, do not lead us to any
direct conclusions about the effect of different parameters. The effect of the stepssize,
however, is clear from Equations 5 and 6: the bias update depends linearly on the step-size,
while the covariance update has both linear and quadratic dependence on the step-size.
Given the update equations for(¢) andS(t), the update equation for MSE is derived as
follows:

MSE(t)

> piI(1) + Cu(t))

1€8

_ sz(( —mi(t))? + (Sii(t) — m2(t)))

= > pivf® = 207 my(t) + Su(t))
i€S
= ZPi(U?Q = 207 (mi(t — 1) + a(H)14(1))
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> piv;? =207 mi(t — 1) + Si(t — 1))

i€s
Zpl 2,U F + All Zpl ’Ll

€8s i€s

MSE(t — 1) + a(t) > pi(—20;Ti(t) + A(t))

1€S

2(6)> piYii(t). ()

1€8

4. Learning Curves on Specific Markov Reward Processes

We coded the analytical MSE update equations irctbeogramming language to develop

a software analysis tool that, for a fixed Markov reward process, computes exact MSE
curves forL trials in O(|s|3L) steps regardless of the behavior of the variance and bias
curves. The analysis tool is simple to use. It takes as input the transition probability matrix
and the mean and the variance of the terminal rewards of any Markov reward process that
satisfies the assumptions of Section 2, the initial bias vector and covariance matrix (null, if
the initial value function is fixed), a choice far, A, and the number of trials. Its output

is a sequence of exact MSE values, one for each trial. Our software is available from
ftp://ftp.cs.colorado.edu/users/baveja/AMse.tar.gz via anonymous ftp.

We applied our software to two classes of problems: a symmetric random walk (SRW;
Figure 2), and a Markov reward process with a cyclicity parameter that controls the expected
length of a trial by controlling the expected number of revisits to each non-terminal state
(Figure 3). We use the first problem to explore the space of possible learning curve behaviors,
the effect of increasing step-sizes, increasisgthe relative performance of the three TD
algorithms, and the relative performance of TD and MC algorithms. The latter problem is
used to explore the effect of initial bias and chain cyclicity on optimal schedulesaofl
A for the three TD algorithms.

4.1. Analytical and Empirical MSE Curves

First, we present empirical confirmation of our analytical equations by comparing analytical
and empirical MSE curves on thH® state SRW problem. Empirical MSE curves average

a number of sample MSE curves obtained through simulation runs. A simulation run
sets a seed for the random number generator and then performs a specified number of
trials. Different seeds are used for different simulation runs. Figure 4a shows analytical
MSE curves for the three TD algorithms (see Figure 4 caption for details aband

A). Figure 4b shows the difference between the analytical curves and the empirical curves
produced by averaging more than three million simulation runs. The match after three
million simulation runs was within four decimal places for all three algorithms.
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Start State

(N+1)/2

Figure 2. Symmetric Random Walk (SRW) Problem. The number of non-terminal stateis,an odd number.

T is the terminal state. In each non-terminal state there is equal probability of a transition to the left or to the
right. Absorption from the left-end of the process rewatdswhile absorption from the right-end rewares.

All other rewards are zero. All trials start in the middle state.

Figure 3. Parameterised Markov Reward Process. There\ar®n-terminal states labeldd..., N. T is the
terminal state. The parameterand¢ together control the cyclicity of the Markov reward process. The closer
the product * ¢ is to one, the higher the cyclicity. For each statie remaining transition probability— ¢ * c,

is distributed equally among all other transitions (not shown here) out ofistate reward for terminating from
statez is 2¢ — N — 1, and there is equal probability of starting in any non-terminal state.
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Figure 4. Comparing Analytical and Empirical MSE Curves. a) Analytical learning curves obtained df the
state SRW problem with parameters= 0.01, andA = 0.9 for accumulate TD and replace TD, aad= 0.6,

and\ = 0.9 for first TD. b) The difference between the analytically-obtained MSE curves and the empirically
obtained MSE curves. Values forand o were chosen to produce both monotonic and non-monotonic MSE
curves. The empirical curves were obtained by averaging more than three million simulation runs. For each
algorithm, the analytical and empirical MSE curves agree up to the fourth decimal place.

4.2. Long Tail Behavior in Empirical MSE Curves

In Figure 5 we present a case showing that the empirical simulation method for approxi-
mating MSE curves does not work well for some parameters for the algorithms. Figure 5a
compares the analytical MSE curve with the empirical MSE curve obtained from more than
12 million simulation runs on a small five-state SRW problem. The algorithm parameters
were chosen such that the asymptotic variance was high. The poor match and the spikiness
of the empirical learning curve are explained by Figure 5b, which shows the empirical MSE
after 198 trials as a function of the number of simulation runs averaged into the empirical
MSE estimate. The sharp jump in the plot closé o million simulation runs is strong
evidence of the long tails of the distribution of estimated values for these parameter choices.
Figure 5c¢ plots the distribution of the sample MSE values atttial The inset graph shows

that very large values of MSE occasionally occur. The mean MSEI@v&million trials
is0.3133, the variance over these trialsi850.9 (standard error i8.529). Straightforward
averaging of samples from such distributions is known to be very slow to converge to the
mean’

The above demonstration that the distribution of estimated values can have a long tail un-
derscores the need for caution in interpreting comparisons of algorithms based on empirical
MSE curves, particularly results that compare algorithms over a wide range of algorithm
parameters. Unfortunately, our analysis is unable to distinguish between the circumstances
under which high asymptotic variance implies long tails and the circumstances under which
it does not, for we found instances of both cases. In addition, the long tail of the distribu-
tion of estimated values does not explain the apparent low ‘underlying’ asymptote in the
empirical MSE curve of Figure 5a.
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Figure 5. Long Tails of the Distribution of Estimated Values. a) A case in which the empirical method badly failed
to match the analytical learning curve after more thamillion simulation runs on a smail state SRW problem

for parametersy = 0.432 and A = 0.5. The empirical learning curve is also very spiky. The real problem is
illustrated in (b), which plots the estimated MSE on tilia8 as a function of the number of runs averaged to form
the estimate. The big impulse aroufid million runs implies that withiri0, 000 runs the MSE was large enough

to take the average from3 to 2.4. This implies that the distributions of the estimated values can have very long
tails making the straight averaging method very slow. ¢) Empirical MSE data for the estimate Bérialhe

main graph shows the empirical distribution oér5 million simulation runs (based on a different set of seeds

for the random number generator than for (a) and (b)). The inset shows impulses at actual sample values greater
than100. The largest value is greater tha@0000.

4.3. Effect oix and X on TD Algorithms

In this section we study the effectafand) on TD algorithms. Figure 6 presents examples

of the different kinds of bias, variance, and MSE (the sum of bias-square and variance)
curves that are obtained from the state SRW problem for fixed and . Figure 6(a) and

Figure 6(b) show examples of learning curves in which bias and variance both converge and
in which bias converges while variance diverges. Figure 6¢ shows a case where both the
bias and the variance diverge in accumulate TD. Figure 6d shows a case where both the bias
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and the variance converge in first TD. There are four classes of MSE curve behavior that
result from the different combinations of bias and variance curve behavior: monotonically

decreasing MSE that asymptotes to a non-zero value (e.g., replace TD in Figure 6a); first
decreasing and then increasing MSE that asymptotes to a non-zero value (e.g., first TD in

Figure 6d); and MSE first decreasing and then increasing to infinity (e.g., replace TD in
Figure 6b). A fourth behavior in which the bias starts off so neathat the MSE increases

monotonically, is rarer.

a) b)
Accumulate versus Replace Replace versus First
A=0.8 0=0.183
A=0.8 a=0.105
02 ‘ 0.2 : ;
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Figure 6. Different Kinds of Bias-Square, Variance and MSE Learning Curves (frorh9tetate SRW problem).

In all panels the labels A:b, R:b, and F:b, when present, denote the bias-square curve for accumulate TD, replace
TD and first TD respectively, the labels A:v, R:v, and F:v denote the variance curve for accumulate TD, replace
TD, and first TD respectively, and the labels A:m, R:m, and F:m denote the MSE curve for accumulate TD, replace
TD and first TD respectively. (a,b) Examples of two cases: the bias and variance both converge, and the bias
converges while the variance diverges. (c) Both the bias and the variance diverge, the bias more slowly than the
variance. (d) An MSE curve with an interesting knee, or local minimum. In each panel, the MSE curve is the sum

of the weighted bias-square and the weighted variance curves.
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In Figures 7 and 8 we summarize the effect of varyingnd \ in the 19 state SRW
problem. Each graph of Figure 7 plots MSE curves for a single constand for alla. €
{0.001,0.01,0.075,0.1,0.6}. Each row corresponds to a different {0.0,0.5,0.9,1.0},
while the different columns correspond to different algorithms. Figure 8 presents similar
data, except that each graph plots MSE foradl {0.0,0.2,0.6,0.8,0.9,1.0} and a single
constaniv. The initial value function wa8.0 for all graphs.

We define the maximdeasiblex for a given to be the largest value such that the MSE
has a finite asymptote. For graphical convenience, all the graphs in Figures 7 and 8 have
the same upper limit on MSE, and so it is not always clear for some valugsantl «
whether the MSE diverges or whether it converges to a value greated.theWe address
this explicitly in Figure 16.

The following summary hypotheses for TD algorithms can be formulated from the data
shown in Figures 7 and 8:

H1 Forafixed Markov reward process and a conskainticreasingy has two general effects
on the learning curve: there is a largest valuexdfelow which the bias converges to
zero and above which the bias diverges (Sutton, 1988; Dayan, 1992), and there is a
largest value ofv below which the variance converges to a non-zero value and above
which it diverges. These largefsasiblevalues ofa. need not be the same for bias and
variance. Based on our limited investigation of learning curves, we conjecture that the
largest feasible value af for bias is greater than or equal to the corresponding value
for variance (Figure 9).

H2 For each algorithm, increasirgwhile holding fixed increases the asymptotic value
of MSE. This is most clearly seen in the graphsXo« 0.9 (Figure 7g,h,i) for all three
algorithms. Similarly, increasinyin the feasible range while holdingfixed increases
the asymptotic value of MSE. This is most clearly seen in the graphs for0.075
(Figure 8g,h,i) for all three algorithms. Therefore, the smaller the constantl\, the
smaller the asymptotic MSE.

H3 For each algorithm, larger values@br \ lead to faster convergence to the asymptotic
value of MSE if there exists one. Examples of this are seen intke0.9 graphs of
Figure 7 and ther = 0.075 graphs of Figure 8. This may break down fowery near
to 1.

H4 In general, for each algorithm as one decreaséke feasible range af shrinks, i.e.,
larger« can be used with larger without causing excessive MSE. We explore this
issue in Section 5.1 and Figure 16.

An apparent effect of varying and« in Figures 7 and 8 is the increasing stability as one
moves from accumulate TD to replace TD and from replace TD to first TD. For the same
small value of), larger values ofv are feasible for replace TD compared with accumulate
TD and for first TD compared with replace TD. This is also seenin Figure 6a,b where for the
same)\ anda, accumulate TD diverges while replace TD converges, and for anbtiued
«, replace TD diverges while first TD converges. However, note that the magnitude of the
update in value function in all three TD algorithms depends on hathd the magnitude of
the eligibility trace. The eligibility trace should in general be larger for accumulate TD than
for replace TD, and larger for replace TD than for first TD, and this may account for the
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Figure 7. MSE Curves for Different Values of anda. The first column is for accumulate TD, the second for
replace TD, and the third for first TD. Each row contains graphs for the same valyenith the s increasing

as we go down the columns. Each curve is for the giveNote that for each column, as we increasédarger

values ofa become feasible (stable). For graphical convenience, all the graphs in Figures 7 and 8 have the same

upper limit on MSE, and so it is not always clear for some valuesarida. whether the MSE diverges or whether
it converges to a value greater th@g.
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Figure 8. MSE Curves for Different Values of anda.. Each panel is for a fixed, and the individual curves are
generated using the given valueXafMSE curves for larger values ef and A asymptote in fewer trials to larger
asymptotic values. For graphical convenience, all the graphs in Figures 7 and 8 have the same upper limit on
MSE, and so it is not always clear for some valuea @hda whether the MSE diverges or whether it converges

to a value greater tham2.
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increasing constant step—size
A

Bias Diverges Variance Diverges

Bias Converges to 0 | Variance Converges to >0

0.0

Figure 9. A Conjecture on Increasing Step-Sizes and Convergence in MC and TD Algorithms. It is known that
there exists a small enoughbelow which the bias and variance converge to zero and a non-zero value respectively.
It is also trivial to find a large enough beyond which both the bias and variance diverge. The conjecture is that
the largest feasibla for the bias is greater than or equal to the largest feasilfte the variance. Our admittedly
limited empirical experience supports this result (see Figure 6 for an example.). Note that these critical values of
«a depend on the Markov reward process.

effect entirely. Arescaling af in Figures 7 and 8 to take the maximum possible magnitude
of eligibility traces into account may be appropriate (Sutton, personal communication). The
greatest resulting difference would be for values\afear) = 1.

4.4. One-step Optimak and A

An advantage of having the analytical forms of the equations for the update of the mean
and variance is that it is possible to optimize schedules for seitiagd A\. Choosing the
optimal schedules is useful in eliminating the effect of the choice when studying the
effect of theA parameter and vice versa. It is also useful in determining how problem
parameters such as cyclicity and initial bias should affect our choiaeaofd A schedules,
and in determining whether one of the algorithms is to be preferred.
One-step Optimal Schedule forx

Given a particulan, the effect on the MSE of a single step for any of the algorithms is
quadratic ina. It is therefore straightforward to calculate the valuenahat minimizes
MSE after the next triat, which we denotex, (¢):

2 ies Pi(207T3(t) — Aii(1)))
20 Z'Les plT” (t)

This is called the one-step optimal, greedy value ofa. It is not clear that if one were
interested in minimizing MSE + t'), one would choose successiuét), a(t + 1);...

ay(t) =



20 S. SINGH AND P. DAYAN

that greedily minimize MSE), MSE(t + 1),.... In general, one could use our formulee
and dynamic programming to optimize a whole schedulefdut this is computationally
challenging.

Note that this technique for setting greegdgssumes complete knowledge of the Markov
reward process and the initial bias and covariance (6f), and is therefore not directly
applicable to realistic applications of reinforcement learning.

One-step Optimal Schedule for\

Calculating analytically the\ that would minimize MSE) given the bias and variance
attrialt — 1, which we denote\,(t), is substantially harder than calculating(t) because
terms such a¢/ — A\D)~! for various matricesD enter Equation 7 when the details are
filled in from the appendix. However, given any choice\it is possible to compute the
corresponding MSE). Therefore, we compute the one-step optimalgeedy value of
A to a desired accuracy by searching over appropriately-spawatlies between zero and
one for the\ that yields minimum MSE. This is possible only because M$Ean be
computed very cheaply using our analytical equations. The caveats about greediness in
choosingr (t) also apply to\,(t).

4.5. Performance as a Function Af

Accumulate Replace First

Figure 10. MSE Curves as a Function of This figure plots the MSE as a function of bothand trial number

for & = 0.05. For each trial number, the value Afthat achieves the minimum MSE is shown as a black line
superimposed on the surface plot. These plots show that the minimumheisarot constant as a function of
trial number, and that it generally shifts from a high initial value to lower values with increasing trial number.
Decreasing the initial bidswould lower the initial besAs. Note that c) has a different rotation of the trial-number

X A plane.

Sutton (1988) and others have investigated the effegtafi the empirical MSE at small
trial numbers. The effect is usually summarized by U-shaped curves of empirical MSE at
trial N as a function of\. These curves provide evidence of the utility of eligibility traces,
because\ > 0 gives minimum error, and also of the utility of TD over MC, because the
minimum error) is strictly less than one. We plot similar graphs here using our analytical
MSE curves, except that we are also interested in the value of the minimumieaisoa
function of trial number.

Figure 10 plots the MSE as a function of botrand trial number forx = 0.05. Note
that in each panel of Figure 10, slices corresponding to fixed trial numbers are U-shaped.
For each trial number, the value dtthat achieves the minimum MSE is shown as a black
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line superimposed on the surface plot. These plots show that the minimumxésraot
constant as a function of trial number, and that it generally shifts from a high initial value
to lower values with increasing trial number. Because larger valuasofiverge to their
asymptote faster (8), for small trial number they tend to be winners in the race for smaller
MSE. Values of\ that are too large, on the other hand, lead to rapid divergence. This
explains the U-shaped curves for a fixed trial number as in Figure 10. Furthermore, because
the asymptotes are smaller for smalle(H2), smaller values of tend to win for larger

t. This may account for the decreasing value of the minimum-eyras a function of.
However, this is all forv’s that do not vary with trial number.

a) b) c)

Accumulate Replace First

— 0.00 0.00 o
0.0 500 1000 1500 2000 2500 00 500 000 1500 2000 2500 0.0 500 1000 1500 2000

100.
Trial Number Trial Number Trial Number

Figure 11. Greedya Curves. These figures plot MSE for various values\afsing greedy (one-step optimal)
step-sizes. The minimum-errarstarts high but then moves towards smaller values with increasing trial number.

We observe the same effects whens allowed to vary with trial numbet,. Ideally,
one should search over all possibleschedules. Instead, for computational convenience,
Figure 11 plots the MSE fok € {0.0,0.8,0.9,0.99, 1.0} using greedyx schedules. Itis
clear from this figure that no onedominates for all trial numbers. Further, more evidence
is seen for U-shaped MSE curves as a function af a fixed trial number by considering
the MSE values at specific trial numbers in Figure 11. For example, in accumulate TD,
A = 0.8 has the smallest MSE for smalfor largert, A = 0.9 has the smallest MSE and
then finally near the end = 0.0 has the smallest MSE. Similar effects are present in the
replace TD and first TD graphs. Sutton’s (personal communication) point made above that
1/(1 — X\) might be a more reasonable scale thaalso applies to the discussion in this
section.

Our results provide additional evidence for, and suggest an explanation for, the advantage
of intermediate values of. However, we should note at least two reasons to be cautious
about such empirical evidence presented by picking an arbitrary stopping point, especially
based on a small trial numbet:) the MSE for the minimum X, «) pair so determined
may actually diverge for larger trial numbers, a})df the variance of the value function is
high at the stopping trial, then empirical MSE values obtained from averaging even a very
large number of simulated trials may be very inaccurate (e.g., Figure 5). We show below
in Figure 13 that in fact the drop in MSE may be very insensitive to the valueestcept
in the very first few trials, given the ability to scheduleappropriately.
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4.6. Effect of Cyclicity and Initial Bias

In this section we consider a smalktate process of the kind shown in Figure 3. The goal
is to study the effect of varying cyclicity and initial bias on greedgnda schedules. The
four rows of Figure 12 correspond to the four combinations of high and low values of both
cyclicity and initial bias. The first column plots the MSE curves for all the algorithms, the
second plots the greedyschedules, while the third plots the greedgchedules. These
results suggests the following conjecture (Sutton, 1988; Watkins, 1989) about the relation-
ship between initial bias and greedy
H5 If the initial value function has a high bias, one should begin with a largehile if
the initial value function has a low bias, one should begin with a smallver time the
effect of the initial bias weakens and the asymptatghould depend mainly on other
problem parameters.

With a large\ all three algorithms put greater trust in the payoff data than in the estimated
values of intervening states. Conversely, with a smalléhe estimated values of states
are trusted more than the payoff data. Therefore, hypothésis Htuitively reasonable
because with a high initial bias, estimated values should be trusted less than payoff data.
Similarly, with a low initial bias estimated values are close to correct and therefore should be
trusted more than noisy payoff data. Clear evidence for hypothésis$ten in Figure 12.

The first and third rows correspond to high initial bias, and in both cases the istele
close to one. Rows two and four correspond to low initial bias and have low ixgiaiVe
observe that the values aftef5 trials are nearly the same if the amount of cyclicity is the
same. The sharp jump of thevalue for first TD in Figure 12e is explained below.

Further evidence for hypothese$ Hnd Ht is also seen in Figure 12. We suspect from
hypothesis K that larger values af lead to faster convergence to the associated asymptote
and so one should want to use lakg®, at least in the beginning. However4 duggests
that the largest feasibleis larger for larget\. Accordingly, we see high initials in rows
1 and 3 of Figure 12 that have high initiss, and we see low initials in rows 2 and 4 that
have lower initialAs.

The effect of cyclicity on the different algorithms is less clear. Increasing cyclicity should
lead to more revisits to states before termination and should therefore amplify the relative
differences between accumulate TD and replace TD, as well as between replace TD and
first TD. However, from the results in Figure 12a,d,qg,j it seems that by choosingahd
) schedules wisely, the differences between the algorithms largely disappear. Of course, in
practice the knowledge required to choose optimal, or even graeathyd\ is not available
and so for practical choices afand), the differences may be more prominent (e.g., Singh
& Sutton, 1996). Higher cyclicity also resulted in larger asymptatjqcompare rows 1
and 2 of Figure 12 with rows 3 and 4), because it leads to longer trials and therefore requires
larger \ to obtain the same mix of the random payoff in the estimator than it would with
shorter trials.

But how sensitive is the rate of convergence to the choic€?oFigure 13 suggests that
careful choice of this parameter is only rewarded very near the beginning, and that over
time the drop in MSE is relatively insensitive to choicelofrFigure 13 plots the sensitivity
to A as a function of trial number. We measure sensitivity as the ratio of the resulting MSE
when\ is used instead of,. The step-size used is the greedgssociated with each A
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Figure 12. Effect of Problem Parameters. These figures show the behavior of the algorithmsstete Markov
reward process whose cyclicity (probability of revisits) is controlled by param¢tensic. The parameter was

fixed t00.9. Initial bias (3) was controlled separately. Greedy choicesvand A were used. High initial bias

leads to high initial. High cyclicity leads to high asymptotic values)af MSE curves for first-visit MC (fmc) and
every-visit MC (emc) are also shown. In (j), the curves for replace TD and accumulate TD are indistinguishable.
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a) b) ©)

Accumulate Replace First

MSE Ratio

MSE Ratio

Figure 13. Sensitivity toA. These surfaces show the ratios between the one-step MSE for all valiesndf

the one-step MSE for the one-step optimal value ¢&ll values of the ratios are 1). Each value of\ uses its

own greedy value oft. On each successive trial, the bast chosen and then the MSEs are calculated for the
next trial starting from the bias-square and variance that results from this choice. The white lines markXhe best
These ratios are all close tdfor trial numbers greater thar0.

white line is superimposed on the surface plot to markhschedule. All three algorithms
start out by being very sensitive to the choice\dfut soon the surface becomes very flat.
This helps explain the sudden jumpJg in Figure 12e.

4.7. Comparing Algorithms

The first column of Figure 12 also compares the performance of the two MC algorithms
with the three TD algorithms. In all cases, first-visit MC performs better than every-visit
MC, and this is consistent with Singh & Sutton’s (1996) theoretical results. In all cases, TD
algorithms performed better than, or at least no worse than, MC algorithms. The difference
between the MC and TD curves becomes small if the initial few gregeye close td, for

in such cases there is little difference between MC and TD algorithms. Figure 14 compares
the performances of MC and TD algorithms on thetate SRW problem. Figure 14
also plots the empirical MSE curve for the maximume-likelihood (ML) algorithm. The ML
algorithm uses the trials to build a maximum-likelihood model of the transition probabilities
and the rewards. Its estimate aftetrials is the value function that would be correct if

its estimated model after trials were correct. The ML algorithm is computationally very
expensive for large problems and is therefore of interest only as an ideal to compare against.
As expected, it forms a lower bound to all the other MSE curves.

5. Analysis of Asymptotic Convergence Rates

Given the analytical forms of the equations for the update of the meamand the mean
square matrix, S, it is possible, for fixedand «, to compute the asymptotic rates of
convergence fom andS. To do so we rewrite Equations 5 and 6 in the following form:

m(t) = a™ +B™m((t—1) (8)
S(t) = A5 +B3S(t—1)+ Dm(t — 1), (9)

whereB™ depends linearly on, andA®, B andD® depend at most quadratically on
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Figure 14. Comparing TD, MC and ML Algorithms. Comparison of the TD algorithms with the MC algorithms
and the Maximum-Likelihood (ML) algorithm on the five state SRW problem. For the TD algorithms the greedy
a and )\ schedules were used. For the first-visit MC (fmc) and every-visit MC (emc) algorithms the greedy
schedules were used. The ML empirical MSE curve was obtained by averggmdlion simulation runs.

The maximum moduli of the eigenvalues Bf* and B® determine the fact and speed
of convergence of the algorithms to finite endpoints. If either is greaterithtren the
algorithms will not converge in general. As illustrated below, we observed that the mean
update is more stable than the mean-square update, i.e., the larger valustiildéad to
eigenvalues o3™ that satisfy the convergence criteria.

Further, we know that fow sufficiently small, the mean convergeswd, and therefore
we can determine the asymptofi¢oo) as:

S(c0) = [T — BS] ™' [AS + DSv*]. (10)

This formula is only true, of course, if the eigenvaluest are less than in modulus.
We can calculate the value afat which this ceases being true, a value we call the largest
feasiblec.

Just like the LMS algorithm (Widrow & Stearns, 1985), these algorithms converge at
best with probability 1 to al-ball aroundv* for a constant finite step-size. This amounts
to the MSE converging to a fixed value which is determined by Equation 10. One can
therefore use Equation 10 to determine which values tfad to which terminal MSE,
and, by calculating the eigenvalues®f*, one can determine an upper bound to the rate
of decrease of the error in the mean of the estimate.
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5.1. Eigenvalue Analysis

We applied this eigenvalue analysis to accumulate TD on the 19 state SRW problem.
Figure 15a shows the smallest and largest eigenvalue of the ni#triwhich governs the
convergence of the bias @ The eigenvalues are real since the problem is symmetric. The
smaller the moduli of these eigenvalues, the faster the mean can be guaranteed to converge
We observe that the bias reduces fasteshfer 1.

Figure 15b shows the equivalent reduction rates for the matfixwhich governs the
convergence of the mean squate These maximal rates are only valid once the bias has
converged td. However, we have always observed that the bias converges more rapidly
than the mean square, at least if either converges. The algorithm diverges if the reduction
rate is greater than one. Fer= 0.075, the smallest value of that ensures that the mean
square converges is approximatel$, and is shown as limiting the region of instability in
Figure 15a.

Figure 15¢c combines eigenvalue analysis for the mean with terminal MSE analysis from
the mean square. For a givaranda, we can solve Equation 9 witth = v* to calculate
the terminalS and consequently the terminal MSE. We used numerical methods to find the
step-sizeg, that would give particular terminal MSE, and then found, for thithe largest
eigenvalue of the mean update matB%*. For some values of, there may be ne that
gives a convergerfi for a given MSE — indeed this is apparent in the graph. We show the
consequent maximal mean reduction rate as a functiariaftwo different terminal MSEs.
Obviously, the more lax one is about the terminal MSE, the faster the convergence can be
expected to be. Note that using an intermediate valug ef 1 is optimal even though
for any fixed value ofy, Figure 15a implies that the largarthe better. The explanation
comes from Figure 16b, which shows the terminal MSE as a function ofbattdc. Itis
apparent that settiny very near tol means that very small values @fmust be used, thus
reducing the maximal mean reduction rate.

Figure 16a shows the (numerically calculated) largest value fofr which S does not
diverge. Note the kink in the curve fornearl (amplified in the inset) which is a reason
why larger values of are not always better. Figure 16b’s plot of the terminal MSE as a
function of« and\ shows that it is not only the largest feasibl¢hat is important, but also
the terminal MSE that results. This also has anomalous behaviorag.

6. Conclusions

We have provided analytical expressions for calculating how the bias and variance of various
TD and Monte Carlo algorithms change over iterations. The expressions themselves seem
not to be very revealing, but we provided many illustrations of their behavior in some
particular Markov reward processes. We have also used the analysis to calculate one-ster
optimal (greedy) values of the step-sizg,and the eligibility-trace parametex, Using
these values makes the algorithms quite similar. Further, we calculated terminal mean
square errors and maximal bias reduction rates.

Since all these results depend on the precise Markov reward processes chosen, it is harc
to make generalizations. We have nevertheless posited four broad conjectures:

e for constant), the largern, the larger the terminal MSE;
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Figure 15.Eigenvalue Analyses of Bias and Mean Square Reduction. Allthree graphs are for the 19 state SRW and
accumulate TD. a) Maximal and minimal eigenvalues of the bias update matrix as a functiforaf = 0.075.

The mean square update is divergentXdn the region of instability. b) Maximal modulus of the eigenvalues

for the mean square update matrix for three valuea.oValues greater thah lead to instability. c) Maximal
modulus of the eigenvalues for the bias update matrix as a functidnndferea is chosen so that the terminal

MSE is less than or equal o1 or 0.01. Note thath\ = 1 is not optimal.

Largest Feasible a

Figure 16. Feasiblexs. Both graphs are for the 19 state random walk and accumulate TD. a) The largest value of
a such that the MSE does not diverge. These were calculated numerically by finding the points as in Figure 15
where the mean square reduction rates cross the valu® Terminal MSE as a function af and . These

are calculated using the mean square update matrix. The jaggedness comes from the relatively sharp cut-off to
divergence.
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e the largera or A (except for\ very close tol), the faster the convergence to the
asymptotic MSE, provided that this is finite;

e the smaller\, thesmallerthe range oty for which the terminal MSE is not excessive;
e higher values of\ are good for cases with high initial biases.

The third of these is somewhat surprising because the effective value of the step-size is
really «/(1 — X) and so one would expect to be able to lasger « as gets further from
1. However, the lowen, the more the value of a state is based on the value estimates for
nearby states. We conjecture that with smallrgea can quickly lead to high correlation
in the value estimates of nearby states and result in runaway variance updates. However,
with larger )\, largera stay feasible in part because of the larger influence of both farther
away (and hence less correlated in value estimates) states and particularly because of the
uncorrelated payoffs. We saw evidence for a side-effect of this in Figure 12 where higher
cyclicity led to higher asymptotig, because it compounds the problem of dependence on
nearby states for small

Two issues require comment: the role)oénd the relative merits of the algorithms that
we studied. Two main lines of evidence suggest that using valugotfer thani (i.e.,
using a temporal difference rather than a Monte-Carlo algorithm) can be beneficial. First,
the greedyvalue of A chosen to minimize the MSE at the end of the step (whilst using
the associated greedy) remains away from (see Figure 12). Interestingly, it remains
away from0 also. As the bias tends f) one might expect that the greedywould tend
to 0 too, since the smaller the (fixed) the smaller the asymptotic MSE. However, the
smaller the), the lower the feasible step-sizg and so the less the one-step reduction in
the MSE. The curves in Figure 12 suggest that the greedy valdeofhverges to a value
intermediate betweehand1 with the number of trials, but this conclusion is not supported
by any analysis. In any event, in this limit, the differences between different values of
are extremely small (as shown in Figure 13). Note that the greedy valuéeofds slowly
to 0, as one might expect. The second piece of evidence favarigggl comes from the
eigenvalue analysis in Figures 15 and 16. For fixethe terminal variance is higher for
A = 1; the largest value af that can be used is higher far< 1; and the asymptotic speed
with which the bias can be guaranteed to decrease fastest is highexfar

We had expected that there would be large differences between the three different TD
algorithms: accumulate TD, replace TD and first TD. Singh & Sutton (1996) analyzed
slightly different versions of accumulate TD and replace TDXoe 1, showing that the
MSE of accumulate TD is lower at the start of learning, but becomes higher than that of
replace TD after some number of trials. However, our results show that given suitable
choices ofa and )\, the algorithms are essentially indistinguishable — we have cases in
which accumulate TD does better, worse, or the same as replace TD. Of course, we used
complete knowledge of the Markov reward process to calculate the appropriate parameters,
and we have not addressed the sensitivity of the MSE to inappropriate choices.

This analysis clearly provides only an early step toward understanding the course of
learning for TD algorithms, and has focused exclusively on prediction rather than control.
The analytical expressions for MSE might lend themselves to general conclusions over
whole classes of Markov reward processes. In addition, it would be useful to understand
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the conditions leading to the apparent long tails in Figure 5 and to the convergence of greedy
values of) in Figure 12.

Acknowledgments

We thank Rich Sutton and Andy Barto for their painstaking reading of this paper and
their many comments that have improved it. Leslie Kaelbling, Michael Kearns, Michael
Jordan, Lawrence Saul, Tommi Jaakkola and Rob Schapire provided valuable discussions
and comments at various stages of this work and we thank them, as well as Michael Kearns
for impressing us along this path. We also thank the anonymous reviewers for many useful
comments. Part of this research was done while Satinder Singh was a Postdoctoral fellow
at MIT with Professor Michael Jordan. Satinder Singh’s research at CU Boulder was
supported by NSF grant [1S-9711753. Peter Dayan was supported by MIT.

Appendix
MSE Calculations

The three TD algorithms can be defined without separating out the eligibility trace calcu-
lations (as in Section 2.1). However, we will need additional notatigp(t); m > 1 is

the state at stem of trial ¢, 7(¢) is the number of steps in tria) andn; (¢; d) is the step in

trial ¢ at which thed!” visit to statei occurs.K;(t; n) is one if state is visited at step of

trial ¢, and is zero otherwise. If a trial lastssteps then it results in a sequencé:aftates
followed by a payoff. Hereafter, whenever it leads to no ambiguity, we drop the explicit
dependence of various quantities on the trial number

accumulate TD:

7(t) 7(t)
vilt) = vt — 1)+ (ZK (t:n [ S @A (- 1)
m=n+1

AT t>—"r(t)} — g (E)oi(t — 1))
replace TD:

ki (t)—1 n;(t;d+1)

ult) = w-D+a®( | X D -ty o)

d=1 m=n,;(t;d)+1
7(t)
_;'_{ Z (1 _ )\)/\M—”zﬂ(t;ﬁi(t))—lvsyn (t — 1)}
m=n; (t;r;(t))+1
AT O) () g (Eyv(t — 1))

first TD:
7(t)
ut) = wlt-D+a@®( [ D @=AammED Ly (-1

m=n;(t;1)+1
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AT D () R () (- 1))

As inthe main text, consider absorbing Markov reward processes with stategbtonly
terminal payoffs, and offline updating. We repeat the definitions of several basic quantities
in Table A.1 and define other useful symbols that serve as labels for often repeated pieces
of formulze in Table A.2. Belowj;; is the Kronecker delta function, ard denotes the
element wise product. To enhance readability, we drop the dependencaral$S on trial
numbert — 1 on the right hand sides of most equations below.

Table A.1.Definitions Revisited

transition matrix for non-terminals Q

probability of termination from qi

reward for terminating froni T

variance of the reward from h?

random value function after trial v(t)

step-size for triat a(t)

trace parameter for trial At)

mean value function after trial m(t) = E{v(t)}
mean squared value function after tdal S;;(t) = E{v;(t)v;(t)}
covariance of value function after trial | C;(t) = S;;(t) — mq(t)m;(t)
bias of value function after trial bi(t) = v —vi(t)
squared error of value function ei(t) = b7 (t) + Cus(t)

Table A.2.Some Useful Intermediate Quantities

transition matrix with Q_i
ith row set tod
transition matrix withit" Q_i—j

and;*" rows set td)
expected one-step payofir 1) rIl=qar

expected one-step squared r2=qe (ror+h?)
payoff; (r2)
true value function(v*) v=[T-Q] 'rl

exp. number of visits to staten; | n? = ;LT_[I - Q]!

Distribution over states in atrial | p; = z:”—ln
exp. number of visits tg without | (D_;); = WTI—Q=]™Y;
visiting 4
exp. number of visits t& without | (D_; _;)r = (T[T — Q—i,—;] Dk
visiting 4, j
fori,jes DD; ;= (D—; —;)i[Q—;[I — Q—;]"s;
+(D—j,—i)j[Q—i[I — Q] '];s
fori e s Ki = (1.0 - X1))(QU — A(H)Q TIm);
+([L = 2»)Q]"'rl);
fori,jes KVij = (10— X)) [Q[ = At)Q™']S]i;
([ =2A®)QI"'rl);m;
fori,jes KSij = (T[T +[Q—i, ][I — Q—i,—31 "D

x[[Q-;1I — Q31" i
Weighted mean squared error MSE(t) = ZZ_ES pi€i(t)
after trialt
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A.1. Bias & Covariance calculations for first-visit MC

The mean of the value function gets updated as follows:

mi(t) = m(t —1) + a7V (t),
where

LV = ("l + QI — Q') —mu(t — 1)) (A1)
The S update is as follows:

Sij(t) = Sii(t— 1)+ a®)ALY (t) + a(t)* Y5 (1), (A2)
where

ALVt = 205 (W71 + Q1T — Q) aCofms — Sur))

(1.0 = 6) (T + QI = Q17" (v ms — Siy)

(W [T+ [1Q-i]IT = QI i(vim; — S)), and (A3)

TE () = 8 (W71 + [Q-i]I = QI i(Sia + (T = Q7 'r2), — 207m,))

+KSi;(Sij + (I — Q" 'r2); — myv; —m;v})

+KS;(S; + ([ — Q] 'r2); — m;jv; — m;v;) (A.4)
(A.5)

A.2. Bias & Covariance Calculations for every-visit MC

The mean of the value function gets updated as follows:

mi(t) = mi(t —1) +a(t)TEY (1),
where

TEV(t) = ni(v} —mq(t —1)). (A.6)
The S update is as follows:

Sii(t) = St — 1)+ a(t)ALY (1) + a(t)*YEV (1), (A7)
where

AGY () = dil2ni(miv] - Si)]

+(1.0 — 8;5) [nsmj + nym; — mynjv; —mynv;], and (A.8)

*
J
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YOV (1) = 051(2n QU — Qi) (I — Q)7 'r2); — 20fmy + Si;)]
+(1.0 = 3i5) ((malQL = Q1) (I1 — Q1 'x2),

+n;[QI — Q5 ([I — Q1 'r2),)
—((mi + my)(n[QI — Q) ijv5 +ny [QII — Q] ']jivy))

813 (IQIT = Q17 is + QI — Q17 ']50)) (A.9)
A.3. Bias & Covariance Calculations for accumulate TD

The mean of the value function gets updated as follows:

mi(t) = mi(t —1) + a(t)l7 (),

—
N
—~
=
Il

A = ni((1L0 = AO)QIT ~ AOIQ]"m(t - 1));
H( = AOQ] ' r1)i — my(t — 1)) (A.10)

The S update is as follows:

Sij(t) = Sis(t — 1) + a() AL (E) + a(t)* Y5 (E), (A.11)
where
AL() = (K Vi — Syt = 1)) + nj (KVy; — Sji(t — 1)), (A.12)

T4 = Si(n[QU — Q1 iy + ny[QU — Q1 j4)
+0;51: 5
—n;[QU — Q1K Vij — (1.0 = A())ni[Q[I — A(1)Q] ™55
A6 QU — A(6)Q) i KV
=Y (1.0 = X)) QI = AM(H)Q) ik [QIT — Q1 "k, S
kes
—5;7%KVn
—n;[QII — Q] i KV — (1.0 — A(£))n;[Q[I — AM(t)Q] ™45
—A(t)n; [QII — A)Q) ;i K Vi
=Y (10 = A [QU — AD)Q) ™ 151 [QIT — Q) ki S
kes
—0i;n; K'Vi;

+ 303 (L0 = A®*mlQU — AOQ] QI — Q1 iy

kes mes

QI = ADQ] ™ jm Skem
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+3 (L0 - AO)mQL — AOQ) QL - Qi

kes
(I = MOQ)r1);me )
+(1.0 = A(t))n [ [ Q)i KV,
+Z(1.0 = M)A [QI — M1)Q) i [QI — Mt)* Q) ]k Sk

kes
+nAB)[QU — AOQI i ([ — A)*Q]'r2);
D03 (10 = A AOn[Q — A®)QI i

kes mes
(101 = M@ LHABIQI = A)Q) e
QI = A Q) i ADQL = AOQ) e ) Sk
+ 37 (20010 = AN WIQIT ~ AOQ] ]

kes
QU = A0 Q) ([ = MOQ)'r1)emy )
#3037 (L0 = A2 1QIT = AR5k [QU - Q) ks

kEs mEs
QU = AOQ i
+ 30 (10— AR ~ AMOQ QU ~ @) e

kes
(1 = M@ r1)im
+(1.0 = A(t)n [[ AOQI ;K Vi
+ 3710 = A0 AB) QI — AOQ)HQU — A(D*Q] ™ ar S

kes
Jrﬂj)\(t)[Q[I - )‘(t)Q]il]ji([I — )\(t)QQ]ilrﬁ)i
+ YD (10— A AOn QI = AR

kes mes
([QU = A®*QI T ABIRL ~ AOQ] Tt
QI = A*Q i ADIQU = MOQ) k) S
+3 (20010 = A0 B[QI = AQ] QL - AH*Q)

kes
(- A(t)errl)kmk)
+0;5 Y (1.0 = A®)*n[QU — At)* Q) ik Sk

kes
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+5ijni([l - )\(t)QQ]_lrz)i
05 3 (10 = AW)*ni([[QU = A1)*Q)

kEs meEs
ADIQU = MOQ) i
HQI = A2 QI ™ im ADQIL = AOQ] ™ o) S
+5i5 3 (20010 = AO)mADIQI — A£)Q) ™ ]ix

kes

(- A(lﬁ)Q]’lrl)km). (A.13)

A.4. Bias & Covariance Calculations for first TD

The mean of the value function gets updated as follows:
mi(t) = mi(t —1)+a®)TF (1),
where
L () = (D_y)i(Ki —mi(t —1)) (A.14)
The S update is as follows:
Sij(t) = Sij(t — 1) + a(t) AL (t) + a(t)* Y5 (1), (A.15)
where
Af(1) = (D-)i(KVij = Sii(t = 1) + (D—j);(K Vi = Sji(t = 1), (A.16)
and
Y/ (t) = DD;;Si;
—(1 = 05)(D—i,—)il[Q—4111 — Q5] i; K Vi
—(1=8:5) 3 (L0 = XD ), QI = AOQ—i] ]

kes
(@[T - Q—z‘]fl]mSkz)
-(1- 5ij)((D7i,fj)j[[inHI —AB)Q-i] i
((1.0 = A(£))Si + )\(t)KVn))
—0;5(D—i)i KVis
—(1=6:)(D—j—i);[[Qlll — Q] '];:KVi
—(1=6) ) ((1-0 = A (D—j,-)i[[Q—4]T = AH)Q—5] ik

kes
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Q511 = Q51 1kiSks)
(1= 6)) (D=5 =) 1Q=T = MBQ—1 sy

((1.0 = A($)) S35 + A K V)
—0ij(D—:)i KV
+(1=6i) ) ((1-0 = M) (D=i—)illQ—;][T = AO)Q—51"an

km

Q-7 = Q11 [QU = AHQ)™ S
(1= 0) Y (10 = A (D 1R = AOQ—)

k
Q511 = Q-] ey (1 = A®Q)'r1) )
(1= 65)(10 = XD, Q1T = MOQ] 15 KV,
+(1=655) 3 (10 = MO (D) ABQ ]I = AR5 g

k

QI — A(t)zQ]’lkakQ
+(1 - 5ij)((D—z',—j)w\(t)[[Q—j][I = AOQ—317 s
(1T = AH*Q)'r2);)
+(1=8i5) Y (1.0 = AO)PAE) (D—i—)il[Q—3][ = AE)Q—5] iy

km
(IQU = A®*QI T AMIRU = AQ] i
QU = A Q) m ADIQIL = AOQ ™ ok ) Sk
(1= 855) D2 20010 = AE)(D—s- ) ADIQ-)T = ABQ-5] )i

k
AB)[QI — M)2Q) k(I — AM®)Q] ™ 'r1)pmy
H(1=0i5) Y (1.0 = A1) (D—j—i);[[Q ][I = A(B)Q—i) ;i

km

Q][I = Q-] IwilQIL = AM)Q] ™ Tim Skm
+(1=8i5) D (1.0 = M) (D—j—i); [[Q-l = AO)Q—i] ' ju

k
Q- = Q-] Tki([] = X(H)Q) ™' r1)imy,
+(1 = 655) (1.0 = X)) (D—j,—); [[Q=] [T — At)Q—i] )i K Vi
+H(1=68i) ) ((1-0 = A0)* (D), AONQ—l = AH)Q—-i] ;i

k
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QUL = A1 Q) S
+(1 = 3i) (D~ ANOQ-T = MOQ-i] ™ ([T = \(1)*Q]'r2);
+(1=8i5) D (1.0 = AB)AME(D—j—);[[Q-][ = AH)Q—i] s

km
([QU = A®*QI T ABIRL ~ ADQ] e
QI = A(02Q) T AMIQLT = AOQ] ok ) Sk
8i) Y 2(1.0 = X)) (D —);AB[[QT = AB)Q—i] ]
k

ABIQI = A)*Q1 i ([ = AMH)Q] ™ 'rL)my,
+0i5 (1.0 = X)) (D) [QI — At)* Q)™ Jir S

k
+6:;(D—3)i([I — M()*Q)'r2);
+6i5 > (1.0 = X(£)*(D—-:)i ([QU — A()*Q]™ ik

km

+3i5 3 (20010 = AO)ND-)ABRL — A(1)*Q) i

k

(I - A(t)Q]‘lrl)kmk). (A.17)

A.5. Bias & Covariance Calculations for replace TD

We need to define some additional quantities here:

o (0020 Dy [QU - MOQ—) (St — 1) = Syt~ 1)
v 1—[QU — Q517"
rLmi(t — 1) = ¢;S;(t — 1)
= [QU — Q-]
. (MO sy [QIT = AOQ- 5] yrTami(t — 1) — i Syalt — 1))
— QU — Q-]
The mean of the value function gets updated as follows:

mi(t) = mi(t —1) +a(t)TE(),

25 [QU = AO)Q—i] i (my(t — 1) —my(t — 1))
— QU — Q-] ']

i) = (D—i)i<
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(1.0 = A(t)) )
—[QU — Q-] ']u
(AT L0QU = ABQ]) iy (1, — gyt — 1)
D < = QI — Q-] i

rl; —gm;(t—1)

+1 — [0l = Q—i]_l]ii> . (A.18)
The S update is as follows:
Sii(t) = Sij(t — 1) + a(t) AL (t) + a(t)* Y E(t), (A.19)
where

AR(t) = (D—;);Mij + (D—;)iMj;. (A.20)

To defineY?, we need to compute the following intermediate quantities:
)= D> > (LO=AOPADIQ- = N (1)Q—i,—j] '
14,5 k#i,j
[Q-i—5]lI = AB)Q—i.—5] i
(Ska(t) + S j(t) = Sia(t) — Sk5(1))
+ (10 = A0 ([Q-][T = N (H)Q—s—5) st

1+,
(Spu(t) + Sij(t) — Sia(t) — Si;(¢))
+ ) (0= AO)ABOQ-T = X (H)Q—i—5] ;1
I#i,5 k]
[[Q 1T = A®)Q—;] i
(Slk( )+ Sij(t) = Sik(t) — Si;(t))

+ Z Z (L0 = AENAO[Q=4][I — N2 (t t)Q—i—j]” ]j

1#4,5 k#j
[T = A6)Q—j1i" (rlk(ml —m;) — qr(Sj — Sij))
+ Y (L0 = XQ-IT = ABQ—i, 5] 1aullQ 1T — Q-1

oy
(My; — M)
+ Z Z (L0 = XEADQ—][I — N ()Q—s—5] 11
1#0,5 k£i,j
[T —AOQ—i it (rlk(ml —my) + qx(Si; — Su))
+ Z Nt il =N ()Q—i 31 i
l#i,j

(I‘2l — I‘ll(m]‘ + mz) + qlSij)
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+I‘2j — I‘lj(m]’ +m; + QjSij
+ (L0 = A AOQ- — X (1) Qi —5] 1
I%i.j
([Q—i 51T = AXB)Q—i,—5] 'y
(81,5 () +85,:(t) — S;,;(t) — S1a(1))
+ ) (10— AB)AB[Q-[T = N (1)Q—i, ;] 13 A(t)
14,5 ki
[[Q-[T = ABQ—i] jkl[Q—i, 51T = A®)Q—i 5] "1
(S () + Si5 () — Sia(t) — Sk,5(t))
+ 303 (0= XDNOIQIIT = ()R] I
14,5 ki
Qi 41T = AMBQ—i,—5] i AD[Q ][I — A(H)Q—i] Nk
(rlk(ml —mj) + qr(Si; — Sil))
+ 3 (L0 = A)QIIT = N (H)Q—i—j] 1
%1,
AOQ—i, 51T = A)Q—i,—5]Tij
(rlj(ml —my) + q;(Sij — 5u)>

+(1.0 = XEN[Q-i][I — A(E)Q—i,—5)~ "5 (M;; — M), (A.21)
where
) — Ei;(t)
Gl = L ADIQ T - AOQ sy
and

Fi;(t) = Z (L0 = AXDQ-IT = AB)Q—i,—5] Mt
I#i,j
Q=i -] — Qi) 5 l[Q=][I — Qs (My; — M)
+ (L0 = X [QiII = At)Q—i—5] 151
%1,
([Q—i 41T — Qi —5) " T1a (M — M)
H(LO = AO)Q-i]ll = A(B)Q—i,—;]™ i (Mis — M)

Hig(t) = (Fy(t) + MOQ-IT = MO)Qi,—]iiCsi(1))
(1.0 = [[Q]II = Q-] 1))
QT — Qi 5] i
(F3 () + AR = NOQ—;—]1:sC15 ()
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Xij(t) = (1= [[Q-J[I — Qi ;] i) (1 = Q][I — Q—j—i] i)
Qi = Q—i—5) 1jil[Q—-4I — Q—j—i]ij

Gig(t) = D (L0 = AED[Q-II = AOQ—j—i]in

ki,
Q1T — Q51 ks (My; — M)

+(1.0 = XENQ 51T = AMB)Q—j,—i] ' i; (My; — Mij)

+/\(t)[[Q—jHI - /\( ) -7 —z]_l]uc (t)

+H[Q-;1[I — Q—j,—i]fl]z“X”(t)

Finally,

Ti5t) = (D-i—j)ig— Q][I — Q—j—i) i

H(D—j,—i);

1= [[Qulll — Qi3] Y5

Notes

1. See Saul & Singh (1996) for learning curve bounds for an interesting Markov decision process that are derived
using techniques from statistical mechanics.
2. There are other criteria for comparing algorithms, e.g., large deviation rates (Bucklew, 1990), but they are

hard to compute for the TD algorithms, and in any case MSE is often reported.
1

3. Note that limiting the step-size to be a function of trial number alone prohikits) = Zt = or
K; (T
T=1
a;(t) = —+L——, as would be used in conventional first-visit MC and every-visit MC respectively.

K (T
For these state dependent choicestpSingh & Sutton (1996) showed that first-visit MC is unbiased while
every-visit MC is biased but consistent, and that the variance of every-visit MC starts off less than or equal to
the variance of first-visit MC but eventually becomes higher.

4. For convergence of accumulate TD, see Dayan & Sejnowski (1994), Jaakkola et al. (1994), Tsitsiklis (1994),
Barnard (1993); and for convergence of replace TD, first-visit MC, and every-visit MC, see Singh & Sutton
(1996). First TD converges appropriately because although its estimator Nsgesighted sum of multi-step
returns that is different from replace TD and accumulate TD, its estimator remains a contraction in expected
value, and therefore Jaakkola et al.'s (1994) convergence proof applies.

5. There are “importance sampling” methods for dealing with “difficult” distributions (see e.g., Bucklew, 1990),
but it is not clear how they could be applied here.
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