Skip to main content
Log in

Modulated-temperature differential scanning calorimetry and Raman spectroscopy studies of AsxS100−x glasses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermal properties of chalcogenide AsxS100−x glasses in the glass transition region have been studied by modulated-temperature differential scanning calorimetry (MTDSC). All samples in this work were given the same thermal history by heating to a temperature above the glass transition, equilibrating and then cooling at a rate of 5°C/min to a temperature of 20°C. The reversing and non-reversing heat flows through the glass transformation region during both heating and cooling schedules were measured and the values of the parameters Tg, ΔH, Cp and ΔCp, which characterize the thermal events in the glass transition region, were determined as a function of the glass composition. The structurally determined parameters Tg, ΔH, Cp and ΔCp reveal major extrema when the composition of AsxS100−x glass becomes As40S60, that is the same as the composition of the corresponding stoichiometric compound. In addition, we observe “small thresholds” in these properties at 28.5 at % As (As28.5S71.5) around the same composition as that reported in the As-Se glasses. No such thermal analysis had been done on the AsxS100−x glasses previously. It is shown that AsxS100−x glasses where x < 25 at % As are formed from two glass phases. From MTDSC measurements, it was possible to establish the probable composition of the high temperature glass phase and from Raman spectroscopy it was possible to correlate the MTDSC results with the structure of the As-S glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Reading, D. Elliott and V. L. Hill, J. Thermal Analysis 40 (1993) 949.

    Google Scholar 

  2. T. Wagner and S. O. Kasap, Philos. Mag. B 74 (1996) 667.

    Google Scholar 

  3. S. O. Kasap, T. Wagner and K. Maeda, Jpn. J. Appl. Phys. 35 (1996) L1116.

    Google Scholar 

  4. T. Wagner, S. O. Kasap and K. Maeda, J. Mater. Res. 12 (1997) 1893.

    Google Scholar 

  5. X. Feng, W. J. Bresser and P. Boolchand, Phys. Rev. Letts 78 (1997) 4422.

    Google Scholar 

  6. X. Feng, W. J. Bresser, M. Zhang, B. Goodman and P. Boolchand, J. Non-Cryst. Solids 222 (1997) 137.

    Google Scholar 

  7. T. Wagner, S. O. Kasap and K. Petkov, J. Mater. Sci. 32 (1997) 5889.

    Google Scholar 

  8. J. C. Phillips, J. Non-Cryst. Solids 34 (1979) 153.

    Google Scholar 

  9. idem., Physics Today, February (1982) 27.

  10. M. F. Thorpe, J. Non-Cryst. Solids 57 (1983) 355.

    Google Scholar 

  11. K. Tanaka, Phys. Rev. B 39 (1989) 1270.

    Google Scholar 

  12. S. R. Elliott, “Physics of Amorphous Materials” (Longman, New York, 1983) p. 53.

    Google Scholar 

  13. idem., Nature 354 (1991), 445 and references therein.

    Google Scholar 

  14. M. T. Mora in “Amorphous Insulators and Semiconductors,” edited by M. F. Thorpe and M. I. Mitkova (Kluwer Academic Publishers, Boston, 1996) p. 45.

    Google Scholar 

  15. K. Tanaka and H. Hisakuni, J. Non-Cryst. Solids 198-200 (1996) 714.

    Google Scholar 

  16. H. Hamanaka, S. Konagai, K. Murayama, M. Yamaguchi and K. Morigaki, ibid. 198-200 (1996) 808.

    Google Scholar 

  17. T. Wagner, V. Perina, M. Vlcek, M. Frumar, E. Rauhala, J. Saarilahti and P. J. S. Ewen, ibid. 212 (1997) 157.

    Google Scholar 

  18. N. P. Eisenberg, M. Manevich, M. Klebanov, V. Lyubin and S. Shutina, ibid. 198-200 (1996) 766.

    Google Scholar 

  19. N. Nordman and O. Nordman, J. Appl. Phys. 82 (1997) 1521.

    Google Scholar 

  20. M. I. Mitkova in “Amorphous Insulators and Semiconductors,” edited byM. F. Thorpe and M. I. Mitkova (Kluwer Academic Publishers, Boston, 1996) p. 71.

    Google Scholar 

  21. M. Reading, A. Luget and R. Wilson, Thermochimica Acta 238 (1994) 295.

    Google Scholar 

  22. B. Wunderlich, Y. Jin and A. Boller, ibid. 238 (1994) 277.

    Google Scholar 

  23. S. Sauerbrunn and L. Thomas, American Laboratory January (1995) 19.

  24. L. Thomas, “NATAS Notes,” Vol. 26 (North American Thermal Analysis Society, Sacramento, CA, USA,1995) p. 48.

    Google Scholar 

  25. B. Hassel, “NATAS Notes” Vol. 26 (North American Thermal Analysis Society, USA)26 (1995) p. 54.

    Google Scholar 

  26. K. J. Jones, I. Kinshott, M. Reading, A. A. Lacey, C. Nikolopoulos and H. M. Pollock, Thermochim. Acta 304 (1997) 187.

    Google Scholar 

  27. A. Boller, C. Schick and B. Wunderlich b, ibid. 266 (1995) 97

    Google Scholar 

  28. J. M. Hutchinson and S. Montserra, ibid. 304 (1997) 257.

    Google Scholar 

  29. idem., ibid. 286 (1996) 263.

    Google Scholar 

  30. J. E. K. Schawe, ibid. 261 (1995) 183.

    Google Scholar 

  31. A. Feltz, “Amorphous Inorganic Materials and Glasses” (VCH, Weinheim, 1993) Chaps. 2 and 3, p. 16, 212 and references therein.

    Google Scholar 

  32. “ModulatedDSCTMCompendium, Basic Theory and Experimental Considerations,” TA Instruments (TA Instruments Inc., Newcastle, DE, USA, 1996) pp. 25–27.

  33. P. S. Gill, S. R. Sauerbrunn and M. Reading, J. Thermal Analysis 40 (1993) 931.

    Google Scholar 

  34. R. Blachnik and A. Hoppe, J. Non-Cryst. Solids 34 (1979) 191.

    Google Scholar 

  35. J. C. Phillips, ibid. 43 (1981) 37.

    Google Scholar 

  36. A. Feltz, “Amorphous Inorganic Materials and Glasses” (VCH, Weinheim, 1993) Chap. 3.

    Google Scholar 

  37. A. T. Ward, J. Physical Chemistry 72 (1968) 4133.

    Google Scholar 

  38. P. J. S. Ewen, M. J. Silk and A. E. Owen, “The Structure of Non-Crystalline Materials,” edited byP. H. Gaskell (Taylor and Francis, London, 1977) p. 127.

    Google Scholar 

  39. G. Lucovsky, F. L. Geils and R. C. Keezer, “The Structure of Non-Crystalline Materials,” edited byP. H. Gaskell (Taylor and Francis, London, 1977) p. 127.

    Google Scholar 

  40. O. I. Shpotyuk, Zh. Prikl. Spektroskopii 59 (1993) 551.

    Google Scholar 

  41. O. I. Spotyuk, Phys. Stat. Sol. B 183 (1994) 365.

    Google Scholar 

  42. S. A. Solin and G. V. Papatheodorou, Phys. Rev. B 15 (1997) 2087.

    Google Scholar 

  43. M. Frumar, A. P. Firth and A. E. Owen, Philos. Mag. B 50 (1984) 463.

    Google Scholar 

  44. E. Diemann, Revue de Chimie Minerale 16 (1979) 237.

    Google Scholar 

  45. A. Feltz and G. Pfaff, J. Non-Cryst. Solids 77-78 (1985) 1137.

    Google Scholar 

  46. Z. U. Borisova, “Glassy Semiconductor” (Plenum Press, New York, 1981) Chap. 2 and references therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

WAGNER, T., KASAP, S.O., VLCEK, M. et al. Modulated-temperature differential scanning calorimetry and Raman spectroscopy studies of AsxS100−x glasses. Journal of Materials Science 33, 5581–5588 (1998). https://doi.org/10.1023/A:1004455929749

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004455929749

Keywords

Navigation