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Summary: Reactive astrogliosis has long been recognized as a
ubiquitous feature of CNS pathologies. Although its roles in
CNS pathology are only beginning to be defined, genetic tools
are enabling molecular dissection of the functions and mecha-
nisms of reactive astrogliosis in vivo. It is now clear that
reactive astrogliosis is not simply an all-or-nothing phenome-
non but, rather, is a finely gradated continuum of molecular,
cellular, and functional changes that range from subtle alter-
ations in gene expression to scar formation. These changes can
exert both beneficial and detrimental effects in a context-de-
pendent manner determined by specific molecular signaling
cascades. Dysfunction of either astrocytes or the process of
reactive astrogliosis is emerging as an important potential

source of mechanisms that might contribute to, or play primary
roles in, a host of CNS disorders via loss of normal or gain of
abnormal astrocyte activities. A rapidly growing understanding
of the mechanisms underlying astrocyte signaling and reactive
astrogliosis has the potential to open doors to identifying many
molecules that might serve as novel therapeutic targets for a
wide range of neurological disorders. This review considers
general principles and examines selected examples regarding
the potential of targeting specific molecular aspects of reactive
astrogliosis for therapeutic manipulations, including regulation
of glutamate, reactive oxygen species, and cytokines. Key
Words: Reactive astrocyte, astrogliosis, inflammation, injury,
repair.

INTRODUCTION

Astrocytes are specialized glial cells that are ubiqui-
tous throughout all regions of the CNS. Astrocytes out-
number neurons by more than fivefold and contiguously
tile the entire CNS in an essentially uninterrupted man-
ner. Although neurons have long been the focus of at-
tention as mediators of CNS functions, an ever-growing
body of evidence indicates that astrocytes and other glia
play primary roles in neural processing in both health
and disease. Astrocytes play essential roles in normal,
continually ongoing CNS functions, including regulation
of blood flow, provision of energy metabolites to neu-
rons, participation in synaptic function and plasticity,
and maintenance of the extracellular balance of ions,
fluid balance, and transmitters (as reviewed in detail
elsewhere1–5). In addition, astrocytes respond to all
forms of CNS insult, such as infection, trauma, ischemia,
and neurodegenerative disease, by a process commonly
referred to as reactive astrogliosis, which involves
changes in astrocyte molecular expression and in severe

cases results in scar formation (reviewed in detail else-
where6,7).
Reactive astrogliosis is not merely a marker of neuro-

pathology, but plays essential roles in orchestrating the
injury response, as well as in regulating inflammation
and repair in a manner that markedly affects functional
and clinical outcomes.5,7,8 Enormous progress has been
made in characterizing molecular mechanisms underly-
ing astrocyte and reactive astrocyte functions, and a vast
molecular arsenal at the disposal of astrocytes and reac-
tive astrocytes is being defined. Accordingly, astrocytes
and reactive astrocytes are increasingly recognized as
potential targets for novel therapeutic strategies for a
variety of CNS conditions.7,9–11 Here we review recent
findings and consider general principles regarding the
potential of targeting reactive astrogliosis for therapeutic
manipulations, with a focus on a number of specific
molecular mechanisms as examples.

GENERAL APPROACH TO REACTIVE
ASTROCYTES AS THERAPEUTIC TARGETS

In considering the potential for reactive astrocytes as
therapeutic targets, it is useful first to examine their
characteristics, functions, and molecular mechanisms.
Concepts of the functions and effects of reactive astro-
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gliosis have long been dominated by the 100-year-old
recognition that scars formed by reactive astrocytes in-
hibit axon regeneration and by the interpretation that this
scar is the main impediment to functional recovery after
CNS injury or disease. These observations have some-
times led to the simplistic notion that reactive astroglio-
sis is an all-or-nothing maladaptive process synonymous
with scar formation and that the total inhibition of reac-
tive astrogliosis could be regarded as a therapeutic strat-
egy. This absolutely negative view of reactive astroglio-
sis is no longer tenable, and it is clear from a growing
body of experimental evidence that there is a normal,
adaptive process of reactive astrogliosis, including scar
formation, which exerts essential beneficial functi-
ons.5,7,8 These studies have shown that reactive astro-
gliosis is not a simple, all-or-nothing phenomenon, nor is
it ubiquitously synonymous with scar formation. Instead,
reactive astrogliosis is a finely gradated continuum of
changes that occur in response to all CNS insults in a
context-dependent manner regulated by specific signal-
ing events.7

In reactive astrogliosis, the continuum of changes
ranges from reversible alterations in gene expression and
cell hypertrophy with preservation of cellular domains
and tissue structure after mild insults to long-lasting scar
formation with permanent rearrangement of tissue struc-
ture after severe insults.5,7,8 The changes effected during
reactive astrogliosis have the potential to alter astrocyte
activities through both gain and loss of functions that can
affect surrounding neural and non-neural cells both ben-
eficially and detrimentally.5,7,8 Because astrocytes and
reactive astrocytes have the potential to influence essen-
tially all aspects of neural function through the regulation
of blood flow and provision of energy substrates, or by
influencing synaptic function and plasticity, it is perhaps
not surprising that dysfunction of the processes underly-
ing reactive astrogliosis and scar formation has the po-
tential to contribute to, or even be the primary cause of,
CNS disease mechanisms, either through loss of normal
functions or through gain of detrimental effects.5,7

Numerous studies using transgenic and experimental
animal models provide compelling evidence that reactive
astrocytes protect CNS cells and tissue in multiple ways
that involve a variety of different molecular mechanisms,
including i) uptake of potentially excitotoxic gluta-
mate,12–14 ii) protection from oxidative stress via gluta-
thione production,14–18 iii) neuroprotection via adeno-
sine release,19 iv) protection from NH4

� toxicity,20 v)
neuroprotection by degradation of amyloid-� peptides,21

vi) facilitation of blood–brain barrier repair,13 vii) reduc-
tion of vasogenic edema after trauma, stroke, or obstruc-
tive hydrocephalus,13,22 viii) stabilization of extracellular
fluid and ion balance thereby increasing seizure thresh-
old,22 and ix) limiting the spread of inflammatory cells or
infectious agents from areas of tissue damage or disease

into healthy CNS parenchyma.13,23–29 Nevertheless, it is
also clear that reactive astrocytes can also play harmful
roles during injury or disease through gain of abnormal
effects such as overproduction of reactive oxygen spe-
cies (ROS) or certain inflammatory cytokines.5,7,14 Thus,
overall, reactive astrocytes have the potential to influence
injury and disease outcomes both positively and nega-
tively, as determined by specific signaling events and
molecular effector mechanisms.5,7,8

Taken together, observations from experimental ani-
mal studies indicate that the global inhibition or ablation
of reactive astrogliosis is not likely to be a useful ther-
apeutic approach and that in most situations it has the
potential to do more harm than good.5,7,8 Instead, thera-
peutic strategies should be directed at more specific as-
trocyte functions or at specific aspects of reactive as-
trogliosis, by targeting astrocyte-related molecular
mechanisms. Considerable progress has been made in
identifying the molecular mechanisms that regulate spe-
cific aspects of reactive astrogliosis or that are involved
in mediating its functions and effects.5,7 Some of these
molecules will be common to many cells (e.g., cytokines,
ROS), whereas other molecules will be selective to as-
trocytes and may be targetable selectively (e.g., astrocyte
glutamate transporters, SOD1).
In the sections that follow, we consider a number of

molecules related to astrocytes and reactive astrogliosis
and discuss their potential, and in some cases on-going
development, as therapeutic targets for specific CNS dis-
orders. Space constraints limit consideration to a cross-
section of representative candidate molecules.

SPECIFIC POTENTIAL MOLECULAR
THERAPEUTIC TARGETS RELATED

TO ASTROCYTES AND
REACTIVE ASTROGLIOSIS

Glutamate transmission and excitotoxicity
Astrocyte processes that envelope synapses express

high levels of transporters for the amino acid neurotrans-
mitter glutamate. These transporters clear the glutamate
from the synaptic space; after uptake into astrocytes, the
glutamate is converted by glutamine synthetase into glu-
tamine and recycled back to synapses for reconversion to
the active transmitter, glutamate.30,31 Through these
transporters, astrocytes play essential roles in regulating
extracellular levels of glutamate, which puts astrocytes in
a position to reduce the potential for excitotoxicity. In-
deed, genetic animal models have shown that loss of
astrocytes or attenuation of astrocyte glutamate trans-
porters such as EAAT1 and EAAT2 can lead to excito-
toxic neurodegeneration.12,13

The expression or activity of astrocyte glutamate trans-
porters is subject to a high degree of regulation both
transcriptionally and post-transcriptionally.30–33 Gluta-
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mate transporter activity is reduced in various neurode-
generative conditions such as amyotrophic lateral scle-
rosis (ALS).34 Thus, modulation of EAAT1 and EAAT2
represents pharmacological targets that may modify neu-
ronal function or protect neurons by manipulating gluta-
mate levels.9,30 For example, augmenting the function
of the astrocyte glutamate transporter EAAT2 with
parawexin 1, a molecule isolated from spider venom, has
been shown to protect retinal neurons from ischemic
degeneration by enhancing glutamate uptake and thereby
reducing the potential for glutamate excitotoxicity.35,36

A high-throughput screen of small molecules has iden-
tified that certain �-lactam antibiotics can enhance astro-
cyte-mediated glutamate uptake sufficiently to provide
neuroprotection in models of stroke and ALS by stimu-
lating the expression of astrocyte glutamate transporters
and thereby reducing excitotoxicity.37 In 2010, the �-lac-
tam antibiotic ceftriaxone was in phase III clinical trials
to determine efficacy in reducing excitotoxicity and neu-
rodegeneration in ALS. Finally, a noncompetitive
blocker of the AMPA glutamate receptor, talampanel, is
also in clinical trials for ALS, with phase II just com-
pleted.38

An additional potential target for manipulating astro-
cyte influences on glutamatergic synaptic transmission is
astrocyte calcium signaling. Astrocytes exhibit transient
elevations of cytosolic calcium levels in response to ac-
tivation of a number of different membrane receptors;
these calcium transients are regarded as a form of astro-
cyte excitability.39–41 Although the precise roles and
mechanisms of astrocyte calcium signaling are incom-
pletely understood, calcium transients in astrocytes have
been shown to affect neuronal excitatory transmission,
including network properties such as the ability to induce
long-term potentiation.42,43 In this regard, it is particu-
larly interesting that receptor selectivity has been noted,
such that calcium transients triggered in astrocytes by
activation of PAR-1 receptors led to the appearance of
NMDA receptor-mediated slow inward currents in hip-
pocampal pyramidal neurons, whereas calcium transients
triggered in astrocytes by activation of P2Y1 receptors
did not.44

Enzymes and scavengers related to oxidative stress
NOS-2. Nitric oxide synthase-2 (NOS-2 or iNOS) is

the inducible and calcium-independent isoform of NO
synthase, the enzyme responsible for the production of
the free radical NO. Whereas under normal physiological
conditions NOS-2 is not expressed, it is induced due to
injury or inflammation by a variety of stimuli, including
interleukin 1� (IL-1�), lipopolysaccharide (LPS), and
tumor necrosis factor � (TNF�) in both astrocytes and
microglia.45–49 In several rodent models, there is evi-
dence that NOS-2 expression or activity contributes to
neurological injury and disease.50–56 For example, inhi-

bition of NOS-2 activity57 or genetic deletion of NOS-2
in mice subjected to a middle cerebral artery occlusion53

have reduced infarct volumes, compared with wild-type
controls. Furthermore, transgenic mice modeling Alzhei-
mer’s disease (i.e., hAPP-hPS1-double transgenic mice)
were found to have reduced Alzheimer’s disease-associ-
ated pathology when crossed with mice lacking NOS-
2.58 These mice exhibited reduced �-amyloid plaque
formation, attenuated gliosis and notably had an in-
creased lifespan, compared with that bred with NOS-
2�/� mice.58

Other evidence suggests that NOS-2 induction may be
beneficial in certain instances,59–62 including expression
of astrocyte-specific NOS-2.61,62 In this regard, note that
although one study found NOS-2 to contribute to Alz-
heimer’s pathology in hAPP-hPS1-double transgenic
mice,58 different results were obtained when using a
different transgenic mouse model of Alzheimer’s dis-
ease, the Swedish familial double mutation APP (i.e.,
APPsw). When APPsw mice were crossed onto a
NOS2�/� background, the offspring exhibited increased
Alzheimer’s disease-associated pathology, including hy-
perphosphorylation of tau and increased levels of insol-
uble �-amyloid, along with an increase in neuronal de-
generation, compared with APPsw mice on a NOS�/�

background.60 These observations suggest that NOS-2
may have positive and negative consequences in Alzhei-
mer’s disease, depending on the nature of the patholog-
ical etiologies.
Although the specific molecular mechanisms underly-

ing the outcomes of NOS-2 induction in vivo remain
largely elusive, several mechanisms have been estab-
lished in vitro. It has been well-documented in a host of
cells throughout the body that NOS-2-derived NO can
contribute to cell death through the depletion of cellular
energy sources by causing DNA strand breaks and by
inhibiting mitochondrial respiration, among other mech-
anisms.63,64 Given the close apposition of astrocytes to
the neuronal synapse, one putative role for an astrocyte-
mediated effect of NOS-2-derived NO is in the modula-
tion of neuronal glutamate activity. In support, astrocyte-
specific NOS-2-derived NO has been shown to enhance
NMDA-dependent neuronal cell death through synaptic
glutamate release.46,65,66 At higher concentrations of
NO, however, astrocytic NOS-2-derived NO may play a
role in preventing excitotoxic cell death. In support, in
astrocyte neuronal co-cultures addition of NO donors
that released high concentrations of NO resulted in
protection of NMDA-dependent excitotoxicity, an effect
that was paralleled by a concentration-dependent reduc-
tion in NMDA channel activity.61,62 Given the intimate
association of astrocyte end-feet with the vasculature and
the known role of NO as a potent vasodilator,67 astro-
cytic NOS-2-derived NO might be instrumental in in-
creasing blood flow in times of need (e.g., by increasing
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oxygen extraction and in providing the proper energy
sources needed during cellular repair).
Overall, evidence suggests that astrocyte-specific

NOS-2 may be an important target for designing thera-
pies for neurological diseases and disorders. Because
NOS-2 can also be induced in microglia, it is critical that
studies continue to elucidate the cell-type-specific regu-
lation of NOS-2.

Cu/Zn superoxide dismutase (SOD). Mutations in
Cu/Zn2 superoxide dismutase (SOD) are the primary
cause of familial ALS. Although, the precise mecha-
nisms contributing to the disease are still unclear, nu-
merous mechanisms, including oxidative stress and ex-
citotoxicity, are thought to contribute to this disease.68,69

A large body of evidence suggests that astrocytes play an
important role in the disease process. In a mouse model
of ALS, reduced expression of dominantly inherited mu-
tant SOD (G37R mutation) selectively in astrocytes of
the brain through Cre-lox site-specific recombination re-
sulted in delayed microglial activation and slowed late
disease progression resulting in increased lifespan.70 No-
tably, this implicated a sole molecule in astrocytes as
mediating non–cell-autonomous neuropathology. Al-
though the mechanism to explain how the decrease in
astrocyte mutant SOD affects microglial reactivity and
increases the survival of these mice is unknown, a robust
reduction in astrocyte glutamate transporter GLT-1 ex-
pression was evident in both the motor cortex and spinal
cord of ALS patients,71 as well as in transgenic SOD-1
mutant mouse models.72 Thus, devising therapies aimed
at targeting mutant SOD in astrocytes may hold thera-
peutic promise for patients with inherited ALS. Along
these lines, a transplantation-based replacement of astro-
cytes is reported to be neuroprotective in a mutant SOD1
transgenic mouse model of ALS.73 Overall, these studies
highlight the potential benefits that targeting astrocytes
for therapeutic purposes, especially in ALS, may
provide.

COX-2. The therapeutic potential, as well as pre-
ventative potential, of nonsteroidal anti-inflammatory in-
hibitory drugs (NSAIDs) in neurological diseases and
disorders has been reviewed in great detail.74 NSAIDs
act to inhibit cyclooxygenases 1 and 2 (COX-1 and
COX-2), enzymes that have various critical functions,
through prostaglandin production, in regulating blood
flow as well as inflammatory pathways. In addition,
NSAIDS are now known to have additional targets, in-
cluding NF-�B, AP-1 and NOS among others (for re-
view, see Lleo et al.74 and Asanuma and Miyazaki75).
Treatment with NSAIDS in mouse models leads to di-
minished reactive astrogliosis, as evidenced after admin-
istration of ibuprofen in a transgenic model of Alzhei-
mer’s disease (APPV717I)76 and of celecoxib in a
transgenic model of ALS,77 but it is not clear whether
these are direct effects on astrocytes or indirect effects on

other mechanisms that may in turn be responsible for
astrocyte reactivity. In vitro studies have demonstrated
that the NSAID acetylsalicylic acid abrogates both
NF-�B activity and the upregulation of glial fibrillary
acidic protein (GFAP) induced by hypoxia in a human
astroglial cell line.78 Whether any of the beneficial ef-
fects of NSAIDs in vivo work directly through astro-
cytes, however, remains unclear and requires further
investigation.

Glutathione. Astrocytes are the predominant source of
glutathione (GSH) in the CNS,79 and astrocyte-derived
GSH plays important roles in protecting neurons from
oxidative stress.14,15 Astrocyte GSH levels are influ-
enced by cytokine signaling pathways associated with
regulating specific aspects of astrogliosis; for example,
disruption of STAT3 signaling in astrocytes markedly
attenuates GSH levels and increases oxidative stress.18

S-nitrosoglutathione has been identified as a molecule
produced by enteric astroglia that has mucosal barrier
inducing functions.80,81 The roles of astroglial-derived
S-nitrosoglutathione in the CNS have not yet been ade-
quately explored. Modulating GSH production by reac-
tive astrocytes is an interesting potential target for neu-
ronal protection from oxidative stress in both acute and
chronic CNS disorders.9,10

Cytokine and growth factor signaling
Astrocytes can both secrete and respond to a number

of important cytokines affecting the cellular state both of
surrounding cells, such as microglia and neurons, and of
astrocytes themselves. For example, cytokines such as
IL-1�, TNF�, IL-6, and transforming growth factor-�1
(TGF-�1) can act to upregulate or downregulate other
pro- and anti-inflammatory genes including NOS-2 and
COX-2.45,82–86 Astrocytes also play a important role in
the secretion of trophic factors such as glial cell line-
derived neurotrophic factor (GDNF), brain-derived neu-
rotrophic factor (BDNF), nerve growth factor (NGF),
and basic fibroblast growth factor (bFGF). Through the
secretion of various growth factors, astrocytes can pro-
mote neuronal and oligodendrocyte survival,87–91 as well
as promote myelination in mature oligodendrocytes.92

Thus, targeting the astrocyte in a way to promote growth
factor release or to modulate cytokine release (up or
down) is very much an important area of study. In this
section, we will focus on some of the better characterized
signaling pathways with respect to astrocytes and neu-
rological diseases and disorders.

TGF-�1 and SMAD3 signaling. Transforming
growth factor-�1 is a pleiotropic cytokine normally ex-
pressed at low to undetectable levels in the brain, but it
is strongly upregulated under neuropathological condi-
tions in a great variety of neurological diseases and dis-
orders.93–109 TGF-�1 signals by binding to TGF�RII,
which then heterodimerizes and transphosphorylates the
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TGF� signaling receptor TGF�RI, either activin-like ki-
nase 5 or 1 (ALK5, ALK1), initiating an intracellular
serine/threonine kinase signaling cascade.110 Whereas
ALK1 phosphorylates SMAD1/5/8, ALK5 phosphory-
lates SMAD2/3, each resulting in nuclear translocation
of distinct signaling complexes producing disparate
changes in gene expression.110

The effects of TGF-�1 in the brain are widespread and
appear to be context-dependent with respect to the dis-
ease or disorder examined. An extensive literature has
clearly demonstrated a neuroprotective role of TGF-�1
in a variety of in vivo (i.e., middle cerebral artery occlu-
sion) and in vitro (i.e., excitotoxic) models of cerebral
ischemia.111–116 Other studies, however, show a pro-
inflammatory and neuropathological role for TGF-�1,
which has been especially well documented in the case
of Alzheimer’s disease in both in vivo and in vitro rodent
models.117–123

Whether any of the roles of TGF-�1 in neuroprotec-
tion or neuropathology rely on TGF-�1 signaling
through astrocytes remains elusive. However, TGF-�1 is
known to have several effects on astrocytes, including
effects on gene expression, such as upregulation of amy-
loid precursor protein (APP),120,122,124 modulation of the
astrocyte response to pro-inflammatory mediators,45,82

and regulation of astrogliosis via increasing GFAP ex-
pression, eliciting hypertrophy, and facilitating glial scar
formation through upregulation of extracellular matrix
molecules (i.e., chondroitin sulfate proteoglycans, fi-
bronectin, laminin).119,124a Consistent with the effects of
TGF-�1 on extracellular matrix formation, mice that lack
Smad3, the downstream effector of TGF-�1 signaling
through ALK5, exhibit a faster rate of wound closure
after stab injury to the brain, compared with control
mice.125

Because all brain parenchymal cells are capable of
secreting126 and responding107,127–129 to TGF-�1, it is
interesting to note that neurons and endothelial cells are
known to signal through both the ALK1 and ALK5
TGF�RI receptors.130,131 To date, however, astrocytes
and microglia are known to express and signal only
through the ALK5 TGF�RI.132,133 This difference in
expression alone could prove to be fortuitous, but, in
addition, microglia and astrocytes have, at least in part,
divergent responses to the cytokine. For example, when
NOS-2 is induced in cultured astrocytes upon pro-in-
flammatory stimulation, expression of NOS-2 and its
resultant NO production are attenuated in microglia but
are enhanced in astrocytes by TGF-�1.48,82 Although
progress has been made in understanding the differential
cell-type response to TGF-�1 in the brain, future eluci-
dation of regulatory molecules in this pathway should
prove to be fruitful.

NF-�B signaling. The transcriptional induction of
various inflammatory mediators such as IL-6134 and

NOS-2 requires that the transcription factor NF-�B is
activated, translocated into the nucleus, and bound to its
cognate NF-�B consensus element. NF-�B can be acti-
vated by several pro-inflammatory mediators, including
LPS, TNF� and IL-1�. The classic endogenous activa-
tor, IL-1�, is a cytokine that has been implicated in the
pathogenesis of numerous neurological disorders, dis-
eases, and injuries (for review, see Fogal and Hewett135;
for review of the global IL-1�-mediated changes in as-
trocytes and the IL-1�-specific signaling cascades in as-
trocytes, see John et al.136). Because NF-�B is not spe-
cific to astrocytes, identification of astrocyte-specific
regulation is warranted. Inhibition of NF-�B selectively
in astrocytes is reported to ameliorate inflammation and
to improve the rate of recovery after spinal cord inju-
ry.137 Evidence suggests that chromatin remodeling may
play a critical role in determining whether NF-�B binds
to a particular promoter in a given cell type.138–142 Given
the cell-type-specific nature of epigenetic signatures, elu-
cidation of the epigenetic modifications present in astro-
cytes will be important in understanding the transcrip-
tional regulation of NF-�B-dependent genes in
astrocytes.

IL-6 and STAT3 signaling
Interleukin-6 is a cytokine that can be produced by

both glia and neurons of the CNS and can be induced by
inflammatory mediators, including IL-1�, TNF�, and
LPS.143 IL-6 signals through the gp130 receptor, which
elicits activation of the JAK/Stat pathway and elicits
changes in gene expression mainly through the activation
of STAT3.144 Interleukin-6 signaling through STAT3 is
a known trigger of reactive astrogliosis.7 The role of IL-6
can be beneficial or detrimental, depending on the rodent
model (e.g., IL-6 overexpressor or IL-6 conditional over-
expressor) used and the disease model studied.145–149

With regard to astrocytes, STAT3 is an early trigger of
astrogliosis.150 Indeed, in a mouse model of 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced stri-
atal degeneration, gp130-related cytokines (e.g., IL-6,
ciliary neurotrophic factor) were upregulated prior to
STAT3 activation in astrocytes (i.e., phosphorylated
STAT3 [pSTAT3]) and nuclear translocation, events that
preceded the upregulation of GFAP mRNA and protein
expression.150 Given that the Gfap promoter has STAT3
consensus binding sites known to be required for proper
induction of GFAP,151,152 the notion of IL-6 signaling
through STAT3 as a trigger of astrogliosis, which is
hallmarked by an upregulation in GFAP expression, is
not surprising. However, not only is STAT3 a trigger of
astrogliosis, but it seems to be required for proper as-
trogliosis to occur, at least in the case of spinal cord
injury.153 More specifically, astrocyte-specific Stat3 con-
ditional knockout mice have attenuated GFAP expres-
sion, diminished astrocyte hypertrophy, and a lack of
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proper glial scar formation, compared with Stat3�/�

mice. This genetic deletion of Stat3 selectively in astro-
cytes also resulted in non–cell-autonomous effects, in-
cluding increased microgliosis and inflammatory cell in-
filtration, which corresponded to an increase in lesion
size following spinal cord injury and resulted in a dim-
inution in motor function recovery.153

A recently published study found that triptolide, an
active ingredient in the traditional Chinese herb Triptery-
gium wilfordii Hook. f., was found to reduce astrogliosis
in vitro and in vivo.154 In both cases, in an astrocyte
culture scratch injury model and after spinal cord injury
in rat, pSTAT3 levels were reduced in parallel with a
decrease in GFAP immunoreactivity. In culture, a de-
creased number of proliferative cells were present,
whereas in vivo a marked reduction in glial scar forma-
tion as assessed 4 weeks post-injury was observed. In
addition, animals treated with triptolide have improved
locomotion function, compared with control spinal cord–
injured mice.154 However, given that triptolide can affect
other cells in an anti-inflammatory fashion, including
microglia,155 whether the in vivo phenotype of dimin-
ished astrogliosis is directly or indirectly mediated by the
herb remains unknown. Overall, further study of IL-6
and STAT3 signaling pathways should prove beneficial
in the long term.

Other cytokines and growth factors. Astrocytes
can express receptors and respond to a large variety of
other growth factors and cytokines, including but by no
means limited to TNF�, EGF, FGF, endothelins, and
various interleukins (for reviews, see Sofroniew7 and
Mena and García de Yébenes91). These factors can in-
duce the expression of molecules associated with reac-
tive astrogliosis, such as GFAP, or have been implicated
in astrocyte proliferation.156,157 Space constraints limit
detailed consideration here, but some of these factors
may come to represent interesting potential therapeutic
targets.

Nucleotides and their receptors
In addition to their many essential intracellular func-

tions, the nucleotides ATP, ADP, and adenosine have
functions as extracellular signaling molecules that act
through specific plasma membrane receptors, the puri-
noceptors P2X and P2Y and the adenosine receptor (A),
all of which have multiple family members.158 ATP sig-
naling triggers elevations in cytosolic calcium in astro-
cytes44,159,160 and leads to gene expression changes as-
sociated with reactive astrogliosis after trauma-induced
cell injury in vitro.161–163 The molecular pharmacology
of P2X, P2Y, and adenosine involves a number of in-
hibitors and activators, and some of these are being stud-
ied for effects on reactive astrogliosis and CNS injury
and repair after traumatic injuries such as spinal cord

injury.164,165 This is a promising area for future explo-
ration.

Epigenetic regulators
Epigenetic regulation of gene expression and its role in

neurological diseases and disorders is a growing field of
potential therapeutic importance. See Urdinguio et al.166

for a thorough and recent review of the epigenetic reg-
ulation in relation to neurological diseases and disorders.
Two putative targets of regulation have been widely
studied in recent years, namely histone deacetylases
(HDACs) and histone acetyltransferases (HATs). These
HATs and HDACs have opposing roles in the acetylation
and deacetylation of histones, a dynamic process that can
robustly and globally affect gene expression patterns in a
cell.166a HATs and HDACs not only affect histone acet-
ylation patterns, but can modulate transcription factors
through acetylation. Moreover, the patterns of genes
affected by this process vary among cell types and
are context-dependent. Thus, modulation of HAT and
HDAC function through pharmacological manipulation
could broadly influence astrocyte responses to other sig-
naling molecules and could powerfully modulate astro-
cyte functions in health and disease.

HDAC inhibitors. Pharmacological inhibition of
HDACs results in both an increase in histone acetylation
and a decrease in neuropathology and neurological def-
icits in a variety of animal models of neurological dis-
eases and disorders, including experimental autoimmune
encephalomyelitis167 and ischemia.168–171 Although the
exact cellular and molecular targets underlying such
beneficial effects of HDAC inhibitors remain unknown,
in vivo and in vitro evidence suggests that astrocytes may
be important targets.171 Astrocytes express various
HDACs, and treatment of rodent astrocytes in vitro with
HDAC inhibitors, including valproic acid and trichosta-
tin A, results in global and specific histone residue hy-
peracetylation172 and thus changes in gene expression
profiles. In astrocytes, several genes have already been
shown to be affected by various HDAC inhibitors in-
cluding the reduction in levels of various pro-inflamma-
tory-related genes,173 the upregulation of the glutamate
transporter GLT-1174,175 and the enhancement of growth
factor secretion (i.e., GDNF and BDNF).171 The HDAC
inhibitor valproic acid is currently used in treating epi-
lepsy176 and is also being tested for cancer.177 For further
review on the potential of HDAC inhibitors as therapies
in neurological diseases and disorders, see Langley et
al.178 and Kazantsev and Thompson.179

The HAT inhibitor curcumin. Curcumin, a major
curcuminoid in the spice turmeric, is an inhibitor of the
histone acetyltransferase (HAT) p300180,181; it is cur-
rently being investigated in rodent models of neurolog-
ical disease as a prospective therapeutic option. The ef-
fects of curcumin have been generally described as
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having anti-inflammatory and antioxidant properties.
Consistent with that, evidence suggests that curcumin
reduces clinical severity or improves neurological func-
tion in several neurological diseases and disorders and
injuries, including experimental allergic encephalomyeli-
tis182 and traumatic brain injury (TBI)183 in mice and
spinal cord injury in rat.184 Pathologically, curcumin-
treated animals subjected to contusional brain injury ex-
hibit reduced edema correlating with a reduction in lev-
els of IL-1� and aquaporin 4 (AQP4), compared with
control animals.183 Although it is unclear what underlies
the beneficial effect of curcumin in these instances, it is
clear that curcumin affects astrocytes. In mouse models
of autoimmune encephalomyelitis,182 spinal cord in-
jury,184 and traumatic brain injury,183 curcumin-treated
animals exhibit reduced astrogliosis, as evidenced by an
attenuation in the upregulation of GFAP expression, an
effect that appears to be cell-autonomous, in that cur-
cumin also reduces GFAP expression in purified astro-
cyte cultures.184 Treatment of mouse cortical astrocytes
with curcumin in vitro also reduces the IL-1�-mediated
activation of the classic inflammatory mediator NF-
�B.183 Future studies delineating the roles of curcumin
under neuropathological conditions and in the regulation
of signaling pathways and gene expression profiles in
astrocytes should be worthwhile.

Other astrocyte-specific molecules and regulators
Aquaporin 4. A water channel protein responsible

for bidirectionally transporting water to and from the
blood and the brain, AQP4 is normally localized on
astrocyte end-feet. The expression levels and localization
of AQP4 in astrocytes are subject to much regulation.
During inflammatory conditions, for example, AQP4 is
subject to upregulation by cytokines such as IL-1�.183

Dysregulation of AQP4 expression or function can lead
to brain edema.185,186 Mice lacking Aqp4 exhibit de-
creased brain edema that corresponds to a decrease in
astrocyte end-feet swelling following cerebral ischemia
or acute water intoxication.185 AQP4 expression is ele-
vated in animal models of hydrocephalus, an effect that
seems to be productive, given that both edema clearance
and survival are decreased in mice that lack Aqp4.187

Given the large number of known regulators for AQP4,
including arginine-vasopressin, which can activate
AQP4-mediated radial water transport across the astro-
cyte syncytium,188 it will be important to continue to
study the regulation of AQP4 and to test whether ma-
nipulation of this channel proves useful in the treatment
of various diseases involving brain edema. For review of
AQP4 function in astrocytes in greater detail, see Seifert
et al.4 and Nag et al.189

It is also important to note that AQP4 is now estab-
lished as the target antigen in the CNS autoimmune
demyelinating inflammatory disorder neuromyelitis op-

tica.190,191 Neuropathological evaluations in neuromyeli-
tis optica are consistent with a mechanism whereby au-
toimmune destruction of astrocytes triggered by binding
of AQP4 autoantibodies leads to inflammatory cell inva-
sion and destruction of neural parenchyma.192–194 These
neuropathological findings are in line with and are sup-
ported by a large body of work in experimental animals
showing that astrocytes are essential regulators that re-
strict inflammatory cell infiltration into CNS parenchyma
and protect neural tissue during both innate and adaptive
immune inflammation.7,13,23,194,195 Interventions that re-
duce autoimmune recognition of AQP4 and thereby re-
duce consequent astrocyte dysfunction and damage rep-
resent important therapeutic targets.

Connexin gap junctions. Astrocytes are highly
connected to one another by homologous connexin 43
(Cx43) gap junctional coupling, forming what is known
as the glial syncytium, in which interglial communica-
tion (e.g., Ca2� waves) can occur.196–199 This glial net-
work afforded by Cx43 gap junctions is important not
only in supporting neuronal activity by sustaining proper
energy sources, but also in orchestrating neuronal net-
work activity through the release of gliotransmitters such
as L-glutamate in an apposing glial syncytium.200 Under
neuropathological conditions, there is a shift in either
Cx43 expression or in cellular localization (or both), and
glial communication through the syncytium is stun-
ted.201 This change in astrocyte coupling can be either
beneficial or detrimental, an effect that is likely disease-
and context-dependent. Nevertheless, astrocyte Cx43
will likely be a good target to consider modulating, with
the goal of ameliorating the neuropathology in specific
instances or contexts of neurological diseases and disor-
ders. For extensive review on this topic, see Giaume et
al.200 and Kielian.202

Potassium channels. The role of astrocyte inwardly
rectifying K� channels (Kir channels) with regard to
brain function has been nicely and thoroughly re-
viewed.203 In brief, Kir channels are localized to astro-
cyte end-feet and are responsible for maintaining the
resting membrane potential of astrocytes, needed for
proper K� buffering.203 Given that the predominant as-
trocyte Kir channel Kir4.1 is highly regulated, and that its
expression or activity (or both) decrease upon injury,
inflammation, or disease, it seems reasonable to attempt
to enhance its activity or expression as a potential ther-
apeutic target.

Arundic acid. Although the precise molecular tar-
get or targets of arundic acid (ONO-2506) remain elu-
sive, it is reported to target changes in astrocyte gene
expression while also ameliorating several neurological
diseases and disorders in rodent models. Notably, in
vitro, the neuroprotective effect of arundic acid on neu-
rons in culture required the presence of astrocytes. In
vivo, astrogliosis as measured via GFAP immunoreactiv-
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ity is reduced by arundic acid in a mouse model of
Alzheimer’s disease (APPsw transgenic mice),

204 as well
as in mice subjected to MPTP-mediated neurotoxicity.205

Notably, treatment with arundic acid resulted in amelio-
ration of the pathology associated with the aforemen-
tioned mouse model204,205 and in mice subjected to a
permanent focal ischemia.206 Although the mechanism
or mechanisms for these beneficial effects remain un-
known, studies have speculated that they may involve
astrocyte-specific functions, including modulation of
glutamate transporter (increased) and S-100B (de-
creased) expression. More research will be necessary to
fully elucidate whether this compound does target astro-
cytes and, if so, what molecular mechanisms might be
involved.

CELL DELIVERY

It deserves brief mention that transplantation strategies
involving astrocytes are also under investigation. For
example, grafts of stem or progenitor cells that mature
into healthy astrocytes are reported to improve outcome
in a mouse model of ALS in which host astrocytes are
abnormal and express a mutant SOD.73 A different strat-
egy uses grafts of astrocytes that are genetically modified
to produce specific molecules, such as growth factors, as
therapeutic pumps to deliver those molecules in specific
locations.207,208 Such grafts of genetically modified as-
trocytes may be able to provide long-term, locally re-
stricted delivery of therapeutic molecules via cells that
integrate into the neural parenchyma both structurally
and functionally.

CONCLUSION

Reactive astrogliosis is emerging as a complex and
multifaceted process that can range from subtle and re-
versible alterations in gene expression and morphology
to the pronounced and long-lasting changes associated
with scar formation. The responses of reactive astrocytes
to CNS insults are controlled in a context-dependent
manner by specific signaling mechanisms that mediate
numerous essential beneficial functions, but under cer-
tain circumstances can lead to harmful effects. The sim-
plistic but widely held notions that reactive astrogliosis
and scar formation are maladaptive responses and that
complete blockade of reactive astrogliosis per se will be
beneficial, are no longer tenable. Big-picture functions of
reactive astrogliosis and scar formation include protect-
ing neural cells, tissue and function, and restricting the
spread of inflammation and infection. Dysfunctions of
reactive astrogliosis and scar formation have the poten-
tial to contribute to, or to be primary causes of, CNS
disease mechanisms, either through loss of normal func-
tions or through gain of detrimental effects. Accordingly,

therapeutic strategies will need to be directed at specific
aspects of reactive astrogliosis and specific molecular
mechanisms that may be augmented or attenuated for
specific purposes. In this regard, it will be important to
elucidate the many potential biological functions of spe-
cific molecules, including potential cross-talk between
different cellular signaling and other pathways. Even
well thought-out therapeutic targets could have unex-
pected ill-effects, which highlights the need to further
unravel the basic science underlying potential therapeu-
tic targets.
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