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Multifunctional Drug Treatment in Neurotrauma

Bogdan Stoica, Kimberly Byrnes, and Alan I. Faden

Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057

Summary: Although the concepts of secondary injury and
neuroprotection after neurotrauma are experimentally well sup-
ported, clinical trials of neuroprotective agents in traumatic
brain injury or spinal cord injury have been disappointing. Most
strategies to date have used drugs directed toward a single
pathophysiological mechanism that contributes to early ne-
crotic cell death. Given these failures, recent research has in-
creasingly focused on multifunctional (i.e., multipotential, plu-

ripotential) agents that target multiple injury mechanisms,
particularly those that occur later after the insult. Here we
review two such approaches that show particular promise in
experimental neurotrauma: cell cycle inhibitors and small cy-
clized peptides. Both show extended therapeutic windows for
treatment and appear to share at least one important target. Key
Words: Neurotrauma, neuroprotection, treatment, cell cycle
inhibitors, small cyclized peptides.

INTRODUCTION

Trauma to the CNS causes both direct tissue damage
and more delayed biochemical changes that lead to cell
loss (secondary injury), demyelination, and related func-
tional deficits." Initiation of such biochemical cascades
occurs from minutes to weeks after the insult. Numerous
factors associated with delayed tissue loss have been
identified from experimental studies of traumatic brain
injury (TBI) and spinal cord injury (SCI); these include
products of lipid degradation, disrupted ionic homeosta-
sis, altered neurotransmitter release and receptor func-
tion, and inflammatory and immune changes.'” To-
gether, these biochemical and associated metabolic
effects result in loss of neuronal and oligodendroglial
cells, reactive astrogliosis, and proliferation/activation of
microglia.*”

Most neuroprotective strategies have been directed at
individual components of this delayed reactive cascade,
such as reducing free radical-induced actions, excitotox-
icity, or inflammation. Whereas many such strategies
have proven effective in experimental animal models of
TBI or SCI, they have shown little or no neuroprotective
actions in humans.”? However, the majority of clinical
neuroprotective approaches to date have been directed at
reducing neuronal necrosis, which is a relatively early
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event that is largely completed within 6 to 8 h.® Yet only
a relative minority of patients with neurotrauma can have
treatment initiated within this time period. In addition,
most therapies have aimed at modifying single compo-
nents of the complex secondary injury cascade, even
though it is recognized that many autodestructive bio-
chemical changes occur in parallel. Use of multiple drug
treatments, each directed to a different secondary injury
component, has rarely been attempted (even experimen-
tally) in neurotrauma,’ although multifactorial combina-
tion drug approaches have long been standard therapy for
certain infectious diseases and cancers. However, even if
such combination treatments showed promise in animal
models, the methodological difficulties and costs associ-
ated with such multi-drug comparison studies in treating
clinical neurotrauma would likely prove prohibitive.

An alternative approach would be to identify single
agents that can modify diverse secondary injury cas-
cades. A number of such multifunctional or multipoten-
tial treatments has been proposed and successfully tested
in experimental neurotrauma models. These have in-
cluded naturally occurring substances, such as thyro-
tropin-releasing hormone (TRH), progesterone, heat
shock protein, neurotrophic factors, and erythropoietin;
drugs developed for other disorders such as statins or
antibiotics; and agents developed through rational drug
design.?

We have developed two multifunctional treatment ap-
proaches that have proved to be remarkably effective for
the treatment of TBI and/or SCI. One was developed
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through a rational drug design program and was based on
the tripeptide hormone TRH. The other has adapted
drugs used extensively in experimental oncology with
targets based on data developed from extensive genom-
ics profiling in experimental TBI and SCI.

TRH AND NOVEL TRH ANALOGUES

In the early 1980s, we demonstrated that TRH, when
used at higher than physiological concentrations, mark-
edly improved outcome after experimental SCI, with a
therapeutic window of at least 24 h.*° TRH inhibits
multiple secondary injury factors or processes, including
declines of blood flow and bioenergetics, lipid degrada-

tion products such as peptidyl leukotriene and platelet
activating factor, ionic dyshomeostasis (Na+, K+,
Ca++, Mg++), endogenous opioids, and excitotox-
ins.'°~'? Subsequently, we found that TRH analogues
that modified either the N-terminal or the middle amino
acid of the tri-peptide hormone pyroglutamyl-histidyl-
prolineamide were even more effective than TRH, with
longer biological half-lives and fewer undesirable phys-
iological actions. Such analogues proved highly effective
in improving functional recovery and reducing lesion
volume after experimental SCI or TBL'*™'7 The neuro-
protective actions of TRH and TRH analogues in exper-
imental neurotrauma have subsequently been confirmed
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FIG. 1. Comparison of thyrotropin-releasing hormone (TRH) and various substituted TRH analogues that retain the endocrine, auto-
nomic, and analeptic actions of TRH. Modifications of the N-terminus retain neuroprotective activity, whereas modifications of the
C-terminus do not. +, positive effect; —, no effect. Reprinted with permission from Faden Al, et al. Ann NY Acad Sci 2005;1053:472-481.
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by many laboratories.'®** Moreover, a small clinical
trial of TRH suggested protective effects after SCL.>
TRH is metabolized through two major pathways: en-
dopeptidase cleavage of pyroglutamyl to produce cyclo-
histidyly-proline diketopiperazine (CHP) or deamidation
yielding the free acid form of TRH.?*** Various TRH
analogues have been developed that modify one of its
amino acids (FIG. 1).%° Pyroglutamyl substitutions limit
endopeptidase-mediated metabolism, resulting in com-
pounds that have far longer biological half-lives than
TRH (6-8 h vs 5 min); some of these are also more
potent than TRH in terms of CNS activity. For example,
YM-14673 is longer acting than TRH (8-36 times) and
much more potent (10—100 times).'> However, N-termi-
nal substitutions retain the other physiological actions of
TRH (i.e., endocrine, autonomic, and analeptic). We
have also evaluated modifications of the histidyl residue
(i.e., imidazole substitution); certain substitutions re-
duced the cardiovascular and/or endocrine activity while
maintaining the neuroprotective actions of TRH (FIG.
2).%7 Critically, modification of the C-terminus results in
compounds devoid of neuroprotective activity, although
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they retain endocrine, autonomic, and analeptic activity
similar to TRH.

Based on these observations, we developed dual-sub-
stituted TRH analogues (i.e., modifications at both the
N-terminal and histidyl moieties). Such compounds (53a,
57a) have limited endocrine, autonomic, and analeptic
effects while preserving or enhancing the neuroprotec-
tive actions (FIG. 2).'°2° Compound 53a is at least two
orders of magnitude more hydrophobic than either TRH
or YM-14673, based on their partition coefficients be-
tween n-octanol and water (logP); thus it should have
enhanced cellular permeability to the CNS.'°

CYCLIC DIPEPTIDES

TRH is metabolized to a cyclic dipeptide (CHP),
which, like other diketopiperazines, retains considerable
physiological activity.”® We have developed a series of
diketopiperazines structurally related to CHP (FIG. 3).%
One of these (35b) has been extensively examined using
in vitro and in vivo model systems.>* % In neuronal cell
culture models, 35b provides neuroprotection in necrotic
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FIG. 2. Comparison of the physiological actions of novel thyrotropin-releasing hormone (TRH) analogues that modify the imidazole
structure. These analogues retain neuroprotective activity, but show reduced or absent endocrine, analeptic, and/or autonomic actions.
+, positive effect; —, no effect; =, partial effect; NT, not tested. Reprinted with permission from Faden Al, et al. Ann NY Acad Sci
2005;1053:472-481.
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FIG. 3. Chemical structures of the cyclic dipeptides 35b, 144,
606, and 807. Reprinted from Faden et al. Neuropharmacology
2005;49:410-424.

cell death models (i.e, maitotoxin, glutamate, mechanical
injury), as well as in apoptotic cell death models (i.e.,
staurosporine, beta amyloid) (FIG. 4).*' Given intrave-
nously, 35b reduced lesion volume by nearly 70%. It also
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improved functional (i.e., cognitive and motor) outcomes
after either fluid percussion-induced traumatic brain in-
jury (FPD) in rats or controlled cortical impact (CCI)
injury in mice.’*>' Treatment also significantly reduced
apoptotic cell death in rat hippocampus after FPI. The
therapeutic window for the drug is at least 8 h, and it
shows a relatively flat dose response for neuroprotection
between 0.1 and 10 mg/kg. Optimal doses are between 1
and 3 mg/kg, with repeated dosing over time showing no
added benefit as compared to single bolus dose treat-
ment. 35b is currently being developed by RemeGenix,
Inc., for clinical trials in head injury.

Using the NIMH Psychoactive Drug Screening Pro-
gram, 35b does not have significant binding affinities for
any of 50 classical receptors, channels and transporters
tested.>' It also does not bind to either high- or low-
affinity TRH receptors. To better address potential
mechanisms, we performed temporal profiling using
Affymetrix microarrays. Treatment with 35b after FPI
upregulated various endogenous neuroprotective factors
(BDNF, HSP 70, HIF1, mGluR7) and downregulated a
number of recognized secondary injury factors (i.e., cy-
clins, calpains, cathepsin).?** These findings were con-
firmed by PCR and protein measurements. Particularly
noteworthy were the effects of treatment on cell cycle
proteins, whose upregulation is associated with neuronal
apoptosis, astrogliosis, and microglial activation after
TBI or SCI.**** Administration of 35b suppressed ex-
pression of the major upstream cell cycle proteins in-
cluding cyclin D1, the retinoblastoma protein Rb, and
E2F5.%
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FIG. 4. Effect of 35b on lactate dehydrogenase (LDH) release in three different in vitro models of cell death: (A) apoptotic death induced
by staurosporine; (B) necrotic death induced by maitotoxin; (C) traumatic death induced by a punch model that produces both initial
physical disruption and later secondary death. Bars represent means and standard deviations for LDH released 16 to 18 h after injury
in untreated injured cultures (dots) or injured cultures treated with 35b (diagonal lines) (n = 25 to 30 wells per condition). In (A), cultures
were incubated with 0.3-wmol/L staurosporine for 16 to 18 h in the presence or absence of 35b. In (B), cultures were incubated with
0.1-nmol/L maitotoxin for 1 h in the presence or absence of 35b. Cultures were then washed and incubated for 16 to 18 h with or without
35b, as appropriate. In (C), 35b or media vehicle was present for 30 min before injury. Cells were then injured with a mechanical punch
that delivered 28 parallel, uniformly distributed cuts to the surface of the cell layer. Thirty min after injury, cultures were washed again
and incubated with 35b or vehicle, as appropriate, for 16 to 18 h. Reprinted from Faden et al. J Cereb Blood Flow Metab 2003;23:

342-354.
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FIG. 5. A: Comparison of effects of diketopiperazines 35b, 144, 606, and 807 on motor function measured by beam walk test at 1, 2,
3,7, 14, and 21 days post-trauma. All diketopiperazines significantly (p < 0.001) improved motor function at 14 and 21 days after injury,
compared with vehicle-treated injured animals. 35b, 144, and 807 also showed significant (p < 0.001) protection at 3 and 7 days.
***p < 0.001 versus vehicle-treated injured (controlled cortical injury [CCI] + vehicle) animals. B: Water maze cognitive score after CCI
in mice measured at 14, 15, 16, and 17 days post-injury. Diketopiperazines 35b, 144, 606 and 807 significantly (p < 0.05) improved
cognitive function at 16 and 17 days after injury compared with vehicle-treated injured mice. *p < 0.05 and *p < 0.01 versus

vehicle-treated injured (CCl + vehicle) animals. Reprinted from Faden et al. Neuropharmacology 2005;49:410-424.
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FIG. 6. Functional clustering of cell cycle genes shows high expression 4 to 24 h after injury. Functional clustering of genes based on
involvement in cell cycle progression and apoptosis. Genes of this functional cluster also belong to smaller temporal clusters (gadd45a
showed temporal clustering with c-myc [R2 = 0.99]), whereas PCNA, cyclin D1, cyclin G, Rb, and E2F5 belonged to the same temporal
cluster [R2 = 0.99]). Data for all cluster members are shown in panels (A), (C), and (D), whereas data with standard deviations for multiple
animals are shown in (B). B: Shows a self-organizing map graph subcluster applied to the cell cycle gene cluster shown in (A). Those
genes showing significant p values (> 0.05) and fold changes (twofold) between sham and injured time points are indicated with an
asterisk in (C). Reprinted from Di Giovanni et al. Ann Neurol 2003;53(4):454-468.
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Various other cyclic dipeptides reduce lesion volume
and improve behavioral outcome after CCI in mice with
effects that are similar to those of 35b (FIG. 5).2° In
compound 606 the histidine moiety was replaced by
3,5-di-tert-butyltyrosine (DBT), a phenolic amino acid
that can trap reactive oxygen species. In contrast to 35b, 606
blocked free radical-mediated cell death in neuronal cul-
tures induced by FeSO4. Compound 144 also showed sub-
stantial neuroprotective actions in vitro and was highly pro-
tective in both the FPI and CCI models (FIG. 5).%°

CELL CYCLE GENE AND PROTEIN
EXPRESSION AFTER TBI OR SCI

Progression through the cell cycle is carefully regu-
lated through the interplay of a number of cell cycle
related proteins, including cyclins, cyclin-dependent ki-
nases (CDKs) and CDK inhibitors. Early events include
the synthesis of cyclin D, which binds to CDK4 and
CDKG®6; in the nucleus, CDK4/6 phosphorylate the reti-
noblastoma protein (Rb), leading to release of E2F tran-
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scription factors and transition to G1.*>3® Apoptosis and
cell cycle pathways share several common regulatory
elements, including the retinoblastoma protein (Rb),
E2F, and p53.

From extensive temporal profiling studies of gene ex-
pression changes after rodent SCI,>’>® we identified a
cluster of cell cycle genes that were coordinately regu-
lated with the oncogene c-myc, which has been linked to
neuronal cell death.?”** These gene expression changes,
detected using Affymetrix chips (FIG. 6), were con-
firmed using RT-PCR, Western blots and immunocy-
tochemistry.>*>7-% Importantly, upregulated cell cycle
proteins include key upstream regulatory elements that
lead to Gl transition, including cyclin D1, Rb, and E2F5.
Injury is also associated with downregulation of endog-
enous cell cycle inhibitors such as p27.

It is known that upregulation of cell cycle proteins in
post-mitotic cells, such as neurons or oligodendroglial,
results in caspase-mediated cell death.*” Consistent with
this view, we found that increased cell cycle expression
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FIG. 7. Immunofluorescence shows the expression of cyclin D1 and active caspase 3 in cortical neurons after traumatic brain injury
(TBI), and effects of flavopiridol treatment. a: Double immunofluorescence in coronal sections of the brain cortex around the injury site
shows staining for cyclin D1 in vehicle, and flavopiridol-treated animal after TBI and for the neuronal marker NeuN. Cyclin D1 expression
is induced in cortical neurons after TBI and strongly reduced after flavopiridol compared with vehicle (arrows). (Original magnification,
X125.) Bar graphs show quantitation of cortical neurons expressing cyclin D1 in ipsilateral and contralateral cortex in vehicle-treated rats
compared with flavopiridol (ipsilateral) (**, p < 0.01). b: Double immunofluorescence in coronal sections of the brain cortex around the
injury site shows staining for cyclin D1 in vehicle, and flavopiridol-treated animal after TBI, and for active caspase 3. Flavopiridol strongly
reduces cyclin D1-positive and active caspase 3-positive neurons (arrows). (Original magnification, X125.) Bar graphs show quantitation
of cortical neurons co-expressing cyclin D1 and cleaved caspase 3 in ipsilateral and contralateral cortex in vehicle-treated rats
compared with flavopiridol (ipsilateral) (**, P < 0.01). Reprinted from Di Giovanni S, et al. Cell cycle inhibition provides neuroprotection
and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci U S A 2005;102:8333-8338.
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in neurons was associated with active caspase 3 expres- ter stimulation of caspase-dependent apoptosis with cer-
sion and/or TUNEL positive staining after TBI ***° or amide,*' B-amyloid,** KCI withdrawal,*> or DNA dam-
SCI*” (FIG. 7). Upregulation of cell cycle proteins is also age.**~%° In addition, kainic acid-induced excitotoxicity
readily observed in primary neuronal culture models af- of cerebellar granule cells is associated with increased
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FIG. 8. Effect of flavopiridol on lateral fluid percussion (LFP)-induced lesion volume 21 days after injury in the rat. Data are from rats
treated 30 min or 4 h after injury with flavopiridol (5 wL of 100 or 250 umol/L solution for 5 min) or vehicle. A: Lesion volumes (n = 12;
mean =* standard error of the mean). B: representative T2-weighted MRI of vehicle or flavopiridol-treated rats. Regions of marked
hyperintensity are evident in the cortex and hippocampus. **p < 0.001. **p < 0.0001. Reprinted from Cernak I, et al. Role of the cell
cycle in the pathobiology of central nervous system trauma. Cell Cycle 2005;4:1286-1293.

Neurotherapeutics, Vol. 6, No. 1, 2009



DRUG TREATMENT IN NEUROTRAUMA 21

expression of cyclins D and E, PCNA and E2F]1, as well
as with increased expression of caspases 3 and 9.’ Sim-
ilarly, trophic withdrawal-induced cell death is associ-
ated with increased expression of both cyclins and cy-
clin-dependent kinases.*®

SCI and TBI cause active astrogliosis that causes glial
scar formation and proliferation/activation of microglia. Af-
ter injury, cell cycle proteins are highly expressed in GFAP
positive cells, as well as in activated microglia. For exam-
ple, cyclin D1 expression is found to be increased in mi-
croglia after transient forebrain ischemia in the rat* and
global ischemia in the gerbil.*® Astrocyte proliferation was
also associated with increased cell cycle proteins after isch-
emia.”® After SCI, microglia and astrocytes demonstrate a
marked reduction in p27, an endogenous cell cycle inhibi-
tor.>! Upregulation of cell cycle proteins is observed in
primary cell culture models, including astroglial prolifera-
tion after exposure to serum> or microglial proliferation/
activation after exposure to lipopolysaccharide (LPS).>* Af-
ter CNS injury, astrocytes undergo rapid proliferation and
contribute to the formation of the glial scar.>* This scar may
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provide a physical barrier to axonal growth,” as well as a
“wall” to prevent migration of inflammatory cells into un-
damaged tissue.’®>’ Microglia, the primary immunological
cell in the CNS, undergo rapid proliferation and transition
from a resting, ramified phenotype to an ameboid phago-
cytic phenotype that is nearly indistinguishable from infil-
trating macrophages.’® Activated microglia produce pro-
inflammatory molecules, such as interleukin (IL)-183, IL6,
inducible nitric oxide synthase,”® complement compo-
nents,*® and reactive oxygen species,®’ which serve to mod-
ify both secondary injury and endogenous neuroprotective
responses.

Increases in cell cycle protein expression have also
been reported in chronic neurodegenerative disorders.
For example, both neurons and glia show increased
PCNA and cyclin D expression in human Alzheimer’s
patients.®>®® Furthermore, DNA replication has been
identified in apoptotic neurons in human Alzheimer’s
patients.64 In an animal model of Alzheimer’s disease,
genetic APP23 mice demonstrate an increase of cell cy-
cle related proteins in astrocytes.®
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FIG. 9. Roscovitine treatment decreases activation of microglia and astroglia at 7 days after injury, as indicated by immunostaining for
p22PHOX and GFAP. A: Representative composite confocal images after double-immunostaining for GFAP (red) and p22PHOX (green)
of the core and periphery of the injury show that injury-dependent increase in the number of p22PHOX-positive microglia is concentrated
in the core, whereas the increase in GFAP-positive astroglia occurs especially in the periphery of the lesion. Roscovitine attenuated both
changes. There is no colocalization between markers for microglia and astroglia. Images showing the separate p22PHOX and GFAP
channels are included. B: Cell counting indicates that roscovitine treatment results in a significant decrease in both p22PHOX (n = 3
sections, threshold = 50, unpaired t-test, *p = 0.0029) and GFAP-positive cells (n = 3 sections, threshold = 150, unpaired t-test,
*p = 0.0298) per brain section. Reprinted from Hilton et al. J Cereb Blood Flow Metab 2008;(advance online publication).
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FIG. 10. Cresyl violet staining of tissue sections from flavopiridol- or vehicle-treated spinal cords. Images are taken from
the center of the lesion site for both vehicle-treated (a) and flavopiridol-treated (b) samples, and demonstrate a clear decrease in
tissue loss with flavopiridol treatment. Cavalieri volume estimation was performed to assess lesion volume (c). Analysis of
correlation between MRI obtained lesion volume and histologically measured lesion volume shows a statistically significant
correlation (r2 = 0.6696; p < 0.05; (d) wide-field high-resolution confocal images of a complete transversal section of the injured
spinal cord, and (e) demonstrates that MAP2 expression is diminished throughout the cord at 24 h after spinal cord injury (SCI).
This is attenuated by treatment with flavopiridol. Bar = 500 nm. Reprinted from Byrnes KR, et al. Cell cycle activation contributes
to post-mitotic cell death and secondary damage after spinal cord injury. Brain 2007;130:2977-2992. By permission of Oxford

University Press.
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INHIBITION OF CELL CYCLE

Cell cycle inhibitors have been developed and exten-
sively evaluated in experimental cancer models, and sev-
eral have been tested in humans. The best characterized
and studied among these are flavopiridol, a semi-syn-
thetic flavonoid derived from rohitukin bark,®® and the
purine analogues roscovitine and olomoucine.®” Fla-
vopiridol blocks all the CDKs and also inhibits the tran-
scription of cyclin D1.°%% In contrast, the purine ana-
logues preferentially inhibit CDK2 and CDKS, although
at higher concentrations these may inhibit other ki-
nases.””

Each of these agents shows neuroprotection in vitro,
such as against etoposide-induced neuronal apoptosis®*
or apoptosis of cerebellar granule cells after KCl with-
drawal.*> Moreover, olomoucine inhibits hypoxia-in-
duced neuronal cell death in culture,”’ whereas flavopiri-
dol inhibits kainite-mediated or colchicines-mediated
apoptotic cell death.”>"* A recent study in our laboratory
determined that inhibition of multiple cyclin-dependent
kinases reduces etoposide-induced neuronal apoptosis,
including CDK1 and CDK4.”*

Cell cycle inhibitors show inhibitory effects on the
proliferation and activation of mitotic cells, such as mi-
croglia and astrocytes in vitro. For example, stimulation
of microglia with LPS induces proliferation. Pre-treat-
ment of microglia with cell cycle inhibitors, such as
flavopiridol or roscovitine, for 1 h prior to the addition of
LPS results in a significant suppression of microglial
proliferation®® and nitric oxide production.”* Tmpor-
tantly, roscovitine treatment of microglial cells stimu-
lated with LPS reduced microglial-induced neurotoxi-
city.”* Similarly, proliferation of astrocytes induced by
the addition of 10% serum was completely inhibited by
flavopiridol.*?

In vivo, cell cycle inhibition using pharmacological
approaches has shown neuroprotective effects. For ex-
ample, early treatment with flavopiridol, administered
centrally, showed remarkable neuroprotection after FPI
in rats.*® Lesion volume was reduced by approximately
70% and chronic behavioral recovery (motor and cogni-
tive) was indistinguishable from sham-injured controls.
Caspase-mediated neuronal cell death after TBI was

nearly completely attenuated. In addition to neuroprotec-
tion, significant effects on mitotic cells were also ob-
served. GFAP expression and markers of microglial ac-
tivation were markedly reduced. These changes were
associated with near complete suppression of cell cycle
proteins in neurons, astroglia, and microglia, respecti-
vely.*® Delayed administration of flavopiridol was sim-
ilarly found to have neuroprotective effects. In a fol-
low-up study, flavopiridol was administered centrally at
30 min or 4 h after FPI, or systemically (intraperitone-
ally) at 24 h after FPL;* each of these treatments resulted
in markedly reduced lesion volumes that were approxi-
mately 90%, 50%, and 60%, respectively (FIG. 8).

The more specific cell cycle inhibitor roscovitine,
which does not have potentially confusing effects on
gene transcription, has similar actions after FPI. Admin-
istration of roscovitine 30 min after FPI resulted in
highly significant reductions in lesion volume and im-
proved behavioral outcome (motor and cognitive). This
cell cycle inhibitor also reduced astrogliosis and pro-
duced a marked inhibition of microglial activation-re-
lated inflammation’* (FIG. 9).

Research in SCI confirms the strong beneficial effects
of treatment with cell cycle inhibitors. We have shown
that flavopiridol treatment, centrally administered by
mini-osmotic pump beginning 30 min post-trauma and
continuing over 7 days, significantly improved motor
recovery and reduced lesion volume at 28 days.** Treat-
ment-reduced cell cycle protein induction in neurons and
astrocytes; this reduction was associated with decreased
cleaved caspase-3 labeling in neurons and oligodendro-
cytes, as well as reduction in glial scar. Neuronal loss,
measured by MAP-2 staining, was alleviated by fla-
vopiridol treatment, and tissue loss was significantly re-
duced overall. Further treatment with the cell-cycle
inhibitor markedly limited microglial activation and as-
sociated inflammatory factors (FIGS. 10 and 11). The
cell cycle inhibitor olomoucine has also been shown to
decrease lesion volume and improve function after
SCL”® Reductions in microglial-related inflammation’®
and astrocytic scar’> were found with olomoucine treat-
ment, supporting the beneficial effect of cell-cycle inhi-
bition after SCI. Preliminary work using cyclin Dl

FIG. 11. Astrocyte and microglial marker immunohistochemistry after injury and treatment. Immunohistochemistry performed for
astrocytes (a, b), osteopontin (e, f), and p22phox (g, h) at 3 and 28 days post-injury. Heavy astrocytic (GFAP) labeling was found
surrounding the lesion site (*) at 28 days after SCI in vehicle-treated tissue (shown as a mosaic image of the entire 10-mm cord section
surrounding the lesion epicenter); (a) however, little GFAP labeling was found in samples that had received flavopiridol continuous
infusion (b). Quantitation of the proportional area of GFAP labeling in the spinal cord (through the 1 cm surrounding the lesion site)
showed a significant decrease in GFAP labeling at 28 (c) and 3 (d) days post-injury in flavopiridol-treated tissue (p < 0.05; n = 3/group
at 3rd day; 10/group at 28 days). Immunolabeling for osteopontin and p22phox, factors expressed by microglia, was also decreased by
flavopiridol treatment (f, h) in comparison to vehicle (g, g). All images are obtained from 1 mm rostral to the lesion epicenter, in the center
region of a transverse spinal cord section. Quantitation of p22phox labeling in the spinal cord (through the 1 cm surrounding the lesion
site) showed a significant decrease in labeling at 28 days post-injury in flavopiridol-treated tissue (i; *o < 0.05). Bar = 1 mm (a, b); 50
wm (e, f); 100 wm (g, h). Reprinted from Byrnes KR, et al. Cell cycle activation contributes to post-mitotic cell death and secondary
damage after spinal cord injury. Brain 2007;130:2977-2992. By permission of Oxford University Press.
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knockout mice subjected to SCI has shown decreased
lesion volumes in knockouts as compared to wild type
controls, consistent with the pharmacological inhibition
studies.®*

Research in experimental cerebral ischemia is highly
consistent with the TBI and SCI studies. Dominant neg-
ative CDK4/5 animals show reduced neuronal cell death
after focal or global brain ischemia,”” as does treatment
with CDK inhibitors.”®” Moreover, after focal cerebral
ischemia, cyclin D1 knockouts or animals treated with
olomoucine show reduced astrocyte proliferation. Exci-
totoxic cell death after kainic acid administration is at-
tenuated by treatment with anti-sense oligonucleotides
directed against CDK4 or cyclin DI.

SUMMARY

Activation of cell cycle proteins in the CNS causes
proliferation of mitotic cells, such as astroglia or micro-
glia, but induces apoptosis in post-mitotic cells, such as
neurons or oligodendroglia. Acute injuries to the CNS,
including TBI and SCI, cause upregulation of many cell-
cycle proteins in both mitotic and post-mitotic cells.
These changes cause neuronal and oligodendroglial cell
death, astroglial scar formation and proliferation/activa-
tion of microglia, with the release of associated inflam-
matory factors. Treatment with cell-cycle inhibitors re-
sults in striking neuroprotection, likely related to its
multifunctional actions on these diverse cell types. Be-
cause cell-cycle proteins have such diverse effects, even
selective inhibitors of these pathways may serve as mul-
tifunctional neuroprotective agents.

Another approach to multi-potential drug treatment of
CNS injury is to use compounds that modulate different
signal transduction pathways that are involved in sec-
ondary injury. TRH is a naturally occurring brain hor-
mone, which when used at higher than physiological
levels as a drug can inhibit many factors and mechanisms
implicated in delayed cell death. Thus, TRH and TRH
analogues can improve blood flow and bio-energetic
state; limit loss of ionic homeostasis; reduce lipid deg-
radation; and inhibit the actions of endogenous opioids,
leukotrienes, platelet-activating factor, and possibly glu-
tamate.”*> The neuroprotective effects do not appear to
be mediated by TRH receptors, as they occur at supra-
physiological doses and can be dissociated from the
other physiological effects of TRH (i.e., endocrine, an-
aleptic, autonomic).

Diketopiperazines that are structurally related to a
metabolic product of TRH have marked neuroprotective
activity, but do not act on either high- or low-affinity
TRH receptors. They also have diverse multifunctional
neuroprotective actions. As with cell-cycle inhibitors, the
prototype compound 35b inhibits the activation of many
cell-cycle proteins after injury. But they also reduce

other known secondary injury factors, including calpains
and cathepsins, while upregulating several well-estab-
lished endogenous neuroprotective factors including
brain derived neurotrophic factor, heat shock protein 70,
and hypoxia-inducible factor 1. Each of the latter factors
has considerable protective activity in animal models.
These findings underscore the attractiveness of multi-
functional drug approaches for the treatment of neuro-
trauma and other neurodegenerative disorders.
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