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Summary: Alzheimer’s disease is the most common form of
dementia in the elderly, and it is characterized by elevated brain
iron levels and accumulation of copper and zinc in cerebral
�-amyloid deposits (e.g., senile plaques). Both ionic zinc and
copper are able to accelerate the aggregation of A�, the principle
component of �-amyloid deposits. Copper (and iron) can also
promote the neurotoxic redox activity of A� and induce oxidative
cross-linking of the peptide into stable oligomers. Recent reports
have documented the release of A� together with ionic zinc and
copper in cortical glutamatergic synapses after excitation. This, in
turn, leads to the formation of A� oligomers, which, in turn,
modulates long-term potentiation by controlling synaptic levels of
the NMDA receptor. The excessive accumulation of A� oli-

gomers in the synaptic cleft would then be predicted to adversely
affect synaptic neurotransmission. Based on these findings, we
have proposed the “Metal Hypothesis of Alzheimer’s Disease,”
which stipulates that the neuropathogenic effects of A� in Alz-
heimer’s disease are promoted by (and possibly even dependent
on) A�-metal interactions. Increasingly sophisticated pharmaceu-
tical approaches are now being implemented to attenuate abnor-
mal A�-metal interactions without causing systemic disturbance
of essential metals. Small molecules targeting A�-metal interac-
tions (e.g., PBT2) are currently advancing through clinical trials
and show increasing promise as disease-modifying agents for Alz-
heimer’s disease based on the “metal hypothesis.” Key Words:
Copper, zinc, amyloid, free radical, oxidation, PBT2.

INTRODUCTION

Currently, the most popular hypothesis for Alzhei-
mer’s disease (AD)-related cognitive dysfunction and
neuropathogenesis is the “Amyloid Cascade Hypothe-
sis,” which posits that all pathology in the AD brain
occurs downstream of the excessive accumulation of
�-amyloid in the CNS.1,2 However, although a central
role for A� in the pathogenesis of AD is indisputable,
based largely on genetics, considerable evidence indi-
cates that A� production is not the sole culprit in AD
pathogenesis.2 This problem is central to the ability to
develop disease-modifying therapies for AD. Currently-
marketed drug therapies for AD target symptom relief,
but do not interdict the underlying causal pathobiology.

However, other more recent approaches to drug devel-
opment for AD have been targeted at curbing disease
progression. Within this realm, the greatest emphasis has
been placed on blocking �-amyloid accumulation (e.g.,
senile plaques) in the brain. Genetic studies clearly im-
plicate alterations in A� production in the pathogenesis
of AD2; however, it remains unclear as to how A� ac-
cumulates in the brain and leads to cognitive dysfunction
and dementia. Moreover, although A� is neurotoxic at
nonphysiological (micromolar) concentrations in vitro, it
is normally produced in the brain,3 and at physiological
(nanomolar) concentrations it has even been shown to
possess neurotrophic properties in cell culture.4–6 Thus,
in targeting A� for the treatment of AD, other factors
influencing A� toxicity must also be elucidated and
pharmaceutically addressed.
The length of A� is an important factor in AD patho-

genesis; the less prevalent form of the peptide, A�42,7 is
particularly enriched in �-amyloid deposits.8,9 Furthermore,
most of the �200 known early-onset familial AD-linked
mutations in the amyloid precursor protein (APP) and pre-
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senilin genes do not increase overall production of A�, but,
instead they increase the ratio of A�42:A�40.2,10 Synthetic
A�42 aggregates more readily than A�40 and A�42 readily
seeds the aggregation of A�40, in vitro.11,12 Aggregated
A� (e.g., in the form of soluble oligomers) has been impli-
cated as the neurotoxic form of the peptide.2,13–15 These
pathophysical properties of A� form the basis of the amy-
loid cascade hypothesis, which maintains that excessive
production of A� is sufficient to cause AD. The problem
with applying this hypothesis to most forms of AD is that
the self-aggregating properties of A� alone are insufficient
to explain the accumulation of the peptide in specific brain
regions of AD patients. Healthy people normally have sol-
uble A� in their brains, and A� is a soluble component of
all biological fluids. Therefore, it is conceivable that there
may be an abnormally modified “rogue” form of soluble
A� that is particularly neurotoxic in AD. In this review, we
will propose that it is the interaction of A� with specific
metals (particularly copper and zinc) that drives A� patho-
genicity and downstreams AD pathology; this has been
coined as “The Metal Hypothesis of Alzheimer’s Disease.”
Based on the overwhelming genetic and pathophysio-

logical evidence supporting A� as the culprit molecule in
AD, the major approaches for developing therapeutics to
slow, stop, or reverse AD progression have attempted to
either target A� production (e.g., secretase inhibitors and
modulators), or clear A� from the brain (e.g., immuno-
therapy). However, other neurochemical events apart
from A� production may also contribute to �-amyloid
deposition and toxicity in AD. If elevated cortical A�
concentrations to be solely responsible for the deposition
of �-amyloid, it would be difficult to explain why
�-amyloid deposits are focal (related to synapses and the
cerebrovascular lamina media) and not uniform in their
distribution, especially because APP and A� are ubiqui-
tously expressed. Moreover, to attribute �-amyloid ac-
cumulation to the presence of A�42, alone, is problem-
atic because the peptide is a normal component of
healthy CSF.7 Finally, whereas �-amyloid deposition is
an age-dependent phenomenon, A� production does not
appear to increase with age. Thus, other age-related sto-
chastic changes (e.g., metal-mediated oxidative damage
to neuronal cells) that generally precede A� deposi-
tion,16–18 most likely play essential roles in the biochem-
ical events and reactions that cause A� to accumulate in
specific brain regions affected in AD.

METALLOCHEMISTRY MEDIATES THE
AGGREGATION AND NEUROTOXICITY OF

A�

We first discovered in 1994 that A� becomes amyloi-
dogenic in reaction to stoichiometric amounts of Zn2


and Cu2
.19,20 In the subsequent years it has become
clear that A� is a metalloprotein,21,22 and that the brain’s

intrinsic supply of Cu2
 and Zn2
 (and possibly Fe3
)
mediates the peptide’s toxicity through radical and hy-
drogen peroxide production and aggregation. We first
observed that A� is rapidly precipitated by Zn2
.19,20,23

Both Cu2
 and Fe3
 also induce marked A� aggrega-
tion, but only under mildly acidic conditions (e.g., pH
6.8–7.0),19,20,23 such as those in the brains of AD pa-
tients. Cu2
 precipitates A� more robustly than Fe3
,
and even trace (nanomolar) concentrations of Zn2
,
Cu2
, or Fe3
 in common laboratory buffers are suffi-
cient to induce nucleation of A�, which can then lead to
fibrillization of the peptide solution.24–26 Interestingly,
rat and mouse A� possesses amino acid substitutions that
decrease metal interactions,20 perhaps explaining why
these animals are exceptional among mammals for not
accumulating cerebral A� amyloid with advanced age.27

On the basis of our findings regarding A�-metal inter-
actions, in 1997, we co-founded the company, Prana
Biotechnology Ltd., which has since initiated a clinical
program focusing on a new class of drug therapy target-
ing A�-metal biochemistry (see below).
A� possesses selective high- and low-affinity metal

binding sites, which are histidine mediated.25,28,29 The
original reported Kd of high-affinity Zn2
 binding was
�100 nM, and for low-affinity binding it was �5
�M.19,20 Although there has been some contention about
the exact Kd values for both Zn2
 and Cu2
, it is now
understood that both the buffer conditions (e.g., the pres-
ence of NaCl 30), the aggregation state of the pep-
tide,19,31,32 and the means used for assaying the bound
and free metal ions33 are critical for the observed values.
However, a consensus has emerged that the �molar con-
centrations of both Zn2
 and Cu2
 that are released from
cortical synapses are sufficient to induce A� aggrega-
tion.23,32–34 Low-affinity Zn2
 binding mediates the pre-
cipitation of the peptide, as well as its resistance to
tryptic (alpha secretase-like) cleavage.19 A� also pos-
sesses high- and low-affinity Cu2
 binding sites.24,25

Although the affinity of the low-affinity Cu2
 binding
site is similar between A�1-40 and A�1-42 (5.0 � 10-9

M), the affinity of the high-affinity site on A�1-42 has
been reported as 7.0 � 10-18 M, which may be the
product of a perturbed equilibrium caused by precipi-
tated A� withdrawing Cu2
 from solution. This is much
greater than the highest observed affinity of A�1-40 for
Cu2
 (5.0 � 10-11 M).25 The higher affinity of A�1-42
versus A�1-40 for Cu2
 nicely correlates with enhanced
precipitation of A�1-42 by Cu2
,24, 25 increased SDS-
resistant dimerization of A�1-42 by Cu2
,24 and the
increased redox activity of the Cu2
:A�1-42 complex
(see below).
A� binds equimolar amounts of Cu2
 and Zn2
 at pH

7.4. However, under conditions representing acidosis
(pH 6.6), Cu2
 completely displaces Zn2
 from A�25.
A� binds up to 2.5 equivalents of either Cu2
 or Zn2
,
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the fractional stoichiometry indicating that metal binding
is possibly coordinated by oligomers.25 This would have
implications for utilizing hexafluoroisopropranol, com-
monly used for monomerizing A� in vitro. The positive
cooperativity in Cu2
 binding observed for A� may be
greater for A�1-42 than for A�1-40 because of the en-
hanced ability of the longer peptide to form a Cu2
-
coordinating oligomer.35 Intriguingly, apolipoprotein E
(ApoE) isoforms prevent copper-mediated aggregation
of A� in a manner that correlates with their risk for
AD,36 and the precipitation of A� by Zn2
 and Cu2
 is
reversible with chelation,24,30,37,38 in contrast with fibril-
lization, which is irreversible.
Beyond assembling A� into oligomers and fibrils, and in

binding Cu2
 or Fe3
, A� reduces these metal ions and
produces H2O2 by double electron transfer to O2 (there is no
evidence of O2 formation as an intermediate),

21 a reaction
that has since been repeatedly confirmed.39–41 This elec-
trochemistry, which is critical for A�-induced oxidative
stress and toxicity in cell culture, is partly mediated by
methionine3542,43 and tyrosine10.44 H2O2 is also formed
catalytically by the cycling of copper or iron bound to A�
using biological reducing agents as electron donors without
net oxidation of the A� peptide. The most likely electron
donors pathophysiologically are cholesterol and long-chain
fatty acids,21,41,45–48 consistent with the toxicity of A� be-
ing mediated by adherence to the cell membrane,42 and the
consequent production of toxic lipid oxidation products
(oxysterols and 4-hydroxynonenal [HNE]), which are ele-
vated in affected brain tissue in AD and in APP transgenic
mice.21,41,45,46,48 A� promotes copper-mediated generation
of HNE from polyunsaturated lipids, and in turn, HNE
covalently modifies the histidine side chains of A�.49 HNE-
modified A� has an increased affinity for lipid membranes
and an increased tendency to aggregate into amyloid
fibrils.49 Thus, the pro-oxidant activity of A� ultimately
leads to its own covalent modification and accelerated amy-
loidogenesis. It should be noted that catecholamines can
also be oxidized by A�:Cu complexes.21,50,51

These reactions are important because there is over-
whelming evidence in the literature for oxidative injury
in AD, mediated by H2O2. H2O2 is a pro-oxidant mole-
cule that is the substrate for the Fenton reaction that
generates the highly reactive hydroxyl radical (OH●).
H2O2 is freely permeable across all tissue boundaries and
will react with reduced metal ions (Fe2
, Cu
) to gen-
erate OH●, which in turn, generates lipid peroxidation
adducts, protein carbonyl modifications, and nucleic acid
adducts such as 8-OH guanosine, in all cellular compart-
ments, which typify AD neuropathology.52–54 In AD, the
H2O2 scavenging defenses (e.g., catalase and glutathione
peroxidase may be overwhelmed by the catalytic gener-
ation of H2O2 from the A� metalloprotein mass). The
redox activity (metal reduction, OH● and H2O2 forma-
tion) of A� variants is greatest for A�42human �

A�40human �� A�40mouse � 0.55 This order of rank is
strikingly relevant to AD pathogenesis, because A�42
production is enhanced by fully penetrant, early-onset
familial AD mutations in APP and the presenilin genes,
and A�42 is considerably more prone to aggregation into
neurotoxic assemblies (vs. A�40 and rodent A�). This
redox relationship also corresponds to the neurotoxicity
of the respective peptide in neuronal culture, which is
largely mediated by the Cu2
:A� interaction.21,55 Nota-
bly, the interaction of A� with the cell membrane is
promoted by binding Cu2
 and Zn2
.35,56 Conversely,
copper- and iron-chelators such as triethylenetetramine
block these electrochemical reactions and attenuate A�
toxicity in cell culture.45,57

A� coordination of copper leads to the generation of
reactive oxygen species involving the reduction of the
oxidation state of the coordinated Cu2
 to Cu1
. When
this reduction reaction is not accompanied by the oxida-
tion of another moiety, such as cholesterol,45 A� side-
chains can become oxidized. This can then lead to a
variety of oxidized A� species, as well as cross-linking
of A� peptides. Mass spectrometry has shown that Cu2


ions are able to oxygenate A�, with the most likely target
being the sulphur atom of methionine 35 (Met35).

43 In
addition to A� methionine sulfoxide, a number of other
adducts can be generated from copper-mediated redox
reactions including aldehyde adducts to the lysine resi-
dues58 and tyrosine modified with adducts such as L-3,4-
dihydroxyphenylalanine, dopamine, dopamine quinine,
dihydroxyindol, and isodityrosine.43,59 2-oxo-histidine
adducts of A� have also been extracted from AD
plaques;60 N3-pyroglutamate modified forms of A� are
the main ligands for the amyloid PET ligand PIB.61

Tyrosine is particularly susceptible to free radical attack
due to its conjugated aromatic ring. Elevated levels of
dityrosine and 3-nitrotyrosine have been reported within
neuronal lesions in AD brain. In the presence of Cu2


and H2O2, A�42 forms dityrosine cross-linked oligomers
in vitro, a modification that is resistant to proteolysis.62

The formation of dityrosine cross-linked A� further fa-
cilitates aggregation, leading to higher order oligomers.44

A�-generated radicals formed after reduction of copper
can also form covalent adducts onto other proteins.
Along these lines, peroxidases such as cycloxygenase 2
are particularly vulnerable because of the formation of
dityrosine bridges, and we have previously reported that
levels of cycloxygenase 2-A� covalent complexes are
elevated in AD brain.63

Although a wide and diverse array of hypotheses have
been proposed for the mechanism by which A� induces its
neurotoxic effects,2 there is general agreement that aggre-
gation of A� is required. Neurotoxicity has been reported
for virtually every aggregate of A� tested, from dimers to
mature fibrils. Along these lines, for the past several years,
there has been increasing interest in soluble A� oligomers,
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which appear to be particularly toxic.64 With regard to
A�-metal interactions, covalent cross-linking of A� (e.g.,
dityrosine formation generated by copper oxidation) could
conceivably contribute greatly to the formation of toxic
soluble A� species.44 Interactions of A� with metal ions
may also explain the increased involvement of soluble oli-
gomeric species of A� in AD pathogenesis. Zn2
 and Cu2


readily precipitate A� oligomers.19,31 One recent report has
shown that the N-terminal region of A� can access a range
of metal-coordination structures, and that A�-Cu2
 coordi-
nation correlates with peptide self-assembly and neuro-
toxicity.65

Zinc and copper are the critical for A� aggregation
in AD brain
Zinc, copper, and iron have been shown in multiple

studies to be markedly enriched in A� deposits (plaques
and congophilic angiopathy) in AD patients and in AD
transgenic mice.22,66–72 Copper (390 �M), zinc (1055
�M), and iron (940 �M) have been reported to be ele-
vated by several-fold in AD brain as compared with
normal age-matched samples (copper [70 �M], zinc [350
�M] and iron [340�M]).66 A� directly coordinates cop-
per and zinc, but not iron or other metal ions, within the
cores of plaques.21,22 Iron is found in the plaque periph-
ery, but primarily complexed with ferritin in the neuritic
component of plaques.73 Iron is also found together with
copper and zinc within neurons and neurofibrillary tan-
gles.74–76 Consistent with a role for A�-metal interaction
in AD pathogenesis, experiments in ZnT3 knockout mice
have established that presynaptic zinc release leads to
�-amyloid formation in mutant APP transgenic mice.
Moreover, genetic ablation of ZnT3 markedly inhibited
�-amyloid pathology and congophilic angiopathy69,77 in
these mice, increasing the concentration of soluble A�.77

These findings suggests that soluble A� and soluble zinc
exist in a dissociable equilibrium with insoluble plaque
A� (containing incarcerated zinc), a process we have
previously termed the “galvanization” of amyloid.78 In-
creased amyloid deposition in female mutant APP trans-
genic mice also may be explained by estrogen-dependent
increases in ZnT3 expression.79

Over the past decade, we have followed up on our
initial findings on the contribution of A�-metal interac-
tions to AD pathogenesis by developing novel therapeu-
tic approaches aimed at interfering with A�-metal bind-
ing. Initially, for purposes of proof of concept, we
showed that Zn/Cu-selective chelators could prevent A�
aggregation in vitro, and markedly enhance the resolubili-
zation of A� deposits from postmortem AD brain sam-
ples.80 The observed increase in extractable A� from post-
mortem human brain specimens correlated with significant
depletion in zinc (30%) and to a lesser extent, copper.80 The
ability of chelators to extract A� depended on the presence
of Mg2
 and Ca2
, hence the chelating compound needed

to be far more selective for Zn2
 and Cu2
, than Ca2
 and
Mg2
.80 These results fostered the first generation of at-
tempts to target A�-metal interactions with the goal of
inhibiting amyloid pathology in APP transgenic mice,
which are discussed later in this review.

The neurochemistry of transition metal ions in the
cortex and glutamatergic synapse
A common misconception in discussions of the patho-

logical mechanism underlying neurological syndromes
where abnormal metal homeostasis has been implicated
is that neurodegeneration is brought on by toxicological
exposure to Cu, Fe, Zn, and Mn. In other words, inges-
tion or enhanced exposure to the metals purportedly
causes abnormal protein interactions, which then causes
the disease. This is an important misconception to clar-
ify. In terms of total metal concentrations, the brain has
more than enough of these metal ions resident in its
tissue to damage or corrupt the activities of numerous
proteins and biochemical pathways. For example, the
concentration of Zn2
 that is released during neurotrans-
mission is� 300 �M, which is more than sufficient to be
rapidly neurotoxic in neuronal cell culture.81 Therefore,
the brain must possess efficient homeostatic mechanisms
and buffers in place to prevent the abnormal decompart-
mentalization of metal ions. It should also be noted that
the blood-brain barrier (BBB) is relatively impermeable
to fluctuating levels of plasma metal ions.
Generally, in health, biometals, iron, copper, and zinc

are bound to ligands (e.g., transferrin) and not found as
free species. However, recent data have documented the
release of free ionic or exchangeable zinc and copper in
the synaptic cleft (see as follows) on glutamatergic ex-
citation. Consequently, zinc is also being increasingly
understood to mimic calcium as a new class of second
messenger.82 Furthermore, the intracellular pool of free
iron, the labile iron pool, has been shown to modulate the
expression of various proteins, including the APP.83 In-
tracellular copper is considered to largely ligand-bound.
However, it has also been shown to be exchangeable and
transferred from protein to protein (e.g., by the copper
chaperone of superoxide dismutase 1, CCS1).84

In the last few years, there have been several important
basic discoveries about copper and zinc release, and flux at
the glutamatergic synapse in the cortex and hippocampus.
The glutamatergic synapse mediates long-term potentiation.
It is here that �-amyloid deposits first form in AD, and
where they are most likely to damage cognitive functions.85

There has been interest in the presence of zinc and copper
released by hippocampal tissue for at least 2 decades.82

Considerable evidence has supported the release of zinc as
either a free or an exchangeable ionic species into the ex-
tracellular space.86 This pool of vesicular zinc is modulated
by the activity of ZnT3, which is found in the membrane of
glutamatergic vesicles, but not elsewhere. This pool zinc,
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released together with A� during neurotransmission, also
appears to suppress long-term potentiation by attenuating
synaptic levels of the NMDA receptor.87 Post-synaptic
NMDA neurites have also been reported to release free
ionic Cu with NMDA activation.88 Activation of synaptic
NMDA receptors in hippocampal neurons results in traf-
ficking of Menkes ATPase and an associated efflux of
copper.88 Catalytic amounts of copper can function as elec-
tron acceptors promoting the reaction of nitric oxide with
thiols. Thus, it is conceivable that the release of Cu could
function as a molecular switch to control extracellular S-
nitrosylaton of the NMDA receptor, a post-translational
mechanism shown to be critical for modulating receptor
function.88 Copper has also been reported to be specifically
protective against NMDA-mediated excitotoxic cell death
in primary hippocampal neurons. This protective effect of
copper depends on endogenous nitric oxide production in
hippocampal neurons.89 Further support for a role of copper
in neurotransmission, Menkes ATPase expression is devel-
opmentally regulated, peaking during synaptogenesis, and
playing a role in the endothelial cells of the BBB.90,91

Collectively, the emerging literature has described the
glutamatergic synapse to be the site of an extraordinary

confluence of chemically exchangeable Zn and Cu (FIG.
1), which, to our knowledge, is unique in the body. This
may be an explanation for how A�, with its penchant for
metal-induced precipitation and cross-linking, initially
precipitates in this site in AD. It has also become clear
during recent years that A� oligomers can impair long-
term potentiation (LTP) by promoting the endocytosis of
NMDA and AMPA receptors.87 Thus, the coincident
release of A� and metals that can induce oligomerization
in the synapse with glutamatergic excitation, which may
represent a natural means for regulating LTP. However,
an excess of A� oligomers could also pathologically
impair neurotransmission in a “gain-of-function” of the
same events.87 One final component in this vicinity that
could modulate the availability of Zn and Cu ions in the
synapses is the release of metallothionein-3 (MT3 or
growth inhibitory factor [GIF]) by the neighboring as-
trocytes,92 which is decreased in AD93 (FIG. 1).

Abnormal metal homeostasis in the aging brain and
in AD
The metal ion content of the brain is stringently reg-

ulated with virtually no passive flux of metals from the

FIG. 1. Zinc, copper, and A� in the glutamatergic synapse. Zn2
 is concentrated in the presynaptic bouton by the action of ZnT3, where
it may be co-compartmentalized with glutamate, and achieving concentrations up to 300 �M in synaptic clefts. Cu2
 is released
post-synaptically after NMDA-induced activation, which causes the translocation of the Menkes Cu7aATPase and its associated
Cu-laden vesicles to the synaptic cleft. Cu2
 concentrations reach 15�M in the synaptic cleft. Both Cu and Zn can quench the response
of the NMDA receptor. A� is released into the synaptic cleft where it has the potential to react with Cu and Zn to form oxidized,
cross-linked soluble aggregates and precipitated amyloid. Metallothionein-3 (MT3) released into the cleft by neighboring astrocytes has
the potential to ameliorate this adverse interaction, but it is decreased in Alzheimer’s disease.
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circulation to the brain; movement of metals across the
BBB is highly regulated. Although iron, copper, and zinc
are being increasingly implicated in interactions with the
major protein components of neurodegenerative disease,
this is not merely due to increased (e.g., toxicological)
levels of exposure to metals, but rather due to a break-
down in the homeostatic mechanisms that compartmen-
talize and regulate these metals.
The dominant risk factor associated with most neuro-

degenerative diseases is increasing age. Several studies
in animals and humans have reported a rise in the levels
of brain copper from youth to adulthood.94 However,
from middle age onward, biologically available copper
levels drop markedly, and are accompanied by a loss of
copper-dependent enzyme activities (e.g., cytochrome c
oxidase, superoxide dismutase 1, ceruloplasmin).95 Age-
related increases in brain iron have been documented in
all species examined.96,97 Indeed failure of ubiquitous
ferroxidases ceruloplasmin, ferritin,98 and frataxin99

cause neurodegenerative diseases, underscoring the vul-
nerability of the brain to abnormal iron regulation.100 We
hypothesize that the breakdown in metal ion regulation
in the glutamatergic synapse, possibly inhibition of re-
uptake, raises the average concentrations of zinc and
copper in the cleft leading to excessive A� oligomeriza-
tion and synaptotoxicity. Therefore, this has been the
prime target for our pharmacotherapeutic approach (see
as follows).
An interesting feature of the mechanism of increased

AD pathology in sod2 heterozygote knockout mice
crossed with Tg2576 APP transgenic mice is that brain
copper, zinc, and iron levels are decreased by the mito-
chondrial lesion.101 This recapitulates a feature of the
pathology of AD, where Cu levels decrease with ad-
vanced pathology.95 Both dietary and genetic manipula-
tions that increase brain Cu levels improved amyloid
pathology in two strains of APP transgenic mice.102,103

However, there are also reports that exposure to copper
in combination with a high-fat diet increases the risk for
AD;104 a possibility that has drawn support in studies of
rabbits exposed to copper and cholesterol.105,106 In con-
trast, Zn levels increase in advanced AD, correlating
with brain A� burden in humans, but not APP transgenic
mice.95 Zn nutritional deficiency is common in advanced
age, and a recent report indicated that Zn deficiency in
APP transgenic mice increased the volume of amyloid
plaques.72 These data indicate the complexity of the dis-
ordered metal metabolism in AD. The consensus that has
emerged is that zinc and copper are enriched in amyloid
where they coordinate A�; iron is enriched in the tissue
and neuritic pathology; and there is evidence of func-
tional copper deficiency. Therefore, pharmacotherapy
that targets abnormal A�metallation is best geared not to
merely be a chelation approach. Ideally the drug should

release the metals trapped by A� and return them to
normal metabolism; hence our interest in ionophores.

Physiological interactions of APP and its processing
with zinc and copper
While the function of APP is unknown, recent evi-

dence suggests it has a role to play in maintaining copper
homeostasis.107–110 APP coordinates Cu
 at its amino-
terminus, and APP expression promotes the export of
neuronal copper.108 A functional role for APP in copper
homeostasis is supported by reports that cellular copper
drives the expression of APP mRNA.109,110

Beta-secretase (BACE1) possesses a Cu
-binding site
in its C-terminal cytoplasmic domain through which it
interacts with domain 1 of the copper chaperone of
SOD1 (CCS1).111 The functional implications of this
interaction are unknown, but they imply that copper lev-
els can have an impact on A� generation. Similarly,
�-secretase activity has been recently reported to be in-
hibited by low concentrations of Zn2
; however, the
physiological implications are unclear.112

Abnormal brain copper distribution has been reported
in AD with excessive accumulation of copper in amyloid
plaques and a deficiency of copper in neighboring cells.
In vitro, excess copper has been reported to inhibit A�
production from APP-transfected CHO cells113; how-
ever, the effects of deficiency were not previously ex-
plored. A recent report assessed the effects of modulating
intracellular copper levels on the processing of the amy-
loid precursor protein and the production of A�.114 Hu-
man fibroblasts genetically disposed to copper accumu-
lation secreted higher levels of soluble APP-� into their
medium, whereas fibroblasts genetically manipulated to
be profoundly copper deficient secreted predominantly
soluble APP-� and produced more amyloidogenic C-
termini (C99). Copper deficiency also markedly reduced
the steady-state levels of APP mRNA, whereas APP
protein levels remained constant, indicating that copper
deficiency may accelerate APP translation.114 Copper
deficiency in human neuroblastoma cells significantly
increased the level of A� secretion, but did not affect the
cleavage of the amyloid precursor protein.114

Several enzymes that degrade A� in the extracellular
milieu are zinc metalloproteinases, such as neprilysin,
insulin-degrading enzyme, and matrix metalloprotein-
ases94. This may explain why there is an inverse corre-
lation between CSF zinc and copper levels and CSF
A�42 levels in normal men.115 This possibility was sup-
ported by the observation that adding low micromolar
concentrations of zinc or copper to ex-vivo CSF samples
accelerated the degradation of A�.115 Collectively, these
data have led us to propose that A�-metal complexes
likely play a key pathophysiological role in AD at mul-
tiple levels, supporting the “metal theory of Alzheimer’s
disease.” This hypothesis of AD pathogenesis has several
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advantages in explaining key missing components of the
amyloid cascade hypothesis (Table 1). Namely, metal-
mediated effects on APP and A� aggregation, particu-
larly in synapses, can explain the lack of correlation of
senile plaques with the degree of dementia. This hypoth-
esis is also consistent with the synaptic A� hypothesis,87

in which metal-driven formation of A� oligomers in
synapses can impair long-term potentiation and neuro-
transmission. Accordingly, during the past decade, we
have worked together with Prana Biotechnology to de-
velop drugs that can block metal-mediated A� reactions
as a pharmacological intervention for the treatment and
prevention of AD.

Therapeutic inventions based on the metal theory of
AD
Another common misconception in envisaging thera-

peutic approaches to AD, based on the metal hypothesis,
is the erroneous belief that chelation (meaning the re-
moval of metal ions from tissue) is the obvious interven-
tion. Although there are several medical chelators, their
approved use is confined to genuine situations of metal
overexposure (e.g., Wilson’s disease or lead toxicity) or
rheumatoid arthritis. The risk of chelation therapy is that
the removal of essential metal ions will lead to serious
adverse effects (e.g., iron-deficiency anemia). Although
these effects can (to some extent) be potentially miti-
gated by engineering small molecules to target specific
compartments or organelles, sequestration of metals in
plaques and their relative deficiency within neighboring
cells dictates the need for the development of small
molecules with more sophisticated properties (e.g., met-
al-protein attenuation compounds [MPACs] that serve as
metal exchangers and ionophores).
A logical property of such small molecule MPACs is

to target A� oligomerization and A�-related generation
of free radicals (i.e., to employ MPACs that can prevent
reactive metals from participating in potentially harmful
redox chemistry). Another important property of a po-
tential MPAC is its ability to cross the BBB. This ex-

cludes a large number of common metal chelators as
possibilities due to their hydrophilic nature. Neverthe-
less, there have been two reports of blinded clinical trials
of orthodox chelators for the treatment of AD. In 1991,
Crapper-McLachlan et al.116 reported benefit for a 2-year
period in AD patients treated with intramuscular desfer-
rioxamine twice daily. Desferrioxamine treatment led to
a significant reduction in the rate of decline of daily
living skills, which the authors originally attributed to
chelation of aluminum. However, desferrioxamine also
chelates zinc, iron, and copper. A small double-blind trial
of 34 AD subjects with d-penicillamine or placebo re-
ported a decrease in serum oxidative markers for a
6-month period, but no change in cognitive decline.117

However, the large dropout rate in the study led to in-
conclusive results.
Several metal-complexing agents have been tested for

the treatment of AD in a variety of pre-clinical systems.
Derivatives of a 14-membered saturated tetramine (e.g.
the bicyclam analogue JKL169 [1,1’-xylyl bis-1,4,8,11
tetraaza cyclotetradecane]), have been shown to be ef-
fective in reducing copper levels in the cortex, and have
been able to maintain normal copper levels in the blood,
CSF, and corpus callossum of rats.118 The lipophillic
chelator (DP109) has been shown to reduce levels of
aggregated insoluble A� and conversely increased solu-
ble A� forms in a mouse model.119 In our previous
studies, oral treatment with the clioquinol (CQ; 5-chloro-
7-iodo-8-hydroxyquinoline) in Tg2576 mice resulted in a
reduction of cortical deposition of amyloid (49%) with
an improvement or stability in the general health and
weight parameters compared with untreated mice.37 This
compound is able to cross the BBB and was able to
increase brain copper and zinc levels in treated mice. CQ
has a nanomolar affinity for Cu2
 and Zn2
,120 which is
sufficient to facilitate dissociation of these metal ions
from the low-affinity metal binding sites of A�, thereby
increasing levels of biologically available copper and
zinc in the brain of treated animals. With peripheral

Table 1. Features of Alzheimer’s Disease explained by the Metal Theory

Feature Explanation

Cortical �-amyloid pathology does not occur in rats
and mice

Rat and mouse A� have substitutions that attenuate copper
and zinc interaction

�-amyloid accumulates primarily in glutamatergic
synapses of the neocortex, despite being broadly
expressed

A� is precipitated by Zn2
 and cross-linked by Cu2
. ZnT3 is
uniquely expressed in neocortical glutamatergic synaptic
vesicles, where it functions to concentrate Zn2
 for release
during neurotransmission. Cu2
 is released from post-
synaptic vesicles via an NMDA receptor-mediated
mechanism

�-amyloid pathology is greater in female transgenic
APP mice

ZnT3 expression is greater in female mice

�-amyloid pathology is age-dependent, even when
caused by mutation

Brain metal homeostasis fatigues with age
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dosing, CQ was demonstrated in Tg2576 mice to cross
the BBB and bind to amyloid plaques, as well as Zn2
-
metallated A� from postmortem AD-affected brain spec-
imens.120 In a small phase 2 clinical trial, oral adminis-
tration of CQ in moderately severe AD patients for 36
weeks slowed the rate of cognitive decline and caused a
reduction in plasma A�42 levels as compared with the
placebo controls.121 One mode of action of CQ is to strip
copper and zinc away from A�, thereby preventing oli-
gomerization and promoting the dissolution of nonco-
valently cross-linked species of A�. An alternative mode
of action of CQ may be as a modulator of metal levels.
CQ appears to have strong ionophore activity and CQ:Cu
complexes mediate transport of copper into cells.122 This
results in the activation of matrix metalloproteases and
the subsequent degradation of A�.122 Therefore, com-
pounds that target the A�:metal interaction and/or metal
homeostasis would appear to have genuine therapeutic

potential for treating AD. The goal with this class of
MPACs is to remove the copper and zinc from A�, and
to relocate these metals to sites where they will be ben-
eficial (i.e., to restore metal homeostasis). CQ has also
been tested in other neurodegenerative disease models
with efficacy shown in both PD123 and HD124 animal
models. Both of these diseases have been associated with
iron overload leading to oxidative stress and free radical
generation. CQ was eventually terminated in AD clinical
trials due to the generation of a di-iodo contaminant
during drug manufacture. More recently, we have found
that a second generation 8-hydroxy quinoline derivative
of CQ, PBT-2 (Prana Biotechnology, Ltd.), has greater
BBB penetration, significantly reduces plaque burden
and A� levels in transgenic AD mice, improves perfor-
mance of transgenic AD mice in the Morris Water Maze,
and rescues A�-induced impairment of LTP in hip-
pocampal slices. Following up on these encouraging pre-

FIG. 2. Mechanism of action of clioquinol and similar metal-protein attenuation compounds (MPACs). The drug enters the brain in the
metal-free form, where it is first attracted to collections of extracellular metals, a unique feature of AD. The drug combines with the
metals (ionic copper or zinc) and facilitates their dissociation; the figure only shows an example for copper and CQ for simplicity, but
this generalizes to Zn and other MPACs, such as PBT2. The dissociated metal ions may be in a ternary complex with the drug itself or
in a complex with dissociated A�. These complexes are taken up by neighboring cells where the elements are separated. The metal ions
(copper or zinc) can activate the phosphorylation of GSK-3�, and the activation of matrix metalloprotease (MMP)2 and 3. This, in turn,
facilitates the breakdown and clearance of A�. Not shown are the other predicted benefits of CQ/PBT2, being the dissolution of A�
aggregates, blocking of cross-linked, covalently bonded A� oligomer formation, and the inhibition of toxic A� redox activity. CQ �
clioquinol; Deg’n � degradation; GSK3 � glycogen synthase kinase 3; JNK � Jun N-terminal kinase.
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clinical findings, Prana Biotechnology recently com-
pleted its first double-blind, placebo-controlled phase 2
clinical trial of 78 AD patients in a 12-week trial for the
treatment of mild to moderate AD. An initial report of
the results (which can be viewed at: http://www.
pranabio.com/company_profile/press_releases_ite-
m.asp?id�152) has revealed that the drug was safe and
well-tolerated at 50 mg and 250 mg daily doses for 12
weeks, and that CSF A� levels were significantly low-
ered at the 250 mg dose for 12 weeks. There was also
significant improvement above baseline in performance
on two different executive tests (Trail-Making B and
Verbal Fluency) of the Neuropsychological Test Battery
after 12 weeks. These results now serve as the basis for
proceeding with further phase 2b or phase 3 clinical trials
of what may be one of the first disease-modifying drugs
based on the metal theory of AD.
With regard to mechanism, in mice, CQ is understood

to enter the brain and to combine with metallated A� in
plaques and possibly in soluble pools.120 CQ treatment of
transgenic mice modestly increased brain zinc and cop-
per levels,37 and in the phase 2 clinical trial in AD
patients, the plasma zinc levels significantly increased
(normalized from a baseline of deficiency)121; therefore,
CQ (and PBT2) do not act as chelators. In cell culture,
CQ-Cu complexes enter cells where they markedly in-
hibit the secretion of A� by a mechanism where the
peptide is degraded through upregulation of matrix met-
alloprotease (MMP)-2 and MMP-3. The MMP activity
was increased through activation of phosphoinositol
3-kinase and Jun N-terminal kinase. CQ-Cu also pro-
moted phosphorylation of glycogen synthase kinase-3,
and this potentiated activation of Jun N-terminal kinase
and degradation of A�1-40.122

We propose a mechanism of action for treatment of
AD where CQ or PBT2 enters the brain and is attracted
to the extracellular pool of metals that are in a dissociable
equilibrium with A� (e.g., in senile plaques and oli-
gomers) (FIG. 2). CQ and PBT2 then bind zinc and
copper in the A� deposits, possibly forming a ternary
complex with A�. We have previously seen that strip-
ping metals away from A� leads to dissolution of A�
aggregates back down to monomer. A� monomer can
then be readily cleared from the brain or degraded. Along
these lines, an alternative mechanism of action involves
the drug-metal complex entering the cell. Then this ac-
tivates MMPs and facilitates the clearance of A� (e.g., in
the synapse). In both cases, CQ and PBT2 would also
attenuate oxidative cross-linking of A� oligomers into
covalently bonded species, and reduce the neurotoxic
redox activity of A� oligomers. Thus, in essence, the
MPACs, CQ, and PBT2, most likely block A� oligomer-
ization and aggregation, dissolve noncross-linked A� ag-
gregates, induce peptidolytic degradation of A�, and
neutralize A� redox activity.

Another interesting approach to metal-based therapeu-
tics for AD targets the increase of iron in the brains of
AD patients. This is a more traditional iron chelation
therapy, with molecules that pass the BBB and are de-
signed to be multifunctional (by attaching a propar-
gylamine moiety), or by exerting antioxidant or mono-
amine oxidase inhibitor activity.125–127 By decreasing the
labile iron pool, these drugs decrease APP translation (at
the 5’ untranslated region iron responsive element, and
hence reduce A� generation.128 Iron depletion can also
inhibit hypoxia-inducible factor prolyl 4-hydroxylases,
which have been shown to be neuroprotective.129 Like all
metal-complexing agents, it is very difficult to achieve
complete metal ion specificity with any structure, and it
is likely that these molecules that are believed to target
iron will also interact with copper, zinc, and other metal
ions. This may have advantages in the dissolution of A�
aggregates, but as previously noted, excess depletion of
Cu and Zn may paradoxically exaggerate AD pathology.
Only empirical testing can determine whether this will be
of value in a clinical situation. In any event, it has be-
come increasingly clear that emerging therapies based on
the Metal Hypothesis of AD carry considerable promise
as a viable therapeutic modality for treating and prevent-
ing AD.
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