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Summary: The matrix metalloproteinases (MMPs) are impor-
tant enzymes that regulate developmental processes, maintain
normal physiology in adulthood and have reparative roles at
specific stages after an insult to the nervous system. Con-
versely, the concordant presence and significant upregulation of
several MMP members in virtually all neurological conditions
result in pathology. Thus, the MMPs have diverse functions,
capable of mediating repair and recovery on the one hand and
being involved in producing injury on the other. Therefore,
targeting MMPs in neurological conditions has become a com-
plicated challenge. This article highlights the beneficial roles of
MMPs in normal and reparative processes within the nervous
system and discusses the detriments of MMPs encountered in
pathology. We review the availability of MMP inhibitors for
clinical use and propose that an important consideration for

these inhibitors is timing and duration of their use. With
acute injuries where a massive upregulation of several
MMPs are observed in the early periods after the insult,
early and short-term use of broad spectrum MMP inhibitors
would seem logical. In chronic conditions where recurrent
insults to the CNS are accompanied by prolonged upregu-
lation of MMPs, thereby necessitating the chronic use of
medications, the beneficial effects of MMPs in repair may be
compromised by the long-term application of MMP inhibi-
tors. In this review we have used spinal cord injury and
multiple sclerosis as examples of acute and chronic neuro-
logical conditions, respectively, and we consider the use of
MMP inhibitors in these states. Key Words: CNS injury,
MMP inhibitors, metalloproteinases, multiple sclerosis, spinal
cord injury.

INTRODUCTION TO THE MMPS

The MMPs constitute a large family of 23 human (24
mouse) MMP members.1–4 They are zinc-containing en-
zymes, hence the designation of “metalloproteinases,”
and they were described originally in the context of
extracellular matrix (ECM) remodeling, thus “matrix
metalloproteinases.” MMP members are referred to by
numerical designation, MMP-1 to MMP-28. There are
no MMP-4, -5 or -6, as these were found subsequent to
their designation to be identical to other MMP members.
MMPs are also categorized by their structure and relative
substrate specificity, as exemplified by MMP-2 and -9
being labeled “gelatinases” because they contain fi-
bronectin type III repeats in their catalytic domain that
promote gelatin-degrading capacity. Most MMPs are se-
creted molecules, but four are active as transmembrane
and two as glycosylphosphatidylinositol-anchored mem-
brane proteins. The reader is referred elsewhere for sche-

matics of the structure, nomenclature and subclassifica-
tion of these MMP members.1–4

MMPs are considered the physiological mediators of
ECM turnover in several organ systems and they regulate
important processes that require ECM remodeling, such
as developmental morphogenesis or wound healing
throughout life. The MMPs also have nonmatrix degrad-
ing properties, such as the regulation of survival, growth
and differentiation of many cell types.5–8 Some mecha-
nisms that account for these diverse effects include the
release of growth factors that are anchored to the ECM,
the degradation of binding proteins (e.g., insulin-like
growth factor binding proteins) to release active growth
factors (e.g., insulin-like growth factor-1), or the cell
surface processing of growth factor or their receptors to
produce the mature species.
As MMPs are potent enzymes capable of degrading

structures, their activity has to be controlled. Activity of
MMPs is tightly regulated at several levels.3,4,9–11 In
particular, most MMPs are not expressed at detectable
levels constitutively, but they are rapidly upregulated by
transcription in response to the exposure of a cell to
growth factors, cytokines, chemokines, ECM compo-
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nents and other transcriptional regulators. Transcription
is followed by translation, and an MMP is first produced
in its pro-form that requires subsequent conversion to the
active enzyme. Free radicals, serine proteases and other
activated MMPs are among the factors that convert a
pro-MMP to its active enzyme. The action of active
MMPs can be terminated by the serum protein �-mac-
roglobulin, by degradation, or by four physiological tis-
sue inhibitors of metalloproteinases (TIMPs) (TIMP-1,
-2, -3 and -4).
The gelatinase members of the MMP family, MMP-2

and -9, have received much attention, likely reflecting
their importance, but also because their levels can be
easily detected by the sensitive technique of gelatin zy-
mography. The availability of mice deficient in MMP-2
or -9, and the many antibodies that have been useful in
describing their expression in normal and pathologic
conditions, have also added to the extensive literature on
gelatinases. However, reagents for other MMP members
are increasingly becoming available, and the roles of
nongelatinase MMP members in the CNS are likely to
become better documented.
RNA analyses have been useful to ascertain the spec-

trum of MMPs expressed by particular cell types and
tissues, because primers can be designed for the majority
of MMP members. Using real time polymerase chain
reaction we determined that some subsets of leukocytes
and CNS cell types (unpublished) express transcripts
encoding the majority of MMP members.12 Thus, all cell
types have the means to produce a spectrum of MMP
members, but there are likely processes for selective
expression in pathologic states. In support, in an animal
model of multiple sclerosis (MS), experimental autoim-
mune encephalomyelitis (EAE), the upregulated MMP-8
and -12 are expressed predominantly by granulocytes
and macrophages, respectively.13

The next sections consider some of the properties of
MMPs in the CNS, including their beneficial and detri-
mental aspects. We then review available inhibitors of
MMPs and discuss whether it is appropriate to target MMPs
in acute and chronic neurological insults.

THE BENEFICIAL FUNCTIONS OF THE
MMPS IN THE CNS IN DEVELOPMENT,

NORMAL ADULTHOOD AND
FOLLOWING INJURY

Without doubt, the detrimental roles of MMPs in the
CNS have received more attention (see next section) than
their potential usefulness. However, it has been stated that
we do not have 23 MMPs just to produce pathology.4

Indeed, we have proposed that MMPs are “the good
guys gone bad,” emphasizing that the normal func-
tions of MMPs are useful, but they turn detrimental

when multiple members are significantly upregulated
after an injury.14

It is increasingly appreciated that MMPs have impor-
tant functions in the CNS during development, in normal
adulthood and after an injury. During normal CNS de-
velopment in rodents, for example, MMP-9 and -24 are
expressed in a similar pattern as TIMP-2 and -3, and they
are postulated to have roles associated with vasculariza-
tion and axonal growth.15,16 By in situ hybridization,
TIMP-3 mRNA is localized to embryonic ventricular
zones and the postnatal subventricular zone, in addition
to the rostral migratory stream to the olfactory bulb.17 As
these are areas of neurogenesis and neuronal migration,
the results suggest that these processes are controlled
by TIMP-3 itself, or by the activity of MMPs that is
regulated by TIMP-3. A member of a related protease
family, ADAM21, has also been implicated in events
occurring at the rostral migratory stream, such as axonal
outgrowth.18

Mice deficient in particular MMPs have highlighted
the importance of MMPs in CNS development. MMP-14
null mice have smaller craniums than wild type con-
trols,19 and MMP-9 null mice have abnormal develop-
ment of cerebellar granule neurons20 and cortex.21 In the
developing Xenopus eye, MMPs are implicated not only
in the extension of optic nerve axons, but also in their
guidance to the optic tectum.22

We explored the possibility that MMPs are involved in
myelin formation during development because a myeli-
nating oligodendrocyte has to extend numerous pro-
cesses that would require some remodeling of the ECM.
We determined that both MMP-9 and -12 were elevated
in myelinating tracts from postnatal days 3 to 21, corre-
spondent with developmental myelination.23 Expression
was linked to function because MMP-9 and -12 single or
double null mice had deficient extent of myelin forma-
tion from postnatal day 7 to 14 compared with wild type
controls. A potential mechanism for MMP-9 and -12 is
their degradation of insulin-like growth factor binding
proteins, thereby preventing the sequestration of bioac-
tive insulin-like growth factor-1 required for myelin for-
mation.23

Other laboratories have also reported on MMPs in
oligodendrocyte biology. Maier et al.24 described that
metalloproteinase activity was required for processing of
the oligodendrocyte-specific isoform of neurofascin in-
volved in the formation of the paranodal axo-glial junc-
tion. Ulrich et al.25 found MMP-12 transcripts to be
expressed temporally with developmental myelination,
and they noted that “MMP-12 might be decisive for
myelination.”
Besides developmental processes, many MMPs are

found at basal levels in the healthy adult CNS where they
may mediate important physiological events.14,26 In par-
ticular, MMPs regulate synaptic activity in the adult
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hippocampus, resulting in synaptogenesis, synaptic plas-
ticity, and long-term potentiation. Hippocampal MMP-3
and -9 levels increased transiently in rats learning the
Morris water maze, and MMP-3 and -9 antisense oligo-
nucleotides prevented learning.27 In brain slices from
MMP-9 null mice, hippocampal long-term potentiation
was impaired in magnitude and duration, and this was
restored by adding recombinant active MMP-9. MMP-9
null mice have behavioral impairments in hippocampal-
dependent memory.28 These and other results29 provide
evidence for a crucial physiological role of MMPs in the
normal functioning of the adult CNS, such as in the
regulation of synaptic plasticity, learning and memory.
Several mechanisms may account for the beneficial

functions of MMPs in neural development and in the
normal adult CNS. Besides the regulation of insulin-like
growth factor-1 levels described earlier, other substrates
for MMP processing include receptors and adhesion
molecules for axonal guidance, pro-neurotrophins, other
trophic families and the ECM; the products of MMP
activity on these molecules have important beneficial
functions in the CNS, and the reader is referred else-
where for this discussion.30

Increasingly, MMPs are considered to be important in
the repair process after an insult to the CNS. In line with
the role of MMPs in developmental myelin formation,
we found that MMP-9 null mice were less able to remy-
elinate 7 to 14 days after a demyelinating injury to the
spinal cord compared with wild type animals.31 This
deficiency was accounted for in part by the requirement
of injury-induced MMP-9 to remove the NG2 proteogly-
can that accumulated after neural insult. In the absence of
MMP-9, the persistent matrix of NG2 retarded the mat-
uration of myelin-forming oligodendrocytes, thereby in-
hibiting the remyelination process.31 A notable finding
was that MMP-9 levels were easily measured by gelatin
zymography of homogenates of the demyelinated spinal
cord within the first two days of injury, likely the result
of upregulation of MMP-9 transcription and synthesis by
several cell types, and by the delivery of MMP-9 into the
area of injury by neutrophils. In contrast, MMP-9, during
the remyelination phase (7 days beyond injury) was not
appreciably increased from controls as assessed by gel-
atin zymography of bulk tissue, although it was detected
by immunohistochemistry in a very focal manner around
the repairing cord.31 We believe that these results high-
light one determinant of whether MMPs would be ben-
eficial or detrimental after injury (focal and discrete ex-
pression is correspondent with repair, whereas the
massive increase of MMPs bring about pathology).
MMP activity may also prove to be important in other

repair processes including promoting axonal plasticity
and/or regeneration and angiogenesis. In support, MMPs
can shed the extracellular portion of the Nogo receptor
(NgR)32 and of the p75NTR,33 molecules that are in-

volved in inhibiting axonal growth. After experimental
spinal cord injury (SCI), the MMP-2 activity that in-
creases between 7 to 14 days after the insult is associated
with the clearance of proteoglycans that retard axonal
regrowth correlating with functional recovery.34 In cor-
respondence, the transplantation of fibroblasts that over-
express an extracellular MMP inducer, EMMPRIN, im-
proved functional recovery and axonal regeneration after
contusive SCI.35 Zhang et al.36 reported that the trans-
plant of neural progenitor cells into the degenerating
retina of retinal degeneration 1 mutant mice enabled
neurite outgrowth, possibly through an MMP-2 related
mechanism. After ischemia in rodents, MMP activity in
the chronic but not acute stages facilitates angiogene-
sis.37,38

Overall, the MMPs play important and beneficial roles
after neural insults. A likely feature that defines their
benefits is the localized and relatively small increase of
particular MMP members by specific cell types effecting
repair, particularly some days removed from the initial
injury. These useful aspects of MMPs need to be better
understood to stimulate regeneration, as well as to dis-
sociate them from the better described undesirable con-
sequences of MMPs for the CNS.

WHEN THE GOOD GUYS GO BAD

The majority of the literature of MMPs in the CNS has
emphasized their roles in promoting diseases such as
MS, stroke, SCI, and neurodegenerative diseases.1,39–41

Indeed, in these conditions, several MMP members are
concurrently elevated, correspondent with symptoms and
pathology. For example, in EAE, transcripts encoding 11
of 20 MMPs were significantly elevated in the spinal
cord at peak disease compared with controls.42 Multiple
MMPs are also increased in the early periods after spinal
cord trauma,43,44 intracerebral hemorrhage45–47 and isch-
emic strokes.48,49

As the CNS encounters most MMPs only in low
amounts in the normal situation, the concurrent and sig-
nificant increase of multiple MMPs with the potential for
widespread proteolysis must have undue consequences.
Indeed, the aberrantly expressed MMPs are believed to
contribute to the disruption of the blood brain barrier, to
the promotion of neuroinflammation, and to producing
demyelination and neurotoxicity.1,50–52 In support of,
and from animal studies, inhibitors of metalloproteinase
activity alleviate EAE or protect against disease.53–57

The anti-oxidant �-lipoic acid reduces lymphocyte trans-
migration and attenuates EAE partly through MMP in-
hibition.58–60 After traumatic brain injury to 7-day-old
rat pups, the intraperitoneal administration of a broad
spectrum inhibitor (GM6001) 2 hours after trauma re-
duced neuropathology.61 In experimental stroke, the
early treatment (at 1 day) with MMP inhibitors reduced
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infarct size at day 14, but if these agents were adminis-
tered at 7 days after ischemia, the infarct volume at day
14 was worsened.37,38 These results emphasize the tem-
poral roles of MMPs highlighted earlier in studies of
demyelination and remyelination.31 They are detrimental
early on, but they become important in the repair process
at later stages. Likewise, in SCI, an MMP inhibitor given
for the first 3 days of trauma improved recovery,43 but
prolonged treatment from injury to 7 days62 reversed this
benefit. However, the chronic administration of MMP
inhibitors may be warranted in certain neurodegenerative
diseases. In support, Ro28-2653, an MMP inhibitor,
given orally and chronically to transgenic amyotrophic
lateral sclerosis mice from day 30 of age improved motor
performance and increased lifespan from a mean of 123
to 136 days.63 Furthermore, the chronic deficiency of
MMP-9 in the superoxide dismutase model of ALS re-
duced neuronal death and increased survival.64

Although compounds developed primarily for their
MMP inhibitory activity (Table 1) have not been used in
clinical neurology or beyond phase I trials, except for
brain tumors,65–67 medications with incidental MMP in-
hibitory activity have given clues to the utility of target-
ing MMPs for therapeutic benefits. Interferon-�, an im-
munomodulator used in MS, inhibits the production of
MMPs by T lymphocytes68,69 although it may also di-
rectly inhibit MMP enzymatic activity.70 These MMP
actions of interferon-� may account for the reduced abil-
ity of lymphocytes to traverse the blood-brain barrier
into the CNS to promote MS disease activity.71

The mechanisms by which MMPs inflict neural injury
are multiple and have been reviewed.1,48,51,72 MMPs can
kill neurons through several mechanisms, including
interfering with integrin survival activity, Fas-FasL
interactions or tumor necrosis factor receptor apopto-
sis cascades. The disruption of an underlying survival-

promoting ECM to which neurons are adhered, such as
laminin, can also result in the death of ECM-anchored
neurons.73,74

Besides their direct actions, MMPs also interact with
and alter the properties of molecules in their vicinity. For
example, MMP-9 interacts with nitric oxide to form a
stable S-nitrosylated MMP-9 that kills neurons in culture
and in vivo.75 MMP-2 removes four amino acids from
the N-terminus of the chemokine CXCL12 to produce a
neurotoxic species.76 There is also interaction among
proteases that can significantly alter outcomes. For ex-
ample, thrombin and MMP-9 combine to mediate the
killing of neurons in the mouse brain in vivo, facilitated
in part by the activation of MMP-9 by thrombin.77

The interaction of MMPs with chemokines to alter
trafficking of leukocytes into tissues has demonstrated
the convergence of functions of two major classes of
molecules (FIG. 1). MMP-7 cleaves a syndecan/KC
(CXCL1) chemokine complex to direct neutrophil influx
to sites of injury.78 MMP-9 interacts with interleukin-8
(IL-8, CXCL8) and the resultant IL-8 (7-77) truncated
peptide becomes a more potent chemotactic stimulus for
neutrophils than the parent.79 In contrast to these find-
ings, MMP-chemokine interactions can impede recruit-
ment of leukocytes. The first four N-terminus amino acid
of macrophage chemo-attractant protein-3 (CCL7) is re-
moved by MMP-2, and the truncated chemokine now
binds to CCR-1, -2 and -3 receptors as an antagonist to
reduce chemotaxis.80 Stromal-derived growth factor-1
(SDF, CXCL12) is processed by MMP-1, 2, 3, 9, 13 and
14, but not MMP-7 and 8, and the result is the loss of
binding of the truncated CXCL12 to CXCR4.81 MMP-9
cleaves GCP-2 (CXCL6) without any obvious change in
chemokine activity, but MMP-9 processing of ENA-78
(CXCL5) destroys the function of the latter.82 MMP-9

TABLE 1. Inhibitors of MMPs That Have Been Used in Phase II and III Clinical Trials

Drug Pharmaceutical Source Indication and Clinical Trial Phase

Apratastat Amgen/Wyeth Rheumatoid arthritis, II
AZD 8955 AstraZeneca Osteoarthritis, II
BMS 275291 Bristol-Myers Squibb Cancer, III
CGS 27023A Novartis Cancer, II
Metastat (Col-3) CollaGenex Pharmaceuticals Cancer, II; rosacea, II; myocardial infarction, II
Marimastat (BB2516) British Biotech Cancer, III
PCK 3145 Ambrilia Biopharma Cancer, II
Periostat (Doxycycline hyclate) CollaGenex Pharmaceuticals Periodontal diseases, III rosacea, III; acne, II
Prinomastat (AG 3340) Agouron/Pfizer Cancer, III macular degeneration, III
Ro 113-0830 Roche Osteoarthritis, II
S 3304 Shionogi Cancer, II
Tanomastat (BAY 12-9566) Bayer Cancer, III osteoarthritis, III
Trocade (Ro 32-3555) Roche Rheumatoid arthritis, III

Several agents have been used in phase I clinical trials, including batimastat/BB94 (cancer), BB-10153 (stroke, myocardial infarct), BB-2827
(rheumatoid arthritis), solimastat/BB-3644 (MS, cancer), GM6001/galardin (eye disease, chronic obstructive pulmonary disease) and an
matrix metalloproteinase (MMP)-12 inhibitor (MS). This table was adapted from references 8 and 84.
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was not found to affect RANTES (CCL5) and macro-
phage chemo-attractant protein-2 (CCL8).79

Thus, the roles of MMPs are complex and they interact
with several molecules in their vicinity to exert profound
consequences. Evidence now points to MMPs being in-
volved in normal physiology and repair, but the upregu-
lation of several MMP members concurrently and mas-
sively after an acute insult may worsen injury. In view of
the latter, and while mindful of the beneficial aspects
of MMPs, it is rational to consider the use of inhibitors of
MMPs to target particular neurological diseases at spe-
cific stages of disease.

INHIBITORS OF THE MMPS

The early recognition that excessive MMP expression
contributes to diseases such as cancer5,83 led to the active
development of inhibitors for MMPs by many pharma-
ceutical companies. Many synthetic MMP inhibitors
have been engineered based on knowledge of the MMP
structure, the early ones from knowledge of the amino
acid sequence of human triple helical collagen at the site
of cleavage by MMP-1. Structural modifications of re-
gions within the inhibitor backbone alter their recogni-
tion of MMP subsites, enabling development of inhibi-
tors that are more specific to certain MMPs.8,83,84 A
second requirement for an MMP inhibitor is the capabil-
ity to chelate Zn2� at the active catalytic site, and many
inhibitors contain a hydroxamate group (CONHOH) for
this purpose. One of the first hydroxamates developed is

batimastat (BB94), commonly used as an MMP inhibitor
in the experimental literature to demonstrate the involve-
ment of MMPs in a given neurologic process. However,
it is poorly soluble and is unsuitable for oral or intrave-
nous administration. Marimastat is a second generation
hydroxamate with increased bioavailability after oral in-
take, and it has been tested on patients with gliomas.65–67

Hydroxamates can be further subclassed8 as substrate-
analog peptides, succinyl hydroxamates, which includes
batimastat, marimastat, Ro 31-9790 and KB-R7785, sul-
fonamide hydroxamates (e.g., CGS 27023A) and their
derivatives. The selectivity of some of the compounds
for particular MMP members is available in the litera-
ture, but one should be reminded that compounds are
tested for selectivity only against a limited spectrum of
targets. As well, MMP inhibitors can potentially have
actions on other classes of proteases containing metal
ions in their active site. This is particularly the case for
the hydroxamates, which can potentially inhibit non-
MMP, zinc-based enzymes, but may also chelate other
metal ions aside from Zn2�.84 Newer classes of MMP
inhibitors make use of alternate Zn2� binding groups,
such as carboxylic acids (BAY 12-9566), thiols and
phosphorous-based structures (see Hu et al.8 for a thor-
ough discussion of structures of MMP inhibitors).
The early use of MMP inhibitors in a variety of cancer

types was largely disappointing with no therapeutic re-
sponse observed or even a worrisome worsening of dis-
ease in some cases.85 This has dampened the develop-

FIG. 1. Interactions between chemokines and matrix metalloproteinases (MMPs) regulate leukocyte transmigration. As described in the
text, the processing of particular chemokines by MMPs result in specific truncated peptides that either enhance or reduce the trafficking
of leukocytes into tissues. Alternately, MMPs may destroy chemokines, thereby abrogating their activity.
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ment of MMP inhibitors and impeded further clinical
trials in cancer or other conditions. A re-evaluation of the
failure of MMP inhibitors in clinical trials in cancers has
led to the appreciation that these trials have involved
patients with advanced cancers where most medications
may prove ineffective.84,85 Moreover, it is now well ap-
preciated that MMPs serve diverse roles in tumorigene-
sis, and that although MMPs may be tumor-promoting at
specific stages of the disease, MMP activity can also curb
tumor growth at other phases.85,86 These differential ef-
fects for malignancies mirror the multiple beneficial and
detrimental effects of MMPs in the CNS as highlighted
earlier. Table 1 is a listing of MMP inhibitors that have
been in clinical trials for cancers or other conditions;
only phase II and III trials are listed.
Besides developing compounds with MMP inhibitory

actions, an alternative strategy is to address whether
compounds that are in clinical use for other indications
have MMP inhibitory capacity. In this regard, an early
literature indicating that tetracycline antibiotics are in-
hibitors of MMP enzymatic activity87,88 has led to the
use of these and chemically modified tetracyclines with-
out anti-microbial activity (CMTs) as MMP inhibitors.
Indeed, the only compound approved for clinical use
based on its ability to inhibit MMPs is a low-dose doxy-
cycline formulation, Periostat (CollaGenex Pharmaceu-
ticals, NY). The proposed mechanism for CMT as MMP
inhibitors resides in their ability to bind Zn2� and Ca2�,
the latter being required to maintain proper enzyme con-
formation.8,88,89 Besides disrupting MMP enzyme activ-
ity, CMTs have also been shown to downregulate ex-
pression of MMPs,90 and to decrease the oxidative
activation of pro-MMPs into active enzymes.
One of the most potent tetracyclines to inhibit gelati-

nases, as evaluated in a systematic study of several
MMPs, is minocycline.88 Based on this finding and the
appreciation that MMPs are involved in MS, we tested
minocycline in EAE and found it to reduce disease ac-
tivity.90 This efficacy of minocycline in decreasing EAE
disease has been reported by three other groups.91–93 In
addition, minocycline was found to reduce relapse rate
and gadolinium-enhancing magnetic resonance imaging
lesions in a pilot trial in relapsing–remitting MS pa-
tients.94,95 These results are encouraging. Although it is
tempting to state that the effectiveness of minocycline in
MS is related to its MMP inhibitory actions, it is impor-
tant to point out that minocycline possesses a multitude
of immunomodulatory and anti-apoptosis functions96 so
that its potential usefulness in MS may even be unrelated
to its MMP inhibitory activity. Nonetheless, these results
of minocycline in MS suggest the importance of MMPs
in driving the disease process.
There are other clinically used medications with MMP

inhibitory actions. As previously mentioned, interferon-�s
reduce the production of MMPs by T cells,68,69 an effect

that results in the decrease in leukocyte trafficking into
the CNS.71 The statins, which are a class of hypolipi-
demic agents, are also described to reduce the production
of MMPs by cells or to inhibit MMP activity.97 Whether
this contributes to the usefulness of statins as a neuro-
protective strategy in animal models of a variety of con-
ditions remains to be determined.
Overall, there is optimism that agents with potent

MMP inhibitory actions will become a useful clinical
entity. This is because of the recognition of the contrib-
utory roles of MMPs to a number of disease states, the
increasing selectivity and oral bioavailability of some
MMP inhibitors, and the better understanding of biology
of MMPs in normal physiology, repair and disease. Next
we consider the rational use of MMP inhibitors in neu-
rological conditions.

THE USE OF MMP INHIBITORS IN ACUTE
AND CHRONIC CNS DISEASES

In this section, we use traumatic SCI and MS to high-
light acute and chronic CNS diseases, respectively.
Trauma to the spinal cord triggers a cascade of sec-

ondary damage that progressively destroys tissue adja-
cent to the primary lesion during a period of hours to
weeks. The pathophysiology of SCI includes vascular
disturbances such as ischemia and reperfusion, metabolic
failure, ionic dysregulation, excitotoxicity, free radical
formation, lipid peroxidation and inflammation. Ulti-
mately these changes lead to necrotic, as well as apopto-
tic death of neurons and glia, demyelination, and axonal
damage, and as a result these changes worsen neurolog-
ical outcome. Among the mediators of injury that are
investigated after a trauma to the spinal cord are the
MMPs.
The mRNA level encoding 9 of 20 MMP members

rises in the first five days of traumatic SCI in mice, the
most marked of which is MMP-12.44 Another group43

focusing on MMP-2 and MMP-9 expression reported a
significant rise of MMP-9 in the first three days of spinal
cord trauma. That these MMPs enhance the injury pro-
cess is supported by the data that both MMP-9 and
MMP-12 null mice recover better from SCI than wild-
type animals.43,44 The mechanisms of neurotoxicity of
MMP-9 and MMP-12 in SCI are likely multiple, given
the previous discussion that MMPs can directly kill
neurons. Furthermore, among one of the activities of
MMP-12 after spinal cord trauma is the activation and
recruitment of microglia/macrophages, which produces
several neurotoxic species when activated.44 MMP-9
may contribute to the disruption of the blood-brain bar-
rier,43 aside from its ability to kill neurons.77 In corre-
spondence with these detrimental outcomes of MMPs
early after SCI, the inhibition of MMP activity with
GM6001 in the first three days of injury resulted in
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improvement in functional scores from 3 to 42 days
after.43 Interestingly, the same group reported that if the
MMP inhibitor was used for the first seven days, rather
than three days, long-term recovery of mice from SCI
was attenuated.62 This has been attributed to an increase
of MMP-2 that occurs at later time points after trauma,
which serve to clear inhibitory substrates that hinder
repair.34

In general, given a massive upregulation of several
MMPs after SCI, it is rational to use potent and broad-
spectrum MMP inhibitors in the early periods after the
insult. The treatment duration will have to be limited,
given the evidence that MMPs subsequently attempt
some degree of repair.
The situation in MS is complex when considering the

use of MMP inhibitors. In the animal model EAE, mul-
tiple MMPs are upregulated at peak disease, as noted
earlier. As well, when transcripts for specific MMPs
were examined at particular stages of disease, MMP-3,
MMP-9 and MMP-13 were found to rise early in the
disease course, before manifestation of clinical signs of
EAE; MMP-3 and MMP-13 levels dropped after onset of
disease, but MMP-9 levels were maintained through
peak disease. MMP-12 and MMP-19 rose and fell in
parallel with increasing severity and remission of clinical
signs (Yong, unpublished observations). Thus, besides
being upregulated, several MMPs are changing at differ-
ent stages of EAE disease. Although similar occurrence
in MS remains to be thoroughly established, these results
in EAE suggest that MMP activity would need to be
controlled to help resolve ongoing disease or to help
prevent the next relapse. Thus, prolonged treatment with
MMP inhibitors may be required in MS, thereby increas-
ing the risk of inhibiting some repair properties of MMPs
with protracted therapy. Perhaps the balance of overrid-
ing the detrimental aspects of MMPs in MS described
earlier (i.e., demyelination, neurotoxicity and promotion
of leukocyte entry into the CNS) may outweigh the re-
pair properties, thereby justifying the long-term use of
MMP inhibitors in MS. Another consideration is to re-
serve MMP inhibitors for periods of MS relapses, given
the role of MMPs in regulating influx of leukocytes into
the CNS, and given the likelihood that leukocyte entry
triggers relapses.
Another strategy for MMP inhibitors in MS is the use

of agents that can not penetrate the CNS. If an important
target of MMP inhibitors in MS is leukocyte MMP ac-
tivity, then the chronic use of MMP inhibitors that do not
penetrate the blood-brain barrier could still inhibit leu-
kocyte entry into the CNS without potential CNS side
effects. In this light, besides the correspondence of MMP
activity and leukocyte migration,14,41,68 there is increas-
ing literature that shows MMPs regulate the activation of
T cells,98,99 further lending credence to using MMP in-
hibitors in MS. Finally, given the possibility in MS of an

inhibitor that has to be used chronically, it would be
reasonable to propose the use of inhibitors that are rela-
tively selective for particular MMPs, such as MMP-9
that seems to be paramount among family members in
promoting disease activity in MS (reviewed in Yong
et al.41), rather than a broad spectrum inhibitor that could
potentially influence and inhibit beneficial aspects of
other MMPs. Considering this, the upregulated MMP-12
that we have observed in EAE seems to help dampen
neuroinflammation so that in its absence in mice, a wors-
ened EAE outcome results.42

Overall, although long-term MMP inhibition in a
chronic disease such as MS is of concern, some guiding
choices for long-term use include a relatively selective
MMP inhibitor and an agent that does not penetrate into
the CNS. Potent, CNS diffusible and broad spectrumMMP
inhibitors could be indicated during relapses in MS.

FINAL CONSIDERATIONS

It is becoming clear that MMPs have multiple out-
comes in the CNS during development, in normal adult-
hood and after injury. Normal physiological functions of
MMPs include the regulation of synaptic physiology and
in learning and memory. When an injury occurs, how-
ever, the upregulation of many MMP members (in sig-
nificant amounts and in a widespread distribution) bring
about manifestations of toxicity. Thus, MMP inhibitors
are reasonable therapeutics to consider acutely after an
injury. Although the discussion has been on SCI, other
acute insults such as intracerebral hemorrhage, ischemic
strokes and head trauma are conditions in which broad
spectrum MMP inhibitors might be useful when applied
early and for short periods after the insult. Chronic dis-
eases become problematic for MMP inhibitors as the
balance of beneficial and detrimental effects of MMPs
would need to be weighed. The challenges are not insur-
mountable, as the knowledge of MMP biology and roles
of particular MMP continue to be unraveled.
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