
An Efficient Data Format for Mass
Spectrometry-Based Proteomics

Anuj R. Shah,a Jennifer Davidson,b Matthew E. Monroe,a

Anoop M. Mayampurath,c William F. Danielson,a Yan Shi,a

Aaron C. Robinson,a Brian H. Clowers,d Mikhail E. Belov,a

Gordon A. Anderson,a and Richard D. Smitha

a Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland,
Washington, USA
b Department of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon,
USA
c School of Informatics and Computing, Indiana University, Bloomington, Indiana, USA
d National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA

The diverse range of mass spectrometry (MS) instrumentation along with corresponding
proprietary and nonproprietary data formats has generated a proteomics community driven
call for a standardized format to facilitate management, processing, storing, visualization, and
exchange of both experimental and processed data. To date, significant efforts have been
extended towards standardizing XML-based formats for mass spectrometry data representa-
tion, despite the recognized inefficiencies associated with storing large numeric datasets in
XML. The proteomics community has periodically entertained alternate strategies for data
exchange, e.g., using a common application programming interface or a database-derived
format. However, these efforts have yet to gain significant attention, mostly because they have
not demonstrated significant performance benefits over existing standards, but also due to
issues such as extensibility to multidimensional separation systems, robustness of operation,
and incomplete or mismatched vocabulary. Here, we describe a format based on standard
database principles that offers multiple benefits over existing formats in terms of storage size,
ease of processing, data retrieval times, and extensibility to accommodate multidimensional
separation systems. (J Am Soc Mass Spectrom 2010, 21, 1784–1788) © 2010 American Society
for Mass Spectrometry

The wide range of mass spectrometers introduced
in recent years by a number of different instru-
ment manufacturers and vendors [1] and their

proprietary nature of data formats makes data manage-
ment (e.g., data retrieval, analysis, exchange across
laboratories) and publication/verification of experi-
mental proteomics results time consuming and expen-
sive. As a result, multiple efforts have been dedicated to
standardizing and adopting common file formats that
are instrument agnostic and facilitate data exchange
within and across laboratories [2–9]. The most com-
monly used formats for MS-based proteomics data
exchange are mzXML [7], and increasingly mzML [4],
both of which utilize eXtensible Markup Language
(XML) documents.

By nature and design principles, XML [http://
www.w3.org/TR/REC-xml/] is a simple, extensible,
flexible, tag-based language primarily created for the
electronic interpretation of text-based documents and
data exchange across the Internet. XML documents are

mostly human readable and can be opened with most
text reader programs. Automated parsing of these doc-
uments is made commonplace by the availability of a
plethora of software tools that read the documents in
two distinct modes, either sequential or random; the
latter, which utilizes a document object model, is only
feasible for documents that fit into computer main
memory. While devising a universal file format is a
valid strategy, the choice of XML for representing large
volumes of numeric data is debatable [3, 10]. For
instance, processing data files that deal with large scale
studies requires complex implementations that rely on
memory saving techniques such as decoding into memory-
efficient strings [8], memory-mapped files, user trans-
parent memory-to-disk swapping routines, or streaming
data access mechanisms [5]. Moreover, simple parsing
and custom analysis tasks require the adoption and
modification of complex proteomics software frameworks
(e.g., proteomecommons [5], OpenMS [11], ProteoWizard
[12], or Mzmine [6]) to access the algorithms and function-
ality. Another downside is that the existing XML-based
standards do not easily accommodate for multidimen-
sional separations techniques. For example, to store LC
coupled ion mobility-based MS data in the mzXML for-

Address reprint requests to Dr. R. D. Smith, Biological Sciences Division,
Pacific Northwest National Laboratory, 3335 Q Ave., (K8-98) P.O. Box 999,
Richland, WA 99352, USA. E-mail: rds@pnl.gov

Published online July 7, 2010
© 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. Received April 20, 2010
1044-0305/10/$32.00 Revised June 15, 2010
doi:10.1016/j.jasms.2010.06.014 Accepted June 21, 2010

mat would require producing multiple XML files per
analysis (one file for each ion mobility acquisition frame),
which translates to a data management nightmare for
scientists.

Alternate strategies include using a common appli-
cation programming interface (API) like mzAPI [3]; a
netCDF [13], or HDF5 [http://www.hdfgroup.org/
HDF5/] based file format; or a relational database
management systems (RDBMS)-based strategy. The use
of such data access mechanisms is common in fields
that generate large datasets. For example, standardized
OpenGL API is used in the computer graphics field,
MPI-based programming in high-performance comput-
ing codes; HDF5-based file formats have found accep-
tance in financial engineering [http://www.hdfgroup.
org/HDF5/users5.html], satellite climate monitoring
[14], and computational grids [www.globus.org], among
others; and netCDF-based formats are widely used in
international geosciences and education communities
[15]. While viable, these approaches have not gathered
sufficient momentum for acceptance in the MS pro-
teomics community largely because none, including
mzML, have demonstrated significant processing ben-
efits compared with mzXML. Relational databases on
the other hand are an attractive alternative. Databases
have been studied in scientific literature for over 40
years, are very stable and relatively well understood by
entry-level engineers and scientists. More importantly,
they support the incorporation of binary data as blobs
(a binary large object that can be stored as a single entity
in a database), which translates to significant space
savings when it comes to storing raw spectra. Addi-
tional advantages are a standard query language (SQL)
that serves the purpose of a common API for accessing
underlying data. The introduction of SQLite [http://
www.sqlite.org/], a library of C functions that allows
creation of relatively light-weight serverless databases
as a single cross platform file, has opened up additional
avenues for efficient data exchange formats.

Here we introduce a light RDBMS-based data format
referred to as Yet Another Format for Mass Spectrom-
etry (YAFMS) for evaluation and discussion among the
proteomics community. The proposed format generates
a file that is modified with minimal effort to include
additional data, and accommodates for multidimen-
sional experimental setups with ease. Additionally, the
format includes the flexibility to leverage the ontologies
developed as part of existing XML-based formats and
can work as the underlying implementation for an
API-based approach like mzAPI [3].

Keep It Simple

Raw mass spectrometry data are not complex data in
that at the fundamental level they are a series of high
precision numbers, i.e., mass/charge (m/z) ratios and
intensity values. Data exchange challenges arise when
an entire collection of spectra (e.g., collected across
multiple separations, sample sets, etc.) needs to be

repeatedly manipulated in a time- and space-efficient
manner. In YAFMS, a four table relational schema
captures all data elements involved in MS and tandem
MS experiments (Figure 1).

The “Dataset_Info” table contains details about the
experiment as key-value pairs, (e.g., the operator, the
instrument, the laboratory).

The “Spectra_Info” table contains details about the
acquired spectra and the separations methods, (e.g.,
liquid chromatography elution time or scan type).

The “Spectra_Data” table contains the raw spectra as
binary objects (blobs) along with additional parameters
such as the number of peaks, base peak intensity, base
peak mass/charge (m/z), and total ion current (TIC),
among others. These parameters are directly calculated
from the spectra when creating YAFMS files and are
easily updatable using standard SQL procedures and
queries.

Importantly, the “Ontology” table affords cross com-
patibility with mzXML and mzML standards where the
terms from the XML-based ontology can be mapped back
to the names used in the individual tables. The software
API to write YAFMS files allows the addition of terms that
are not present in the controlled vocabulary, though a
warning is issued for custom terminology.

The driving principles behind a minimalistic table
structure were simplicity, ease of use, and flexibility on
demand. Each of the four tables is indexed on specific
columns that allow for fast data retrieval. The flexibility
of YAFMS comes from the ability to extend the schema
by adding tables or columns to existing tables to incor-
porate custom information. Extending the format to
include multiple experiments is easy via a new “dataset_id”
column in all tables. So, rather than transferring a set of
small data files related to a single study, one could
encode all files in a single YAFMS file. YAFMS files are
also easy to update and modify. For example, research-
ers can disseminate custom information in the form of
images or calculate more parameters from the spectra
by creating new tables and/or appropriate columns
using standard SQL queries. This has the obvious
advantage that YAFMS files do not need to be recreated
every time a new parameter is required. Also, updates
to YAFMS files do not affect the indexing mechanism
and data retrieval (in contrast, XML formats require
re-indexing after updates or recreation of a new file).
Another advantage of using this kind of relational
model is the ability to represent multidimensional data.
For example, the format is readily extensible to experi-
ments that use multiple separation techniques like
strong cation exchange chromatography, liquid chro-
matography, ion mobility separations, and combina-
tions of such techniques. The added flexibility and
extensibility of YAFMS could lead to incompatibility
issues if sufficient safeguards are not introduced that
prevent the ad hoc modification of column names,
tables, or the core four-table schema, thereby rendering
the format unusable. To this effect, we have included
methods that check for compatibility with the proposed

1785J Am Soc Mass Spectrom 2010, 21, 1784–1788 YET ANOTHER FORMAT FOR MASS SPECTROMETRY

schema in the API software to inform users about the
validity of the underlying YAFMS file(s). An empty
database schema file is distributed with the API that
contains the basic four-table structure, the correct col-
umn names, and primary keys for tables and indexes.
Methods are provided in the YAFMS library to validate
whether the schema conforms to the four-table struc-
ture proposed in this document. Fatal errors are raised
when one of the four tables/columns is missing or the
columns are named incorrectly while missing indexes
are created on the fly. Extensions to the basic table
structure are not reported as errors/warnings.

Smaller Is Better

The current rates of data generation are growing faster
than data storage capabilities [16]. Surrounding large
numeric data elements with tags in XML formats only
exacerbates the problem as the file sizes are simply too
large for most software programs and come coupled
with costs for disk space usage, data compression/
decompression, as well as with data transfer bottle-
necks across the Internet/LAN.

Another shortcoming of XML formats is that they are
text-based and cannot accommodate binary data. As a
result, both mzXML and mzML represent spectra in a
Base64 encoded hexadecimal compressed form, which

is larger than the original binary data itself. Conversely,
a relational database has the facility to store various
data types and binary data are directly stored as blobs.
The most efficient formats, such as the Thermo .RAW
files are binary in nature and strive hard to produce the
minimalist file necessary in terms of size. Storing the
raw spectra as compressed binary objects in YAFMS
further reduces the size of these files (relative to XML-
based files), which procures a significant cost savings.
We utilize the freely available LibLZF (http://oldhome.
schmorp.de/marc/liblzf.html) compression libraries to
achieve fast lossless compression/decompression of
raw spectra. To read spectra from the YAFMS file, the
blobs are decompressed using the libLZF libraries and
converted to double precision mz values. One must note
that the compression and decompression algorithm is
loosely coupled with the API and as such its underlying
implementation can be replaced with a different algo-
rithm by simply changing the method signature.

Figure 2 compares file sizes across five datasets
(Table 1) of varying spectral density (i.e., the number of
peaks in a spectrum). These datasets, available from our
website, were analyzed on different resolution instru-
ments and scan counts range from 5000 (dataset A) to
90,000 (dataset E). Note that YAFMS file sizes were 25%
to 60% smaller than their corresponding mzXML and
mzML representations. The smallest gains in file sizes

Figure 1. YAFMS Schema. Three tables are shown with sample data elements. The Dataset_info table
stores experimental setup details, the instrument used and other metadata. The Spectra_Info table
stores sparse information related to spectra that are not stored as columns under the Spectra_Data
table. The Spectra_Data table stores the mass/charge ratios and intensities as two binary large objects
(blobs) in the database, in conjunction with the total ion count, base peak intensity, base peak
mass/charge, precursor mass/charge, scan time, etc. The red line indicates the link between
Spectra_Info and Spectra_Data table. The primary key for this linking is a combination of SpectraID
and ScanNum. The blue dot alongside a column indicates indexes built on those columns for fast
retrieval. The ontology table is not shown/used in this example.

1786 SHAH ET AL. J Am Soc Mass Spectrom 2010, 21, 1784–1788

(25%) are observed for samples that have larger num-
bers of peaks per spectra (datasets C and D), whereas
relatively sparse spectra (dataset E) translate to highly
compressed (60%) YAFMS files. In general, the largest
compression in file sizes will be obtained for samples
that contain large numbers of relatively sparse spectra,
whereas small but significant gains will be obtained in
cases of dense spectra. It is interesting to note that the
compressed mzML data files are comparable in file size
on some datasets (A, B, and D) but clearly underper-
form on datasets C and E.

Another metric of comparison is data retrieval
within specific m/z and time ranges. For example, in the
case of label-free quantitation, the most common oper-
ation would be the comparison of peak areas for ex-
tracted ion chromatographs. Table 1 lists the best read
times for truly random m/z range access for different
dataset representations across the same five datasets
presented in Figure 2. The YAFMS format offers signif-
icantly lower read times on range queries compared
with mzXML and .RAW formats as they are directly
related to the time it takes to decompress binary spectra
into numbers and more complex spectra require higher
access times. Neither the .RAW data format nor the

mzXML data formats facilitate fast range queries and
their performance degrades with increasing file sizes
and/or spectral complexity. It is harder to benchmark
the read access times for the compressed mzML files as
the files need to be first decompressed for reading; thus,
a comparison is not presented in this manuscript.

An Easy to Use Software Suite

YAFMS is accompanied by downloadable, user friendly
software processing modules that facilitate individual
process steps. We developed a C# dynamic link library
(dll) that provides functions for reading, writing and
updating YAFMS files. A comprehensive set of instruc-
tions that articulate the minimal software setup re-
quired to work with this format are outlined in the
README file distributed with the library. Additionally,
we extended the FileConverter program from the
OpenMS proteomics pipeline with modifications that
facilitate conversion of mzData, mzXML, and mzML to
YAFMS, developed a command line utility that con-
verts .RAW files to this new file format, and extended
the Decon2LS software [17] to read and process YAFMS
files, allowing for visualization and deisotoping of

Figure 2. File size comparison for different data file formats. The YAFMS file sizes are comparable to the
.RAW data formats and always significantly smaller than the mzXML and mzML data files (as much as
25%–30% samples with dense spectra and more than 50% in cases of sparse spectral density). The mzXML
and mzML files were created using ProteoWizard release 1.4.0 [12]. The NetCDF files were created using
Xcalibur 2.1.0 as distributed by ThermoFinnigan. The compressed mzML files (.mzmL.gz) were created
with the Trans-proteomics pipeline (http://tools.proteomecenter.org/wiki/index.php?title � Software:
TPP) and offer file sizes comparable to the .RAW files in some cases (A, B, and D). The mzData files were
created using the openMS software framework [11].

Table 1. Random access read times for popular data formats

Samplea Scans Spectra density (KB/scan)b YAFMS (ms)c RAW (ms)d mzXML (ms)e

A 6878 24.00 0.106 6.432 0.570
B 18,359 5.18 0.869 4.825 5.129
C 5548 60.26 2.891 40.062 41.873
D 13,844 23.58 0.704 4.317 4.490
E 90,766 0.60 2.390 48.130 49.591

aRead times for five different samples were calculated using the average of 1000 randomly generated scan numbers and m/z ranges to the nearest
microsecond using high resolution timing calls.
bSpectra density is calculated by dividing the total file size by the total number of scans. The average spectra density shows that samples C and D
are highly complex samples.
c,d,eThe Decon2LS application was used to read all data formats. Decon2LS uses the RAMP mzXML parser to read mzXML files, ThermoFinnigan’s
proprietary libraries for .RAW files and our custom dynamic link library to read YAFMS files.

1787J Am Soc Mass Spectrom 2010, 21, 1784–1788 YET ANOTHER FORMAT FOR MASS SPECTROMETRY

spectra in both manual and automated modes. Users
can manipulate and interact directly with YAFMS files
via numerous reader utilities that are freely available on
the Internet as popular browser add-ons (recommenda-
tions on our website); the one exception is the actual
spectral data, since it is stored as a compressed blob. All
of the datasets discussed in this manuscript and soft-
ware, including source code for OpenMS extensions,
the reader/writer dll, the .raw to YAFMS conversion
utility, and the Decon2LS software package, can be
downloaded from http://omics.pnl.gov/software/YAFMS.
php and is released under the Open Source license
agreement. Users can obtain the necessary source code
from our website and integrate it with their existing
applications.

Conclusion

We emphasize the advantages of using a light, server-
less, relational database format such as YAFMS for
proteomics data exchange purposes. We have illus-
trated that this file format is highly efficient in process-
ing time, as well as in storage space. YAFMS not only
allows novices to interact via simple browser add-ons,
but also allows for data extraction and updates by
writing simple SQL queries. Additionally, this format
provides the flexibility to add tables that contain, for
example, processed data, deconvolution results, or even
images used in publications.

A potential challenge associated with the widespread
adoption of YAFMS is that its ease of use could result in
many evolving and mutually exclusive file formats and
vocabularies (e.g., used in the key-value pairs in YAFMS)
for representing metadata information associated with
spectra and the experiment. However, adopting the con-
trolled vocabulary (ontology) as defined by the HUPO-PSI
for MS data and keeping the minimal table structure intact
would ensure common semantics and to that effect we
have provided methods in the API to ensure basic com-
pliance. Additionally, our future tasks include the exten-
sion of the FileConverter program from openMS to con-
vert from YAFMS to mzML and mzXML files. It is our
hope that researchers, practitioners, and computer scien-

tists/programmers evaluate this approach and use it for
data exchange within small laboratories, consortiums, and
collaborations.

References
1. Watson, J. T.; Sparkman, O. D. Introduction to Mass Spectrometry:

Instrumentation, Applications and Strategies for Data Interpretation, 4th
Edition; Wiley InterScience: 2007.

2. Garden, P.; Alm, R.; Hakkinen, J. PROTEIOS: An Open Source Proteom-
ics Initiative. Bioinformatics 2005, 21, 2085–2087.

3. Askenazi, M.; Parikh, J. R.; Marto, J. A. mzAPI: A New Strategy for
Efficiently Sharing Mass Spectrometry Data. Nat. Methods 2009, 6,
240–241.

4. Deutsch, E. mzML: A Single, Unifying Data Format for Mass Spectrom-
eter Output. Proteomics 2008, 8, 2776–2777.

5. Falkner, J. A.; Falkner, J. W.; Andrews, P. C. ProteomeCommons.org IO
Framework: Reading and Writing Multiple Proteomics Data Formats.
Bioinformatics 2007, 23, 262–263.

6. Katajamaa, M.; Miettinen, J.; Oresic, M. MZmine: Toolbox for Process-
ing and Visualization of Mass Spectrometry-Based Molecular Profile
Data. Bioinformatics 2006, btk039.

7. Pedrioli, P. G. A.; Eng, J. K.; Hubley, R.; Vogelzang, M.; Deutsch, E. W.;
Raught, B.; Pratt, B.; Nilsson, E.; Angeletti, R. H.; Apweiler, R.; Cheung,
K.; Costello, C. E.; Hermjakob, H.; Huang, S.; Julian, R. K.; Kapp, E.;
McComb, M. E.; Oliver, S. G.; Omenn, G.; Paton, N. W.; Simpson, R.;
Smith, R.; Taylor, C. F.; Zhu, W.; Aebersold, R. A Common Open
Representation of Mass Spectrometry Data and Its Application to
Proteomics Research. Nat. Biotech. 2004, 22, 1459–1466.

8. Prince, J. T.; Marcotte, E. M. mspire: Mass Spectrometry Proteomics in
Ruby. Bioinformatics 2008, 24, 2796–2797.

9. Cannataro, M.; Veltri, P. SpecDB: A Database for Storing and Managing
Mass Spectrometry Proteomics Data. In Fuzzy Logic and Applications.
Springer: Berlin/Heidelberg, 2006;236–245.

10. Lin, S. M.; Zhu, L.; Winter, A. Q.; Sasinowski, M.; Kibbe, W. A. What is
mzXML Good For? Expert Rev. Proteom. 2005, 2, 839–845.

11. Sturm, M.; Bertsch, A.; Gropl, C.; Hildebrandt, A.; Hussong, R.; Lange,
E.; Pfeifer, N.; Schulz-Trieglaff, O.; Zerck, A.; Reinert, K.; Kohlbacher, O.
OpenMS—An Open-Source Software Framework for Mass Spectrome-
try. BMC Bioinformatics 2008, 9, 163.

12. Kessner, D.; Chambers, M.; Burke, R.; Agus, D.; Mallick, P. ProteoWizard:
Open Source Software for Rapid Proteomics Tools Development. Bioin-
formatics 2008, 24, 2534–2536.

13. Rew, R.; Davis, G. NetCDF: An Interface for Scientific Data Access.
Computer Graphics and Applications. IEEE 1990, 10, 76–82.

14. Kaspar, F.; Schultz, J.; Hollmann, R.; Schroder, M.; Muller, R.; Karlsson,
K. G.; Roebeling, R.; Riihela, A.; Paepe, B.d.; Stockli, R. Satellite-Based
Datasets for Validation of Regional Climate Models: CM-SAF Product
Suite and New Tools for Processing. Geophys. Res. Abstracts 2009, 11,
11948.

15. Nativi, S.; Caron, J.; Davis, E.; Domenico, B. Design and Implementation
of netCDF Markup Language (NcML) and Its GML-Based Extension
(NcML-GML). Comput. Geosci. 2005, 31, 1104–1118.

16. Kouzes, R. T.; Anderson, G. A.; Elbert, S. T.; Gorton, I.; Gracio, D. K. The
Changing Paradigm of Data-Intensive Computing. Computer 2009, 42,
26–34.

17. Jaitly, N.; Mayampurath, A. M.; Littlefield, K.; Adkins, J. N.; Anderson,
G. A.; Smith, R. D. Decon2LS: An Open-Source Software Package for
Automated Processing and Visualization of High Resolution Mass
Spectrometry Data. BMC Bioinformatics 2009, 10, 87.

1788 SHAH ET AL. J Am Soc Mass Spectrom 2010, 21, 1784–1788

