Table 1, in Lieza M. Danan, Zhihao Yu, Adam J. Hoffhines, Kevin L. Moore, and Julie A. Leary. *J. Am Soc. Mass Spectrom.* **2008**, *19*, 1459–1466 is in error. The units in columns 2 and 4 for the K_m and $k_{cat}/K_{m,app}$ values, respectively, were mistakenly printed as millimolar (mM) instead of micromolar (μ M). Included below is a corrected version of Table 1.

For Reaction 1, experiments when nonCCR8 and PAPS are varied were performed while keeping the cosubstrate (PAPS and nonCCR8, respectively) at constant and saturating concentrations. For Reaction 2, sY15CCR8 concentrations were varied while keeping PAPS constant at 1 mM. The experimental details and data analyses are as described under "Experimental". All experiments were performed 3 trials each (n = 3).

Varied substrate	${K_{m,app}}^{a}$ μM	k_{cat}^{b} min ⁻¹	$k_{cat}^{}/K_{m,app}^{ m c}$ $\mu { m M}^{-1}~{ m s}^{-1}$
Reaction 1: Monosulfation of nonCCR8			
TPST-2			
nonCCR8	$1.2 imes10^2\pm10$	0.50 ± 0.03	0.075 ± 0.010
PAPS	0.59 ± 0.10		14 ± 1
TPST-1			
nonCCR8	99 ± 5	0.045 ± 0.007	0.0076 ± 0.0004
PAPS	0.50 ± 0.09		1.5 ± 0.1
TPST-1 & -2, 1:1 mixture			
nonCCR8	75 ± 4	0.43 ± 0.10	0.096 ± 0.005
PAPS	0.54 ± 0.09		13 ± 1
Reaction 2: Disulfation of sY15CCR8			
TPST-2			
sY15CCR8	23 ± 2.6	0.30 ± 0.01	0.21 ± 0.02
TPST-1			
sY15CCR8	21 ± 0.1	0.02 ± 0.00	0.014 ± 0.001
TPST-1 & -2, 1:1 mixture			
sY15CCR8	17 ± 0.5	0.29 ± 0.01	0.29 ± 0.01

Table 1. Comparison of kinetic constants of TPST-1, TPST-2, and 1:1 TPST-1 and -2 mixture

 ${}^{a}K_{m,app}$ is the apparent Michaelis constant at a particular substrate at saturating co-substrate concentration.

 ${}^{b}k_{cat}$ is the parameter that measures how fast the enzyme can turnover a substrate to product given [E]_{total}, $k_{cat} = V_{max}/[E]_{total}$

 ${}^{c}k_{cat}/\!/K_{m,app}$ measures how efficient an enzyme in catalyzing the reaction.