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Sample preparation is crucial to the success of experiments in biological mass spectrometry. In
proteomics, digestion of the proteins into peptides is a key step for “bottom-up” approaches.
Often, the use of enzymes requires physiological conditions, producing peptides that must be
extracted or further purified before mass analysis. Chemical cleavage reagents offer more
flexibility and can be more compatible with downstream mass analysis. Expanding on prior
work using acid hydrolysis, proteolysis with matrix-assisted laser desorption ionization
(MALDI) matrices is presented. This sample preparation can be performed rapidly with a
minimum of reagents and sample handling, but it must first be evaluated in terms of digestion
efficiency, missed cleavages, and side reactions before implementation for in-gel digestion and
in-solution digestion using minimal volumes of protein. Time courses of acid hydrolysis are
shown for protein standards, illustrating the sensitivity of this type of sample preparation,
minimization of side reactions, and performance for proteins in mixtures. To illustrate the
potential for sensitive detection of a specific protein, MALDI matrix hydrolysis is used to
digest a protein immunoprecipitated from cell lysate. (J Am Soc Mass Spectrom 2009, 20,
2106–2115) © 2009 Published by Elsevier Inc. on behalf of American Society for Mass
Spectrometry

Proteolysis is often the critical step in preparing
proteins for analysis with mass spectrometry.
Because trypsin digestion is robust, predictable,

inexpensive, and produces peptides amenable to mass
spectrometry (both in basicity and molecular weight), it
is the preferred reagent in most digestion protocols.
Typical digestions proceed in solution or in gel for 16 to
24 h at 37 °C. This step is often arranged overnight,
making it convenient for sample processing. Methods
for improving or hastening trypsin digestion have been
investigated digestion in mixed aqueous/organic sol-
vent systems [1] and microwave heating, both in solu-
tion [2] and in gel [3]. The combination of mixed solvent
systems and microwave assisted digestion has also been
reported to improve enzymatic proteolysis [4]. Recent
advances have combined prior techniques with immo-
bilized trypsin microspheres [5]. In addition to improv-
ing trypsin digestion, the use of other enzymes or
chemical cleavage agents is necessary to produce
complementary or, in some cases, more comprehen-
sive sequence information.
Acid hydrolysis is one example of a complementary

digestion technique. While strong acids have been used
to degrade proteins for amino acid analysis [6], weak

acids (e.g., formic and acetic) can be used to cleave
proteins specifically at aspartic acid residues (Asp).
Building on prior work in proteolytic digestion using
acid hydrolysis [7], the coupling of Asp-directed proteol-
ysis andmass spectrometry was reported by Li et al. using
2% formic acid at elevated temperatures [8]. Similar to
improvements in trypsin digestion, microwave-assisted
acid hydrolysis (MAAH) has been shown to speed the
formation of peptide fragments when compared with the
original in solutionmethod [9]. MAAHmethods have also
been demonstrated for 25% trifluoroacetic acid [10] and
12.5% acetic acid [11, 12]. These methods are compatible
with downstream liquid chromatography and mass spec-
trometry, and they have been applied to the identification
of bacterial spores [13] and viruses [14], as well as pro-
teome analysis of yeast ribosomes [11, 12] and zebrafish
liver [15].
While, previous work on acid hydrolysis has focused

on optimization and adaptation to proteome-wide ap-
plications, the use of acid hydrolysis in targeted mass
spectrometry experiments for detection of specific pro-
teins could also prove to be valuable. While trypsin
digestions produce peptides with C-terminal lysine and
arginine, few internal basic residues, peptides created
by acid hydrolysis can contain clusters of basic residues,
which may provide an advantage in detecting lower
abundance proteins in mixtures. The strong MALDI ion
signal from a peptide with multiple basic residues may
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be detectable even against a background of peptides at
higher concentration, due to signal enhancement from
higher proton affinity.
To develop an acid hydrolysis method for targeted

peptide detection and quantification, the reproducibil-
ity and effectiveness of the digest must be evaluated.
Furthermore, the reaction volumes must be minimized,
to maximize the concentration of the protein(s) of
interest. Ideally, small volumes of concentrated proteins
could be proteolyzed and spotted directly on the
MALDI target, effectively processing and mass analyz-
ing the entire sample. To that end, acid hydrolysis in
matrix-assisted laser desorption ionization (MALDI)
matrix solutions is reported and compared with other
acid hydrolysis reagents and trypsin. These methods
enable protein detection with a minimum of reagents
and sample handling, eliminating the sample loss that
can occur due to microcentrifuge tube to vial transfers
or dilution and concentration that are frequently in-
cluded in tryptic digestion protocols. Peptides and
proteins are digested with MALDI matrices under
different conditions to evaluate the feasibility and po-
tential utility of this technique.

Materials and Methods

All protein standards and chemicals were purchased
from Sigma (St. Louis, MO, USA) or Aldrich (Milwau-
kee, WI, USA), unless otherwise noted. Acetonitrile and
HPLC grade water were purchased from Burdick and
Jackson (Honeywell, Muskegon, MI, USA). The acids
used in this study are listed in Table 1 with their pKa
values [16, 17] and concentrations in the reaction
solutions.
All reactions were carried out at 99 °C using a PCR

machine (Mastercycler Eppendorf, Westbury, NY, USA)
in 0.5 mL tubes with 100 �L reaction volumes unless
otherwise noted. Peptides and proteins were hydro-
lyzed in aqueous solutions of acetic, formic, or triflu-
oroacetic acid in 10%, 5%, 2%, 1%, and 0.1% volume-
to-volume ratios. Common MALDI matrices for
peptides were also tested for acid hydrolysis at

varying concentrations, typically ranging from 1 to 20
mg/mL, including �-cyano-4-hydroxycinnamic acid
(CHCA), 2,5-dihydroxybenzoic acid (DHB) in either
50% aqueous ACN or 100% water, 3,5-dimethoxy-4-
hydroxycinnamic acid (sinapinic acid), and trans-4-
hydroxy-3-methoxycinnamic acid (ferulic acid). Most
acid hydrolysis reactions were performed using 5 to 10
mg/mL matrix solutions in 50% acetonitrile. Methanol
cannot be used because the methylation of the acidic
side chains proceeds at similar rates to acid hydrolysis,
leading to �50% cleavage and 50% methyl ester forma-
tion. Low volume reactions (5 �L) were performed
using modifiers similar to those described by Palmblad
and Cramer [18]. An acid hydrolysis solvent system
containing 5 mg/mL CHCA and 10 �L/mL glycerol in
a 50% aqueous ACN was found to prevent evaporation
and facilitate acid hydrolysis without adding significant
chemical background noise to the MALDI mass spectra.
In each incubation, aliquots were extracted for MALDI
mass analysis at selected time points.
Peptides, including human angiotensin I (DRVYIH-

PFHL), oxidized human insulin B chain, and synthetic
epidermal growth factor receptor (EGFR) phosphopep-
tides, were hydrolyzed at 1 pmol/�L concentrations.
Protein standards at 1 pmol/�L (bovine transferrin and
chicken ovalbumin) were also cleaved over time (0 to
24 h) to optimize acid hydrolysis in MALDI matrices.
To further evaluate sensitivity, efficiency, and side
reactions, bovine ubiquitin and transferrin were diluted
in matrix solutions, to concentrations ranging from 500
fmol/�L to 1 fmol/�L and hydrolyzed for timescales
up to 1 h for ubiquitin and 2.5 h for transferrin. Bovine
transferrin and chicken ovalbumin were also cleaved in
CHCA, 2% formic acid (both in aqueous and 50% ACN
solutions) for 2 h, these digests were then compared
with tryptic digestions (both 2 and 18 h) and overnight
digestion with V-8 protease. All digests were then
spotted in quintuplicate on a MALDI plate in amounts
ranging from 250 fmol to 1 fmol per matrix deposit. The
resulting peptide detection and sequence coverage were
then compared between methods.
Mixtures of bovine ubiquitin and transferrin in 1:10–

1:100 ratios were also hydrolyzed to evaluate the detec-
tion of the lower abundance component (ubiquitin).
Duplicate reactions were done with the same protein
ratios using trypsin as the enzyme. Peptides were
extracted from an equimolar amount of reaction mix-
ture using pipette tips packed with C18 reverse phase
resin (Ziptip; Millipore, Billerica, MA, USA) after diges-
tion and eluted directly onto a MALDI plate with 5
mg/mL CHCA for sensitivity comparison.
For immunoprecipitation of �-catenin (CTNB1) from

HCT115 cell lysates prepared from 107 cells, the protein
was pulled down using 50 �L of protein A beads loaded
with mouse anti-�-catenin antibody. After denaturation
by boiling in Laemmli loading buffer with 5 mM DTT
for 10 min, the proteins were separated by SDS PAGE
and visualized with Coomassie blue G. Resulting bands
were excised and destained in 50% methanol in 50 mM

Table 1. Reagents used for acid hydrolysis of proteins, listed
by the negative log of their aqueous dissociation constants.
MALDI matrices are listed in italics. The superscripts indicate
the references for the pKa values

Acid name (abbreviation)
pKa

(aqueous)
Concentration

(mM)

Trifluoroacetic acid (TFA) 0.5016 13–260
�-Cyano-4-hydroxycinnamic acid

(CHCA)
1.1716 5–105

2,5-Dihydroxybenzoic acid (DHB) 3.0116 160–320
Formic acid (FA) 3.7517 26–530
Sinapinic acid 3,5-dimethoxy-4-

hydroxycinnamic acid
3.9816 110–220

Ferulic acid trans-4-hydroxy-3-
methoxycinnamic acid

4.0416 130–260

Acetic acid (AA) 4.7617 17–330
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ammonium bicarbonate. In parallel with sodium dode-
cyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) separated protein standards, �-catenin bands
were incubated in 50 �L of 5 mg/mL CHCA for 3 h [7].
Resulting digests were then directly spotted and ana-
lyzed with MS.
Samples were analyzed in positive ion linear mode

on a MALDI TOF mass spectrometer (Voyager; ABI,
Framingham, MA, USA) with the following settings: 25
kV accelerating voltage, 94.5% grid voltage, and 350 ns
delay. In each spectrum, 150 laser shots were accumu-
lated and internally calibrated; data are presented for
the average of at least three replicates. High-resolution
MALDI mass spectra and tandem mass spectra were
acquired on tandem-TOF mass spectrometer (4700; Ap-
plied Biosystems, Framingham, MA, USA). Each acqui-
sition stored the accumulation of 1500 shots; samples
were externally calibrated using a standard peptide mix
provided by the manufacturer.
Data analysis was performed using measurements of

signal-to-noise ratios or peak height generated by the
software programs used for instrument control (Data
Explorer and 4000 Series Explorer; Applied Biosystems,
Framingham, MA, USA). Peak lists were exported for
matching to theoretical peptides using the MASCOT
algorithm (www.matrixscience.com) [19]. Searches
were conducted with no enzyme specificity initially;
then the enzymatic specificity was set strictly to those
cleavages that were observed with modifications for
C-terminal water loss and aspartic acid residue cleav-
age. Mascot parameters were set with the following:
peptide tolerance: 30 ppm, up to 4 missed cleavages,
and all data were searched against the SwissProt data-
base. The Mascot score and sequence coverage are used
to compare different digestion methods and optimize
reaction times for each protein. Searches were per-
formed using cleavage C-terminal to Asp and enabling
C-terminal loss of aspartic acid and loss of water from
selected residues. To detect ubiquitin in the mixtures
with transferrin, predetermined peptide masses that
had been verified with MS/MS were examined manu-
ally for ion signal.

Results

MALDI Matrix Acid Hydrolysis of Peptides

To evaluate the potential of acid hydrolysis with
MALDI matrices, hydrolysis of the Angiotensin I pep-
tide, DRVYIHPFHL, was performed with each acid and
MALDI matrix; all data were compared against the
established method using 2% formic acid [8]. This
peptide model was chosen because only one specific
cleavage site is present C-terminal to the N-terminal
aspartic acid residue. Furthermore, the peptide has four
basic amino acids, so the cleavage of the aspartic acid
will not significantly change its detection in positive ion
mode MALDI analysis. However, acid hydrolysis of
angiotensin I may not go to completion because of

interactions between aspartic acid residue and its neigh-
boring arginine, similar to the observation that neigh-
boring acidic residues produce missed cleavages in
tryptic digests by forming salt bridges with lysine and
arginine residues.
Each acid hydrolysis reaction was sampled at multi-

ple time points over the first 4 h. By measuring the
amount of ion signals corresponding to DRVYIHPFHL
at m/z 1296.7 and RVYIHPFHL at m/z 1181.7, the reac-
tion progress could be monitored. Salt adducts or side
reaction products, such as water loss, could also be
detected, but those ion signals were lower than 10% of
the desired product. Lower mass peptide signals were
also sequenced to examine nonspecific cleavage. By
examining the total amount of peptide ion signal over
time, the non-specific degradation of the peptide could
also be assessed. The relative reaction rates calculated
over the first 4 h of acid hydrolysis ranked as fol-
lows: formic acid � trifluoroacetic acid � �-cyano-4-
hydroxycinnamic acid� acetic acid�2,5-dihydroxybenzoic
acid� sinapinic acid. No acid hydrolysis of angiotensin
I was detected in solutions of ferulic acid. TFA was
ruled out from future studies because non-specific
cleavage products were observed in these reactions
even at short time points. Acetic acid and the MALDI
matrices produced specific cleavage C-terminal to the
aspartic acid residue, similar to formic acid. While
formylation becomes a significant side reaction in 2%
formic acid hydrolysis, no similar side reactions were
observed for acetic acid or any of the MALDI matrices.
Although no trend can be reported between the pKa
and reaction rate for the entire group of acids, the
effectiveness of the MALDI matrices did appear to
improve with decreasing pKa. In the matrix digests, the
resulting peptide ion signals were best in CHCA; DHB
and sinapinic acids produced the cleavage product,
RVYIHPFHL, but the mass spectra were poorer in
quality. These results may indicate that matrix crystal-
lization and desorption/ionization are not effected by
high incubation temperature (�100 °C) for these acid
hydrolysis reactions.
Optimization of digestion with CHCA matrix was

pursued because the homogeneity of the dried droplet
deposits and resulting ion signal quality are signifi-
cantly better than DHB or sinapinic acid. The cleavage
of angiotensin, DRVYIHPFHL, was compared in di-
gests using 2% formic acid, 10 mg/mL CHCA, and 2%
acetic acid. The overall cleavage is better at longer
incubation times for formic acid hydrolysis than in
CHCA solutions; however, long incubation times in-
crease the amount of side reactions, including water
loss and formylation of amines (N-termini and lysine
residues). At incubation times less than 5 h, no signifi-
cant differences in product formation were observed
between 2% formic acid and 10 mg/mL CHCA. Al-
though the variability was higher in matrix digests, the
average product formation was similar: �30% to 35%
over the first 4 h. Additional peptide digests with
oxidized insulin b chain indicate that acid hydrolysis
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can cleave C-terminal to cysteic acid residues (data not
shown) and that phosphopeptides, like YSSDPTGALT-
EDSIDDTFLPVPEpYINQSVPK from human epidermal
growth factor receptor, lose phosphorylation during
proteolysis at levels of 50% or more during the time-
scale of the cleavage reaction. MALDI matrix acid
hydrolysis of bovine insulin showed no effect on the
disulfide bonds. Low levels of cleavage at glycine were
observed, and they increased over time. This same
pattern of glycine cleavage was observed in other
standard proteins (OVAL_CHICK, TRFE_BOVIN, MYG_
HOUSE, and UBIQ_BOVIN), with, on average, cleavage
occurring at 10% of possible glycine residues after 1 h of
incubation. Other nonaspartic acid cleavages, such as
cysteine, threonine, and serine were observed, however
their occurrence was low (on average 0% to 5% under
2 h). In total, cleavages at residues other than aspartic
acid were less than 10% by frequency at these time-
scales. Additional peptide modifications including were
included in the database searches; there was no evi-
dence of pyroglutamic acid formation for the proteins
hydrolyzed with MALDI matrix. A low occurrence of
deamidation reactions was observed, which was similar
to tryptic digestions.

MALDI Matrix Acid Hydrolysis of Proteins

To examine the performance of MALDI matrix in pro-
tein digestion, rapid acid hydrolysis with 10 mg/mL
CHCA was performed on two standard proteins:
chicken egg ovalbumin and bovine transferrin. Repre-
sentative MALDI mass spectra are shown in Figure 1.
After 30 min, the ovalbumin digest showed several
peaks that could be matched by m/z to ovalbumin;
peptide assignments were verified by MALDI tandem
mass spectrometry (Mascot Score 180 with five peptides
matched to MS/MS data). Eleven ovalbumin peaks
were manually identified in Figure 1a at the following
average m/z values: 715.8, 1182.2, 1448.6, 1564.7, 1904.1,
2164.5, 2279.6, 2579.1, 2597.1, 3882.5, and 4554.9. Trans-
ferrin digests also produced representative peptides
after short incubations in CHCA. After a 2.5 h digestion,
16 transferrin peaks were assigned in Figure 1b at the
following average m/z values: 1202.3, 1418.6, 1618.8,
1733.9, 1758.9, 1950.2, 2035.3, 2290.5, 2375.7, 2630.9,
2755.1, 3334.7, 3864.4, 4470.1, 5185.8, and 6325.2 (Mascot
Score 235 with 10 peptides identified with MS/MS
data). In addition, LC-MS/MS data were used to cor-
roborate the cleavages and modifications; these are not

Figure 1. MALDI Mass spectra and detected sequence coverage for standard proteins digested in 10
mg/mL CHCA. Spectra are shown for a half hour digestion of ovalbumin (a) and a 2.5 h digestion of
transferrin (b). Asterisks mark identified peptide fragments matched to predicted m/z values for
peptides cleaved at aspartic acid residues. Sequence coverage from Mascot peptide mass fingerprint
searches is plotted over time for both standard proteins; samples were analyzed in triplicate (c).
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shown here to focus solely on the utility of MALDI mass
analysis. Mascot peptide mass fingerprint searches were
used to compare the mass spectra from aliquots of these
digests extracted at different times. As shown in Figure 1c
for three replicate digestions, the sequence coverage for
ovalbumin and transferrin are optimized between 1 and
2.5 h time points. For longer protein sequences, longer
incubation times were more appropriate. Two-hour
incubations worked better to achieve digestion of bo-
vine transferrin.

Comparison to Tryptic and Glu-C Digestions

Comparison to enzymatic digestions was performed to
additionally characterize the performance of acid hy-
drolysis. As an example, bovine transferrin was ana-
lyzed with the in silico proteomics experiment planner
(IPEP) [20] to predict the efficiency of various digestions
before experimental comparison. Mass spectrometry
analysis of digests using trypsin, acid hydrolysis, and S.
aureus V-8 endoprotease in bicarbonate buffer (specific
cleavage to C-terminal to glutamic acid residues) can
theoretically produce similar values for sequence cov-
erage. Using IPEP, trypsin was found to have the

highest number of peptides with 42 out of 83 peptides
able to be detected using our MALDI settings (m/z 750
to 5500) resulting in 78.6% sequence coverage. Though
acid hydrolysis produced fewer peptides, 33 out of 48
could be expected to be observed resulting in 85.5%
sequence coverage. V-8 digestion produced 33 detect-
able peptides out of 45 total, providing 76.7% sequence
coverage. These theoretical calculations show similar
values for expected performance when using each type
of proteolysis.
Both chicken egg ovalbumin and bovine transferrin

were cleaved using CHCA, formic acid, trypsin, and S.
aureus V8 protease in a total of six different methods
(Figure 2). Acid hydrolysis was performed for 2 h using
each of the following reagents: aqueous 2% formic acid,
aqueous 2% formic acid with 50% acetonitrile, and 10
mg/mL CHCA in aqueous 50% acetonitrile. Trypsin
digestion was studied at 2 h and overnight; V8 was
examined in overnight digestions. Comparison of the
sequence coverage obtained from each method for acid
hydrolysis is shown in Figure 2a and b for transferrin
and ovalbumin, respectively. At high amounts of pro-
tein, the sequence coverage achieved with CHCA hy-
drolysis was found to be comparable to digests using

Figure 2. Comparison of sequence coverage obtained from acid hydrolysis and enzymatic digestions
of bovine transferrin and chicken ovalbumin dilution series. Sequence coverage is plotted against
amount of the digest deposited for all acid hydrolysis reactions of transferrin (a) and ovalbumin (b).
CHCA digests are compared with enzymatic digests for the same proteins in (c) and (d). The key is
relevant to all panels.
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either formulation with 2% formic acid. In ovalbumin
digests, peptide cleaved by CHCA hydrolysis could be
detected at lower amounts than those produced by
formic acid as observed at 5 fmol in Figure 2b. Ovalbu-
min peptides cleaved by matrix acid hydrolysis could
be detected at 1 fmol (data not shown). In comparison
with the enzymatic digestions (trypsin and V-8 pro-
tease), acid hydrolysis of ovalbumin, and transferrin
produced lower sequence coverage at higher concentra-
tions (Figure 2b and d). However, using lower amounts

of protein (5 to 10 fmol), the results from matrix digests
were comparable to or better than the short tryptic
digests and overnight V8 digests.

Optimization of MALDI Matrix Digestion
of Proteins

The CHCA mediated proteolysis of ubiquitin was ana-
lyzed to study sensitivity, side reactions, and cleavage

Figure 3. Ion signals detected for bovine ubiquitin hydrolyzed in 10 mg/mL CHCA. The peptides
containing the N-terminus (a) showed complete conversion to the form with zero missed cleavages,
MQIFVKTLTGKTITLEVEPSD. The peptides containing the C-terminus (b) were not cleaved as
efficiently, but within the first hour, only the zero and one missed cleavage products, GRTLS-
DYNIQKESTLHLVLRLRGG and YNIQKESTLHLVLRLRGG, could be detected. The legend in the
middle applies to both panels. Side reactions observed for two peptides show the relative amount of
each ion signal is plotted for the intact peptide (diagonal stripes), loss of water (black), loss of aspartic
acid (white), and both water and aspartic acid (horizontal stripes). (c) For the internal peptide,
TIENVKAKIQDKEGIPPD, (c) increasing amounts of side reactions are detected. For the C-terminal
peptide, YNIQKESTLHLVLRLRGG, (d) only a small amount of water loss is observed, which appears
to be independent of reaction time.

Table 2. Detection of bovine ubiquitin and transferrin peptides following acid hydrolysis in CHCA. Proteins were digested in the
presence of matrix and spotted on the MALDI target; the resulting Mascot score, sequence coverage, and number of peptides detected
are shown

Amount
(fmol)

Ubiquitin Transferrin

Mascot
score

Sequence
coverage

Peptides
detected

Mascot
score

Sequence
coverage

Peptides
detected

125 113 100% 11 135 30% 36
25 90 100% 9 134 29% 31
5 76 83% 8 93 20% 19
2.5 64 70% 7 23 12% 8
0.5 0 0% 0 0 0% 0
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efficiency. Ubiquitin was selected because the intact
molecule and the peptides produced by cleavage at the
six aspartic acid residues can all be detected in a single
linear mode MALDI mass spectrum. Furthermore, no
disulfide bonds are present, so the protein should be
completely denatured by the elevated temperature used
for the acid hydrolysis. Ubiquitin proved to be an excel-
lent substrate for acid hydrolysis with MALDI matrix.
After 15 min incubations, several peptides [3–9] could be
detected and manually assigned to the sequence. Com-
plete sequence coverage from cleaved peptides could be
attained at 45 to 60 min from as little as 5 fmol of ubiquitin
digest deposited on the plate. At 5 nM ubiquitin concen-
trations, the sequence coverage began to drop. Five to
seven peptides and only 70%� 21% of the sequence could
be detected in three replicates with 5 nM ubiquitin after
1 h of acid hydrolysis; the sequence coverage, Mascot
scores, and the number of detected peptides are shown in
Table 2. No signal for ubiquitin peptides could be detected
in for 500 amol deposited. To study proteolysis of a larger
substrate protein, transferrin was hydrolyzed in CHCA
solutions for 2.5 h; MALDI peptide mass fingerprinting
results are shown in Table 2. These digests yielded �30%
coverage with the identification of 33 to 37 peptides and a
Mascot Score of 135 � 12 for 125 fmol deposited on the
MALDI target. As found with ubiquitin, all values de-
creased with the amount deposited with no detectable
signal for 500 amol.
Similar to formic acid hydrolysis, specific side reac-

tions became apparent at longer incubation times with

MALDI matrices: water loss and cleavage of the C-
terminal aspartic acid from newly produced peptides.
As shown in Figure 3a and b, the ion signals corre-
sponding to the internal ubiquitin peptide, TIENVKAK-
IQDKEGIPPD, illustrate the prevalence of these reac-
tions. This cleaved peptide is not observed until after
the 15 min time point. In reactions less than 2.5 h, no
side reaction products are detected. The only ion signal
detected corresponds to the unmodified TIENVKAK-
IQDKEGIPPD peptide. Then, the water loss and cleav-
age of C-terminal aspartic acid increase over time. By
7 h, the ion signal corresponding to the specific cleavage
product makes up �30% of the total ion signal and the
side reaction products are around 70%. For the C-terminal
peptide, YNIQKESTLHLVLRLRGG, water loss is ob-
served at low amounts for the entire experiment, without
significant change. This stability may be related to this
specific sequence, but in general, the C-terminal sequences
from proteins appear to undergo less degradation than
N-terminal or internal peptides.
While side reactions are minimized at short reaction

times, the cleavage efficiency must also be evaluated.
Using ubiquitin as the model system, the entire series of
potential missed cleavages can be detected in the same
spectrum. As shown in Figure 3c and d, the production
of N-terminal and C-terminal fragments can be compre-
hensively monitored. The relative amounts of each
peptide are calculated using the peak height. After 1 h
of incubation, the zero and one missed cleavage pep-
tides at both the N-terminus and C-terminus are the

Figure 4. Minimal reaction volumes do not adversely affect MALDI mass spectra acquired after
CHCA acid hydrolysis. Data are shown for 100 fmol/�L transferrin in (a) and (b) for full volume (100
�L) and reduced volume (5 �L) digests, respectively. Corresponding experiments were performed for
reaction mixtures with 5 fmol/�L protein in (c) and (d).
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dominant species. The zero missed cleavage peptides,
(N)-MQIFVKTLTGKTITLEVEPSD and YNIQKESTLH-
LVLRLRGG-(C), make up �50% of the total ion signal
corresponding to peptides containing the N- and C-
terminus, respectively. By 4 h, no other peptides con-
taining the N-terminus are detected; the cleavage of the
N-terminal sequence, MQIFVKTLTGKTITLEVEPSD, is
complete. At 4h, YNIQKESTLHLVLRLRGG makes up
�75% of the total ion signal for C-terminal peptides,
and the sequence with one missed cleavage is the only
other detectable peptide. Based on these observations
and similar calculations for internal peptides, the 1 h
timescales used for these reactions reduce side reac-
tions, but enable sufficient cleavage efficiency.

Minimization of Reaction Volumes

Following the examination of digestion time, small
reaction volumes were examined to minimize the
amount of material necessary for detection. This step
will be necessary to make acid hydrolysis in MALDI
matrices competitive in analyzing biologic samples.
Proteolysis of ubiquitin and transferrin were analyzed
in 5 �L digestion samples and compared with data
acquired from 100 �L reaction volumes. To prevent

evaporation of the sample, low concentrations of glyc-
erol (1%) were added to the reaction mixture. For
ubiquitin, the sequence coverage after 1 h of incubation
was 100% in samples containing concentrations as low
as 50 nM protein in the reaction (25 fmol deposited on
the MALDI target). The lower concentrations, 10 and 5
nM, yielded 86% � 24% and 53% � 20% sequence
coverage, respectively. Even at these low concentra-
tions, at least six specific peptides were consistently
identified from ubiquitin. No ubiquitin peptides could
be detected from reaction solutions containing 1 nM
ubiquitin (500 amol deposited). These values are com-
parable with those described above for 100 �L reaction
volumes with the same concentrations of ubiquitin. As
shown in Figure 4, the number of peptide ion signals
detected from high volume (left) and low volume
(right) transferrin digests in 5 mg/mL CHCA were
comparable at the 2 h time point. High concentration
reaction mixtures (Figure 4a and b) contained 1 �M
transferrin, and low concentrations (Figure 4c and d)
had 5 nM transferrin. The following signals were ob-
served in both reactions at 1 �M protein concentration:
m/z 1249.6, 1417.7, 1460.6, 1617.9, 1732.9, 1757.8, 1802.9,
1820.9, 1874.9, 1935.9, 1948.9, 2034.0, 2374.6, 2735.5,
2753.5, and 3332.7. Ten peptides were consistently de-

Figure 5. Detection of ubiquitin in low stoichiometry to transferrin in two h acid hydrolysis samples
prepared in 5 mg/mL CHCA and overnight tryptic digestions. Samples containing 1 pmol/�L bovine
transferrin were spiked with 100 (a), 50 (b), 10 (c), and zero (d) fmol/�L bovine ubiquitin. Asterisks
mark predicted peptide fragments that were identified for ubiquitin, which was detected even at
levels as low as 1% the amount of transferrin in the mixture for both reactions. The insets show
zoomed regions containing the ubiquitin peaks.
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tected in the 5 nM protein reactions: m/z 1249.6, 1417.7,
1617.9, 1732.9, 1757.8, 1820.9, 1874.9, 1948.9, 2034.0,
and 2753.5. Although, the signal-to-noise ratios were
slightly decreased, presumably because of the differ-
ences in the solvent system (i.e., the glycerol), the
overall data quality was very similar for the two differ-
ent reaction volumes.

Detection of Minor Components in Mixtures

To examine the detection of minor components in
mixtures, ubiquitin was mixed with transferrin in low
stoichiometries. This pair of proteins was chosen be-
cause ubiquitin hydrolysis produces few peptides,
while transferrin digestion creates a complex back-
ground. Tryptic digestion (Figure 5a) is compared with
matrix acid hydrolysis (Figure 5e) using ubiquitin-
transferrin mixtures. From tryptic digests, four peptides
could be detected at m/z 1039.5, 1067.6, 1081.6, and
1787.9 (marked with asterisks in Figure 5a). In acid
hydrolysis of mixtures containing 10:1 ratios of trans-
ferrin to ubiquitin, specific peptides could be detected
for ubiquitin at m/z 1545.8, 2097.2, 2282.2, 2350.3, and
2726.5 (marked with asterisks in Figure 5e). Despite the
lower concentration, the ion signal at m/z 2097.2, which
corresponds to YNIQKESTLHLVLRLRGG, is the base
peak in the MALDI mass spectrum. Zoomed regions are

shown for 10:1 mixtures (Figure 5b and f), 100:1 mix-
tures (Figure 5c and g), and transferrin controls for both
digests (Figure 5d and h). In tryptic digests, the ubiq-
uitin peaks cannot be detected when the ratio of trans-
ferrin to ubiquitin is increased. However, the signals at
m/z 2097.2 and 2726.5, corresponding to C-terminal
peptides with zero and one missed cleavage, persist
even at 100:1 ratios of transferrin to ubiquitin with
signal-to-noise ratios greater than 50 and 25, respec-
tively. Successful detection of these peptides against the
high transferrin background indicates that the method
could be successful in identifying lower abundance
components in mixtures. In the trypsin digestion dupli-
cates, poorer sensitivity was achieved as shown by
detection of the m/z 1523.8 peptide (corresponding to
IQDKEGIPPDQQR) observed only down to a 50:1
transferrin to ubiquitin ratio. Other peptides, including
m/z 1039.5 (EGIPPDQQR), were observed at lower
transferrin to ubiquitin ratios (10:1).

Application to In-Gel Hydrolysis of
Immunoprecipitated �-Catenin

In-gel matrix acid hydrolysis of standard proteins (400
fmol) and immunoprecipitated proteins resulted in
identification though peptide mass fingerprinting and

Figure 6. Peptides detected from CHCA hydrolysis of immunoprecipitated �-catenin. MALDI mass
spectrum of peptides detected from CHCA hydrolysis of excised gel band (a). Asterisks mark
identified peptides. The tandem mass spectrum (b) could be used to verify the sequence of the
�-catenin peptide, PSYRSFHSGGYGQD, observed at m/z 1557.7.
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targeted tandem mass spectrometry. Protein identifica-
tions from samples hydrolyzed with CHCA were com-
parable to those obtained from 2% formic acid diges-
tion. However, samples hydrolyzed in the matrix
solution did not need to be diluted before MALDI
analysis. Bovine ubiquitin could be identified with
Mascot database searches with Score 127 based on 16
peptide assignments providing 100% sequence cover-
age; bovine transferrin was assigned with a Score 104
with 28 peptides producing 31% sequence coverage.
From the immunoprecipitated protein sample, positive
identification of �-Catenin was confirmed by both pep-
tide mass mapping and tandem MS/MS (Mascot Score
91, 8% sequence coverage). The following peptide
masses were specifically identified: m/z 1403.7, 1500.7,
1518.7, 1539.4, 1557.7, 1816.7, 1868.0, and 2113.1 (Figure
6a). A tandem mass spectrum is shown for the PSYRS-
FHSGGYGQD peptide observed at m/z 1557.7 (Figure
6b). This technique could be employed to verify the
presence of specific protein targets and their binding
partners.

Conclusions

Acid hydrolysis with MALDI matrices effectively
cleaves peptides and proteins specifically and predict-
ably at aspartic acid residues using a minimum of
reagents and sample handling steps. At short timescales
(less than 2 h), these reactions produce minimal side
reactions. However, they may not be appropriate for
detection of post-translationally modified sequences, as
shown by the dephosphorylation of synthetic phos-
phopeptides. Proteolysis in MALDI matrix is also com-
patible with analysis of low levels of analyte in small
volumes and shows increased sensitivity for specific
peptides in complex mixtures compared with tryptic
digestion, as illustrated by the detection of basic pep-
tides from ubiquitin against a background of transferrin
peptides at higher concentrations. Positive identifica-
tion of immunoprecipitated protein from in-gel acid
hydrolysis shows a streamlined method for protein
detection with less sample handling and the ability to
retain a concentrated sample for MALDI analysis.
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