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Here we describe a technique to obtain all the N-linked oligosaccharide structures from a
single reversed-phase (RP) HPLC run using on-line tandem MS in both positive and negative
ion modes with polarity switching. Oligosaccharides labeled with 2-aminobenzamide (2AB)
were used because they generated good ionization efficiency in both ion polarities. In the
positive ion mode, protonated oligosaccharide ions lose sugar residues sequentially from the
nonreducing end with each round of MS fragmentation, revealing the oligosaccharide
sequence from greatly simplified tandem MS spectra. In the negative ion mode, diagnostic
ions, including those from cross-ring cleavages, are readily observed in the MS” spectra of
deprotonated oligosaccharide ions, providing detailed structural information, such as branch
composition and linkage positions. Both positive and negative ion modes can be programmed
into the same LC/MS experiment through polarity switching of the MS instrument. The
gas-phase oligosaccharide nonreducing end (GONE) sequencing data, in combination with the
diagnostic ions generated in negative ion tandem MS, allow both sequence and structural
information to be obtained for all eluting species during a single RP-HPLC chromatographic
run. This technique generates oligosaccharide analyses at high speed and sensitivity, and

reveals structural features that can be difficult to obtain by traditional methods.
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lycosylation is one of the most common and
Gcomplex post-translational modifications of pro-

teins. Differences in carbohydrate moieties can
influence the properties and functions of glycoproteins,
and serve as a biomarker for disease states [1]. Proper
structural determination is thus critical to the under-
standing of the biological role of carbohydrates. Al-
though there are fewer monosaccharide building blocks
in N-linked glycans than there are amino acid moieties in
proteins, the combination of multiple branchings and
linkages add greater complexity to the glycan structures.
Such structural diversity also adds to the difficulty of
structural characterization.

Many analytical tools are now available for oligosac-
charide characterization, such as high field NMR, liquid
chromatography, capillary electrophoresis, and mass
spectrometry. Although unambiguous oligosaccharide
structural assignments can be made by NMR [2-5], this
technique often requires large quantities of highly pu-
rified material. Typically, more than 50 mg of glycop-
rotein and extensive preparative fractionation are re-
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quired to resolve oligosaccharide structures of relatively
low abundance. A more common characterization ap-
proach utilizes sets of specific exoglycosidases, which
cleave terminal monosaccharides from the nonreducing
end, followed by chromatographic or MS analysis [6—-8].
In this approach, the sequence of the oligosaccharide
chain is revealed, either through sequential removal of
monosaccharides from the chain upon successive en-
zyme treatment, or from the oligosaccharide ladder
generated upon treatment with an array of enzymes.
Linkage positional information and anomericity of the
terminal monosaccharide can also be obtained, based
on the specificity of the exoglycosidases used. Unfortu-
nately, this classic sequencing technique is often labor
intensive, time consuming, and can be limited by the
availability of specific enzymes. Tandem mass spectrome-
try (MS), an approach commonly used for protein/peptide
characterization, is becoming more frequently used as an
alternative to the classical approaches described [9].
Fragmentation of oligosaccharides in tandem MS
experiments yields two major types of cleavages: ones
at the glycosidic bonds between two sugar residues and
cross-ring cleavages breaking two bonds within a sugar
residue. Glycosidic cleavages are prominent under post-
source decay (PSD) or low-energy collision-induced dis-
sociation (CID) conditions. This type of cleavage pro-
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vides information mainly on the oligosaccharide sequence
but not on the nature of the linkage, although the inten-
sity ratios of certain fragment ions can sometimes be
used to differentiate structural isomers [10-12]. One
exception is glycosidic cleavages of permethylated gly-
cans [13]. Upon fragmentation, the hydroxyl group
involved in a glycosidic bond carries a fragmentation
scar of a 14 Da mass difference from other methylated
hydroxyl groups, and the terminal, internal, or branch-
ing position of the monosaccharide can be determined
from the number of scars it has. This approach, how-
ever, requires permethylation, and has not been widely
used with online LC/MS" analysis. Structurally rele-
vant information may require multi-stage fragmenta-
tions with judicious choice of the parent ions at each
stage. Cross-ring cleavages, on the other hand, can
provide linkage information, and structural isomers can
be distinguished by fragment ions that differ in mass
rather than relative intensity. In the positive ion mode,
metal cationized oligosaccharide ions were found to
produce cross-ring cleavages at higher abundance than
protonated ions [11, 14]. However, extensive cross-ring
cleavages were observed for sodiated ions only under
high-energy collision conditions (~1 keV or higher)
[15-25]. In the negative ion mode, cross-ring cleavage
was found to be abundant for either deprotonated or
anion adduct ions under both high [24] and low [26-36]
energy CID conditions. Many diagnostic ions have been
reported using these techniques that elucidate detailed
oligosaccharide structures at high speed and sensitivity.
The interpretation of the tandem MS spectra, unfortu-
nately, is far less straightforward than the classic exogly-
cosidase sequencing technique.

Efforts to develop online liquid chromatography
tandem MS methods for oligosaccharide characteriza-
tion continue. The LC separation and MS ionization,
however, are often compromised, and only limited
oligosaccharide structural details were obtained in
many cases. Some linkage information can be derived
for small or linear oligosaccharides [37-39], whereas spec-
tral matching is utilized to identify more complex glycan
structures [40—45]. Enriched structural information was
obtained in online pseudo MS® analysis of permethylated
oligosaccharides on a Q-TOF instrument [46]. TOF/TOF
or Q-TOF mass spectrometers have been widely used in
tandem MS characterization of oligosaccharides. In con-
trast to such tandem-in-space types of instruments, where
tandem MS is limited to a MS® stage (not including
in-source fragmentation), ion storage devices, such as ion
trap mass spectrometers, allow multi-stage activations of
the parent oligosaccharide ions into successive fragment
ions [13, 47-49]. Sequential fragmentation, analogous to
successive enzyme treatment in the classic sequencing
technique, is thus possible with ion trap instruments.

We report here an on-line RPLC/MS" method for the
detailed characterization of oligosaccharides. In this
method, N-linked glycans are labeled with 2AB [50].
Fluorescence derivatization with 2AB is a common
approach in carbohydrate analysis [51], including struc-
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tural characterization by MS (see, for example, Refer-
ence [52]). Glycans labeled with 2AB demonstrate good
on-line MS signal in both positive and negative ion
modes. When coupled with an ion trap instrument, a
series of tandem MS experiments can be conducted as
oligosaccharide peaks elute during chromatographic
separation. In the positive ion mode, sequential loss of
sugar residues starting from the nonreducing end of the
oligosaccharide chain can be achieved under appropri-
ate collision conditions. This gas-phase oligosaccharide
nonreducing end (GONE) sequencing technique pro-
vides a simple readout of the oligosaccharide sequence,
like the traditional sequencing technique, but with the
high speed and sensitivity inherent to the MS tech-
nique. In the negative ion mode, structurally diagnostic
ions, including those from cross-ring cleavages, are ob-
served in reasonable abundances. Tandem MS spectra
from both positive and negative ion modes can be ob-
tained from a single experiment by switching the polarity
of the mass spectrometer, thus yielding both sequence and
structural information of the oligosaccharide.

Experimental
Materials and Reagents

Ribonuclease B (RNase B) from bovine pancreas, ovalbu-
min (Grade VII) from chicken egg, fetuin from fetal calf
serum, 2AB, and sodium cyanoborohydride (NaCNBHS,)
were purchased from Sigma-Aldrich (St. Louis, MO,
USA). The glycoproteins were analyzed directly without
further purification. Peptide-N-glycosidase F (PNGase F)
and reaction kits were obtained from QA-Bio, Palm
Desert, CA. Other reagents used were of HPLC reagent
grade.

Preparation of 2AB-Derivatized Oligosaccharides

N-linked oligosaccharides were released enzymatically
using PNGase F following the recommended protocol
from the manufacturer. Briefly, 200 ug glycoproteins in
0.1% SDS, 50 mM B-mercaptoethanol, and 50 mM Tris
buffer (pH 7.5) were denatured by heating at 95 °C for
5 min. The denatured protein solution was then treated
with 0.01 U PNGase F in the presence of 0.7% Triton
X-100. The digestion was conducted at 37 °C for 16-24
h. The resulting digests were loaded onto a PGC col-
umn (Alltech, Deerfield, IL) prewashed with 2 X 1 mL
0.1% TFA in 80% acetonitrile and 3 X 2 mL water. The
column was then washed with 2 X 1 mL water, and the
N-glycans were eluted with 2 X 1 mL 0.05% TFA in 25%
acetonitrile. Eluted fractions were collected and brought
to complete dryness using a Speedvac (Genevac, Valley
Cottage, NY).

Ten uL labeling reagent (0.35M 2AB, 1 M NaCNBHj,
in 70:30 (vol:vol) DMSO:acetic acid) was added to the
released and purified oligosaccharide samples. The reac-
tion mixtures were incubated at 65 °C for 2 h. The excess
labeling reagent was removed by an S-cartridge (QA-
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Bio). The cartridge was first washed with 1 mL water,
then 1 mL 30% acetic acid and 1 mL acetonitrile. The
labeling reaction mixture was then loaded on the S-
cartridge and left at room temperature for 15 min. After
washing with 1 mL acetonitrile and 4 X 1 mL 85%
acetonitrile, the 2AB labeled N-glycans were eluted
with 3 X 0.5 mL water. Eluted fractions were collected
and brought to complete dryness, followed by reconsti-
tution with water.

Reversed-Phase HPLC

The 2AB labeled N-oligosaccharides were separated on a
C18 octadecylsilyl (ODS) reversed-phase column (3 wm, 4
X 250 mm, Thermo Scientific, Waltham, MA, USA). The
mobile phase was a mixture of 0.1% acetic acid in water
(A) and 0.1% acetic acid in 10:90 acetonitrile:water (B). The
column was equilibrated with 30% B. After holding for 5
min in 30% B, the 2AB labeled N-oligosaccharides were
eluted using a gradient of 0.33%B/min for 135 min. The
flow rate was 0.2 mL/min, fluorescence detection was
performed with excitation at 330 nm, and emission at 420
nm. RP-HPLC was performed using an Agilent (Santa
Clara, CA, USA) Series 1100 binary pump system directly
coupled to the mass spectrometer.

Electrospray Mass Spectrometry

Mass spectrometry experiments were conducted using
a linear ion trap mass spectrometer (LTQ XL; Thermo
Scientific), equipped with an ESI source coupled di-
rectly to the HPLC instrument. LC/MS” experiments
were conducted in both positive and negative ion mode
through polarity switching in the same analysis. In both
ion modes, the capillary temperature was set at 200 °C.
In the positive ion mode, the spray voltage was set at
+4.0 kV. For the generation of tandem mass spectra,
the parent ions were selected with an m/z window of
20, the normalized collision energy was set to 15%, and
the activation was conducted at Q = 0.25 for 100 ms.
Each scan contains two microscans with maximum ion
injection time of 200 ms. Benefiting from the resolving
power of the RP separation, the wide ion isolation
window allows more ions to enter the trap without
confounding the tandem MS data by multiple ionic
species. In the negative ion mode, the spray voltage was
set at —4.0 kV. For the generation of tandem mass
spectra, the parent ions were selected with an m/z
window of 2, the normalized collision energy was set to
30%, and the activation was conducted at Q = 0.25 for
100 ms. Each MS” scan contains three microscans with
maximum ion injection time of 500 ms. In both ion
modes, ions selected for tandem MS in one MS cycle
(see Figure 1) were then excluded for the next three
cycles using dynamic exclusion, allowing the fragmen-
tation of low abundant ions.
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Figure 1. Illustration of the LC/MS" experimental scheme. As an
example, two peaks (peak A and peak B) from a 2AB glycan map
are shown in the fluorescence chromatogram (top). In the RP
separation, the full width at half maximum of each glycan peak is
~1 min, and four or more MS cycles can be performed across each
peak. Coeluting species can be analyzed separately in individual
MS cycles using dynamic exclusion. The orange box and “+”
indicate the positive ion mode. The green box and “—” indicate the
negative ion mode. Each MS cycle lasts ~15 s, and consists of
multiple orders of MS" (up to MS? in the positive ion mode, as
well as MS and MS? in the negative ion mode. The MS scans from
a single cycle are illustrated at the bottom, along with hypothetical
fragmentations of an example glycan structure. The glycan se-
quence is revealed through GONE sequencing in the positive ion
mode (orange), where sugar residue(s) are sequentially cleaved off
from the nonreducing end. Further structure information is ob-
tained from the negative MS? scan (green). The dashed lines in red
indicate the hypothetical cleavages elucidating the glycan struc-
ture. The structures shown at each MS stage are for illustration
purposes only, and do not imply actual fragmentations. The
symbols used are the same as in Figure 2d, but the connecting
lines do not indicate specific linkages.

@ polarity

Results and Discussion

We have previously reported an online RP-HPLC/MS
technique to analyze and characterize 2AB labeled
N-linked oligosaccharides in the positive ion mode [10].
Under similar ion source conditions, the 2AB labeled
oligosaccharides showed good ionization efficiency in
both positive and negative ion polarities, thereby allow-
ing sequence and structural information to be obtained
within a single chromatographic run. In the positive ion
mode, the collision conditions were optimized here so
that the tandem MS spectrum for each 2AB labeled
glycan contained prominently a single Y type ion [53]
resulting from the loss of the nonreducing end sugar
residue(s). Upon subsequent fragmentation of the Y ion,
sequential loss of the sugar residue(s) from the nonre-
ducing end was obtained, revealing the sequence of the
carbohydrate chain. The secondary amine group on the
2AB tag is believed to facilitate the generation of those
Y ions by maintaining a charging proton at the reducing
end. The mass losses and their corresponding nonre-
ducing end sugar residue(s) in GONE sequencing are
summarized in Table 1. In the negative ion mode, ions



1824 CHEN AND FLYNN

Table 1. Mass loss defining nonreducing end sugar residue(s)
in GONE sequencing

Mass loss (u, average mass) Sugar residue(s)

146 Fuc

162 Man

203 GlcNAc?

291 SA

365 Gal-GIcNAc
527 Gal-Gal-GIcNAc
657 SA-Gal-GIcNAc

?Mass loss of 203 u after the loss of one or both core a-mannose
indicates the presence of bisecting GIcNAc.

diagnostic of the oligosaccharide structure were ob-
served, which are mostly consistent with previous
findings under higher collision energies [32] with a few
identified in this study. These diagnostic ions, con-
cluded from the negative MS” spectra of a variety of
glycan species (see sections below), are listed in Table 2
to provide guidance for glycan structure elucidation.
Both sequence and structural information can be ob-
tained in a single LC/MS experiment by switching the
polarity of the MS instrument. The LC/MS experimen-
tal scheme is illustrated in Figure 1.

To demonstrate the broad applicability of this
method, a variety of different glycan types were ana-
lyzed. RNase B, fetuin, and ovalbumin were used
because they are known to contain high mannose,
complex and hybrid glycans [2, 3, 54]. Since the purpose
of this study is to illustrate the utility of the methodol-
ogy for glycan structure characterization in general, not
to provide detailed glycosylation patterns of those
glycoproteins, the proteins purchased from commercial
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sources were analyzed directly without further purifi-
cation. Figure 2 shows the RP fluorescent chromato-
graphic profiles of 2AB labeled oligosaccharides released
from these glycoproteins. Glycan species containing two
or more sialic acids elute earlier than 20 min and are not
included. Although the structures for most of the gly-
cans in the observed peaks have been determined, only
peaks labeled in the figure are discussed in this paper,
which are representative of different glycan structural
features. Solved structures for the labeled peaks are
shown in Figure 2d. In N-glycan characterization, bio-
synthetic restrictions of the expression system are al-
most always applied, which substantially reduce the
number of possible structures. Structures of possible
mammalian N-linked complex and high mannose gly-
cans are illustrated in Figure 3. All structures contain a
common trimannosyl chitobiose core, attached with a
variety of outer sugar residues. The mammalian N-
linked hybrid glycans comprise a high-mannose-like
6-antenna and a complex-like 3-antenna, with or with-
out bisecting GlcNAc. For successful characterization of
N-linked oligosaccharides, a number of structural fea-
tures need to be determined, including the composi-
tions of 6- and 3-antennae, the attachment site(s) of
fucose and sialic acid, presence of bisecting GIcNAc and
aGal, and differentiation of stereoisomers such as Man
and Gal. Characterization results for high mannose,
complex, and hybrid glycans from the example mam-
malian glycoproteins are provided in the following
sections to illustrate the approach and to provide diag-
nostic spectra to guide the identification of unknown
glycans. The only structures considered from the MS
data were based on mammalian biosynthetic rules as
illustrated in Figure 3. The data analysis for an example

Table 2. Diagnostic ions defining 2AB labeled glycan structures in MS? spectra of negative ion mode®

Diagnostic ions m/z° Glycan structure
Z: YR, 2 468:486, M-164 With reducing end fucose
322:340, absent Without reducing end fucose
Zar:YNR M-180:M-162 Man or Gal Terminal residue
M-221:M-203 GIcNAc
M-309:M-291 SA
M-342:M-324 Gal-Gal
F ("2Ag.s) 262 GlcNAc 1-2,3 linkage
424 Gal-GIcNAc
586 Gal-Gal-GIcNAc
E (B ©*Xg.3) 507 (GIcNAc), 1-2,3,4 linkage
B-221 3 or 6B-221 GlcNAc 1-4 linkage
6B, C, “*Ar_o, “PAg, 6B, 6B+ 18, ¢B+60, {B+90 6-antenna
D, D-H,0 sB1+162, ;B+144 Without bisecting GIcNAc
D-221, D-221-H,0 sB+144, ;B+126 With bisecting GIcNAc
D’, D'-H,0 sB'+144, ;B'+126 Outer 6-antenna

2Annotations used in this table and through this paper are based on that of Reference [53] and [32]: superscript before the letter indicates sites of
cross-ring cleavages; subscript before the letter indicates 3- or 6-antenna together with the core a-mannose to which the antenna is attached; the
subscript after the letter indicates the cleavage site, where R and NR represent reducing and non-reducing end respectively, and F represents the
cleavage corresponding to the loss of fucose; prime after the letter indicates the 1-6 linked residues on the core a1-6 mannose.

bValues for singly charged ions. M denotes molecular ion.



J Am Soc Mass Spectrom 2009, 20, 1821-1833

GONE SEQUENCING BY RPLC/MS 1825

LU | R7
16 % 2 2 %
141 SN =N Op. S)-N
R5 ¢ pmE-2AB O p&®2AB ¢ op=m2AB o pmm-2AB
12] °9 ¢ °q v
] 0 0 o 6
[e] [e]
R1a (M9) R1b (M8-)  R2a(M8-l)  R2b (M7-))
o. o. o, o,
jo} jol jol 0.
o pmm 2B o pmmoAB o pmm2B ¢ pmm2AB
5 ¢ °d ¢ 9
LU o 0 o o
161 ’ ’
14 R3 (M7-1I) R4 (M8-l)  R5 (M6-) R6 (M7-11)
121
107 o, a
81 o1 03 2. o,
o /m 2AB g m 2AB
] ; S
2- 02 / a o
) 21 ¢ R7 (M5) RS (M6-11)
0
LU
1.2] = "o,
1.1 o ;m 2B =D mm 2B EDEE-2AB
1.01 " i "l
0.91 o1 02 o3
0.81
0.7 F1 F2 F3 F4 a. o 4 a4 o A
0.61 o, CoMpwE 2AB OOEDEE 2AB O#pmE2AB
o , y
0.5 o 8 ok O ot
(©) 200 40 60 80 100 120 140  min
(d) Fq F2 F3 F4

Figure 2. RP Fluorescence chromatograms of the 2AB labeled glycans released from (a) 10 ug RNase
B; (b) 30 ug ovalbumin; (c) 30 pg fetuin. Only oligosaccharide peaks discussed in this paper are labeled,
the structures of which are shown in (d). Species co-eluting in the same fluorescent peak are indicated by
letters a and b. The early eluting peaks (<20 min) containing two or more sialic acids are not shown.
Keys to symbols in this figure and subsequent figures: circle, Man; filled square, GIcNAc; diamond,
Gal; triangle, Fuc; star, SA; dashed line, « linkage; solid line, B linkage; vertical line, 1-2 linkage;
horizontal line, 1-4 linkage; forward slash, 1-3 linkage; backward slash, 1-6 linkage; wavy line,

unknown linkage.

glycan (F4 in Figure 2) is shown in Figure 3¢, demon-
strating how the combination of GONE sequencing and
negative MS® data can be used together to determine
detailed oligosaccharide structures when biosynthetic
restrictions are applied.

High Mannose Glycans

2AB labeled high mannose glycans were prepared from
RNase B, the fluorescence RP chromatogram of which is
shown in Figure 2a. These high mannose species, in-
cluding their structural isomers, are well separated by
this RP method [10]. The structures of high mannose
glycans and their isoforms are shown in Figure 2d,
which were determined using on-line tandem MS data.
The three structural isoforms [2, 46] of Man7 (peak R2b,
R3, and R6) were unambiguously distinguished using

tandem MS and are provided as examples for high
mannose structural analysis using this technique.

In GONE sequencing, nonreducing end sugar resi-
due(s) are sequentially released in successive MS”
stages, resulting in a single prominent Y ion in each
tandem MS spectrum. This is illustrated in Supplemen-
tal Figure S1, which can be found in the electronic
version of this article. In the initial MS spectrum MS?,
the doubly charged ion at m/z 840 is the protonated
molecular ion of Man7. Upon fragmentation under
GONE sequencing conditions, a dominant ion at m/z
759 was generated in MS” The difference in the m/z
values of those two doubly charged ions is 81, corre-
sponding to a mass difference of 162 u. This mass
difference is consistent with the loss of Man from the
nonreducing end. Although the mass of Gal is also
162 u, Gal is always released together with an attached
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Figure 3. Possible structures for mammalian complex (a) and
high mannose (b) oligosaccharides. Mammalian hybrid oligosac-
charides contain a high-mannose-like 6-antenna and a complex-
like 3-antenna. Data analysis of an example glycan (F4 in Figure 2)
is shown in (c). Symbols for sugar residues are same as in Figure
2. Sugar residues that can be either present or absent are indicated
by *. The connecting lines in (a) and (b) do not indicate positional
linkages, whereas those in (c) are same as in Figure 2.

GIcNAc (Gal-GleNAg, 365 u), as will be discussed in a
later section. The Y ion at m/z 759 is then subject to the
next round of fragmentation, resulting in a dominant
ion at m/z 678 in MS?, due to the loss of another
nonreducing end Man. The GONE sequencing was
carried through MS®, and the identity of the sugar
residue at each sequencing step was determined from
the mass difference between the most abundant ions
from two consecutive MS" stages. The mass loss from
the parent ions and their corresponding sugar resi-
due(s) from the nonreducing end are summarized in
Table 1. The GONE sequencing spectra for the three
Man7 isomers are virtually identical, all illustrating a
series loss of Man residues from the nonreducing end as
shown in Supplemental Figure S1. Although GONE
sequencing provides a simple sequence readout of the
oligosaccharide chain from the nonreducing end to the
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chitobiose core, it does not reveal the composition of
each antenna. Consequently, Man7 isomer structural
differences can not be obtained solely from the GONE
sequencing data.

To differentiate the structural isomers, MS? spectra
in the negative ion mode were used. These spectra are
shown in Figure 4 for the doubly charged parent ions,
and in Supplemental Figure S2 for the singly charged
parent ions. The diagnostic ions for structural determi-
nation including reducing end fucosylation, terminal
sugar residues, and antenna composition are summa-
rized in Table 2. As shown in Figure 4, all M7 structural
isomers yield a Zgz:Yg ion pair resulting from the
cleavage of the glycosidic bond between the chitobiose
core GIcNAc residues. The m/z values of this ion pair
can be used to indicate the absence (322, 340) or
presence (468, 486) of core fucose on the reducing end
GIcNAc. The presence of a terminal mannose residue
indicated by GONE sequencing is confirmed by a
Z\r:Ynr ion pair resulting from the loss of the terminal
mannose (m/z 748 and 757 respectively for M7). The
compositions of the 6-antenna are revealed by a series
of ions including a pair of D and D-18 ions from the
concurrent cleavages of the glycosidic bonds between
the B1-4 core mannose and the core GIcNAc and that
between the B1-4 core mannose and the «l-3 core
mannose, a pair of C and B ions of the 6-antenna
together with the a1-6 core mannose (,C and ¢B), and a
pair of A type ions (* *Ag, and ” *Ag.,) from cross-ring
cleavage on the branching mannose. Based on this
series of ions, it can be concluded that the outermost
mannose is on the 6-antenna for M7-1 and M7-III, and
on the 3-antenna for M7-II. The M7-I and M7-III isomers
can be distinguished by the ion pair of D" and D’-18.
The presence of the m/z 485 and 467 ion pair indicates
that the «1-2 mannose on the 6-antenna is on the outer
antenna (Figure 4a, inset). This information is used to
differentiate M7-I and M7-IIL. It is noteworthy that the
structural diagnostic ions need to be assigned as groups
rather than individually, as different glycosidic or com-
binations of glycosidic cleavages from multiple glycan
structures can result in fragment ions of identical mass.
A single fragment ion, when isolated from the rest of
the spectrum, is often not sufficient to indicate a specific
structure feature for oligosaccharides. For example, the
fragment ion at m/z 647 in Figure 4 can be either a B ion
for M7-I and M7-III or a D ion for M7-II. It was only
when all six ions in this group were considered that one
could distinguish M7-1I from M7-1 and III. Using the
approach outlined above, the structures of M5, M9, and
the isoforms of M6 and M8 were also determined
(Figure 2d). Whereas the sequence and antenna compo-
sitions were derived from the MS data, the exact link-
ages and anomeric configurations shown in Figure 2d
were determined from biosynthetic restrictions as illus-
trated in Figure 3. For example, for high mannose
structures containing more than five mannose residues,
the additional mannoses are always al-2 linked to the
inner mannose residues. Although the structures of
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Figure 4. Negative MS? spectra of [M — 2H]* of M7 isomers: (a) M7-I; (b) M7-1I; (c) M7-III. Ion
nomenclature of Domon and Costello [53] and annotations defined in Table 2 are used in this figure
and subsequent figures. Labels in red denote fragment ions indicating the 6-antenna composition.
The ion pair of Zy and Yy (Zg:Yg) are used to determine the presence or absence of reducing end
fucose. The ion pair of Zyyz and Yng (Zng:Yng) are used to determine the nonreducing end
monosaccharide. The relative ion intensities in certain /z ranges are amplified so low abundant fragment
ions can be better seen. The amplification factor are indicated as “xIN” on top of the spectra in this figure
(n = 5) and subsequent figures. The grey boxes indicate the composition of D and D’ ions.

most high mannose glycans determined here, including
the isoforms of Man7 and Man8, are consistent with
previous NMR results [2], the presence of a second
Mané6 isoform (M6-II) was not reported in the NMR
study. Since this isoform accounts for only 5% of total
Man6 and 1.5% of total glycan pool released from
RNase B (based on integrated fluorescence peak area in
Figure 2), it is not surprising that this minor species
was not confidently assigned in the NMR study, and
was only revealed with the high-resolution RP sepa-
ration and high sensitivity MS detection as employed
here.

It is worth pointing out that detailed structural
characterization by MS can be facilitated by advance-
ment in mass spectrometers, as well as the instrument
controlling software. Mass spectrometers with high-

resolution can distinguish ionic species of different
atomic compositions but with identical nominal mass
and thus provide additional structural information. For
example, the presence of the D' ion at m/z 323 for M7-11
and M7-III can be ambiguous when using a typical ion
trap instrument, as this ion has the same nominal mass
as the second isotopic peak of the Z ion. Analysis using
a high-resolution instrument, such as the Thermo LTQ
Orbitrap mass spectrometer, confirmed the presence of
D’ and D’-18 for M7-II and M7-III, where distinct ion
signals were readily observed for D’ (m/z 323.10) and
the second isotopic peak of the Zy ion (m/z 323.14). In
addition, sophisticated instrument software, such as the
dynamic exclusion function of the ion trap instrument
used here, enables the analyses of coeluting ionic spe-
cies in a single experiment. In the case of M7 character-
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ization, singly and doubly charged parent ions of the
same species were fragmented individually, adding
further confidence in structural assignment. Simpler
fragmentation patterns were observed for singly
charged parent ions of M7 isomers, as shown in Sup-
plemental Figure S2. In addition to the ions discussed
above, a pair of Z and Y ions from the cleavage between
the al-6 and B1-4 core mannoses was also evident,
supporting the structural assignment.

Although as little as 70 fmol oligosaccharide can be
readily detected by this method [10], the quality of the
characterization data will be dependent on the quantity
of the oligosaccharide analyzed. The least abundant
peak characterized here (peak R4) corresponded to
oligosaccharide released from ~4.5 pmol protein, for
which high quality sequence and structural information
were obtained.

Complex Glycans

A variety of N-linked complex type oligosaccharides
can be synthesized in mammalian systems, which can
differ in the composition of 6- and 3-antennae, the
attachment site of fucose or sialic acid, and in whether
they contain bisecting GIcNAc or aGal (Figure 3a).
Similar to the approach described above for high man-
nose glycans, structure elucidation of complex glycans
can also be achieved using the combination of GONE
sequencing and negative MS” data, together with the
application of biosynthetic restriction. Briefly, in posi-
tive ion mode, GONE sequencing data not only provide
compositional sequences, but also differentiate stereo-
isomers such as Gal and Man, and indicate the presence
of bisecting GIcNAc or aGal, as summarized in Table 1.
In negative ion mode, a 6-ion series can be used to
determine 6-antenna composition (and thus the comple-
mentary 3-antenna composition), as summarized in
Table 2. Other structure features can also be determined
from their respective diagnostic ions, such as the iden-
tity of nonreducing end terminal residue(s) (Zyr:Yng),
presence of fucosylation (Zg), and whether the fucose is
attached to the reducing end GlcNAc or not (Zy:YR) (see
Table 2). To demonstrate the broad applicability of
the combined approach of GONE sequencing with
negative MS? analysis, three examples of complex gly-
cans are provided, which differ in a number of the
structural features described.

Tetra-Antennary with Bisecting GIcNAc

In multi-antennary mammalian complex glycans (Fig-
ure 3a), the 6-antennae can be attached to the 2, 4, or 6
positions of the a1-6 core mannose, and the 3-antennae
can be attached to the 2 or 4 position of the a1-3 core
mannose [5]. In addition, a bisecting GlcNAc can be
B1-4 linked to the B1-4 core mannose. Detailed charac-
terization of this type of glycan thus requires the
determination of the 6- and 3-antennae compositions
and identification of the bisecting GIcNAc.

J Am Soc Mass Spectrom 2009, 20, 1821-1833

Similar to that for high mannose structures, GONE
sequencing experiments of complex oligosaccharides
provided straightforward readouts. The peak O2 (Fig-
ure 2b) from a commercial ovalbumin sample is pro-
vided as an example. The mass of this 2AB labeled
glycan indicated a (GIcNAc); composition in addition
to the trimannosyl chitobiose core structure. GONE
sequencing spectra are shown in Figure 5. The mass
difference of the most abundant ions in consecutive
MS" spectra was calculated to determine the sugar
residue released from each sequencing step. In the MS?
and MS? steps, loss of nonreducing end GlcNAc was
accompanied by the loss of a charging proton, as
indicated in Figure 5. Whereas the loss of GIcNAc is
evident from MS? to MS®, the fifth GlcNAc was not
released until both core a-mannose residues were lost
(MS®, bottom spectrum in Figure 5). This last GlcNAc
(not counting those of the chitobiose core) is a bisecting
GlcNAc, which is confirmed by negative MS? analysis
as will be discussed later. Analysis of many other oligo-
saccharides containing bisecting GIcNAc confirmed that
the bisecting GIcNAc is always released at later stages of
tandem MS, more specifically, after the loss of one or both
core a-mannoses (see, for example, Supplemental Figure
S6). This allows straightforward identification of bisecting
GlcNAc, which is difficult to identify using exclusively an
exoglycosidase digestion approach. The attachment sites
of the four early released GIcNAc (i.e., the composition of
6- and 3-antennae), can not be determined by GONE
sequencing data alone. This information, however, can be
obtained from the negative MS” spectrum.

Peak O2 and peak O3 (Figure 2b) contained ionic
species of the same mass. GONE sequencing data were
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Figure 5. GONE sequencing spectra for glycan O2. Sequential
losses of sugar residues from the nonreducing end after each
sequencing step are indicated with their corresponding mass loss
in parentheses.



J Am Soc Mass Spectrom 2009, 20, 1821-1833

‘ x5 ‘ x2 ‘
1007 £ .t\ 7798 nr 920.3
] sor2 ™ g
- -O-B-E-2AB
80t ?
] n D-221
] 914.3
60
| ZNR
] 911.3
40
1, 678.2 D-221-H,0
o 435, B | 8188 g
o 20 3221 Y 505.2 6 896.
= 1 3403 25 221 ga1. 7703 C |oan_
g (a) 1 ‘ {549 2 j 7111 2 788 ago L
S oL ul 1
Q
< 100— l\ YNR 920.3
2 ] i
T o] =O-mE-2AB 779.8
& ] L D-221
] u 7112
60
| 3E
] 072 D—221—:|‘20
407 693, ,
] B
4 NR
2013221y 5672 8188 9113
13405 B2t
] T ~346.1 ‘ { 585 2 627 2 \
ol | Lt T LA
T 1T ‘ L \ \ L ‘ T ‘ T 1 ‘ T
b) 3 400 600 700 800 900
(b) m/z
Figure 6. Negative MS? spectra of [M — 2H]*" of: (a) glycan O2;

(b) glycan O3.

very similar for these two oligosaccharide species, both
of which indicated a bisecting GIcNAc. Structural dif-
ferences between the two species were revealed in their
MS? spectra under the negative ion mode, as indicated
in Figure 6. The Zg:Yy ion pair at m/z 322 and 340
confirmed the lack of core fucosylation on the reducing
end GlcNAc. Only one Zyi:Yyng ion pair at m/z 911 and
920 was observed, indicating that GIcNAc is the only
nonreducing end residue for both structures. Instead
of the ion pair of D and D-18, oligosaccharides with
bisecting GlcNAc produce D-221 and D-221-H,O ions
(see Table 2), revealing the 6-antenna composition.
O3Ag. is missing in these spectra, but * *Ag, and (B, ;C
ion pair can still be seen. Based on the m/z values of this
ion series, the O2 oligosaccharide was determined to
have three GIcNAc on the 6-antenna and only one on the
3-antenna. In contrast, the oligosaccharide under peak O3
has two GIcNAc residues on both antennae. B-221 type
ions were also observed for both O2 and O3 oligosaccha-
rides. The B-221 type ions have not been reported before.
Similar to the D-221 signature ion of a bisecting GlcNAc
(1-4 linked to the B1-4 core mannose), the B-221 ion can be
used to detect 1-4 linked GlcNAc on the antenna. The
B-221 ion at m/z 549 for O2 indicates an antenna of three
GIcNAc residues with one 1-4 linked GlcNAc. The B-221
ion at m/z 346 for O3 indicates an antenna of two GIcNAc
residues, one of which is 1-4 linked. The biosynthetic
restrictions (Figure 3) were then applied to determine the
remaining linkages as shown in Figure 6.

Fucosylated Bi-Antennary with or without aGal

Complete complex oligosaccharide structural assign-
ment also requires determination of the fucose attach-
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ment site and differentiation of monosaccharide iso-
mers. In mammalian complex glycans, fucose can be
a-linked to either the antennae or the reducing end
GlcNAc. In invertebrates, the fucose attached to the core
can be attached to either of the two GIcNAc residues
[55]. When characterizing oligosaccharides using MS
approaches, an additional challenge comes from the
differentiation of monosaccharides of identical mass.
However, identification of stereoisomers such as Man
and Gal, and anomers such as BGal and aGal, are an
expected part of a thorough primary glycan structural
determination. Such information can be derived from a
combination of GONE sequencing and negative MS?
analysis. In the following two examples (both fucosy-
lated bi-antennary complex glycans released from a
commercial fetuin sample), GONE sequencing with
negative MS” have been used to identify glycan primary
structures.

Taking into account the biosynthetic restrictions, the
masses of peak F3 and F4 (Figure 2c) indicate oligosac-
charide compositions of (Hex),(GlcNAc),(Fuc) and
(Hex)s(GlcNAc),(Fuc), respectively. Tabular summaries
of the GONE sequencing data for both structures are
shown in Supplemental Figure S3. In GONE sequenc-
ing, each sequencing step does not always release a
single sugar residue. As indicated in Table 1, di- or
trisaccharides of specific sequences can also be released
in a single sequencing step. For peak F4, the first round
of GONE sequencing revealed a nonreducing end Gal-
GIcNAc group with a mass loss of 365 u. Analysis of
other glycan standards (data not shown) indicated that
Gal residues, in contrast to mannose residues, are
always lost together with the attaching GlcNAc. This
observation is consistent with previously reported find-
ings under similar conditions [10, 11]. This property
unambiguously differentiates Gal from Man in GONE
sequencing even though these monosaccharides have
the same mass. It is also evident from the GONE
sequencing data in Supplemental Figure S3a (table) that
the fucose residue is attached to the core structure, since
it was released after both Gal-GlcNAc antennae. The
GONE sequencing data for peak F3 is shown in Sup-
plemental Figure S3b (table). In the first two sequencing
steps, a mass loss of 527 u was observed, corresponding
to a (Hex),GlcNAc group. Similar to the discussion
above, this mass loss can not be explained by Gal-
GlcNAc-Man, as the Gal-GlcNAc disaccharide and Man
residue would not be released in a single sequencing
step. As a result, the mass loss of 527 u in a GONE
sequencing step can only be explained by a Gal-Gal-
GlcNAc sequence for mammalian glycans (see Figure
3a). The nonreducing end Gal in the Gal-Gal-GlcNAc
sequence is most likely « linked [56, 57] as a terminal
Gal(B1-4)-Gal(B1-4)-GIlcNAc sequence in a N-linked
glycan has only been found in fish [58] but not in
mammals. Just as the mass loss of 365 u is diagnostic of
a Gal-GIcNAc group, the mass loss of 527 u in GONE
sequencing can be used as an indication of nonreducing
end aGal-Gal-GlcNAc for mammalian glycans. Similar
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to glycan F4, glycan F3 GONE sequencing data revealed
a core fucose (Supplemental Figure S3b table). For both
structures, however, the GONE sequencing data cannot
define which GIcNAc is attached to this core fucose.

In the negative ion mode MS” spectra, the most
abundant ion for both structures is a Z type ion,
resulting from the loss of the fucose residue (Zg, Sup-
plemental Figure S3a and S3b). The Zy:Yy ion pair at
m/z 468 and 486 indicates that the core fucose is at-
tached to the reducing end GIcNAc. Since the GONE
sequencing data clearly indicated the presence of a core
fucose, if the Z:Yy ion pair were to be at m/z 322 and
340, those values would indicate a fucose attached to
the second GIcNAc from the reducing end. The linkage
position on the sugar («1-3 for plants, al-6 for mam-
mals, or both for invertebrates [55]), could not be
determined from these data. For glycan F4, Z\z:Y\R ion
pair at m/z 862 and 871 confirms the presence of
terminal Gal. Interestingly, an abundant ion pair at m/z
943 and 952 was observed for F3, resulting from the loss
of Gal-Gal (i.e., Zng.1:Yngr.1)- Thus, an abundant ion pair
at mass loss of 342 and 324 u (as opposed to the mass
loss of 180 and 162 u) indicates terminal oGal-Gal.
Other F type ion m/z value differences, 424 for F4 and
586 for F3, indicate terminal Gal-GlcNAc and Gal-Gal-
GIcNAC, respectively, as described by Harvey et al. [32]
The 6-antenna composition of both oligosaccharide spe-
cies can be derived from the ion series of D, D-H,0,
9 3Ar0 " *Ar,, B, and (C, in a manner similar to the
oligosaccharide structures discussed in the previous
sections. It is worth pointing out that each of F3 and F4
glycans comprise only a very small fraction of the total
glycan pool released from the commercial fetuin sample
(2% or less based on integrated fluorescence peak area).
Whereas sialylated fetuin glycans have been studied in
great detail by NMR [3], little was known for low
abundant neutral glycans in fetuin. It can not be ruled
out that some of the minor glycan species identified in
this study might originate from other glycoprotein
contaminants since the glycoproteins obtained from
commercial sources were analyzed directly without
further purification. This possibility was illustrated for
a commercial ovalbumin sample [54]. Regardless, this
study demonstrates that low abundant glycan species
that could be difficult to characterize using traditional
methods can be readily identified using the LC/MS
approach described here.

Sialylated Complex

Sialic acid is commonly the terminal sugar in mamma-
lian glycans, linked to a Gal residue. The sialic acid
attachment site can sometimes be determined through
GONE sequencing. Sialic acid tends to be cleaved off
together with the Gal-GIcNAc to which it is attached.
This provides a convenient way to determine the loca-
tion of the sialic acid, exemplified in the GONE se-
quencing of oligosaccharide F2 (Figure 2c). GONE se-
quencing data for this sialylated glycan is shown in
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Supplemental Figure S4 (table). The first round of
sequencing indicated a Gal-Gal-GlcNAc sequence at the
nonreducing end, as evidenced by its characteristic ion
loss of 527 u. The second round yielded a mass loss of
657 u, resulting from the loss of SA-Gal-GIcNAc. These
results strongly suggest that the sialic acid is attached to
Gal-GlcNAc, not the aGal in the Gal-Gal-GlcNAc group.
Further sequencing rounds indicated the loss of Man and
Fuc from the fucosylated core structure. Negative MS?
analysis was then used to determine the location of the
SA-Gal-GIcNAc and Gal-Gal-GlcNAc antennae.

In the negative MS” spectrum shown in Supplemen-
tal Figure S4, the Zy:Yy ion pair at m/z 468 and 486
confirmed that the fucose was attached to the reducing
end GlcNAc, and the Zyg :Yng ion pair at m/z 1008
and 1017 (mass loss of 342 and 324) confirmed the
presence of an aGal-Gal group. A Zyx:Yng ion pair
corresponding to the loss of SA was not observed. Since
the doubly charged parent ion would likely lose a charge
with SA loss, the resulting singly charged ion would
have an m/z value outside that available in this analysis.
The 6-antenna diagnostic ion series, including the D ion
at m/z 850, indicated that the Gal-Gal-GIcNAc group is
attached to the 6-antenna, and thus the SA-Gal-GIcNAc
group must be attached to the 3-antenna. The presence
of the Gal-Gal-GIcNAc sequence is also supported by
the F ion at m/z 586 and the C and B ion pair at m/z 544
and 526. The presence of SA-Gal-GlcNAc is supported
by the two B ions at m/z 655 and 817. However, the exact
linkage of SA to Gal (a2-3 or a2-6), can not be deter-
mined from this analysis.

Hybrid Glycans

The diagnostic ions derived from GONE sequencing
and negative MS* spectra of the high mannose and
complex oligosaccharides discussed above (Table 1 and
Table 2) can be readily applied to many other oligosac-
charide structures. Two hybrid oligosaccharides will be
discussed as examples to illustrate the utility of this
technique.

Sialylated Hybrid

GONE sequencing of oligosaccharide F1 (Figure 2c) re-
vealed the nonreducing ends to be the SA-Gal-GlcNAc
sequence and a Man residue, as shown in Supplemental
Figure S5 (table). The a1-6 core Man has two additional
Man residues attached to it, as elucidated by the 6-
antenna diagnostic ion series with D ion at m/z 647. The
SA-Gal-GlcNAc is thus attached to the 3-antenna, with
3B and ;B; at 817 and 655, respectively. In addition to
the Zyr:Yng ion pair at m/z 914 and 923, indicating the
presence of terminal Man, another Yy ion is also
observed at m/z 1719 as a singly charged ion (not
shown). The latter Yy ion indicates the presence of
terminal SA, and also confirmed that one negative
charge is located on the SA residue.
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Hybrid with Bisecting GIcNAc

The GONE sequencing data of oligosaccharide O1 (Fig-
ure 2b) revealed the nonreducing end GlcNAc and Man
residues, as shown in Supplemental Figure S6 (table).
The GlcNAc released at MS” indicates that this GlcNAc
is B1-4 linked to the B1-4 core mannose as a bisecting
GlcNAc. This is confirmed by the presence of D-221
instead of a D ion in the negative MS* spectrum. The
6-antenna diagnostic ion series indicates the attachment
of two Man residues on the al-6 core Man. Thus, the
nonreducing end GlcNAc is attached to the 3-antenna,
consistent with the F ion at m/z 262. The two Zyg:Ynr
ion pairs confirmed that both terminal Man and termi-
nal GIcNAc are present.

Conclusions

An online RP-HPLC/MS" method described here was
used for rapid structural analysis of mammalian N-
linked oligosaccharides. Complementary information
was obtained by combining MS data acquired in both
positive and negative ion modes through polarity
switching within a single chromatographic analysis.
In the positive ion mode, single sugar or multiple
sugars are released in each round of MS”. These GONE
sequencing data provide a simple readout of the
glycan sequence, similar to that of the classic exogly-
cosidase sequencing approach. Although lacking the
linkage and anomeric specificities in glycosidase diges-
tions, GONE sequencing provides much higher speed
and sensitivity, and is not limited by availability of
specific enzymes. Since only one prominent Y ion is
generated for a wide variety of glycans under the
GONE sequencing condition, the selection of the parent
ion at each sequencing step is straightforward. As many
as eight sequencing cycles can be automatically pro-
grammed within a 15 s positive mode cycle switch,
sufficient to thoroughly sequence all but the most
complex glycans. Identities of sugar residues from the
nonreducing end can be easily determined from the
mass differences of the most abundant ions in consec-
utive MS" spectra. Stereoisomers such as Gal and Man
can also be distinguished based on their different frag-
mentation properties. Some structural features can be
revealed from the GONE sequencing experiment as
well, such as the attachment site of fucose and SA, and
the presence of bisecting GIcNAc and aGal. The pres-
ence of bisecting GIcNAc, a structural feature that can
be difficult to obtain using the classic exoglycosidase
sequencing approach, is readily revealed simply based
on the readout order in GONE sequencing. Due to the
branched structures of oligosaccharides, a linear se-
quence readout as in peptide/protein sequencing does
not apply for multiple antennary glycans. Similar to the
classic exoglycosidase sequencing technique, the exact
branch location of the sugar residue(s) released at each
sequencing step can not be determined in GONE se-
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quencing. Such information, however, can be derived
from MS? analysis in negative ion mode.

In the negative ion mode, diagnostic ions similar to
those observed under higher collision energies are also
observed using an ion trap instrument with collision
energy of only a couple eV. The composition of the
antennae can be readily derived from the 6-antenna
diagnostic ion series. The interpretation of the negative
MS* data is greatly simplified with the additional
restrictions from GONE sequencing results, where the
terminal sugars or sugar groups of specific sequences
were revealed and used to reduce the number of
possible antenna compositions to be considered. The
Zz:Yg ion pair can be used to determine the location of
the core fucose, and the identity of the terminal residue
(or the terminal group in the case of aGal-Gal sequence)
is revealed by the ion pair of Zyg(-;) and Yyg(-1). The
structure of some subunits can also be determined or
confirmed by other diagnostic ions. This information,
together with the terminal sequence revealed by GONE
sequencing, can be used to determine the structures of
even very complex glycans.

Although other techniques may still be required for
the determination of certain linkages (such as «1-3,6 Fuc
and o2-3,6 SA) and structures of aberrant glycans
deviating from normal biosynthetic restrictions, the
GONE sequencing method, in combination with the
supplemental information from negative MS” analysis,
provides a detailed picture of the oligosaccharide struc-
ture. This technique is thus a very useful tool for
detailed characterization of oligosaccharides with little
sample consumption and high speed, and can be
readily applied to structural elucidation of unknown
glycan species. When combined with high-resolution
RP-HPLC analysis [10], both structural elucidation and
quantification of even minor glycan species in a highly
complex mixture can be obtained within a single chro-
matographic run.
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