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If proteome datasets are to be collated, shared, and merged for higher level proteome analyses,
there is a need for generally accepted strategies and reagents for optimization and standardization
of instrument performance. At present, there is no single protein or peptide standard set that is
capable of assessing instrument performance for peptide separation and analysis in this manner.
To create such a standard, we have used the recently described QconCAT methodology to
generate an artificial protein, QCAL. This protein, a concatenation of tryptic peptides that is
expressed in E. coli, provides a stoichiometrically controlled mixture of peptides that are amenable
to analysis by all commonly used instrumentation platforms for proteomics. aAm Soc Mass
Spectrom 2008, 19, 1275-1280) © 2008 American Society for Mass Spectrometry

The preferred method of peptide characterization
is reversed-phase chromatography combined
with mass spectrometric analysis. The wide range

of chromatographic platforms, mass spectrometers, and
data analysis packages make comparison between dif
ferent instruments challenging. Yet, as we move to
wards common data standards for publication and
archiving of proteomics data, there is an increasing
need to normalize such datasets with a common ana
lytical control to permit their meaningful comparison
and aggregation. Currently, proteomics researchers use
diverse criteria for instrument calibration and optimi
zation. Indeed, many laboratories using multiple mass
spectrometers use different standards, often defined by
the manufacturer, for calibration and optimization of
their individual instruments. In addition, the experi
mental conditions (solvents, solid-phase, and elution
gradient) used for pre-analytical peptide separation are
seldom consistent. This makes both intra- and inter
laboratory comparisons of proteomics data almost im
possible to perform with any degree of consistency, as is
often apparent with the analyses performed by multiple
facilities through the Association of Biomolecular Re
source Facility (ABRF) (http://www.abrf.org/index.
dm/group.show /Proteomics.34.htm) studies. Increas
ingly, there is also concern about specifically defining
how proteomics datasets are generated [1], and this will
include the analytical capability of the instrument used.

Normalization of these systems could be achieved
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with a universal standard, chosen to assess all aspects of
performance and provide a reference analysis that can
be fully recorded. Moreover, as experience grows with
such a standard, it would be possible to use the behav
ior of such material as a quality control driver, setting
minimal standards for chromatographic resolution, ion
selection, fragmentation, and sensitivity. No single pro
tein has yet been characterized that fulfils these require
ments. We have recently demonstrated that designer
proteins can be used to create a concatenation of tryptic
peptides that are surrogate internal standards for abso
lute protein quantification (QconCAT), [2-4]. However,
there are many other feasible applications of designer
proteins that can permit exploration of peptide behav
ior in proteomics and mass spectrometry. Additionally,
the low cost and ease of production of the designer
protein product makes this preferable to individually
synthesizing peptides. Here, we describe the design
and analysis of an artificial polypeptide (QCALl) to
optimize and define instrument conditions for peptide
analysis by mass spectrometry, whether preceded or
not by reversed-phase chromatography.

Experimental

QCAL Construction

The peptide sequences of interest were concatenated in
silico and used to direct the design of a gene, codon
optimized for expression in E. coli. Additional sequences
were added to provide an initiator methionine residue
(MGALR) and a His6 sequence (ALVALVHHHHHH) for
affinity purification using Ni-NTA resin. The gene was
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synthesized and cloned into the expression vector pET21a
by PolyQuant GmbH (http://www.polyquant.com/).

QCAL Expression and Sample Preparation

QCAL was expressed in E. coli BL21 (DE3) cells and
purified on a Ni-NTA column as previously described
[3], diluted to 1 mg/mL in 50 mM NH4HCO3 and
digested with 2% (wt/wt) trypsin, overnight at 37 °C.
Digested QCAL (1 nmol) was dried by vacuum centrif-
ugation and, for some analyses, guanidination of lysine
residues was performed by addition of NH4OH (7 M, 10
�L) and O-methylisourea (0.5 M in water, 5 �L). After
overnight incubation, samples were desalted using C18
ZipTips (Millipore, Watford, UK) before MALDI-TOF
analysis.

Nanoflow LC-MS Analysis

QCAL was reduced with DTT (10 mM, 56 °C for 1 h)
and alkylated (55 mM iodoacetamide, room tempera-
ture, dark, 45 min) and the protein precipitated with
trichloroacetic acid before reconstitution in 50 mM
NH4HCO3 and digestion. Tryptic peptides (500 fmol)
were desalted in-line using a 5 mm � 300 �m C18
precolumn, before separation by reversed-phase chro-
matography with a PepMap C18 column (3 �m, 0.075�
150 mm, 100 Å), both from LC Packings Dionex (Surrey,
UK). Chromatography was performed at 200 nL/min
using an EASY-nLC (Proxeon, Odense, Denmark) nano-
flow system arranged in-line with a QTOF micro (Wa-
ters, Milford, MA). The column was equilibrated in
0.2% formic acid (Solvent A) and was developed with
90% acetonitrile/0.2% formic acid (Solvent B); 0% to
20% over 30 min, 20% to 60% over 10 min, and 60% to
100% over 5 min.

Matrix-Assisted Laser-Desorption Ionization-Time
of Flight (MALDI-TOF) Mass Spectrometry

MALDI-TOF MS analysis was performed using either the
Voyager-DE STR (Applied Biosystems, Foster City, CA) or
the Ultraflex II TOF/TOF (Bruker Daltonics, Bremen,
Germany) with digested QCAL crystallized with a satu-
rated solution of �-cyano-4-hydroxycinnamic acid in 50%
(vol/vol) acetonitrile, 0.1% (vol/vol) trifluoroacetic acid.
Detection was performed in reflector mode with delayed
extraction.

Fourier Transform Ion Cyclotron Resonance
(FT ICR) Mass Spectrometry

Digested QCAL was desalted using a C18 peptide trap
(Michrom Bioresources, Auburn, CA), dried by vacuum
centrifugation and resuspended in 50% (vol/vol) aceto-
nitrile, 0.1% (vol/vol) formic acid to 1 pmol/�L. Pep-
tides were infused and analyzed using a Bruker Dalton-
ics Apex III 9.4T FT ICR mass spectrometer (Billerica,

MA) and an electrospray source. Data acquisition was
performed with the Bruker Xmass software, version
6.01 (Bruker Daltonics, Bremen, Germany). Mass spec-
tra were collected using 512K data points per scan, over
a range of m/z 50–5000. High-resolution data were
collected over a range of m/z 650–1500.

Results and Discussion

QCAL1, an artificial protein constructed using the
QconCAT methodology [2–4], is a concatenation of 22
unique tryptic peptide sequences (Table 1) designed for
the calibration, optimization, and comparison of a range
of mass spectrometers. The QCAL1 peptides were ad-
ditionally designed to assess and optimize instrument
resolution, test the linearity of signal detection, and
evaluate peptide separation by reversed-phase chroma-
tography. As these peptides are incorporated into an
artificial protein, it is also necessary for the user to
validate common sample preparation procedures such
as tryptic digestion and desalting. Characteristics are
also incorporated within the design to assess peptide
modification such as deamidation, methionine oxida-
tion, and modification of lysine residues.
Peptide mass fingerprinting (PMF) experiments are

typically performed using a matrix-assisted laser-
desorption ionization (MALDI) time-of-flight (TOF)
mass spectrometer for the identification of proteins
following in-gel digestion with trypsin [5]. The peptides
that are generated under these conditions and subse-
quently used for database searching, typically range
between 500 and 3500 Da. However, MALDI-TOF in-
struments are usually calibrated with a mixture of
synthetic peptides �900 Da, even though smaller pep-
tides may enhance search algorithm scores and improve
protein identification. QCAL1 was therefore designed
to generate tryptic peptides with [M � H]� m/z values
between �400 and 3000. MALDI-TOF mass spectrom-
etry of digested QCAL1 using a Voyager-DE STR
(Figure 1a) demonstrates that up to 19 [M � H]�

peptide ions can be used for calibration over the m/z
range 400 to 3200. Similar data were also observed
following MALDI analysis with an Ultraflex II TOF/
TOF.
In MALDI-TOF MS, arginine-terminated tryptic pep-

tides often give superior signals to their lysine-
terminating counterparts [6]; however, peptide signals
can be enhanced by conversion of lysine residues to
homoarginine [7–9]. The almost identical peptides 8
and 11 (Table 1) were thus incorporated to test the
efficiency of C-terminal homoarginine formation by
lysine guanidination. MALDI-TOF spectra over m/z
range 1410–1490, before (Figure 1b) and after (Figure
1c) guanidination are depicted, clearly indicating pref-
erential detection of the lysine-terminating Q11 peptide
after modification (Q11*). Based on the change in iso-
tope distribution post-guanidination, base catalyzed
deamidation of the peptides can also be observed [10].
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Q21, previously overlapping with Q8, can also be
clearly observed post-guanidination.
High-resolution Fourier Transform mass spectrome-

ters, such as the ion cyclotron resonance (FT ICR) and
Orbitrap instruments allow the determination of analyte
masses to high accuracy (low or sub-ppm). Increasing use
is therefore being made of these instruments in proteom-
ics applications, primarily due to the reduction in false
positive automated peptide identifications [11, 12]. Cali-
bration of these instruments can be achieved using
QCAL1 either as an external calibrant (Figure 2) (where
average mass accuracy sub-1 ppmwas achieved using the
ICR instrument) or as an internal calibrant. To assess the
resolving power of instruments such as these, QCAL1
incorporates peptides Q1 and Q7, representing a lysine to
glutamine substitution, a difference of 0.0364 Da. Discrim-
inating these two peptides requires an instrument
resolution of �57,000 (FWHM), quite within the
capabilities of both the instruments mentioned above.
Data acquired on a 9.4T FT ICR mass spectrometer
indicate that, as expected, these two peptides can be
readily distinguished (Figure 2c), with peak resolu-
tion 	105,000 (FWHM) being observed. Differentia-
tion of these peptides can therefore be used as a
benchmark for instrument resolution. In addition,
deamidation of a number of tryptic peptides from
QCAL1 was observed, with the amount of deamida-
tion being dependent on sample preparation. The

extent of deamidation can be adjusted by exposure of
the peptides, rather than QCAL1, to high pH [13].
Detection of the deamidated form of Q92� (and its
discrimination relative to the native Q92� first [13C]
isotopomer peak) (Figure 2b) requires an instrument
resolution 	94,000 and can thus be used as an
additional specification for standardizing the perfor-
mance of high-resolution instruments.
Methionine oxidation is often observed as an artifact

during sample preparation and it is thus difficult to
discriminate artificially induced oxidation from post-
translationally modified methionine. Peptides Q12,
Q13, and Q14 were thus included to assess methionine
oxidation as a result of sample handling. MALDI-TOF
analysis of performic acid-induced oxidation of QCAL1
tryptic peptides demonstrated methionine sulfone for-
mation on all three methionine containing peptides
(data not shown), validating utility of these peptides to
assess in vitro methionine oxidation.
Critical to the success of proteomics experiments

and the characterization of peptides within complex
mixtures is their separation by reversed-phase chro-
matography before mass spectrometric analysis.
QCAL1 was therefore designed to incorporate pep-
tides with a range of hydrophobicities, thereby per-
mitting evaluation of reversed-phase chromato-
graphic conditions for peptide separation. QCAL1
peptides demonstrated good chromatographic reso-

Table 1. Sequence and function of QCAL1 peptides

Q-
peptide Sequence Primary function

[M�H]�:
m/z

[M�2H]2�:
m/z

Relative
�

Predicted
retention

time (min)

Actual
retention

time (min)

1 VFDEFKPLVEEPQNLIR m/z, LC 2073.1015 1037.0544 35.98 40.0 39.3
2 VFDEFKPLVKPEEPQNLIR m/z, resolution, LC 2298.2492 1149.6283 34.51 39.3 37.9
3 VFDEFKPLVKPEEKPQNLIR m/z, resolution, LC 2426.3442 1213.6757 32.52 38.3 34.6
4 VFDEFKPLVKPEEKPQNKPLIR m/z, resolution, LC 2651.4919 1326.2496 30.39 37.2 31.1
5 VFKPDEFKPLVKPEEKPQNKPLIR m/z, resolution, LC 2876.6397 1438.8235 28.23 36.1 29.6
6 VFKPDEFKPLVKPEEKPQNKPLIKPR m/z, resolution, LC 3101.7874 1551.3973 26.66 35.3 28.4
7 VFDEFQPLVEEPQNLIR resolution (Q1) 2073.0651 1037.0368 37.90 41.0 40.1
8 GVNDNEEGFFSAR calibration, linearity 1441.6342 721.3208 22.50 33.2 34.0
9 [GGVNDNEEGFFSAR]3

a linearity of response 1498.6557 749.8315 23.20 33.6 33.8
10 [GGGVNDNEEGFFSAR]6

b linearity of response 1555.6772 778.3422 22.92 33.5 33.7
11 GVNDNEEGFFSAK guanidination (Q8) 1413.6281 707.3177 21.97 33.0 33.1

GVNDNEEGFFSA[Har] guanidination (Q8) 1455.6499 728.3286 – – –
12 AVMDDFAAFVEK Met ox., LC 1342.6354 671.8216 36.14 40.1 39.8
13 AVMMDDFAAFVEK Met ox., LC 1473.6758 737.3419 38.14 41.1 40.1
14 AVMMMDDFAAFVEK Met ox., LC 1604.7163 802.8621 40.94 42.5 40.5
15 GLVK m/z 416.2873 208.6476 10.07 27.0 N.D.
16 FVVPR m/z, LC 617.3776 309.1927 16.98 30.5 30.9
17 ALELFR m/z, LC 748.4358 374.7218 28.17 36.1 34.7
18 IGDYAGIK m/z, LC 836.4518 418.7299 17.27 30.6 27.1
19 EALDFFAR m/z, LC 968.4842 484.7460 31.77 37.9 38.7
20 YLGYLEQLLR m/z, LC 1267.7051 634.3565 38.27 41.1 40.4
21 VLYPNDNFFEGK m/z, LC 1442.6957 721.8518 29.19 36.6 38.3
22 LFTFHADICTLPDTEK m/z, LC, Cys alkylation 1850.8999 925.9539 31.68 37.8 N.D.

LFTFHADIC*TLPDTEK m/z, LC, Cys alkylation 1907.9208 954.4640 – – 38.4

Listed for each peptide is the sequence, primary reason for inclusion in QCAL1, the monoisotopic m/z ratio of the singly and doubly protonated
peptide, the relative hydrophobicity (�) and retention time as predicted using the sequence-specific retention calculator algorithm [16] (http://
hs2.proteome.ca/SSRCalc/SSRCalc.html), together with the actual retention time following reversed-phase chromatography. Each peptide is present as
single copy except aQ9 with 3 copies and bQ10 with 6 copies. [Har] represents homoarginine. C* represents carbamidomethyl cysteine. N.D.: not detected.
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lution, eluting between 5% and �35% acetonitrile
(Table 1, Figure 3), the typical range over which most
tryptic peptides elute from C18 media [14, 15].

A significant number of laboratories use the [Glu1]-
fibrinopeptide B (“Glufib”; EGVNDNEEGFFSAR) to
assess instrument sensitivity, and for calibration of

Figure 1. MALDI-TOF mass spectra of digested QCAL1. Limit peptides (the products of complete
hydrolysis by the protease) generated after tryptic digestion of QCAL1 were analyzed following
MALDI using a Voyager DE STR (a). Inset: trypsin hydrolysate of QCAL1 analyzed before
guanidination (b) fails to differentiate Q8 and Q21. After guanidination (c) these peptides are clearly
identifiable. Signal intensity of Q11 is also dramatically improved postguanidination.

Figure 2. ESI FT ICRmass spectra of digested QCAL1 (a). Insets (b), (c) are high-resolution mass spectra
collected over a range ofm/z 650–1500, confirming that the resolution in this instrument mode is sufficient
to readily detect peptide deamidation (b). In this case deamidated Q9 (Q9 �) is depicted. The doubly
charged species of Q1 and Q7, separated by 0.0182 Th can also be readily differentiated (c).
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fragment ion m/z following collision-induced dissocia-
tion. However, this sometimes requires a different
instrument set-up (for example, analyte infusion) than
is used for peptide analysis by LC-MS, and instrument
sensitivity determined after positional optimization of
the ionization needle used for infusion cannot readily
be compared with instrument sensitivity for LC-MS
analysis, if a different front-end configuration is used. A
modified version of the Glu-fibrinogen peptide se-
quence (where the amino-terminal Glu was removed to
decrease the potential of missed tryptic cleavage) was
therefore incorporated into QCAL1 (Q8) to permit cal-
ibration post-fragmentation (data not shown) and as-
sessment of instrument sensitivity using the same front-
end configuration as is used for proteomics studies. The
range of m/z and charge states of the peptides included
in QCAL1 (Q1-Q7) also permits optimization of the
m/z-dependent nature of the collision voltage offset

required to obtain high quality tandem MS spectra and
thus the best possible peptide identification.
For quantification studies, assessing the linearity of

signal detection of the instrument is also critical. Mul-
tiple copies of two variants of the Glu-fibrinogen de-
rived peptide, where one (Q9, three copies) or two (Q10,
six copies) additional glycine residues have been added
to the peptide amino-terminus, were thus included in
QCAL1 (Table 1). Analysis of these three peptides by
LC-MS on a quadrupole-time of flight (Q-TOF) instru-
ment demonstrated good linearity of signal, with Q8:
Q9:Q10 being detected at a ratio of 1.0:3.1:6.2 (n � 4,
with S.D. of the ratios being 0.06 and 0.18, respectively),
calculated following integration of the extracted ion
chromatogram for each of the peptides. This observa-
tion is consistent with the hypothesis that the additional
glycine residues have little impact on peptide response
factors in this system. The small percentage of the
deamidated forms of these peptides did not compro-
mise the linearity of response. MALDI-TOF (ABI Voy-
ager instrument) analysis of the same peptides (Figure
1) yielded a ratio of 1.0:2.6:4.0 (n � 11, with S.D. of the
ratios being 0.28 and 0.53, respectively). This may
suggest either nonlinearity of response due to signal
suppression of peptide ions in the unfractionated mix-
ture, or that the additional glycine residues compromise
ionization by MALDI to an extent not apparent by ESI.
A similar effect was also seen following analysis on the
Bruker Daltonics Ultraflex II TOF/TOF (data not
shown) with ratios of 1.0:2.6:4.7 (n � 6, with S.D. of the
ratios being 0.10 and 0.41, respectively).

Conclusions

QCAL1 can be used for calibration and optimization of
a number of instruments widely used in proteomics
studies, as well as for testing and comparison during
the development of new techniques and instruments for
peptide analysis. This standard—available in substan-
tial amounts with continuing availability due to the
nature of its production—will enable the proteomics
community to define in more detail the behavior of the
instruments used in large-scale studies, thus facilitating
long-term reproducibility in proteomics projects. Future
iterations of QCAL could assess additional features
used in proteomics analysis, for example peptide sepa-
ration by strong-cation exchange chromatography, or
alternative proteolytic agents such as AspN or GluC.
Concatamers could also be designed to assess more
extensively the performance of high-resolution instru-
ments, or optimize different fragmentation techniques
(collision-induced dissociation versus electron-transfer
dissociation). The concept of “designer” proteins, such
as QCAL, is thus readily extended from absolute quan-
tification to new applications that could generate an
effectively unlimited resource to ensure that all labora-
tories adopt common, carefully defined baseline cali-
bration and assessment materials.

Figure 3. Analysis of digested QCAL1 by LC-MS/MS. Overlaid
are the extracted ion chromatograms for the singly protonated
species of Q16 (m/z of 617.4; peak at 30.9 min), Q17 (m/z of 748.4;
peak at 34.7 min); doubly protonated species of Q7 (m/z of 1037.0;
peak at 40.1 min), Q8 (m/z of 721.3; peak at 34.0 min), Q9 (m/z of
749.8; peak at 33.8 min), Q10 (m/z of 778.3; peak at 33.7 min), Q11
(m/z of 707.3; peak at 33.1 min), Q12 (m/z of 671.8; peak at 39.8
min), Q13 (m/z of 737.34; peak at 40.1 min), Q14 (m/z of 802.9; peak
at 40.5 min), Q18 (m/z of 418.7; peak at 27.1 min), Q19 (m/z of 484.7;
peak at 38.7 min), Q20 (m/z of 634.4; peak at 40.4 min), Q21 (m/z of
721.9; peak at 38.3 min); triply protonated species of Q1 (m/z of
691.7; peak at 39.3 min); quadruply charged species of Q2 (m/z
of 575.3; peak at 37.9 min), Q3 (m/z of 607.3; peak at 34.6 min), Q22
(m/z of 636.6; peak at 38.4 min); [M � 5H]5� of Q4 (m/z of 531.1;
peak at 31.1 min) and Q5 (m/z of 576.1; peak at 29.6 min); [M �
6H]6� of Q6 (m/z of 517.8; peak at 28.4 min). All peptides elute
between 5% and �35% acetonitrile with a maximal peak width of
�40 s, average peak width of �20 s.

1279J Am Soc Mass Spectrom 2008, 19, 1275–1280 QCAL, A STANDARD FOR PROTEOME ANALYSIS



Acknowledgments
The authors acknowledge support for this work by Biotechnology
and Biological Sciences Research Council grants (BB/C007735/1)
to S.J.G. and R.J.B.; C.E.E. is currently supported by a Royal
Society Dorothy Hodgkin Fellowship. The authors thank Ms.
Hannah Johnson for her assistance. They thank PolyQuant GmbH
for gene design and construction.

References
1. Taylor, C. F.; Paton, N. W.; Lilley, K. S.; Binz, P. A.; Julian, R. K. Jr.;
Jones, A. R.; Zhu, W.; Apweiler, R.; Aebersold, R.; Deutsch, E. W.; Dunn,
M. J.; Heck, A. J.; Leitner, A.; Macht, M.; Mann, M.; Martens, L.;
Neubert, T. A.; Patterson, S. D.; Ping, P.; Seymour, S. L.; Souda, P.;
Tsugita, A.; Vandekerckhove, J.; Vondriska, T. M.; Whitelegge, J. P.;
Wilkins, M. R.; Xenarios, I.; Yates, J. R. III; Hermjakob, H. The Minimum
Information about a Proteomics Experiment (MIAPE). Nat. Biotechnol.
2007, 25, 887–893.

2. Beynon, R. J.; Doherty, M. K.; Pratt, J. M.; Gaskell, S. J. Multiplexed
Absolute Quantification in Proteomics Using Artificial QCAT Proteins
of Concatenated signature Peptides. Nat. Methods 2005, 2, 587–589.

3. Pratt, J. M.; Simpson, D. M.; Doherty, M. K.; Rivers, J.; Gaskell, S. J.;
Beynon, R. J. Multiplexed Absolute Quantification for Proteomics Using
Concatenated Signature Peptides Encoded by QconCAT Genes. Nat.
Protoc. 2006, 1, 1029–1043.

4. Rivers, J.; Simpson, D. M.; Robertson, D. H.; Gaskell, S. J.; Beynon, R. J.
Absolute Multiplexed Quantitative Analysis of Protein Expression
During Muscle Development Using QconCAT. Mol. Cell. Proteom. 2007,
6, 1416–1427.

5. Cottrell, J. S. Protein Identification by Peptide Mass Fingerprinting.
Pept. Res. 1994, 7, 115–124.

6. Krause, E.; Wenschuh, H.; Jungblut, P. R. The Dominance of Arginine-
Containing Peptides in MALDI-Derived Tryptic Mass Fingerprints of
Proteins. Anal. Chem. 1999, 71, 4160–4165.

7. Brancia, F. L.; Oliver, S. G.; Gaskell, S. J. Improved Matrix-Assisted Laser
Desorption/Ionization Mass Spectrometric Analysis of Tryptic Hydroly-
sates of Proteins Following Guanidination of Lysine-Containing Peptides.
Rapid Commun. Mass Spectrom. 2000, 14, 2070–2073.

8. Beardsley, R. L.; Karty, J. A.; Reilly, J. P. Enhancing the Intensities of
Lysine-Terminated Tryptic Peptide Ions in Matrix-Assisted Laser
Desorption/Ionization Mass Spectrometry. Rapid Commun. Mass Spec-
trom. 2000, 14, 2147–2153.

9. Hale, J. E.; Butler, J. P.; Knierman, M. D.; Becker, G. W. Increased
Sensitivity of Tryptic Peptide Detection by MALDI-TOF Mass Spec-
trometry is Achieved by Conversion of Lysine to Homoarginine. Anal.
Biochem. 2000, 287, 110–117.

10. Song, Y.; Schowen, R. L.; Borchardt, R. T.; Topp, E. M. Effect of ‘Ph’ on
the Rate of Asparagine Deamidation in Polymeric Formulations: ‘pH’
Rate Profile. J. Pharm. Sci. 2001, 90, 141–156.

11. Beausoleil, S. A.; Villen, J.; Gerber, S. A.; Rush, J.; Gygi, S. P. A
Probability-Based Approach for High-Throughput Protein Phosphory-
lation Analysis and Site Localization. Nat. Biotechnol. 2006, 24, 1285–
1292.

12. Olsen, J. V.; de Godoy, L. M.; Li, G.; Macek, B.; Mortensen, P.; Pesch, R.;
Makarov, A.; Lange, O.; Horning, S.; Mann, M. Parts per Million Mass
Accuracy on an Orbitrap Mass Spectrometer via Lock Mass Injection
into a C-Trap. Mol. Cell. Proteom. 2005, 4, 2010–2021.

13. Rivers, J.; McDonald, L.; Edwards, I. J.; Beynon, R. J. Asparagine
Deamidation and the Role of Higher Order Protein Structure. J. Proteome
Res. 2008, 7, 921–927.

14. Sun, W.; Wu, S.; Wang, X.; Zheng, D.; Gao, Y. A Systematical Analysis
of Tryptic Peptide Identification with Reverse Phase Liquid Chroma-
tography and Electrospray Ion Trap Mass Spectrometry. Genom. Pro-
teom. Bioinformatics 2004, 2, 174–183.

15. Washburn, M. P.; Wolters, D.; Yates, J. R. III. Large-Scale Analysis of the
Yeast Proteome by Multidimensional Protein Identification Technology.
Nat. Biotechnol. 2001, 19, 242–247.

16. Krokhin, O. V. Sequence-Specific Retention Calculator. Algorithm
for Peptide Retention Prediction in Ion-Pair RP-HPLC: Application
to 300- and 100-A Pore Size C18 Sorbents. Anal. Chem. 2006, 78,
7785–7795.

1280 EYERS ET AL. J Am Soc Mass Spectrom 2008, 19, 1275–1280




