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An approach that combines limited proteolysis and matrix-assisted laser desorption/ioniza-
tion mass spectrometry (MALDI-MS) has been developed to probe protease-accessible sites of
ribosomal proteins from intact ribosomes. Escherichia coli and Thermus thermophilus 70S
ribosomes were subjected to limited proteolysis using different proteases under strictly
controlled conditions. Intact ribosomal proteins and large proteolytic peptides were recovered
and directly analyzed by MALDI-MS, which allows for the determination of proteins that are
resistant to proteolytic digestion by accurate measurement of molecular weights. Larger
proteolytic peptides can be directly identified by the combination of measured mass, enzyme
specificity, and protein database searching. Sucrose density gradient centrifugation revealed
that the majority of the 70S ribosome dissociates into intact 30S and 50S subunits after 120 min
of limited proteolysis. Thus, examination of ribosome populations within the first 30 to 60 min
of incubation provides insight into 70S structural features. Results from E. coli and T.
thermophilus revealed that a significantly larger fraction of 50S ribosomal proteins have similar
limited proteolysis behavior than the 30S ribosomal proteins of these two organisms. The data
obtained by this approach correlate with information available from the high-resolution crystal
structures of both organisms. This new approach will be applicable to investigations of other
large ribonucleoprotein complexes, is readily extendable to ribosomes from other organisms,
and can facilitate additional structural studies on ribosome assembly intermediates. (J Am
Soc Mass Spectrom 2007, 18, 1304–1317) © 2007 American Society for Mass Spectrometry

The ribosome, found in all organisms, is the sub-
cellular organelle that performs the activity of
protein synthesis. Prokaryotic ribosomes, which

sediment at 70S, have a molecular mass of �2.5 � 106

Da and consist of two subunits, the 50S and the 30S.
Each subunit has a unique number of proteins and
ribosomal RNAs (rRNAs). Eukaryotic ribosomes, which
sediment at 80S, are substantially larger and more
complex than their prokaryotic counterparts. Two sub-
units, the 60S and 40S, together contain at least 78
unique proteins and 4 rRNAs. The small subunit binds
messenger RNA (mRNA) and mediates the interactions
between mRNA and transfer RNAs (tRNAs). The larger
subunit catalyzes peptide-bond formation. During the
initiation phase of protein synthesis, the two subunits
behave independently, assembling into complete ribo-
somes only when elongation is about to begin.
A fundamental prerequisite for understanding the

biochemical interactions occurring within the ribosome
during protein synthesis is a detailed knowledge of the
structure of this ribonucleoprotein (RNP) complex.
Some of the more successful approaches for character-

izing ribosomes include crosslinking [1–4], cryo-
electron microscopy (cryo-EM) [5–7], tritium bombard-
ment [8], nuclear magnetic resonance (NMR) [9] and
electrospray mass spectrometry [10–13]. One of the
most successful approaches has been the development
of X-ray crystallography within the past several years,
wherein high-resolution crystal structures of ribosomal
subunits or intact ribosomes have been obtained that
provide detailed structural information at the atomic
level [14–18]. However, as noted recently by Selmer et
al. [18], the presence of crystal structures alone does not
translate into an accurate assignment of ribosomal
proteins. Thus, analytical approaches that can provide
information regarding ribosome components, organiza-
tion and topology, and that are readily extendable to
new organisms will assist in structural assignments as
ribosomes from new organisms are crystallized and
studied.
Limited proteolysis has been used to investigate

structure-function relationships in proteins and the
interacting sites in protein-nucleic acid complexes [19–
21]. Limited proteolysis can reveal details of the ex-
posed sites of protein-nucleic acid complexes, which is
useful for modeling three-dimensional structures.
While limited proteolysis yields useful information
regarding the topology of biomolecules, it has not been
widely applied to studies of RNP complexes in general,
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or the ribosome in particular, due to the complexity of
data interpretation as previous investigations of the
ribosome by this approach relied upon 2-D gel electro-
phoresis as the separation/detection scheme [22, 23].
Mass spectrometry has been used as the readout step

in a limited proteolysis approach for characterizing
macromolecular structure [24–29]. In those previous
reports, single proteins with nucleic acids or ligands
[24, 26] or virus complexes [28] were investigated by
limited proteolysis with mass spectrometry. Most lim-
ited proteolysis studies previously reported have been
carried out for observing the conformational change of
a protein with and without bound nucleic acid or
ligands, and for probing the structural and dynamic
differences between the holo and apo form of a protein
[25]. Based on the interaction between a protein and a
nucleic acid or ligand, the stable domain of a protein or
the likely sites of binding within the protein could be
directly determined by mass spectrometry without re-
quiring sample isolation after limited proteolysis.
Here we expand the use of limited proteolysis with

matrix-assisted laser desorption/ionization mass spec-
trometry (MALDI-MS) to a much larger and more
complex macromolecular assembly containing multiple
proteins and RNAs. In the present study, the protease-
accessible sites of ribosomal proteins (r-proteins) within
Escherichia coli and Thermus thermophilus intact 70S ribo-
somes have been identified by a combination of limited
proteolysis and MALDI-MS. With this approach, undi-
gested proteins can be unambiguously assigned based
upon their accurately measured molecular weights. By
comparative limited proteolysis using trypsin and Pro-
teinase K, the r-proteins whose surface exposed regions
are resistant to trypsin but not general proteolysis were
identified. We identified six small subunit r-proteins
and 22 large subunit r-proteins that are resistant to
limited proteolysis using trypsin in both E. coli and T.
thermophilus. In addition, some proteins were deter-
mined to be stable in their truncated form and are
retained within the ribosomal subunit structures. As
existing E. coli and T. thermophilus crystal structures
were used to confirm the results found in this study,
this new approach should be applicable to examining
ribosomes whose topology or crystal structures are not
yet known and can help inform future structural char-
acterizations of ribosomal subunits or intact ribosomes.

Experimental

Materials

Tryptone and yeast extract were obtained from Difco
Labs (Detroit, MI). Buffer reagents, Proteinase K, and
the MALDI peptide calibration kit were obtained from
Sigma (St. Louis, MO). Sinapinic acid (SA) and �-cyano-
4-hydroxycinnamic acid (CHCA) were obtained from
Fluka (Milwaukee, WI). Acids and organic solvents
were HPLC grade or better. Trypsin (sequencing grade)
andDNasewere purchased from Promega (Madison,MI).

Preparation of 70S Ribosomes

Thermus thermophilus HB8 (ATCC 27,642) was a gift
from S. Gregory and A. Dahlberg (Brown University,
Providence RI), and conditions for culturing T. ther-
mophilus and isolating 70S ribosomes have been de-
scribed elsewhere [30]. E. coli (MRE 600) tight-coupled
70S ribosomes were obtained following the cell growth
and harvesting procedures described previously [31].
Tight-coupled 70S ribosomes were isolated as follows.
Fifteen g of frozen E. coli cell paste was resuspended in
22.5 mL of buffer A (20 mM Tris-HCl, pH 7.5, 100 mM
NH4Cl, 10.5 mM magnesium acetate, 0.5 mM EDTA).
After the addition of DNase I (8 �g per g of cell paste),
the cells were disrupted in a French press. The dis-
rupted cell slurry was then centrifuged for 1 h at 30,000
� g. The supernatant was carefully removed, and then
layered over a sucrose cushion of buffer B (1.1 M
sucrose, 20 mM Tris-HCl, pH 7.5, 0.5 M KCl, 10.5 mM
magnesium acetate, 0.5 mM EDTA), and centrifuged at
45,000 rpm in a 45Ti rotor for 17.5 h. The ribosomal
pellet was washed lightly in buffer C (1.5 M ammonium
sulfate, 10 mM magnesium acetate, 400 mM KCl, 20
mM Tris-Cl, pH 7.5) to remove any “skin” of cell debris,
and resuspended in the same buffer. The ribosomal
pellet was diluted in buffer E (10 mM Tris-HCl, pH 7.5,
50 mM KCl, 60 mM NH4Cl, 10.5 mM magnesium
acetate, 0.25 mM EDTA), pelleted overnight by centrif-
ugation at 43,000 rpm in a 45Ti rotor, and resuspended
in buffer E. The tight-coupled 70S ribosomes were then
separated from excess 50S or 30S subunits by ultracen-
trifugation with a gradient of 10% to 40% sucrose in
buffer E. The tight-coupled 70S ribosomes were diluted
in buffer E without sucrose and pelleted as above.

Limited Proteolysis of 70S Ribosomes

Limited proteolysis using trypsin or Proteinase K was
carried out in a buffer of 10 mM Tris-HCl (pH 7.7), 10
mM magnesium acetate, 60 mM NH4Cl, and 3 mM
�-mercaptoethanol at 37 °C. The enzyme to ribosome
ratio was adjusted to 1:500 (wt/wt) to achieve time-
resolved cleavage with around 250 �g of ribosome
present initially. The ribosome concentration was deter-
mined by UV absorbance (1 A260 unit� 26 pmol for 70S
[32]).°The°total°reaction°mixture°volume°was°80°�L.
Aliquots were withdrawn from the reaction mixture at
specified time intervals for electrophoretic and mass
spectrometric analysis. For electrophoretic analysis, 1
�L of reaction mixture was removed, combined with
the electrophoresis loading buffer and then immedi-
ately heated in a boiling water bath for 10 min to halt
proteolysis. For MALDI analysis, 9 �L of reaction
mixture was removed and combined with 1 �L of 25%
trifluoroacetic acid (TFA) to quench the reaction. As
controls, r-proteins isolated from 70S ribosomes by
acetic acid treatment were resuspended in buffer E and
then incubated with trypsin, and 70S ribosomes were
incubated without added protease. All control reactions
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were prepared for analysis by either electrophoresis or
MALDI-MS as described above.

Sucrose Density Gradient Centrifugation

The integrity of ribosomal subunits was investigated by
using a 0% to 45% sucrose gradient in a buffer contain-
ing 10 mM Tris-HCl, pH 7.5, 10.5 mM magnesium
acetate, 60 mM NH4Cl and 3 mM 2-mercaptoethanol. A
0% to 45% gradient was made by adding 36 mL of
22.5% solution of sucrose to polyallomer centrifuge
tubes. Tubes were frozen at �20 °C overnight and
thawed at 4 °C. Samples after limited proteolysis were
loaded on top of sucrose gradient and centrifuged at
19,000 rpm for 17 h in an SW28 rotor with a Beckman
XL-80 ultracentrifuge (Beckman Coulter, Palo Alto, CA)
at 4 °C. Sucrose gradients were fractionated using a
density gradient fractionation system (ISCO Inc., Lin-
coln, NE). Fractions were collected and monitored at
260 nm.

SDS-PAGE and In-Gel Digestion

Sodium dodecylsulfate polyacrylamide gels electro-
phoresis (SDS-PAGE) was carried out using 12.5%
polyacrylamide gels of 1-mm thickness, run at 250 V for
4 to 5 h. The SDS-PAGE was visualized by staining with
Coomassie°brilliant°blue°R250.°As°necessary,°excised°gel
bands°were°digested°with°trypsin°as°described°[33]°and
analyzed by MALDI-MS.

MALDI Analysis

All MALDI-MS experiments were done on a Bruker
Reflex IV reflectron MALDI time-of-flight mass spec-
trometer (Bruker Daltonics, Billerica, MA) equipped
with°a°nitrogen°laser°as°previously°described°[34].
MALDI samples were prepared by combining 1 �L of
TFA-treated ribosomal solution with 9 �L of the SA
matrix. Protein mass spectra were obtained in the
positive ion mode at an acceleration voltage of 20 kV,
extraction voltage of 17.1 kV, and lens voltage of 10.1
kV by accumulating 300 laser shots. The laser power
was adjusted to slightly above the threshold to obtain
optimal resolution and signal-to-noise ratios. All
samples were analyzed under identical instrumental
parameters.

Data Analysis

Proteolytic digestion products were identified using
the SequenceEditor software provided by the MALDI
manufacturer°and°Protein°Prospector°[35].°Images°of
the 30S and 50S subunit structures were produced
using°MacPyMol°[36]°from°the°3.5°Å°crystal°structure
of°E. coli (accession°2AVY°and°2AW4)°[17]°and°the°2.8
Å crystal structure of T. thermophilus (accession 2J00
and°2J01)°[18].

Results and Discussion

Several factors including protein-rRNA or protein-
protein interactions, location of proteins within the
ribosome, protease:ribosome ratio, time of incuba-
tion, pH, temperature, and protease specificity will
influence the data obtained from limited proteolysis
experiments; thus, optimization of a limited proteol-
ysis strategy for intact ribosomes composed of over
50 proteins and several large RNAs requires exami-
nation of several experimental variables.
Initially, E. coli (strain MRE 600) tight-coupled 70S

ribosomes were subjected to time-course measure-
ments of proteolysis employing a site-specific pro-
tease, trypsin, and a nonspecific protease, Proteinase
K, as described in the Experimental section. Optimi-
zation of the limited proteolysis conditions was car-
ried out by varying the enzyme to ribosome ratio
from 1:100 (wt/wt) to 1:2000 (wt/wt). MALDI-MS
was used to analyze the proteolytic fragments and
intact proteins from ribosomes. MALDI-MS data
were compared with that obtained by SDS-PAGE as
well°as°to°data°reported°by°other°techniques°[7,°23,°37]
and, as necessary to confirm proteolytic fragment
identities, in-gel digestion followed by MALDI pep-
tide mass fingerprinting was also done. The results of
these initial studies yielded an optimal enzyme to
ribosome ratio of 1:500 (wt/wt) at pH 7.7 and 37 °C,
and these conditions were then used for all subse-
quent investigations. While the optimal enzyme to
ribosome mole ratio of 1:5 is lower than typically seen
in other limited proteolysis studies, it is not inconsis-
tent° with° prior° literature° reports° [23,° 24]° and,° as
discussed below, was found to provide sufficient
information on surface accessible proteins while
maintaining the overall organization of the ribosome
and ribosomal subunits.

Limited Proteolysis and Ribosome Integrity

To confirm that the limited proteolysis conditions are
appropriate to reveal information on the organization
of 70S ribosomes and ribosomal subunits, a series of
sucrose density gradient (SDG) centrifugation studies
were conducted. The results of these studies are
shown°in°Figure°1.°As°seen°here,°limited°proteolysis
does lead to dissociation of 70S ribosomes into the
30S and 50S subunits and that dissociation is com-
plete within 500 min of incubation for both E. coli and
T. thermophilus under the conditions used in this
study. Significantly, even up to 1500 min of incuba-
tion, there is no loss to subunit organization as
reflected by the presence of 30S and 50S subunits in
these data. These results do show, however, that
conclusions specific to the 70S organization are lim-
ited to the first 60 min or less of incubation, and that
data at 500 min and beyond are reporting on subunit
organization only.
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Limited Trypsin Proteolysis of E. coli 70S Ribosomes

Figure° 2° shows°a° series°of°mass° spectra° from° the
limited proteolysis of E. coli 70S ribosomes using
trypsin. Intact proteins were assigned by accurate

mass measurement of the ribosome mixture before
proteolysis (T � 0 min) and by comparison to protein
molecular weights predicted for E. coli from entries in
the°SwissProt°database°as°before°[34].°The°r-proteins
L2, L3, L6, L11, L13, L14, L15, L16, L17, L18, L20, L21,

Figure 1. Sucrose density gradient centrifugation studies of intact E. coli and T. thermophilus 70S
ribosomes upon incubation with trypsin. For both organisms, the 70S ribosomes begin dissociating within
30 min of incubation and have become completely dissociated by the 500 min incubation period.
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L22, L23, L24, L25, L28, L29, L30, L32, L33, L34, L35,
and L36 of the large subunit, and r-proteins S4, S8, S9,
S12, S13, S15, S16, S17, and S20 of the small subunit
were still detected as intact proteins even after incu-
bation with trypsin for 1500 min. After 1500 min, an
additional 0.5 �g of trypsin was added to the reaction
mixture and incubation was continued for 60 min.
Even under these conditions, no difference in the
mass spectral results was seen compared with the
data obtained at 1500 min (data not shown). The
significantly greater number of large subunit com-
pared with small subunit r-proteins that were resis-
tant to limited proteolysis using trypsin is a reflection
of the different organization and r-protein:rRNA
mass°ratio°of° the° two°subunits° [38,°39].°The°mass
spectral data limited to those proteins remaining
intact after limited proteolysis with trypsin is sum-
marized°in°Figure°3.
In combination with the SDG data, there are three

categories of r-proteins that do not remain intact
throughout the entire incubation period examined in
this study. In the first category are r-proteins S2, S3, S6,
and S19, which were digested within 30 min under the
conditions employed here as determined by the disap-
pearance of mass spectral peaks corresponding to the
mass of the intact protein. As the SDG studies revealed
that the majority of the sample contains intact 70S
ribosomes at this incubation period, one can conclude
that these ribosomal proteins are well-exposed on the
ribosome surface or, at a minimum, have regions con-
taining lysine(s) or arginine(s) that are sufficiently ex-
posed for proteolysis. The second category contains
r-proteins that are less stable to limited proteolysis with
trypsin but whose original conformation, i.e., 70S ver-
sus 30S/50S, cannot be determined by this experimental
procedure. The r-proteins L7/L12, L27, S5, S11, and S18
were digested within 125 min under the conditions
employed here. From the SDG studies, one can con-
clude that these proteins are susceptible to trypsin
proteolysis either in their 70S or subunit conformations,
if not both. The final category contains r-proteins that
are digested after 125 min, here S7, S10, S14, S21, L1, L9,
L10, L19, and L31. These data are likely reflecting
subunit conformations as the SDG studies do not show
intact 70S ribosomes at these longer periods.
In addition to the loss of mass spectral peaks from

specific intact r-proteins, new ion signals at various m/z
values were detected during these analyses. The mass
spectral data of these new proteolytic fragments are
summarized°in°Table°1.°The°new°m/z values°that°arise
during the limited proteolysis were identified, where
possible, by combining knowledge of the specificity of
trypsin with the mass values and original masses of the
intact°r-proteins.°As°seen° in°Table°1,° the°proteolytic
fragments generally arise from cleavage of N- and/or
C-terminal domains of the various r-proteins. Similar
cleavages have been found during limited proteolysis
studies of isolated r-proteins whose tertiary structure
was°maintained°after°extraction°from°ribosomes°[40].

Figure 2. Representative° MALDI° mass° spectral° data° after
incubation of intact E. coli 70S ribosomes with trypsin under
limited proteolysis conditions for the following time periods (a)
0 min, (b) 30 min, (c) 500 min, and (d) 1500 min. The intact
ribosomal proteins detected after each incubation period are
summarized°in°Figure°3.°Table°1°summarizes°the°identification
of new m/z values that arise during the limited proteolysis
experiments.
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These data demonstrate that direct MALDI-MS analysis
of limited proteolysis mixtures is compatible with both
the identification of proteins susceptible to enzymatic
proteolysis as well as defining the sequence location of
proteolysis.
To verify that the results obtained in these experi-

ments reflected the organization of the ribosome,
r-proteins were analyzed after incubating at 37 °C for
1500 min without trypsin. No difference in the mass
spectral data obtained under these conditions com-

pared°with°the°T°�°0°min°data°in°Figure°2°was°found
(data not shown). In addition, r-proteins that were
isolated from the ribosome by acetic acid treatment
were also resuspended in buffer and incubated with
trypsin for 500 min. MALDI-MS analysis of this reaction
mixture yielded no intact proteins (data not shown).
Under these conditions, r-proteins are separated from
rRNA and the organizational structure of the ribosome
is destroyed.
To confirm that the MALDI-MS data accurately

Figure 3. Intact E. coli ribosomal proteins from the (a) 30S subunit and (b) 50S subunit observed with
MALDI-MS after incubation with protease for denoted time periods; (white bars) trypsin and (black
bars) Proteinase K.
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reflect the limited proteolysis of ribosomes, SDS-
PAGE analysis was also done on the trypsin incu-
bated ribosomes. In agreement with the MALDI-MS
results, some protein bands do not decrease in inten-
sity with time while other proteins are no longer
detected on the gel (data not shown). Unlike the
MALDI-MS results, specific lower molecular weight
r-proteins are difficult to identify on the 1-D gel due
to the poor resolution of this approach. However, the
higher molecular weight proteins are easily moni-
tored by 1-D PAGE and the response of these higher
molecular weight proteins agrees with the response
found by MALDI analysis.

Limited Proteinase K Proteolysis of E. coli 70S
Ribosomes

In a manner similar to the above-described experiments
with trypsin, E. coli 70S ribosomes were incubated with
the nonspecific protease, Proteinase K. In contrast to
trypsin, which will only cleave at lysine or arginine
residues, Proteinase K cleaves at any aromatic, aliphatic,
or hydrophobic amino acid residue. Thus, Proteinase K
should provide a more general picture of exposed pro-

teins within the ribosome compared with trypsin. In
addition, comparative proteolysis can be used to distin-
guish topological features that are specifically trypsin
resistant, such as L7/L12, whose conformation is trypsin
resistant°in°the°absence°of°elongation°factor°G°(EF-G)°[22].
Figure S1 (which can be found in the electronic version

of this article) shows the mass spectrum of r-proteins
remaining from the limited proteolysis of 70S ribosome
using°Proteinase°K°for°1500°min.°Figure°3°summarizes°the
data from these MALDI experiments. The use of Protein-
ase K revealed a number of r-proteins that are rapidly
digested upon limited proteolysis. Within the large sub-
unit, r-proteins L1, L7/12, L9, and L17 are digested within
the first 30 min of incubation. These results are in general
agreement with those reported previously from limited
proteolysis°experiments°on°50S°subunits°[23].°In°addition,
the small subunit r-proteins S2, S3, S6, S7, S10, S18, and
S21 are digested within the first 30 min and S5 and S11
are digested within the first 60 min of incubation. The
r-proteins L7/L12, L9, L17, S7, S18, and S21 were found to
be well exposed and S2, S3, and S6 were found to be
moderately exposed on intact ribosomes during hot tri-
tium°bombardment°experiments°[8].°Interestingly,°S4,°S20,
L16, and L24 were also proposed to be well-exposed by

Table 1. MALDI-MS°analysis°of°E. coli proteolytic°fragments°generated°by°trypsin°(Fig.°2).°The°identification°of°proteolytic°fragments
can occur even when m/z values are detected for intact proteins, as seen here for ribosomal protein L2

Measured Mass
[M � H]�

Calculated Massa

[M � H]� �M (Da) Identity Observed A.A. Residues Loss of

4738.2 4738.4 -0.2 L7/L12 75-121 N-terminus
4752.6 4752.4 0.2 L7/L12 75-121 N-terminus
5270.9 5271.2 -0.3 L31* 1-47 C-terminus
5461.6 5461.4 0.2 L9* 1-50 C-terminus
5555.1 5555.5 -0.4 L31* 1-49 C-terminus
5617.3 5617.6 -0.3 L9* 1-51 C-terminus
5761.3 5760.8 0.5 S14 48-97 N- and C-termini
7128.4 7128.3 0.1 L31 1-63 C-terminus
7315.7 7315.4 0.3 S18* 13-75 N-terminus
7339.1 7339.6 -0.5 L9 1-64 C-terminus
7721.5 7721.9 -0.4 S18 10-75 N-terminus
8162.6 8162.5 0.1 S18 7-75 N-terminus
8357.9 8358.6 -0.7 L10* 62-138 N- and C-termini
8529.9 8529.8 0.1 L27* 6-85 N-terminus
8629.1 8629.0 0.1 S18 4-75 N-terminus
8658.1 8658.0 0.1 L27 5-85 N-terminus
8768.8 8768.2 0.6 S6 39-112 N- and C-termini
8870.7 8870.3 0.4 S3 2-79 C-terminus
9715.9 9715.4 0.5 S19* 2-87 C-terminus
9844.9 9843.6 0.3 S19* 2-88 C-terminus

10043.6 10043.8 -0.2 S19 2-90 C-terminus
12310.6 12311.1 -0.5 S11* 10-125/11-126/12-127/14-129 N-and C-termini
12248.5 12249.2 0.7 L19* 2-109 C-terminus
12566.1 12566.4 -0.3 S11 12-129 N- and C-termini
12861.2 12861.9 -0.7 S6 3-112 N- and C-termini
16225.1 16225.8 -0.7 S7 12-156 N-terminus
16895.1 16894.6 0.5 S5* 7-167 N-terminus
24842.3 24843.0 -0.7 S3* 2-225 C-terminus
27597.6 27599.9 -2.3 L2* 2-256 C-terminus

*Protein fragments were still detected after 1500 min incubation with trypsin.
aThe average singly protonated mass of the tryptic products is shown as calculated using SequenceEditor ver. 1.0, provided by Bruker Daltonics and
ProteinProspector.
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tritium quantification yet are significantly stable to prote-
olysis by Proteinase K suggesting differences in conforma-
tions between the two studies or differences in reactivity
to proteolysis and tritium incorporation for these particu-
lar proteins.
As was done in the incubations with trypsin, a

Coomassie blue-stained PAGE analysis of several ribo-
some incubations was done for comparison (Figure S2).
Similar trends are observed between the MALDI-MS
data and the 1-D PAGE data: various proteins are
observed to decrease in intensity with increased incu-
bation with Proteinase K and new bands, presumed to
be proteolytic fragments, are also detected. To identify
several of the new bands generated during limited
proteolysis that occurred at higher molecular weights,
in-gel tryptic digestion and MALDI peptide mass fin-
gerprinting for protein identification was done. As a
representative example, a new band (circled in Figure
S2) appearing at a lower molecular weight than the
band for intact ribosomal protein L2 (band B, Figure S2)
was detected in lane 8, which corresponds to a 1500 min
incubation with Proteinase K. In-gel digestion and
MALDI peptide mass fingerprinting yielded a match to
ribosomal protein L2. Similar analyses were done on
other bands, which are denoted in Figure S2. Table S1
summarizes the in-gel digestion and MALDI peptide
mass fingerprinting results from the annotated bands
from Figure S2. In addition to the lack of resolution at
lower molecular weights for this 1-D gel, another obvious
disadvantage of an electrophoretic-based approach is the
need to perform additional identifications of new bands.
While these new bands could be identified by in-gel

tryptic°digestion°and°MALDI°peptide°mass°fingerprint-
ing, the use of a nonspecific protease hinders determi-
nation of precise sites of proteolysis. Most significant,
though, is the correlation between MALDI and PAGE
results as well as the correlation between r-protein
stability and limited proteolysis with the two enzymes.
By comparison of the limited proteolysis results ob-
tained between trypsin and Proteinase K, the r-proteins
whose surface exposed regions are resistant to trypsin
but not general proteolysis can be identified.

Comparison of E. coli MALDI-MS Data Obtained
from Different Proteases

The E. coli r-proteins S12, S15, S16, S17, S20, L2, L3, L6,
L13, L14, L15, L16, L18, L21, L22, L24, L25, L28, L30,
L32, L34, and L36 were not completely digested by
either trypsin or Proteinase K even at the longest
periods of incubation (1500 min or 1500 � 60 min,
respectively) examined in these studies. The r-proteins,
L20, L29, L33, L35, S4, and S8, which were detected
intact after the 1000 min incubation with Proteinase K
but not trypsin, were eventually digested by Proteinase
K after longer incubation periods. Thus, the trends for
protein stability were similar for the two proteases used
in this study with less r-proteins being stable when

incubated with the non-specific protease. The use of the
less specific protease, Proteinase K, resulted in 11 more
completely digested proteins compared with trypsin.
Such results are to be expected, given the lack of
specificity for Proteinase K. However, because interac-
tions between r-proteins and rRNA are usually through
salt-bridges between positively charged residues on the
proteins°and°phosphate°oxygen°atoms°on°the°RNA°[41],
basic residues such as arginine and lysine that interact
with rRNA through salt-bridges will be less susceptible
to°proteolysis.°Thus,°protease°specificity°may°not°ac-
count for all of the differences between trypsin and
Proteinase K found in this study, although an examina-
tion of the data obtained in this study did not discern
any relationship between the frequency of Arg/Lys
residues within a protein and the rate of proteolysis
with trypsin.

Limited Proteolysis of T. thermophilus 70S
Ribosomes

In a manner similar to that just described, limited
proteolysis studies were also conducted on T. thermophi-
lus (Figure° 4° and° Figure° S3).° Intact° proteins° were
assigned by accurate mass measurement of the ribo-
some mixture before proteolysis (T � 0 min) and by
comparison to protein molecular weights predicted for
T. thermophilus HB8 from entries in the SwissProt data-
base°as°before°[42].°The°r-proteins°L1,°L2,°L3,°L6,°L13,
L14, L15, L16, L17, L18, L20, L21, L22, L23, L24, L28,
L29, L30, L32, L33, L34, L35, and L36 of the large
subunit,°and°r-proteins°SThx,°S6,°S8,°S9,°S10,°S14,°S15,
and S17 of the small subunit were still detected as intact
proteins even after incubation with either trypsin or
Proteinase K for 1500 min. The mass spectral data
limited to those proteins remaining intact after limited
proteolysis°are°summarized°in°Figure°5°and°Figure°S4.
The r-proteins S3, S12, S16, S18, S19, and L19 were

digested within 10 min under the conditions employed
here as determined by the disappearance of mass spec-
tral peaks corresponding to the mass of the intact
protein. The SDG studies revealed that the majority of
the sample contains intact 70S ribosomes at this incu-
bation period, thus we conclude that these ribosomal
proteins are well-exposed on the ribosome surface or, at
a minimum, have regions containing lysine(s) or argi-
nine(s) that are sufficiently exposed for proteolysis.
Similarly, r-proteins L12, L19, L25, L31, S3, S5, S7, S12,
S18, and S19 were digested within 60 min upon incu-
bation with Proteinase K.
In addition to the loss of mass spectral peaks from

these r-proteins, new ion signals at various m/z values
were detected during these analyses. The mass spectral
data of the tryptic fragments of T. thermophilus are
summarized°in°Table°2.°The°new°m/z values°that°arise
during the limited proteolysis were identified, where
possible, by combining knowledge of the specificity of
trypsin with the mass values and original masses of the
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intact°r-proteins.°As°seen° in°Table°2,° the°proteolytic
fragments generally arise from cleavage of N- and/or
C-terminal domains of the various r-proteins.

Comparison of E. coli and T. thermophilus Limited
Proteolysis Data

Figure°5°summarizes°the°trypsin°limited°proteolysis
mass spectral data obtained in this study. As noted in
this figure, there is generally good agreement be-
tween the limited proteolysis results found for E. coli
and T. thermophilus, thus the method developed here
reports on the structure of (bacterial) ribosomes. As
discussed above, most r-proteins for both organisms
are detected intact even after long periods of incuba-
tion with trypsin or Proteinase K and likely demon-
strate no conformational changes upon dissociation
of intact 70S ribosomes into the small and large
subunits.
A few r-proteins, S3, S11, S18, S19, and L27, were

readily digested (within 30 min) for both organisms
suggesting similarities in trypsin susceptibility within
the 70S structure. The tryptic peptide S3 (2-79) was
detected in both organisms. S3 has been found to
contain basic residues which protrude into the up-
stream°tunnel°of°the°entry°pore°for°the°mRNA°[43].°S11
and S18 are believed to have extensive contacts with S1
[43],°which°was°lost°in°the°ribosome°preparations°used
in this work, possibly accounting for their limited
stability here. The C-terminus of S19 was digested with
trypsin in these studies. This terminus points toward
the interface side of 30S and this region was found
disordered°in°the°T. thermophilus 30S°structure°[37].°L27
is found to interact within the P site and S11 within the
E°site°[18],°which°may°account°for°their°limited°stability
in this work as the ribosomes investigated did not have
occupied A, P, or E sites.
Among the r-proteins that were found to be partic-

ularly susceptible to trypsin, a larger number were
unique to the particular organism being studied. For E.
coli, S5, S6, S10, and L12 were significantly less stable
than their T. thermophilus counterparts. Similarly, for T.
thermophilus, S12, S13, S16, L11, L19, L25, and L31 were
significantly less stable than their E. coli counterparts.
Within this group, all proteins except L31 have longer
C-termini tails than found in E. coli. These extended
regions tend to be basic and solvent-exposed, likely
leading to the difference in results seen between T.
thermophilus and E. coli, and L31 has recently been
remodeled on the 2.8 Å 70S bacterial crystal structure
into a position that is consistent with the ease it disso-
ciates°from°the°ribosome°[18].

Comparison with Other Biophysical Information

Those proteins readily hydrolyzed in both cases should
be surface accessible, thus providing information on the
ribosome topography. The positions of the r-proteins

Figure 4. Representative MALDI mass spectral data after incu-
bation of intact T. thermophilus 70S ribosomes with trypsin under
limited proteolysis conditions for the following time periods (a) 0
min, (b) 30 min, (c) 500 min, and (d) 1500 min. The intact
ribosomal proteins detected after each incubation period are
summarized°in°Figure°5°and°Figure°S4.°Table°2°summarizes°the
identification of new m/z values that arise during the limited
proteolysis experiments.

1312 SUH ET AL. J Am Soc Mass Spectrom 2007, 18, 1304–1317



from the 30S and 50S subunits found to be readily
digested by both trypsin and Proteinase K are shown on
the°E. coli 70S°3.5°Å°crystal°structure°[17]°and°on°the°T.
thermophilus 2.8°Å°crystal°structure°[18]°in°Figure°6.°The
crystal structures used here do not contain coordinates
for r-proteins S1, L7/L12, L10, L11 (T. thermophilus
only), L36 (T. thermophilus only), and L28 (E. coli only).
Although coordinates for L10 and L12 are not available,
these proteins were found to be susceptible to limited
proteolysis° in° this° study.° As° seen° in° Figure° 6,° the

majority of unstable r-proteins are within the 30S sub-
unit, specifically in the head and platform regions. Such
results are not surprising as these regions were found to
be more disordered in earlier X-ray structures, which
hindered°assignment°of°specific°ribosomal°proteins°[7,
23,°37].°The°50S°subunit°and°the°body°of°the°30S°subunit
contain significantly fewer r-proteins susceptible to
limited proteolysis. Similar information is presented in
Figure S5, which places those r-proteins likely to be
susceptible to proteolytic digestion within the 70S ribo-

Figure 5. Intact ribosomal proteins from the (a) 30S subunit and (b) 50S subunit observed with
MALDI-MS after incubation with trypsin for denoted time periods; (white bars) T. thermophilus and
(black bars) E. coli.
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some surface for clarity. The similarities between the
proteolytic digestion of 30S head and platform proteins
from E. coli and T. thermophilus are readily recognized.
Recently, Yamamoto and coworkers utilizedMALDI-MS

in combination with H/D exchange to probe the flexibility
of°E. coli 70S°ribosomes°[10].°They°concluded°that°the
extent of deuterium incorporation is closely related to the
30S and 50S assembly processes, with highly deuterated
proteins being incorporated late in the assembly process.
Because that H/D exchange approach as well as the
approach developed here should probe ribosome topol-
ogy, it is of interest to note that these limited proteolysis
results are only marginal related to assembly order. For
example, r-proteins L6, L14, L16, L19, L25, L27, L28, L30,
L31, and L32 are incorporated late in the assembly process
of°the°50S°subunit°[44,°45].°Within°this°list,°only°L19,°L27,
and L31 were found to be particularly susceptible to
limited proteolysis with either protease. Moreover, each of
these three r-proteins yielded stable tryptic fragments that
were detectable even after 1500 min incubation with
trypsin°(Table°1).°More°relevant°than°the°assembly°process
is the surface accessibility of these proteins as seen in

Figure°6.°Within°the°small°subunit,°the°r-proteins°incorpo-
rated late in the assembly process include S2, S3, S10, S14,
and°S21°[46,°47].°All°except°S14°are°readily°digested,°but°in
addition it was also found that S5, S6, S11, S18, and S19 are
also readily digested. As with the 50S r-proteins, limited
proteolysis of 30S r-proteins reports surface accessibility of
protease sites more than their stage in the assembly
process.

Utility of the Present Method

There are several advantages to using MALDI-MS as
the detection step for limited proteolysis of ribosomes.
Because molecular weight is an intrinsic property, a
detection method that reports molecular weights can be
used to directly identify those proteins resistant to
proteolysis. In addition, when a protease of high spec-
ificity such as trypsin is used, the identification of
proteolytic fragments is also possible, especially when
the hydrolyzed peptide is from the N- or C-terminus of
the protein. In that case, a simple comparison of mea-
sured molecular weight values to those predicted based

Table 2. MALDI-MS°analysis°of°T. thermophilus proteolytic°fragments°generated°by°trypsin°(Figure°4)

Measured Mass
[M � H]�

Calculated Massa

[M � H]�

�M
(Da) Identity Observed A.A. Residues Loss of

4552.4 4552.3 0.1 L19* 1-39 C-terminus
5321.6 5321.3 0.3 L14*bc 1-49 C-terminus
5426.5 5426.4 0.1 L31* 1-48 C-terminus
5449.9 5449.5 0.4 L9* 1-50 N-terminus
5653.6 5653.5 0.1 L12*c 2-57 C-terminus
6116.9 6117.3 -0.4 L9 1-56 C-terminus
6127.4 6127.2 0.2 L25 20-72 N- and C-terminus
7582.5 7582.1 0.4 S18* 24-88 N-terminus
7809.6 7809.4 0.2 S18 22-88 N-terminus
8880.0 8879.3 0.7 S3* 2-79 C-terminus
8913.8 8913.3 0.5 L27* 6-85 N-terminus
9042.0 9041.5 0.5 L27 5-85 N-terminus
9565.9 9565.2 0.7 S19* 2-85 C-terminus
9674.5 9674.3 0.2 L9 62-148 N-terminus
9893.9 9894.6 -0.7 S19 2-88 C-terminus

10143.4 10143.9 -0.5 L9 58-148 N-terminus
10299.6 10300.1 -0.5 L9 57-148 N-terminus
10130.0 10130.8 -0.8 S16* 1-85 C-terminus
11144.2 11144.1 0.1 S13* 2-99 C-terminus
11852.6 11853.2 -0.6 S17*c 2-101 C-terminus
12303.7 12303.1 0.6 S11* 13-129 N-terminus
12459.6 12459.3 0.3 S11 12-129 N-terminus
12686.5 12686.6 -0.1 S11 10-129 N-terminus
13092.7 13092.3 0.4 L19* 1-111 C-terminus
13465.2 13465.8 -0.6 S13* 2-120 C-terminus
13593.1 13593.9 -0.8 S13 2-121 C-terminus
14015.3 14015.7 -0.4 S12* 2-127 C-terminus
14272.2 14272.8 -0.6 L19 1-120 C-terminus
15336.0 15335.1 0.9 L16*c 6-141 N-terminus
18442.5 18441.3 1.2 L1*c 20-191 N- and C-terminus
20594.5 20595.9 -1.4 L25* 1-182 C-terminus

*Protein fragments were still detected after 1500 min incubation with trypsin
aThe average singly protonated mass of the tryptic products is shown as calculated using SequenceEditor ver. 1.0, provided by Bruker Daltonics and
ProteinProspector.
bThe ion at m/z 5321 can be generated from L2 (168-216, m/z 5321.1) and L14 (1-49, m/z 5321.3). Although these cannot be differentiated at the mass
accuracy available here, it is noted that the ion abundance of intact L14 but not L2 decreases with increasing incubation with trypsin.
cIntact proteins also detected.
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upon loss of an N- or C-terminus tryptic peptide is all
that is needed to assign the identity of the proteolytic
fragment and site of proteolysis (Figures S5 and S6).
When internal peptide domains are cleaved, data anal-
ysis and interpretation become more difficult primarily
due to the greater number of theoretical cleavage
masses that must be calculated. One limitation of the
approach described here is that some r-proteins, L4, L5,
S1, and S2 (T. thermophilus only) are not detected in the
control experiments, although S1 is easily lost during
most ribosome preparations. Furthermore, some pro-
teins may be difficult to detect when all r-proteins are
analyzed due to MALDI suppression effects as noted

previously°[48].°There°are°additional°limitations°of°this
approach given the time resolution available to study
ribosome conformations. For example, tracking confor-
mational rearrangements during translation via the
specific experimental procedure presented in this work
would not provide sufficient time resolution to reveal
any meaningful information on that process. However,
this approach should be applicable to studies that
investigate binding/release of external ribosome fac-
tors, providing such interactions are sufficiently long-
lived.
With the advent of high-resolution crystal structures

[17,°18],°a°significant°advancement°in°our°understand-

Figure 6. Surface presentation of the ribosomal proteins digested with both trypsin and Proteinase
K. Color scheme: rRNA is represented in gray. Category one proteins (susceptible to digestion within
30 min) are represented in yellow. Category two proteins (susceptible to digestion within 125 min) are
represented in green. Category three proteins (stable to digestion up to 1000 min) are represented in
orange (see text). Proteins that were still detected intact even after 1500 min of incubation are
represented in brown. (a) and (b) Views of the surfaces of the E. coli 70S ribosome with protease
susceptible proteins identified. (a) to (b) are 180° rotations about the vertical axis. (a) View from the
left-hand side with the 30S subunit on the right and the 50S subunit on the left. (b) View from the
right-hand side with the 30S subunit on the left and the 50S subunit on the right. (c) and (d) Views of
the surfaces of the T. thermophilus 70S ribosome with protease susceptible proteins identified. (c) to (d)
are 180° rotations about the vertical axis with similar perspectives as for E. coli. Images of the 30S and
50S°subunit°structures°were°produced°using°MacPyMol°[36]°from°the°3.5°Å°crystal°structure°of°E. coli
(accession°2AVY°and°2AW4)°[17]°and°the°2.8°Å°crystal°structure°of°T. thermophilus (accession°2J00°and
2J01)°[18].

1315J Am Soc Mass Spectrom 2007, 18, 1304–1317 LIMITED PROTEOLYSIS AND MALDI-MS OF RIBOSOMES



ing of ribosome structure and function has resulted.
However,°as°has°been°noted°[49,°50],°high-resolution
crystal structures are limited to a very small number of
organisms and information from one organism can
inform but not directly replace information from an-
other organism. Thus, methods such as that developed
here, which reveal low-resolution information regard-
ing ribosome organization are still necessary, and can
be especially useful for organisms for which no high-
resolution crystal structures are yet available. As noted
in this work, information obtained by MALDI-MS can
provide specific identification of r-proteins relatively
resistant to proteolytic digestion, can denote r-proteins
readily digested, and can identify stable r-protein pro-
teolytic fragments. The approach presented does not
destroy the overall structure of ribosomal subunits, thus
the MALDI data must be reporting on surface accessible
r-proteins. One of the drawbacks of the direct
MALDI-MS readout of ribosomal proteins and proteo-
lytic fragments is that, in the absence of any detected
proteolytic fragment, one cannot determine whether a
particular r-protein is being digested by the protease.
Although this drawback is not inherent to MALDI-MS,
it does preclude obtaining quantitative data on protein
stability in the absence of isotopic labeling or internal
standards.

Conclusions

The use of MALDI-MS for the direct determination of
r-proteins resistant to limited proteolysis has been dem-
onstrated. This approach can be used at the level of
intact ribosomes and can provide information on sites
of proteolysis when proteases of high specificity are
used. The approach yielded information of ribosome
topology that is comparable to that previously obtained
by other approaches. The speed and sensitivity of
MALDI-MS, combined with the measurement of molec-
ular mass, an intrinsic property of proteins, will allow
this approach to be extended to ribosomes from addi-
tional organisms. Moreover, this approach provides a
general route to obtaining information on the topology,
organization, and conformational changes associated
with RNP complexes.
The data obtained using E. coli and T. thermophilus

ribosomes agrees well with existing crystal structures,
suggesting that this method is applicable to additional
organisms, including eukaryotic systems that are signif-
icantly larger and more complex. In addition to provid-
ing information on intact ribosomes, this approach
should be applicable to examining ribosome dissocia-
tion processes, subunit associations, and conforma-
tional changes associated with the binding of external
ribosomal factors. Another particularly useful extension
of this method would be the investigation of other RNP
complexes for which little high-resolution structural
data exist, such as the ribosomal subunit assembly
intermediates°[45,°46,°51].°Thus,°while°this°present°study
does not advance directly our understanding of the

E. coli or T. thermophilus ribosomes, it does demonstrate
the feasibility of a relatively straight-forward and rapid
mass spectrometric approach for limited proteolysis of
large RNP complexes.
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