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The Beyer–Swinehart (BS) algorithm, which calculates vibrational state density and sum, was
modified for simultaneous treatment of degenerate vibrations. The modified algorithm was
used in the grouped-frequency mode of the Rice–Ramsperger–Kassel–Marcus (RRKM) uni-
molecular reaction rate constant calculation for proteins with relative molecular mass as large
as 100,000. Compared to the original BS method, reduction in computation time by a factor of
around 3000 was achieved. Even though large systematic errors arising from frequency
grouping were observed for state densities and sums, they more or less canceled each other,
thus enabling reliable rate constant calculation. The present method is thought to be adequate
for efficient and reliable RRKM calculations for any macromolecule in the gas phase such as
the molecular ions of proteins, nucleic acids, and carbohydrates generated inside a mass
spectrometer. The algorithm can also be used to calculate the internal energy distribution of a
macromolecule at thermal equilibrium. (J Am Soc Mass Spectrom 2007, 18, 1063–1069) © 2007
American Society for Mass Spectrometry

One of the main difficulties in applying the
fundamental principles and methods devel-
oped in physical sciences to biological systems

lies in the very large number of degrees of freedom
involved. Efforts are being made in various fields to
devise methods to handle this problem. For example,
development of more efficient algorithms and compu-
tational methods for large molecules is one of the
frontiers in quantum chemistry [1–3]. Theoretical treat-
ment of biological reactions is also very challenging,
tremendously large number of degrees of freedom
being one of the main difficulties.
Unimolecular reactions occurring statistically under

the microcanonical condition is described by the Rice–
Ramsperger–Kassel–Marcus (RRKM) theory [4–9].
When the molecular rotation is ignored, the RRKM rate
constant is expressed as follows:

k� �
N‡(E�E0)

h��E�
(1)

Here �(E) is the vibrational state density of the reactant
at the internal energy E, E0 is the critical energy of the

reaction, N‡(E � E0) is the vibrational state sum from 0
to E � E0 at the transition state (TS), h is the Planck
constant, and � is the reaction path degeneracy, which
is usually one for reactions involving large molecules.
Various factors cause uncertainty in a calculated rate

constant such as the presence of vibrational anharmo-
nicity and internal rotation [8]. Even with the simplifi-
cation of treating all the internal degrees of freedom as
harmonic vibrations, tremendous difficulties remain.
One of these is to obtain the complete sets of vibrational
frequencies at the reactant and TS geometries. Unlike
for small molecules, attaining a complete frequency set
for a molecule with the relative molecular mass (RMM)
as large as 10,000 or larger by experiment or by quan-
tum chemical calculation is virtually impossible at the
moment. Fortunately, it is known [10–13] from studies
on small molecule reactions that accuracy of each vibra-
tional frequency is not critical in RRKM calculation. We
previously reported [14] a method to estimate a com-
plete set of vibrational frequencies for proteins with any
amino acid sequence using fictitious sets for 20 amino
acid residues derived from density functional theory
calculations. A similar method may be useful for other
biopolymers such as nucleic acids and carbohydrates.
The frequencies at TS can be acquired only by quantum
chemical calculation. Computations involved are not
trivial even for peptides consisting of three simple

Address reprint request to Prof. Myung Soo Kim, Department of Chemistry,
Seoul National University, Seoul 151-742, Korea. E-mail: myungsoo@
snu.ac.kr

Published online April 19, 2007
© 2007 American Society for Mass Spectrometry. Published by Elsevier Inc. Received February 20, 2007
1044-0305/07/$32.00 Revised March 23, 2007
doi:10.1016/j.jasms.2007.03.012 Accepted March 26, 2007



amino acids, as demonstrated by Paizs and Suhai [15].
One of the alternative approaches is to postulate a value
for the fictitious entropy of activation at 1000 K (�S‡) for
the reaction and to derive the TS frequency set by
adjusting some frequencies of the reactant to arrive at
the postulated value of �S‡ [4, 16]. The advantages of
the method are that it is straightforward to implement
and that the rate constant thus calculated is rather
insensitive to details of the method such as the kind and
number of modes chosen for adjustment. Technically
speaking, E0 and �S‡ are the parameters affecting the
magnitude of a calculated rate constant. However, the
fact that they are difficult to assign is another cause for
uncertainty in RRKM calculation, especially for large-
molecule reactions.
Various methods have been developed over the

years to calculate the vibrational state density and sum.
Direct counting of states [17–19] was attempted from
the early days of study together with the computation-
ally less demanding version of using grouped frequen-
cies [20] and approximate methods such as the Whit-
ten–Rabinovitch (WR) semiclassical method [21] and
the steepest-descent method [22]. It was observed that
all the approximate methods provided erroneous re-
sults at low internal energy [4, 20, 23]. These methods
became virtually obsolete after the invention of an
efficient direct counting algorithm by Beyer and Swine-
hart (BS) [24].
After the development of a method to prepare the

complete vibrational frequency set of a protein, we
attempted to study mass-dependent change in protein
dissociation kinetics [15, 16, 23, 25, 26]. It was found that
the computation time needed for RRKM calculation
with the BS algorithm increased exponentially with
molecular mass, becoming days at RMM of a few tens of
thousands. Subsequently, we investigated the perfor-
mance of the WR method, which can instantly calculate
a rate-energy relation. When applied to protein disso-
ciation, the rate constants at low internal energy were
found to be larger than the corresponding BS results by
orders of magnitude as reported. The fact that some
parameters used in calculation proposed by Whitten
and Rabinovitch [21] were not adequate for proteins at
low internal energy was found to be responsible for the
overestimation. Improvement [27] of these parameters
using the frequency set obtained in our previous work
reduced the error to a factor � 2. Even though the same
method of improvement can be applied to other
biopolymers, the parameters must be evaluated sepa-
rately for each class of compounds; that is, lack of
universal applicability is the main drawback of this
improved WR method.
Grouping vibrations and treating those in a group as

degenerate vibrations can reduce the computational
demand in state counting. This grouped-frequency
method is not in use nowadays because the BS algo-
rithm is fast enough even for fairly large molecules and
because the BS algorithm in its current form cannot
simultaneously handle degenerate vibrations. As a part

of our effort to develop an efficient and reliable method
of RRKM calculation that can be used for any biopoly-
mer, a modified BS algorithm that can handle degener-
ate vibrations simultaneously has been derived in this
work. Its utility and performance in the grouped-
frequency mode of RRKM calculation have also been
tested. The results are reported in this paper.

Algorithm and Computation

A brief description of the original BS algorithm [24] is as
follows. Let us express vibrational frequencies and
internal energy in cm�1 units. Each of these is converted
to an integer by dividing with a grain size (�, in cm�1)
and taking the nearest integer. Then, the frequency of
the mode i is represented by Ri and the internal energy
of (M� 1)� in cm�1 is represented by M. A grain size of
1–10 cm�1 is adequate for small molecules. An array
T(M) is used that, eventually, becomes the state density
calculated at the energy interval of �. Sum of the first (M
� 1) elements corresponds to the state sum up to the
internal energy M�. T(M) is initialized to (1, 0, 0, 0, 0,Ê)
and upgraded for each vibration by the following
algorithm:

T(M)�T(M)�T(M�Ri) (2)

For example, let us consider a system with three vibra-
tional modes with R1 � 2, R2 � 3, and R3 � 3. Use of eq
2 for mode 1 converts the T array into T1 � (1, 0, 1, 0, 1,
0, 1, 0, 1, 0,Ê). Its successive use for the modes 2 and 3
converts the latter array first into T2 � (1, 0, 1, 1, 1, 1, 2,
1, 2, 2,Ê) and then into T3 � (1, 0, 1, 2, 1, 2, 4, 2, 4, 6).
As noted earlier, the original BS algorithm treats all

the vibrations separately regardless of degeneracy. It is
obvious that reduction in computation time may occur
if a method to treat degenerate vibrations all at the same
time can be devised. In the grouped-frequency direct
counting mode [17–19] of RRKM calculation used be-
fore the advent of the BS algorithm, this was achieved
by taking advantage of the fact that the number of ways
to distribute j vibrational quanta into g degenerate
vibrations is given by gHj � g�j�1Cj. To see how the
same relation plays in the original BS algorithm, let us
inspect the energy density, or the number of state at the
internal energy 9 in T3, or T3(10) � 6, in the preceding
example. There are two ways to partition the internal
energy 9 into mode 1 and the degenerate modes 2 and
3; three quanta in mode 1 and one quantum in degen-
erate modes and all the internal energy into the degen-
erate modes as three quanta. The ways to distribute
these quanta, or state degeneracies, in these two cases
are 2H1 � 2C1 � 2 and 2H3 � 4C3 � 4, respectively,
resulting in the total number of states of 6 in agreement
with T3(10) as calculated by the BS algorithm. That is,
the algorithm sums the state degeneracies for all single
and multiple excitations of the degenerate modes that
are allowed at the energy being considered. The algo-
rithm devised in the present work to do the same for a
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group(s) of degenerate modes, but all at the same time,
is as follows.
Let us use two arrays initialized as T � (1, 0, 0, 0,Ê)

and AT � (1, 0, 0, 0,Ê). Even though it does not matter
at which step a particular group of degenerate modes is
treated, let us suppose that they are treated at the
beginning. Suppose that this group has frequency R and
degeneracy g. At the internal energy specified by M, the
maximum number of quanta that can be assigned to this
group is as follows:

jmax� (M� 1) ⁄ R (3)

Then, the energy density is represented by the AT array
upgraded by the following algorithm.

T(M)�AT(M)��
j�1

jmax

gHj �AT(M� jR) (4)

AT(M)�T(M) (5)

This algorithm is equivalent to eq 2 for nondegenerate
vibrations and can be used generally.
Validity of the modified algorithm was tested for

various cases. A software was written to handle rela-
tively complicated cases and state densities calculated
with the original and modified algorithms were com-
pared, which turned out to be identical when frequen-
cies used were multiples of the grain size. As a simple
example, let us consider a system with six vibrational
modes with R1 � 2 and R2–R6 � 3. The T3 array
obtained by treating R1, R2, and R3 with the original BS
is the same as in the previous example, that is, T3 � (1,
0, 1, 2, 1, 2, 4, 2, 4, 6,Ê). Successive treatments of R4–R6
result in T4 � (1, 0, 1, 3, 1, 3, 7, 3, 7, 13,Ê), T5 � (1, 0, 1,
4, 1, 4, 11, 4, 11, 24,Ê), and T6 � (1, 0, 1, 5, 1, 5, 16, 5, 16,
40,Ê). T1 obtained by the modified BS is the same as the
one by the original BS, that is, AT1 � T1 � (1, 0, 1, 0, 1,
0, 1, 0, 1, 0,Ê). Now, let us treat R2–R6 simultaneously
using eq 2. For M 	 3, jmax � 0 and thus T2(M) �
AT1(M) � (1, 0, 1) in agreement with T6 derived earlier.
Some other elements of T2 (�AT2) are as follows. For M
� 4, jmax � 1 and thus T2(4) � AT1(4) � 5H1 � AT1(1) �
0 � 5 � 1 � 5. For M � 7, jmax � 2 and thus T2(7) �
AT1(7) � 5H1 � AT1(4) � 5H2 � AT1(1) � 1 � 0 � 15 �
16. Finally, for M � 10, jmax � 3 and thus T2(10) �
AT1(10)� 5H1 �AT1(7)� 5H2 �AT1(4)� 5H3 �AT1(1)
� 0 � 5 � 0 � 35 � 40. All these are the same as the
corresponding elements in T6 derived by the original
BS.
In the grouped-frequency direct counting method

used previously [17–19], a complete frequency set,
either of the reactant or of TS, was split into several
subsets, each consisting of frequencies with similar
magnitudes. The representative frequency for each sub-
set was calculated as the geometrical mean of the
constituents. These representative frequencies were
used to calculate the number of frequency combinations
at a given energy by direct count, which was then

weighted with the gHj factors to obtain the state density.
Significant computational economy, without much loss
of accuracy, was reported. The same approach, com-
bined with the modified BS algorithm developed in this
work, can be especially useful for very large molecules.
As the number of elements in a subset increases, how-
ever, the number of terms in eq 4 also increases,
partially offsetting the economy gained in the previous
step. Even though we devised and tested various meth-
ods of dividing a frequency set into subsets, this step
did not turn out to be critical. The method implemented
in the software used in this work is as follows. First, all
the frequencies in a set are arranged in increasing order.
The first frequency R1 is taken as an element of the first
subset. The arithmetic mean of the elements in this
subset R� , which is R1 at the beginning, is calculated.
Then R2, the second frequency in the set, is taken and
C � R2

0.5 is calculated. If R2 � R2 � R� � C � R2
0.5, R2

is assigned to the same subset as R1; otherwise, it is
assigned to the second subset. The process is continued
for all the elements in the set and the number of subsets
is counted. Then, the parameter C is adjusted iteratively
until the predetermined number of subsets is obtained.
Use of the modified BS algorithm for G frequency
subsets will be called BS-G.
Actual RRKM calculations must be carried out to test

the utility of the present algorithm. One of the prereq-
uisites for such calculations is the complete vibrational
frequency set for the reactant, which is not readily
available for general macromolecules. Thus, even
though the present algorithm has been developed to
treat any macromolecule, in this work testing was
carried out only for proteins for which a systematic
method to construct such a set had been previously
established [14]. Details of the software other than those
altered for the present purpose are the same as in the
previous report [14]. Briefly, various inputs needed for
each calculation are fed interactively. These include the
amino acid sequence of a protein, the number of pro-
tons attached, the critical energy, the entropy of activa-
tion, the grain size, and the number of frequency groups
to be used. A vibration with 1149 cm�1 frequency in the
reactant geometry is taken as the reaction coordinate by
default even though an option is available to select
another. Once the amino acid sequence and the number
of protons are specified, the software constructs the
complete frequency set for the reactant by using the
residue frequencies and the frequencies related to pro-
ton motion stored in the software. The reaction coordi-
nate is deleted from this set and frequencies of six
low-frequency modes are adjusted using the entropy of
activation specified to construct the set at TS. The
number of frequencies to be adjusted in this step and
their designation are other options in the software.
Software was written with the C program language
under the Linux environment. The long double preci-
sion that can handle numbers as large as 105000 was
used in our previous BS software. For molecules with
RMM� 20,000, the state density at high internal energy
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often exceeded 105000. To handle such cases, the soft-
ware has been revised in this work such that a number
was represented by two numbers, a real number for the
significant coefficient and an integer for the exponent,
wherever needed. In principle, this dual-number repre-
sentation can handle arithmetic calculations for num-
bers as large as 102,000,000,000. Adding two numbers in
the original BS algorithm of eq 2 becomes meaningless
when one number is much larger than the other.
Provision has been made in the new software to avoid
such unnecessary calculations. BS calculations using the
software thus revised will be denoted BSD. Dual-
number representation has also been used in the BS-G
software. An AMD Athlon64 3000� processor (Ad-
vanced Micro Devices, Inc., Sunnyvale, CA, USA) was
used for the calculations.

Results and Discussion

Efficiency and reliability of the grouped-frequency
mode of RRKM calculation using the modified BS
algorithm was tested. Because the purpose of the test
was to evaluate the performance of the modified algo-
rithm compared to the original one, several factors that
could affect the reliability of actual rate-energy relation
outcome were ignored. These included vibrational an-
harmonicity and the presence of internal rotations.
Similarly, reliability of the complete frequency sets at
the reactant and TS geometries used in the calculation
was not an issue. In this work, results from the test will
be presented using fictitious multimers (P-mers) of
angiotensin I (DRVYIHPFHL, RMM of 1295.7), which
will be denoted as AI-P, as examples. With p � 1–80,
their RMMs lie in the range of 1300–102,000. We also
tested with fictitious multimers of other peptides such
as melittin, ubiquitin, and ACTH. The results were
essentially the same. Even though we could not test for
other types of biopolymers for the reason mentioned in
the previous section, materials used for the test would
not be an issue either for the present purpose. The
influence of some factors had to be carefully investi-
gated. These included the grain size, the number of
frequency groups, the critical energy (E0), and the
entropy of activation (�S‡). Evaluation of the present
algorithm as a function of E0 was needed because the
internal energy needed to result in the same rate
constant increased rapidly with E0 and thus computa-
tion time increased exponentially.
Even though the grain size might similarly affect the

calculations with the original and modified BS algo-
rithms, its influence was tested with the original algo-
rithm such that rate-energy relations to be used as
benchmarks in subsequent tests could be established.
Initially, we also hoped that use of a grain size � 1–10
cm�1 typically used for small molecules [4] might turn
out to be adequate for large molecules and thus reduce
computation time. Tests were made for AI-P (p � 1–8,
10, and 20) using the grain size of 1, 10, 25, 35, and 50
cm�1; E0 � 0.5 eV; and �S‡ � 0 eu (1 eu � 4.184 J K�1

mol�1). Compared to the rate-energy relations obtained
with the grain size of 1 cm�1, which were taken as
references, the error in each datum decreased steadily
with the increase of rate constant. Quoting the errors at
the rate constant of 10�3 s�1, these were around 6, 22,
75, and 140% for the grain sizes of 10, 25, 35, and 50
cm�1, respectively, with only marginal dependency on
molecular mass. Because one of our goals was to
develop a grouped-frequency mode of RRKM calcula-
tion, which could reproduce the results from the use of
the original BS algorithm, it was decided to adopt the
grain size of 10 cm�1. This is the most frequently used
grain size for small molecules. Computational economy
with the use of a larger grain size hoped for large
molecules was not realized.
In the next test, we compared the rate-energy rela-

tions obtained by the grouped-frequency modified BS
calculations, BS-G, with those by the original BS algo-
rithm. Results from calculations done for dissociation of
AI-P occurring with �S‡ � 0 eu and E0 � 0.5 eV using
the subgroup number (G) of 10, 20, and 30 will be
presented first. To extend the test to as large a molecular
mass as possible, we first compared the rate-energy
relations obtained by the original and dual-number
(BSD) BS algorithms for RMM � 20,000 and confirmed
that BSD was working properly. That is, the results
from the two algorithms were identical. Thus, we
calculated a rate-energy relation either with BS or with
BSD, whichever was more convenient, and compared
the results with those calculated by BS-G (G � 10, 20,
and 30). A typical case (AI-7, E0 � 0.5 eV, and �S‡ � 0
eu) is shown in Figure 1. All the BS-G results repro-
duced the BS result rather well. Minor differences can
be seen in the magnified rate-energy relations shown as
an inset in the figure. Differences grew larger at a
smaller rate constant. For the results at around k� 10�3

s�1 (not shown in Figure 1), the rate constants calcu-

Figure 1. RRKM rate-energy relations for dissociation of 7-mer
of angiotensin I, AI-7, calculated with E0 of 0.5 eV and �S‡ of 0 eu
using the original BS (�), BS-10 (Œ), BS-20 (�), and BS-30 (L)
algorithms.
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lated with BS-10, BS-20, and BS-30 deviated from the BS
results by 20, 6, and �0.5%, respectively. Summarizing
the results calculated for all the proteins studied in this
work, typical errors with BS-10, BS-20, and BS-30 were
around 20, 10, and 2%, respectively. Occasionally,
larger errors were encountered with BS-10 and BS-20,
for example, 50% for AI with BS-10 and 70% for AI-6
with BS-20.
We also performed calculations using other values of

E0 and �S‡. The rate constant error in BS-30 was
insensitive to E0. On the other hand, it was found to
increase with �S‡. With �S‡ � 10 eu, which is a typical
value for dissociation occurring by loose TS, the BS-30
rate constants were smaller than the corresponding BS
data by around 50%. Dependency of the error on RMM
was very weak. We also performed BS-60 calculations
to see whether use of a larger number of groups would
reduce the error. Even though the error was smaller
than that in BS-30 at small RMM, they became nearly
comparable for AI-30.
To investigate the nature of the preceding errors, we

compared state densities and sums calculated by BS and
BS-30 for AI-P (p � 1–30). It was found that BS-30
underestimated these data and the difference grew
larger for larger RMM values, from a factor of 1.1 for the
monomer to a factor of 30 for the 30-mer. With �S‡ � 0
eu, these systematic errors in state densities and sums
were nearly the same and compensated each other,
resulting in 10% error in the final rate constant. Error
compensation became poorer with larger �S‡, resulting
in larger error in the rate constant. One can think of two
origins for this error, one arising from erroneous count-
ing and the other from frequency grouping. As men-
tioned earlier, the modified algorithm accurately repro-
duced state densities calculated by BS when frequencies
were multiples of the grain size. Otherwise, state den-
sities calculated by the original and modified algo-
rithms were often different. To see the extent of the
counting error, we calculated state densities of AI-P
using the modified algorithm without frequency group-
ing. Because of the method used to prepare the fre-
quency set, these systems have many degenerate vibra-
tions. The counting error in state density thus estimated
was only a few percent. Then, very large errors in state
densities and sums calculated by BS-30 must originate
from frequency grouping. An explanation for the in-
crease of this error with �S‡ is as follows. With small
�S‡, most of the frequencies of a protein at the reactant
geometry and at TS are similar, which results in similar
frequency groups and thus similar grouping errors in
state densities and sums. As �S‡ becomes larger, these
groups become less similar, resulting in larger rate
constant error.
Finally, we compared the computation time needed

for AI-P (p� 1–10, 20, 30, 40, 50, 60, 70, and 80) with BS,
BSD, BS-10, BS-20, and BS-30. The amount of internal
energy needed for dissociation with a particular mag-
nitude of rate constant increases almost in proportion to
RMM [28]. Thus, for a fair comparison of computation

times for the dissociation of different multimers occur-
ring with a specified E0 value, adjustment of the maxi-
mum internal energy (Emax) for each multimer was
needed such that the maximum value for the rate
constant was nearly the same regardless of RMM. The
zero-point energy (EZ) of each multimer also increases
with RMM. It turned out that keeping the Emax/EZ ratio
constant regardless of RMM resulted in similar values
of the maximum rate constants calculated. The results
to be presented below were obtained with the Emax/EZ
ratio of 0.15, 0.47, and 1.3 for calculations with E0 of 0.5,
1.0, and 2.0 eV, respectively, which generated the max-
imum rate constant of around 108 s�1 for all cases.
Log-log plots of the computation time versus RMM
data for dissociation of AI-P calculated with �S‡ of 0 eu
and E0 of 0.5 and 2.0 eV using BS, BSD, BS-10, BS-20,
and BS-30 are shown in Figure 2. For dissociation with
E0 � 0.5 eV, the BS algorithm could handle only up to
AI-20 (RMM � 25,572) because a number density �
105000 appeared at larger RMM, whereas calculation

Figure 2. Log-log plots of the computation time versus RMM
data for dissociation of multimers of angiotensin I, AI-P (p� 1–10,
20, 30, 40, 50, 60, 70, and 80), calculated with �S‡ of 0 eu and E0 of
(a) 0.5 and (b) 2.0 eV using the original BS (�), BSD (‘), BS-10 (Œ),
BS-20 (�), and BS-30 (L) algorithms. For a fair comparison of
computation times for molecules with different mass and dissoci-
ations occurring with different E0, the Emax/EZ ratio was set to (a)
0.15 and (b) 1.3 such that rate constants up to around 108 s�1 were
calculated for all cases.
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was possible all the way up to AI-80 (RMM � 102,234)
with BSD. Because the maximum internal energies used
in calculations were larger with E0 � 2.0 eV, BS could
handle only up to AI-8 (RMM � 10,240). Even though
there would be no mass limit with BSD, BSD calculation
with E0 � 2.0 eV was done only up to AI-20 because of
tremendous computational demand. The computation
time for AI-20 in this case was 2.1 � 105 s (2.4 days).
Because BSD uses the dual-number representation for
some numbers, one would have expected to observe
longer computation time than in BS. This was indeed
the case in the low-mass region of Figure 2a calculated
with E0 � 0.5 eV. As RMM increased, however, the
computation time for BSD increased less rapidly than
that for BS, and BSD became more efficient than BS at
RMM larger than a few thousand. Situation was similar
for the E0 � 2.0 eV case shown in Figure 2b. Here, use
of larger maximum internal energies than in the E0 �
0.5 eV case made BSD more efficient than BS even for
the monomer. Treating exponents as integers and elim-
inating unnecessary calculations must have been re-
sponsible for the high efficiency of BSD.
All the BS-G methods were more efficient than BS

and BSD. It was another surprise to note that the
computation times for BS-10, BS-20, and BS-30 were
rather similar. Thus, BS-30—which shows noticeably
smaller error in rate constants than BS-10 and BS-20 in
all the cases investigated—is the method of choice.
Computational economy arising from the use of a
smaller number of subsets in BS-10 must have been
offset by the need to compute more terms in eq 4. Good
linear relations observed in the log-log plots for all the
cases shown in the figure help to estimate the compu-
tation time even when actual computation could not be
done. In the E0 � 0.5 eV case for RMM of 100,000, the
computation times with BS, BSD, and BS-30 would be
3.53 � 106, 1.12 � 105, and 1.27 � 103 s, respectively.
BS-30 would be faster than BS by a factor of 2800.
Corresponding data in the case of E0 � 2.0 eV would be
2.47 � 108, 3.91 � 106, and 6.77 � 104 s, respectively.
Here BS-30 would be faster than BS by a factor of 3600.
Although 6.77 � 104 s, or 19 h, of computation needed
with BS-30 at RMM � 100,000 is long, it is tolerable
compared to 8 yr, which would have been needed with
BS. Computation time with BS-30 in the above cases is
roughly proportional to (E0)

3(RMM)1.7.
When the state density data over a wide internal

energy range are available, the internal energy distribu-
tion at a specified temperature can be calculated by
using the usual Boltzmann distribution, P(E) 	
�(E)exp(�E/kT). Even though large systematic errors
are present in the state densities calculated by the
grouped-frequency method, this does not prevent reli-
able calculation of an internal energy distribution be-
cause the error is nearly the same regardless of the
internal energy. The internal energy distributions for AI
and AI-80 at 500 K calculated by BS-30 are shown in
Figure 3. The average internal energies of AI and AI-80
at this temperature are 6.29 and 505.9 eV with the full

widths at half maximum of 1.66 and 14.8 eV, respec-
tively. The average internal energy at a specified tem-
perature increases in proportion to mass, whereas the
standard deviation increases only in proportion to the
square root of mass, as expected. This leads to an
interesting conclusion that a macromolecule at thermal
equilibrium is nearly monoenergetic. The internal en-
ergy distribution and the rate-energy data that can be
calculated by the present method can be used for the
investigation of the stability and decomposition of large
m/z molecular ions generated by techniques such as
matrix-assisted laser desorption ionization (MALDI)
[29–31] and electrospray ionization (ESI) [32] in mass
spectrometry, which occur under a quasi-thermal con-
dition.

Conclusion

A modified BS algorithm for simultaneous treatment of
degenerate vibrations was derived and its performance
in the grouped-frequency mode of RRKM calculation
was evaluated using proteins as test samples. An enor-
mous reduction in computation time was achieved at
large molecular mass, a part of which was attributed to
the use of smaller number of frequencies than in the
original BS algorithm and the other part to the improve-
ments made in the software for efficient handling of

Figure 3. The internal energy distributions at 500 K for (a)
angiotensin I, AI-1 and (b) its fictitious 80-mer, AI-80, calculated
by BS-30.
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very large numbers. When 30 frequency groups were
used, the new method reproduced the rate constants
calculated by the original BS method within a factor of
2. For proteins, almost instantaneous and reliable (also
within a factor of 2) RRKM calculation can be done
irrespective of molecular mass using the improved
Whitten–Rabinovitch (IWR) method reported previ-
ously [27]. Even though the IWR method itself is
probably universal, a prerequisite is that some param-
eters used in the calculations must be evaluated sepa-
rately for each class of compounds as we did for
proteins. Such an effort is not needed for the grouped-
frequency BS method developed in this work. That is,
the present method is a genuinely universal method
applicable to any macromolecule—either biological or
synthetic—as far as complete vibrational frequency sets
at the reactant and TS geometries are available. Even
with the tremendous computational economy achieved
by frequency grouping, rate constant calculation for
very large molecules (RMM � 100,000) at high internal
energy may still require a lot of computation time.
Within the present method, using a larger grain size, at
the sacrifice of reliability, may be the only way to
further reduce the computation time. Computation time
is inversely proportional to the grain size.
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