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Collisional activation of [M � H]� parent ions from peptides of n amino acid residues may yield
a rearrangement that involves loss of the C-terminal amino acid residue to produce (bn�1 � H2O)
daughters. We have studied this reaction by a retrospective examination of the m/z spectra of two
collections of data. The first set comprised 398 peptides from coat protein digests of a number
of plant viruses by various enzymes, where conditions in the tryptic digests were chosen so as
to produce many missed cleavages. In this case, a large effect was observed—323 (bn�1 �H2O)
daughter ions (�81%), including 185 (�46%) “strong” decays with ratios (bn�1 � H2O)/
(bn�1) � 1. The second set comprised 1200 peptides, all from tryptic digests, which were
carried out under more stringent conditions, resulting in relatively few missed cleavages. Even
here, 190 (bn�1 � H2O) ions (�16%) were observed, including 87 (� 7%) “strong” decays, so
the effect is still appreciable. The results suggest that the tendency for (bn�1 � H2O) ion
formation is promoted by the protonated side chain of a non-C-terminal basic amino acid
residue, in the order arginine� lysine� histidine, and that its (non-C-terminal) position is not
critical. The results can be interpreted by a mechanism in which hydrogen bonding between
the protonated side chain and the (n � 1) carbonyl oxygen facilitates loss of the C-terminal
amino acid residue to give a product ion having a carboxyl group at the new
C-terminus. (J Am Soc Mass Spectrom 2007, 18, 1024–1037) © 2007 American Society for
Mass Spectrometry

Gaskell and coworkers [1] were the first to report
a decay mechanism of peptide [M�H]� parent
ions containing n amino acid residues in which

(bn�1 � H2O) daughter ions are formed—a fragmenta-
tion especially favored in peptides containing arginine.
They also showed, by 18O isotopic labeling, that the loss
of the C-terminal amino acid residue is accompanied by
retention of one of the carboxyl oxygens at the new
C-terminus, and that the structure of the daughter ion
appears to be the same as that of the [M � H]� ion of
the peptide with one fewer amino acid residue. In a
follow-up paper [2] they showed that partial or com-
plete equilibration of oxygen exchange among the car-

boxyl oxygens and the (n � 1) carbonyl oxygen occurs
on collision induced dissociation (CID) of protonated
RPPGF or TRKR, or sodium cationized YGGFL. Gaskell
et al. suggested a mechanism for the reaction [1], and
other workers have subsequently proposed alternative
mechanisms [3–5]. (See references [6, 7] for notation;
species denoted by lower case letters carry an implied
positive charge.)
Gaskell and coworkers [1] noted that “For the exam-

ples of bradykinin and related peptides, the rearrange-
ment is strongly promoted when arginine is the amino
acid residue lost” and “is also favored by the presence
of an arginine residue at or near the N-terminus.” In
support of their observation that the decomposition
was not observed for peptides with C-terminal amide or
ester functions, they proposed a mechanism (Scheme 1)
initiated by interaction of the C-terminal hydroxyl
group with the (n � 1) carbonyl group, although they
noted that not all of their observations were explained
by this mechanism and stated that “The strong influ-
ence of amino acid composition . . . suggests mechanis-
tic complexities that require further elucidation.”
Gonzales et al. [3] carried out subsequent studies of

metastable ion decomposition and CID of [M � H]�
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ions of several small peptides (tetrapeptides to hep-
tapeptides), and concluded that the (bn�1 � H2O) ion
abundance is largest when an arginine residue is lo-
cated at the (n � 1) position, but absent when arginine
is located at the C-terminus. The latter observation
was ascribed to preferred formation of C-terminal-
containing ions rather than N-terminal-containing ions,
(such as b ions), when a highly basic residue is located
at the C-terminus. When an arginine residue is located
at the (n � 1) position they proposed formation of a
salt-bridge between the protonated guanidino group of
the arginine residue and the deprotonated C-terminal
carboxyl group (Scheme 2), with the location of the
additional proton not being specified. (In accord with
the “mobile proton” model [8] and the proposals of
several groups [9–20] likely several positions of the
peptide backbone could serve as protonation sites,
based on the observation of nonspecific fragmentations
of the peptide backbone.) Formation of the (bn�1 �
H2O) ion is then initiated by interaction of the positively
charged guanidino group with the carbonyl group of its
own arginine residue. However, the presence of the

rearrangement ion was not exclusive to this structural
or compositional feature; it was also observed in pen-
tapeptides when arginine was absent, but when histi-
dine or lysine was present at the N-terminus, though
at low abundance. The (bn�1 � H2O)/bn�1 abundance
ratio increased with increasing basicity of the N-
terminal amino acid.
Vachet et al. [4] made measurements of kinetic

energy lost on decomposition of parent ions of a
number of small arginine-containing peptides
(leucine enkephalin and analogues, bradykinin and

Scheme 1. Formation of the (bn�1 � H2O) ion, as proposed in
reference [1].

Scheme 2. Formation of the (bn�1 � H2O) ion for peptides
having an n � 1 arginine residue [3].
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Substance P). The (bn�1 � H2O) ion, in addition to
formation from [M � H]� ions of bradykinin
(RPPGFSPFR) and des-Arg [1]-bradykinin (in the latter
case supporting earlier observations [1] but contrary to
others [3] on the activity of a C-terminal arginine
residue), was also observed from [M � H]� ions of
YGRFL, where the arginine residue occupies the (n � 2)
position. These three peptides showed anomalously
high-energy losses in the formation of product ions
involving dissociation adjacent to an arginine residue.
The authors argued, with support from computer mod-
eling studies (molecular mechanics), that this was be-
cause the protonated peptides could adopt a conforma-
tion in which the proton is shared between the side
chain of arginine and the carbonyl oxygen on the
adjacent (n � 1) amino acid residue. This led to the
mechanism depicted in Scheme 3 for the formation of
the (bn�1 � H2O) ion from the [M � H]� ion of YGRFL.
The increased positive charge on the carbonyl carbon,
induced by the proton bridge, makes it more suscepti-

ble to attack by oxygen of the C-terminal hydroxy
group.
Deery et al. [5] studied a number of small peptides,

all of which contained a C-terminal arginine residue
and one other arginine residue somewhere in the
peptide backbone, i.e., bradykinin, Lys-bradykinin
(KRPPGFSPFR), Lys-Ala3-bradykinin (KRPAGFSPFR),
and dynorphin A fragments 1–7 (YGGFLRR). Their
[M � H]� ions, after low-energy CID, all yielded
abundant (bn�1 � H2O) ions. The lowest energy confor-
mation of the [M � H]� ion of bradykinin was thought
to involve a salt-bridge structure in which the two
terminal arginine residues are protonated and the C-
terminal hydroxyl group is deprotonated. Evidence in
support of the salt-bridge structure from molecular
modeling [17, 21] and experimental [22] studies was
cited. Upon low-energy CID the salt-bridge structure
breaks down to give either of two isomeric forms; one
isomer retained the ionizing proton at the guanidino
group of C-terminal arginine (Figure 1), while the other
isomer retained the charge at the guanidino group of
N-terminal arginine. They proposed that “When the
charge is located at the C-terminal end of the
peptide . . . the formation of the rearrangement ion is a
very facile fragmentation pathway” and that when the
ionizing proton is located on the guanidino group of
N-terminal arginine, formation of the [M � H � 60]�

ion rather than of the (bn�1 � H2O) ion is observed.
Evidence to support these proposals came from the
nonobservation of the (bn�1 �H2O) ion in the CID mass
spectra of M� ions of bradykinin derivatized to have a
fixed positive charge (trimethylammonium), rather
than a proton, at the N-terminus. Thus, a proton at the
C-terminus (i.e., on the guanidino group) was consid-
ered necessary for formation of the (bn�1 � H2O) ion.
However, they did not suggest a mechanism, and it is
not obvious how the structure in Figure 1 would give
rise to the (bn�1 � H2O) ion. We will suggest that the
fixed charge result does not rule out the possibility of
involvement of a protonated guanidino group at the
N-terminus in the case of decomposition of [M � H]�

ions of nonderivatized bradykinin, and that the results
do not contradict those of Gonzales et al. [3].
A number of subsequent measurements on (bn�1 �

H2O) ions have been reported. They include studies by
Dikler et al. [23], who reduced the basicity of arginine

Figure 1. Structure proposed [5] for the bradykinin [M � H]�

ion, showing charge retention at the C-terminus.

Scheme 3. Formation of the (bn�1 � H2O) ion for peptides
having an n � 2 arginine residue (based on Figure 5 of reference
[4], after correction and modification).
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residues by derivatizing with acetylacetone, effectively
converting an arginine residue to a pyrimidinyl orni-
thine residue, and also by Tsaprailis et al. [24], who
observed the effect in surface-induced dissociation at
50 eV in a quadrupole mass spectrometer or by high-
energy CID (�8.9 to 10.0 keV, laboratory reference
frame) in an EB sector mass spectrometer. However, the
yield became zero with sustained off-resonance irradi-
ation (18.7 eV) in the much longer time frame of
a Fourier transform ion cyclotron resonance mass
spectrometer.
According to all the proposals that have been made,

the (bn�1 � H2O) ions have a structure with a C-
terminal carboxyl group, as pointed out early on by
Thorne and Gaskell [25], with supporting evidence
given by their similar decompositions to (bn�2 � H2O)
ions.
However, much of the evidence for this fragmenta-

tion has been obtained from a rather restricted group of
compounds, bradykinin, and its relatives, as well as a
few others. These were obvious candidates in which to
look for the effect, following its original discovery by
Gaskell and coworkers [1], but they are not likely to
provide a fair picture of its overall significance. In
contrast, we present here a retrospective study of the
m/z spectra of two fairly extensive collections of data:
(1) 398 peptides from digests of coat proteins of a
number of plant viruses by various enzymes; (2) 1200
peptides from tryptic digests of 46 proteins. Both col-
lections were gathered previously without regard to the
presence of (bn�1 � H2O)-type ions, so the samples are
expected to be reasonably unbiased. These studies
reveal a much larger and more varied group of peptide
parent ions that decay in this way, so clearly the effect
is much more widespread than originally believed.
Thus, our analysis provides a broader picture of the
conditions required for the production of (bn�1 �
H2O)-type ions. It may consequently aid in their dis-
covery and application, as well as shedding light on the
production process.
Moreover, awareness of this mode of decay has

practical applications, since it may cause unexpected
errors in sequencing. Indeed, our interest in the topic
was initially aroused in 1998 during sequencing of the
JGMV coat proteins, when we misinterpreted a number
of (bn�1 � H2O) ions as y ions; two examples are given
below. We were alerted to the problem when our
initially deduced sequences disagreed with those pre-
dicted from the nucleotide data, and it seemed doubtful
that they resulted from mutations. We eventually real-
ized that the source of the disagreement must simply be
the presence of (bn�1 � H2O) ions, and finally became
aware of the previous work in the field [1–5].
However, our mistake is an easy one to make, and

the constraints provided by the nucleotide sequence are
not always present—for example in de novo sequencing
of an unknown protein—so it is important to be aware of
this mode of decay, especially when non-C-terminal basic
residues are present in the peptide being analyzed.

Experimental

Set 1—Plant Virus Coat Proteins

Isolation and purification of plant virus coat proteins. All
plant virus coat proteins were generously provided by
Dr. S. Haber (Cereal Research Centre, Agriculture and
Agrifood Canada, Winnipeg, MB), and Dr. D. L. Seifers
(Agricultural Research Center, Kansas State University,
Manhattan, KS). They included two strains of brome
mosaic virus (BMV) [26–28], foxtail mosaic virus
(FoMV) [29, 30], four strains of wheat streak mosaic
virus (WSMV) [31], four strains of Johnsongrass mosaic
virus (JGMV) from Australia, Kansas, Nigeria, and
Israel [32–34], and high plains virus (HPV) from Kansas
and Idaho [35]. We have previously described isolation
and purification of the coat proteins from these viruses
by ultracentrifugal precipitation through multiple su-
crose density gradients. An additional centrifugal filtra-
tion through a 5000 Da molecular mass cut-off mem-
brane (Millipore Corporation, Bedford, MA) was used
to remove residual impurities, such as SDS detergent
and cesium salts introduced during earlier purification
steps. The sequences of the coat proteins, as published
in references [26–35], and given in Table S1 (Supple-
mental), are based on those predicted by the cDNA
sequences of the isolate types as listed in the SWISS-
PROT/TrEMBL [36] or NCBI [37]°databases,°but°they
incorporate some modifications revealed by our previ-
ously reported mass spectral results.

Enzymatic digestions of plant virus coat proteins. The
peptides examined were generated by partial or com-
plete digestion of the virus coat proteins with various
proteases. To make sequencing easier, conditions were
chosen so as to favor the production of fairly long
proteolytic fragments, for example, short (2 to 4 h)
tryptic digests in solution. This practice, together with
the frequent use of nontryptic enzymes, produced
many fragments that contained non-C-terminal basic
residues.
Trypsin was purchased from Sigma Chemical Com-

pany (St. Louis, MO). Chymotrypsin, as well as endo-
proteases Lys-C, Arg-C, Glu-C, and Asp-N were ob-
tained from Roche Diagnostics (Indianapolis, IN). The
lyophilized protein samples were dissolved (1 mg/mL)
in aqueous 25 mM ammonium bicarbonate (pH 7.8) for
all digestions, except that a 10 mM Tris-HCl buffer
solution (pH 7.6) was used for Asp-N digestions. Then
the enzyme in the same buffer solution was added, with
a 1:100 weight ratio of enzyme to protein, and the
resulting mixture was incubated at 37 °C for 2 to 24 h.
Finally, the digestion was terminated by freezing; the
sample digest solution was then stored below �20 °C.

Mass spectrometry. Mass spectra of whole digest mix-
tures were recorded with our Manitoba/SCIEX proto-
type tandem quadrupole/time-of-flight mass spectrom-
eter°(QqTOF)°(PE/SCIEX,°Concord,°ON,°Canada)°[38],
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which was coupled to a MALDI ion source for these
experiments°[39,°40],°as°shown°schematically°in°Figure
S1 (Supplemental). The matrix was prepared from a 100
mg/mL solution of 2,5-dihydroxybenzoic acid (DHB) in
acetone/water (1:1 vol/vol). 0.5 �L of sample digest
solution containing 0.1% trifluoroacetic acid was mixed
with an equal volume of the matrix solution, the mix-
ture was deposited on a stainless steel target, and the
solvent was allowed to evaporate. When dry, the target
was placed on the sample stage of the instrument, and
was subjected to 4 ns, 337 nm controlled intensity
pulses from a nitrogen laser (model VSL-337ND; Laser
Science, Inc, Franklin, MA). Ions desorbed from the
analytes consisted primarily of [M � H]� ions of the
various peptides present. These were cooled in quad-
rupole q0, selected by m/z value in quadrupole Q1, and
then subjected to collision-induced dissociation (CID) in
quadrupole q2. The collision gas was nitrogen or argon
at a pressure of�10�2 torr, with initial laboratory frame
ion kinetic energies of 50 to 180 eV per charge (varied to
adjust the extent of fragmentation). The daughter ions
observed were compared with the corresponding cal-
culated masses of the fragment ions using a commer-
cially available program (ProMac 1.5.3.1, supplied by
MDS SCIEX), which was provided with the peptide
sequences expected in the enzyme digests.

Set 2—1200 Tryptic Peptides Generated for
Measurement of Chromatographic Retention Times

Tryptic digests of 69 proteins (listed in Table S2). The
proteins were commercially-available proteins of
known sequence, along with some others that we had
previously sequenced, which had all been selected
primarily for a study of their chromatographic behavior
[41–°43].°The°proteins°were°prepared°for°mass°spectrom-
etry°as°described°above°and°in°reference°[42],°i.e.,°they
were individually reduced, alkylated with iodoacet-
amide, dialyzed, and digested overnight with trypsin
(Sigma Chemical Company, St. Louis, MO). Mixtures of
these digests were fractionated by micro-RP HPLC and
deposited on MALDI targets to provide a library of
1200 tryptic peptides. Daughter ions from CID of the
peptides in the corresponding chromatographic frac-
tions were then recorded with the QqTOF instrument.
These data were analyzed by computer using a set of

scripts written in “Perl” for OS-X. The first program
constructed mass-intensity tables for each peptide’s
MS/MS spectrum. Another script computed themasses of
the bn�1 and the (bn�1 � 18) ions from the known peptide
sequences. If the mass entries in the peak table fell within
100 PPM of the calculated values, the program recorded
the peak intensities and the ratio between them.

Chemical Computations

The PC Spartan Pro set of programs (Wavefunction,
Inc., Irvine, CA) were used to calculate structures and

relative energies of protonated lysine, arginine, and
histidine. Molecular mechanics (MMFF94) calculations
identified low-energy conformations, which were
then geometry optimized by the semi-empirical PM3
method;°we°found,°in°agreement°with°Hehre°et°al.°[44],
that this method works better than the AM1 method for
hydrogen bonded structures. The energies of the mini-
mized structures were then computed by two methods:
at the ab initio Hartree Fock 6-31G* level, and also by
Density Functional Theory, using a perturbed Becke-
Perdew functional and a DN** numerical basis set,
pBP/DN**.

Results and Discussion

Analysis of Viral Coat Proteins

The enzymatic digests of the viral coat proteins yielded
many peptide fragments. The 356 non-redundant frag-
ments that yielded (bn�1 � H2O) ions from CID of their
[M � H]� ions are collected in Table S3 and examples
from°two°of°the°digests°are°shown°in°Table°1.°The°75
fragments that did not give observed (bn�1 �H2O) ions
are listed in Table S4. Since the extent of fragmentation
of the [M � H]� ions is dependent upon the CID
conditions, the abundance of the (bn�1 � H2O) ion in a
given spectrum has been denoted as strong, medium, or
weak relative to the abundance of the bn�1 ion in the
same spectrum: [bn�1 � H2O/bn�1 ratio: �1, S (strong);
0.5°to°1,°M°(medium);°�0.1°to°0.5,°W°(weak)].°Table°2
summarizes the data.
About 95% of the 356 examples listed in Table S3 for

which (bn�1 � H2O) ions were observed contain at least
one of the basic residues arginine, lysine, or histidine,
located internally or at the N-terminus; only 16 do not.
There are no examples of a peptide [M � H]� ion
fragmenting to give a strong abundance (bn�1 � H2O)
ion when only a single basic amino acid residue is
located at its C-terminus. As indicated in footnote-b of
Table°2,°there°are°two°examples,°with°C-terminal°lysine
only, that give medium abundance (bn�1 � H2O) ions,
and footnote-c lists eight peptide examples with C-
terminal arginine only, and four peptides with C-
terminal lysine only, that give weak abundance (bn�1 �
H2O) ions. However, Table S4 lists 54 peptide fragments
with C-terminal arginine, lysine, or histidine that do not
yield detectable (bn�1 � H2O) ions, so the yield of this
ion is not really significant when a basic residue is
located only at the C-terminus. This is particularly
noteworthy in view of the preponderance of peptide
fragments of this type, a consequence of the enzymatic
digestions with trypsin, Lys-C, and Arg-C. It is also
apparent from Table S3 that, under the general purpose
conditions for the digestions, many of these digestions
are incomplete; the majority of the peptide fragments
contain at least one of the basic residues arginine,
lysine, (or histidine), as a non-C-terminal residue, al-
though only a few contain them as multiple residues.
Because a single basic peptide residue at the C-
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terminus seldom promotes formation of the (bn�1 �H2O)
ion,°we°can°now°use°the°results°in°Table°2°a°n°d°Table°S3°to
assess the effectiveness of non-C-terminal basic resi-
dues in promoting its formation. This is most easily

done for peptide fragments containing only a single
basic residue. When single arginine residues only are
considered, the abundance of the ion is strong in 58
examples, medium in four examples, and weak or not

Table 1. Peptides from BMV whose [M � H]� ions yield [bn�1 � H2O] ions in their CID mass spectra

Peptidea Peptide sequenceb [M � H]� m/z [bn�1 � H2O] abundancec

BMV-N and BMV-P (N-acetylated)
2–11 @STSGTGKMTR 1067.52 M
9–14 MTRVQR (BMV-N only) 790.44 S
9–15 MTRVQRR (BMV-N only) 946.57 S

12–15 VQRR (BMV-N only) 558.35 S
15–19 RAAAR 544.33 S
15–20 RAAARR 700.43 S
20–22 RNR 445.26 S
23–35 RTAGVQPVIVEPL (BMV-N only) 1378.81 S
24–41 TAGVQPVIVEPLAAGQGK 1734.98 W
27–41 VQPVIVEPLAAGQGK 1505.87 W
42–53 AIKAIAGYSISK 1536.84 W
42–64 AIKAIAGYSISKWEASSDAITAK 2381.27 M
45–64 AIAGYSISKWEASSDAITAK 2069.06 M
65–81 ATNAMSITLPHELSSEK 1828.91 M
65–86 ATNAMSITLPHELSSEKNKELK 2441.27 S
74–81 PHELSSEK 926.46 M
74–83 PHELSSEKNK 1168.60 M
82–102 NKELKVGRVLLWLGLLPSVAG 2262.37 M
84–102 ELKVGRVLLWLGLLPSVAG 2020.23 M
84–103 ELKVGRVLLWLGLLPSVAGR 2176.33 S
87–102 VGRVLLWLGLLPSVAG 1650.01 M
87–103 VGRVLLWLGLLPSVAGR 1806.11 S
90–105 VLLWLGLLPSVAGRIK 1735.10 S

112–130 QAQAEAAFQVALAVADSSK 1904.97 W
117–131 AAFQVALAVADSSKE 1506.78 W
131–142 EVVAAMYTDAFR 1372.66 W
166–188 AVVVHLEVEHVRPTFDDFFTPVY 2716.38 S
166–189 AVVVHLEVEHVRPTFDDFFTPVYR 2872.48 S
173–181 VEHVRPTFD 1099.55 S
175–188 HVRPTFDDFFTPVY 1740.84 S

aEnzymatic fragments of the viral coat proteins: BMV-N and BMV-P.
bBasic residues are underlined.
c[bn�1 � H2O]/bn�1 ratios: �1, S (strong); 0.5 �1, M (medium); �0.5, W (weak).

Table 2. Number of peptide examples containing non-C terminal arginine, lysine, or histidine residues that give observable
(bn�1 � H2O) ions

Abundancea

Strong (185) Medium (91) Weak (47) Not detected (75)

3R(1); 2R (9); R (58) 2R (1); R (4) 3K(2); 2K(2); K (13) W (15)
4K(4); 3K (4); 2K (12); K (12) 4K(1); 3K(4); 2K (22); K (26) 2H (1); H (13) K (1)
3R,H(1); 2R,3K,H (1); 2R,2K(1); H (13) 2R,H (1) H (5)
2R,K(4); 2R,H(2) 2R,2K(1); R,4K(1); R,2K,H(2); R, 2K(1) K,H (1)
R,3K (6); R,2K (8); R,K,2H (4) R,3K(1); R,2K(2); R, K (2) K,H (1) H,W (3)
R,2K,H (2); R,K,H (6); 2K,H(1); K,H (6) None (13)c None (50)
R,K (20); R,2H(5); R,H (21) None (3)b

2K,H (2); K, H(2)

aAbundance as defined in Table 1. Number of examples, in parentheses, of peptides containing the indicated number of arginine, lysine or histidine
residues and, for column 4, including the number of tryptophan residues. (Note: these numbers exclude the duplicate entries in Table S3.)
bWSMV-EB3 96-107 (two threonines present) and JGMV-Aus 37-52 (three serines, three threonines present) contain C-terminal lysine; JGMV-IS
158-174 (one serine, two threonines present) does not contain a basic residue.
cBMV 131-142 (one threonine present); FoMV-H93 150-167 (two serine, one threonine present); JGMV-Aus 137-146; JGMV-KS 125-133 (one threonine
present), 138-146; JGMV-IS 268-284 (one serine present), 269-284 (one serine present), 273-284 (one serine present) contain C-terminal arginine. BMV
24-41 (one threonine present), 27-41 (one threonine present), 112-130 (two serines present); JGMV-IS 234-244 (one threonine present) contain
C-terminal lysine. FoMV-H93 206-217 does not contain a basic residue.
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Table 3. Dependence of the abundance of the (bn�1 � H2O) ion on the position of an arginine, lysine or histidine residue
a

Sequence
Position of underlined

basic residueb
(bn�1 � H2O)
abundance Peptide source

Peptides containing a single arginine residue (lysine and histidine absent):
ATQEEFNR 1 ND JGMV-IS 121–128
NLTDFNLAR 1 ND JGMV-IS 225–233
GNVGESQENTER 1 W JGMV-IS 273–284
FGLDGNVGESQENTER 1 W JGMV-IS 269–284
MFGLDGNVGESQENTER 1 W JGMV-IS 268–284
NLTDFNLARY 2 S JGMV-IS 225–234
ATQEEFNRWY 3 S JGMV-IS 121–130
FNRWYN 4 S JGMV-IS 126–131
ATQEEFNRWYN 4 S JGMV-IS 121–131
FNLARYAFD 5 S JGMV-IS 229–237
SLARYAFDFY 7 S JGMV-NI 221–230
NLTDFNLARYAFDFYE 8 S JGMV-IS 225–240
DEQMRILMNGLMVWCIENGTSP 18 M JGMV-NI 132–153
GRLNGAPALPNNGQYFIEAPQ 20 S FoMV 197–217

Peptides containing a single non-C-terminal arginine in addition to just a C-terminal lysine residue:
WYNRIK 3 S JGMV-Aus 130–135
WYNRIK 3 S JGMV-NI 120–125
FWYNRIK 3 S JGMV-NI 119–125
@SGNEDAGRQK 3 S JGMV-Aus 1–10
HTQFQFWYNRIK 3 S JGMV-NI 114–125
PIIPRGFDK 5 S WSMV-IHC 200–208
RQVNEIFK 8 S FoMV 167–174
MRLPMVSNK 8 S JGMV-NI 81–89
RGLTPAAFVQAAIIFTMESMDK 22 S FoMV 51–72

Peptides containing single arginine plus one or more non-C-terminal histidine residues only:
ATHTQFQFWYNRIK 3 S JGMV-Aus 122–135
NVHTYRGAK 4 S JGMV-NI 284–292
HHFSDAAEAYIEYRNSK 4 S JGMV-IS 197–213
DGNVGESSENTERHTAA 5 S JGMV-NI 263–279
AAAIRGSTNHMF 8 S JGMV-Aus 259–270
AREAHAQMK 8 S JGMV-NI 240–248
AAAIRGSTNHMFGL 10 S JGMV-NI 249–262
NASPTLRQIMHHFSDAAE 12 S JGMV-IS 187–204
AVVVHLEVEHVRPTFDDFFTPVY 12 S BMV 166–188

Peptides containing single arginine plus one or two non-C-terminal lysine residues only:
FWYNRIKK 4 S JGMV-NI 119–126
ATHTQFQFWYNRIKK 4 S JGMV-NI 112–126

Peptides containing single arginine plus one or more non-C-terminal lysine or histidine residues:
NVHTYRGAKI 5 S JGMV-NI 284–293
ATHTQFQFWYNRIKKEY 6 S JGMV-NI 112–128
FNRWYNAIKKE 9 S JGMV-IS 126–136

Peptides containing one or more non-C-terminal lysines plus a C-terminal arginine residue:
NLNDKSLAR 5 M JGMV-Aus 226–234
YTKPAYANR 7 M FoMV 109–117
FYTKPAYANR 7 M FoMV 108–117
TMMDGETQVTYPLKPVVENASPTLR 12 S JGMV-IS 169–193
GETQVTYPLKPVVENASPTLR 12 S JGMV-IS 173–193
EFPLKPIVENAKPTLR 5,12 M JGMV-NI 169–184
SEFPLKPIVENAKPTLR 5,12 M JGMV-NI 168–184
DQSEFPLKPIVENAKPTLR 5,12 S JGMV-Aus 176–194
GNNQSEFPLKPIVENAKPTLR 5,12 M JGMV-NI 164–184
IKKEYDVDDEQMR 11,12 M JGMV-Aus 134–146

Peptides containing one or more non-C-terminal histidines plus a C-terminal arginine residue:
HFSDAAEAYIEMR 12 S JGMV-NI 189–201
QCMMHFSDAAEAYIEMR 12 W JGMV-NI 185–201
GSTNHMFGLDGNVGESSENTER 17 W JGMV-NI 254–275
QIMHHFSDAAEAYIEYR 18,19 W JGMV-IS 194–210

Peptides containing non-C-terminal lysine and histidine plus a C-terminal arginine residue:
HLIQYKPDQR 5,10 M JGMV-Aus 106–115
AILNLDHLIQYKPDQR 5,10 M JGMV-Aus 100–115

(Continued)
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detected in no examples. When lysine only is consid-
ered, the abundance is strong in 12 examples, medium
in 26 examples, weak in 13 examples, and not detected
in one example. When histidine only is considered, the
abundance is strong in no example, medium in 13
examples, weak in 13 examples, and not detected in five
examples. It is therefore clear that the ability of the
residues to promote (bn�1 � H2O) ion formation in-
creases in the sequence histidine� lysine� arginine. In
general, the abundances are also strong or medium
when multiple argine/lysine residues are present, but
there are a few cases of weak abundance. Possibly, in
the latter cases, proton bridging between two basic
groups is favored over the necessary proton bridging to
oxygen of the C-terminal CO group needed for (bn�1 �
H2O) ion formation. There are also the 16 examples,
noted above, where the (bn�1 � H2O) ion is present,
albeit at medium or weak abundance, when a non-C-
terminal basic amino acid is absent. We shall return to
this point later.
The tryptophan residue is also (weakly) basic (see

below). However, non-C-terminal tryptophan is ineffec-
tive in promoting (bn�1 � H2O) ion formation. This is
clear from Table S4, which includes 15 examples in
which the effect of tryptophan is not swamped by other
basic residues, and for which (bn�1 � H2O) ion forma-
tion is not detected.
Table°3°lists°peptides°having°a°single°non-C-terminal

arginine, lysine, or histidine residue, arranged accord-

ing to the distance of the basic residue from the C-
terminus, so the influence of each residue can be
assessed in the absence of competition from other basic
residues. In the case of arginine, the (bn�1 � H2O) ion
abundance is not detected or is weak when it is located
at the C-terminus and strong in 17 of the 18 examples
listed (medium in the remaining example) when it is
located away from the C-terminus (both with and
without a C-terminal arginine being present). This is
true even when it is located as far from the C-terminus
as the 22nd residue. The (bn�1 � H2O) ion abundance is
uniformly strong in the nine arginine-containing exam-
ples in which the normally weakly producing histidine
is also present. It is strong in all five remaining exam-
ples, where non-C-terminal lysine residues are also
present; (histidine is present in three of these cases,
though here the abundance is, no doubt, enhanced by
the lysine residue). In the case of lysine, the abundance
can be strong or medium with little apparent depen-
dence on the position of the residue. A strong abun-
dance is observed even when lysine is 12 residues from
the C-terminus. In the case of histidine, there appears to
be little relationship between abundance of the (bn�1 �
H2O) ion and residue position; a weak abundance is
observed even when histidine is 18 residues from the
C-terminus.
Table S3 also yields information on the longest and

shortest peptide fragment for which the (bn�1 � H2O)
ion was observed. The longest peptide we found had 27

Table 3. Continued

Sequence
Position of underlined

basic residueb
(bn�1 � H2O)
abundance Peptide source

Arginine-less peptides containing one or more lysine residues:
YAFDFYEITSK 1 W JGMV-IS 234–244
VSANDQSEFPLKPI 3 W JGMV-Aus 172–185
WTMVSANDQSEFPLKPI 3 S JGMV-Aus 169–185
SATPAENQPASADGKPAQTTATS 9 W JGMV-KS 11–33
DVDVGSTGTFVIPKLK 1,3 M JGMV-NI 60–75
DQSEFPLKPIVENAK 1,8 S JGMV-Aus 176–190
AIKAIAGYSISK 1,10 W BMV 42–53
VVNNAGKDNEQQLEFK 1,10 M WSMV-IHC 149–164
SATPAANQTASGDGKPAQTTATAENK 1,12 M JGMV-Aus 11–36
DKDVDVGSTGTFVIPK 1,15 M JGMV-Aus 68–83
SQTESQDKETGESVNKDK 1,3,11 S JGMV-IS 11–28
VVNNAGKDNEQQLEFKIEPMYK 1,7,16 S WSMV-IHC 149–170
DKIKPEMINNMIK 1,10,12 M WSMV-IHC 72–84
ASTATKDKDVDVGSTGTFVIPK 1,15,17 S JGMV-KS 62–83
SGGTKASTATKDKDVDVGSTGTFVIPK 1,15,17,23 S JGMV-KS 57–83

Arginine-less peptides containing one or more histidine residues:
GSTNHMFGL 5 W JGMV-NI 254–262
GSTNHMFGLDGNVGE 11 W JGMV-NI 254–268
NMHSLLGVQQSH 1,10 M JGMV-IS 293–304

Arginine-less peptides containing lysine and histidine residues:
DHLIQYKP 2,7 W JGMV-NI 95–102
PHELSSEK 1,7 M BMV 74–81
PHELSSEKNK 1,3,9 M BMV 74–83

ND � not detected.
aBasic residues are underlined. Sequences containing more than one arginine or no basic residues are not included.
bPosition of residue counting from the C-terminus.
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residues and the shortest had three. We note also that
Farrugia and O’Hair found that the (bn�1 � H2O) ion
was insignificant in the CID mass spectrum of the [M �
H]� ion of the dipeptide Arg.Gly, where the (b1 �H2O)
ion should be observed at m/z 175; a small peak at this
value was attributed to the isobaric y1 ion of Gly.Arg
[45].°In°that°case°a°gas-phase°rearrangement°reaction
was proposed that led to identical tandem mass spectra
for Arg.Gly and Gly.Arg via a mixed anhydride inter-
mediate. We suggest that this alternative reaction path-
way, not available for longer peptides because it re-
quires an adjacent terminal amino group, switches off
the pathway leading to the (b1 � H2O) ion.

Mistakes in Sequencing

As mentioned above, we first made contact with (bn�1 �
H2O) ions when sequencing some of the JGMV peptides.
In a number of cases, our interpretation of prominent
ions in the spectra as y ions led to sequences that
disagreed with those deduced from the nucleotide data
in the databases. Two examples are given here:

1. RMNLDEPYMPR versus MRNLDEPYMPR. Here, a
straightforward interpretation of the mass spectrum
(Figure S2) led to the first sequence, assuming that a
prominent ion at 1265.57 Da was interpreted as y10. The
second sequence, the one predicted by the nucleotide
data, was in apparent disagreement. The definitive low
mass ions were not observed, but re-interpretation of
the 1265.57 Da ion as a (b10 � H2O) ion reconciled the
observed spectrum with the nucleotide prediction (see
Table S5). Note the presence of non-C-terminal argi-
nine. Also note that in this case the predicted masses in
the two sequences are identical so higher mass accuracy
is of no help.

2. YHEEFNRWY versus ATQEEFNRWY. Again, a
straightforward interpretation of the mass spectrum
(Figure S3) led to the first sequence, with a prominent
ion at 1180.52 Da interpreted as y8, but re-interpretation
of this ion as a (b9 � H2O) ion reconciled the observed
spectrum with the second sequence, the nucleotide
prediction (see Table S6). Note again the presence of
non-C-terminal arginine. In this case there is a mass
difference of �22 mDa between the two possible se-
quences, so higher mass accuracy could have distin-
guished between them.

Chemical Computations

As noted above, amino acid basicities have often been
invoked in discussing the fragmentation of protonated
peptides. The gas-phase basicities and proton affinities
(PAs) of amino acids and peptides have been reviewed
[46];°the°highest°PAs°were°observed°for°arginine°(244.8),
lysine (235.6), histidine (231.5), and tryptophan (223.9
kcal/mol) (these values closely parallel their relative

basicities). In the cases of free arginine, histidine, and
tryptophan, their side chains are intrinsically more
basic than their terminal amino groups. In the case of
lysine, the basicities of the side chain and terminal
amino groups are similar (if the �2 kcal/mol reduction
in basicity of the latter, see below, is neglected). The
basicities of free lysine and arginine are enhanced by
�13 kcal/mol compared with the basicities of their side
chains, while those of histidine and tryptophan are
increased by �4 and �2 kcal/mol, respectively. In the
case of lysine the enhancement was ascribed to proton
bridging between the side chain and the amino termi-

Figure 2. Structures of protonated lysine showing H-bonding
interactions: protonated N-terminus to side-chain NH2 group
(Structure 1); protonated side chain to C�O group (structure 2)
and to terminal NH2 group (Structure 3). Hydrogen bonds are
denoted by dashed lines. The indicated bond lengths and bond
angles were optimized by the semiempirical PM3 method. Rela-
tive single point energies (kcal/mol) for the optimized geometries
were computed by the HF/6-31G*//PM3 and DFT/pBP/DN**//
PM3 methods.
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nus. The net result is that the order of basicities is
tryptophan � histidine � lysine � arginine.
Of more concern to the present discussion are the

relative basicities of the amino acid residues in a peptide,
where their amino groups have been converted to the
much less basic amide groups of the peptide bond, and
are less effective in their H-bond interactions with the
protonated side chain. However, proton bridging be-
tween a protonated side chain and a carbonyl group is
still possible. To assess the importance of the bridging
contribution, the relative stabilities of various proton-
ated structures of lysine, arginine, and histidine were
computed, as described in the Experimental section.
The°results°are°presented°in°Figure°2,°Figure°3,°and
Figure° 4.° For° each° amino° acid,° the° hydrogen° bond
lengths, bond angles at hydrogen, and the computed
energies relative to the most stable structure are shown.
Because entropy differences among the charged struc-
tures of a given amino acid are similar, the energy
differences°in°Figures°2,°3,°and°4,°when°combined°with
PA data for the amino acids, can be directly related to

either relative basicities or relative PAs of the amino
acids, as utilized in the ensuing discussion.
In°the°case°of°lysine,°Figure°2,°the°flexible°side°chain

permits nearly ideal H-bonding interactions. The H-
bond lengths of �1.74 Å in each structure are as
expected, and the bond angles at hydrogen are not
significantly reduced from the ideal 180° angle. Both
computational methods slightly favor Structure 3 in
which the side chain protonated amino group is H-
bonded to the terminal amino group. Structure 2, hav-
ing the protonated side chain amino group H-bonded to
the carbonyl oxygen, is less stable than this by 1.2
kcal/mol (HF/6-31G*//PM3) or by 2.4 kcal/mol
(DFT/pBP/DN**//PM3). Structure 1, having the pro-
tonated terminal amino group H-bonded to the side
chain amino group, is less stable than Structure 3 by 5.1
kcal/mol (HF/6-31G*//PM3) or by 1.7 kcal/mol
(DFT/pBP/DN**//PM3). (It is a moot point whether 1
and 3 are different structures; they differ only by the
position of the proton in an asymmetric double poten-
tial°energy°well).°Hehre°et°al.°[44]°also°found,°at°the

Figure 3. Structures of protonated arginine showing H-bonding interactions: protonated guanido
group (NH) to C�O group (Structure 4) and to terminal NH2 group (Structure 6); protonated guanido
group (NH2) to C�O°group°(Structure°5)°and°to°terminal°NH2°group°(Structure°7).°See°Figure°2°for
explanation of notations.

Figure 4. Structures of protonated histidine showing H-bonding interactions: protonated imidazole
ring to terminal NH2 group°(Structure°8)°and°to°the°C�O°group°(Structure°9).°See°Figure°3°for
explanation of notations.
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(HF/6-31G*//PM3) theory level, that protonation at
the side chain amino group is favored over protonation
of the amino group at the N-terminus, but the structure
proton-bridged to carbonyl oxygen 2 was slightly fa-
vored. The small preference for side chain protonation
is consistent with the observation that the basicity of the
terminal amino group is reduced by�2 kcal/mol by the
inductive°effect°of°the°COOH°group°[44].°In°summary,
a lysine residue in a peptide appears to be no more than
�2 kcal/mol less basic than free lysine.
In° the° case° of° arginine,° Figure° 3,° only° structures

involving protonation at the highly basic guanidino
function need to be considered. The protonated gua-
nidino function has two sites that can potentially un-
dergo H-bonding interactions with either the amino
terminus or with the carbonyl oxygen to yield the four
proton-bridged structures shown. The relative energies
computed are in good agreement for either computa-
tional method for all four structures. The energy differ-
ences among the structures are small. Structures 6 and
7, involving proton bridging to the NH2 terminus, are
favored. Structures 5 and 6, which differ in energy by
2.8 (HF) or 4.5 (DFT) kcal/mol, represent the more
stable of the amino- and carbonyl-bridged structures,
respectively. Thus, an arginine residue in a peptide
appears to be no more than �4 kcal/mol less basic than
free arginine.
In° the° case° of° histidine,° Figure° 4,° protonation° at

nitrogen of the imidazole ring has been assumed be-
cause this site is significantly more basic than the amino
function. Two structures are shown, one involving
proton bridging to carbonyl oxygen, the other involving
proton bridging to the amino function. The energies of
the two structures are virtually the same, the two
computational methods disagreeing on whether 8 or 9
is more stable. Structurally, the H-bonding interactions
appear favorable, yet the basicity enhancement of free
histidine over its side chain, noted in Harrison’s review
[46],°is°only°�4°kcal/mol.
The remaining common amino acid that should be

considered is tryptophan. Although it is less strongly
basic than those already discussed, its side chain is still
a favored protonation site compared with others, such
as amide linkages. In this case, molecular models show
that it is not possible for the protonated site of the
indole group to approach either the amino or carbonyl
function closely enough to undergo H-bonding interac-
tions, so that the basicity of tryptophan is not enhanced
by these interactions, and remains relatively low when
compared with lysine, arginine, and histidine. More-
over, and certainly of critical significance here, a pro-
tonated tryptophan side chain is unable to transport a
proton to a carbonyl group, whether or not it is basic
enough to do so.
We can now assess the relative basicities of the

amino acid residues in a peptide. As noted above, the
relatively high basicity of free lysine has been ascribed
to proton bridging between the basic side chain and the
NH2 terminus. However, the computations reveal that

there is little energy difference between H-bonding to
the amino group or to the carbonyl oxygen. (We have
ignored the possibility of H-bonding to the amide
nitrogen. High level ab initio calculations have shown
the oxygen atom to be the most basic centre in simple
amides°[47,°48]).°Indeed,°arginine,°lysine,°and°histidine
residues are all expected to have high basicity in a
peptide owing to favorable H-bonding interactions of
their protonated side chains with adjacent carbonyl
groups, either their own or that of the preceding residue
(counting from the N-terminus). In the case of arginine,
the interaction of the side chain and the carbonyl
oxygen of an adjacent amino acid was estimated to
result°in°a°stabilization°of°24°to°30°kcal/mol°[4],°a°value
significantly higher than expected from the experimen-
tal value of �13 kcal/mol noted in Harrison’s review
[46].°Tryptophan°is°unable°to°undergo°H-bonding°inter-
actions or to transport a proton to the carbonyl function.
Of the mechanisms proposed for formation of the

(bn�1 � H2O) ion, the arguments presented here favor a
modified form of the mechanism shown in Scheme 3.
Here it has been generalized (Scheme 4) to accommo-

Scheme 4. Formation of the (bn�1 � H2O) ion for peptides
containing a non-C-terminal arginine residue.
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date the observation that the (bn�1 � H2O) ion can be
formed when the protonated side chain is remote from
the C-terminus. The essential feature is the transport of
a proton to the n � 1 carbonyl group by a protonated
side chain to give a proton-bridged structure in which
increased positive charge on the carbonyl carbon makes
it more susceptible to nucleophilic attack by the C-
terminal hydroxyl group, and concomitant decomposi-
tion by concerted electron shifts to give stable products,
as shown. (The proposal of a neutral carboxyl group is
consistent with the preference for the neutral bridged
structure rather than a “zwitterion” in guanidino-
carboxylic°acid°systems°[49,°50]).°Support° for° the°5-
membered cyclic intermediate shown in Schemes 3 and
4 is provided by the 18O labeling results of Ballard and
Gaskell°[2],°which°confirm°oxygen°exchange°between
the n � 1 carbonyl and the C-terminal carboxyl group
through cyclic intermediates, and is consistent with
kinetic° energy° loss° experiments° [6].°Moreover,° it° is
analogous to one of the mechanisms proposed for
decomposition°of°sodiated°peptides°[51,°52]°(although
we realize that an alternative mechanism has also been
proposed°for°[M°�°Na]�°decompositions°[53]).
It has been noted that protonation at carbonyl oxy-

gen strengthens the peptide bond, whereas protonation
at°the°less°basic°amide°nitrogen°weakens°it°[13,°54,°55].
However, to compensate, nucleophilic attack by hy-
droxyl oxygen at the carbonyl carbon would weaken
the peptide bond and facilitate the decompositions
depicted in Schemes 3 and 4. It should be born in mind
that the population of this reactively suitable conforma-
tion would, in general, decrease as the protonated side
chain becomes more remote, and as competition from
other carbonyl oxygen potential H�-binding sites in-
creases. In the collision region q2 of our QqTOF mass
spectrometer, the ions are progressively activated by a
sequence of low-energy collisions so that, initially, the
small population of conformationally suitable ions re-
acts to give (bn�1 � H2O). As the reactive population is

depleted, it is replenished from the bulk population by
re-equilibration among the conformations.
We consider this mechanism to be more easily rec-

onciled with the body of experimental evidence dis-
cussed here than alternatives presented earlier, includ-
ing decomposition of activated precursor ions by a
charge-remote mechanism, or one involving energeti-
cally less-favorable H-bonding to the less basic amide
nitrogen. The first alternative is weakened by the ex-
periment in which a fixed charge is placed on the
N-terminus, whereupon the (bn�1 � H2O) ion is not
observed°[2].°As°well,°although°the°side°chain°of°tryp-
tophan is intrinsically basic, its protonated side chain is
unable to transport a proton to carbonyl oxygens, so the
(bn�1 �H2O) ion is not observed. The alternative would
weaken the peptide bond, and it has been emphasized
[13,°24]°that°protonation°of°backbone°amide°nitrogens
promotes formation of bn and yn ions, which are sup-
pressed when the (bn�1 � H2O) ion is enhanced. Seques-
tering of the proton by an arginine side chain reduces the
populations of random amide N-protonated species.
The formation of (bk � H2O) ions from [M � H]�

ions of n-residue peptides in which the (k� 1)th residue
is°serine°or°threonine°has°also°been°observed°[56].°In
these cases, the decomposition was believed to be
assisted by the hydroxyl group of serine or threonine
H-bonding to the kth carbonyl oxygen. The exceptions
listed°in°footnote-b° and°footnote-c° of°Table°2°do°not
conform to the general observations on the requirement
for the presence of a non-C-terminal basic residue, and
it is intriguing that all but three of these peptides
contain serine or threonine. While the mechanism pro-
posed° [56]° for° formation° of° the° (bk � H2O) ion is
inadequate to explain formation of the (bn�1 �H2O) ion
here, perhaps H-bonding interactions of the hydroxyl
groups with the n � 1 carbonyl groups can facilitate its
formation. Peptide conformation may play a significant
role here, but mechanisms involving the protonated
N-terminus may also need to be invoked.

Table 4. Peptides from bovine serum albumin (BSA) whose [M � H]� ions yield [bn�1 � H2O] ions in their CID mass spectra

Peptide Peptide sequence [M � H]� m/z [bn�1 � H2O]�/[bn�1] Abundance*

29–34 SEIAHR 712.370 27/47 M
123–130 NECFLSHK 1034.470 49/58 S
310–318 SHCIAEVEK 1072.508 32/55 M
460–468 CCTKPESER 1166.488 25/36 M
35–44 FKDLGEEHFK 1249.617 114/287 W

402–412 HLVDEPQNLIK 1305.723 17/95 W
89–100 SLHTLFGDELCK 1419.683 35/64 M

360–371 RHPEYAVSVLLR 1439.794 1467/173 S
76–88 TCVADESHAGCEK 1463.591 30/36 M

298–309 LKECCDKPLLEK 1532.795 29/42 M
437–451 KVPQVSTPTLVEVSR 1639.937 86/64 S
267–280 ECCHGDLLECADDR 1749.657 30/157 W
508–523 RPCFSALTPDETYVPK 1880.927 184/40 S
529–544 LFTFHADICTLPDTEK 1907.915 15/29 M
168–183 RHPYFYAPELLYYANK 2045.057 23/15 S

*�1, S (strong); 0.5–1, M (medium); �0.5, W (weak).
�Ratio of counts.
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CID of a Collection of Tryptic Peptides
That Had Been Generated for Measurement
of Chromatographic Retention Times

This collection contained 1200 peptides, from digests of
46 proteins. It differed from the collection of viral coat
proteins discussed above in that these digests all em-
ployed trypsin, and the digest conditions were consid-
erably more drastic (typically overnight). Thus, these
conditions are more typical of those commonly used in
sequencing applications. As might be expected from the
conditions used, the fraction of spectra exhibiting
missed cleavages, and the fraction of non-C-terminal
basic residues in the daughter ions observed, were both
much smaller than in the first set. Consequently, the
percentage of bn�1 � 18 ions observed was also consid-
erably smaller. Table S7 lists the 190 cases of bn�1 � 18
decay observed (�16%), [strong 87, medium 60,
weak 43]; an example of the results from the digestion
of one of the proteins (bovine serum albumin) is given
in°Table°4.
A significant difference from the first set can be

noted. Since the percentage of ions containing non-C-
terminal arginines or lysines is greatly reduced, the
percentage of (bn�1 � H2O) decays caused by histidine
is much larger (�54%), [32 strong, 39 medium, and 31
weak], supporting our interpretation of non-C-terminal
histidine as a significant cause of this decay mode. We
note also that there appears to be no particular require-
ment for the non-C-terminal histidine to be close to the
C-terminus; Table S7 shows that it can be as much as 17
residues away (in rabbit aldolase 154–173).
A second difference is the much larger number of

ions observed in this set that contained tryptophan as
the sole non-C-terminal basic residue (114), listed in
Table S8. In this case, (bn�1 � H2O) ions were observed
in only three cases (two of which contained serine),
confirming the ineffectiveness of tryptophan in produc-
ing (bn�1 � H2O) ions.
Thus, the results of this analysis give addi-

tional support to the general picture of (bn�1 � H2O)
ion production given by the viral coat protein
measurements.

Conclusions

Peptide sequencing by mass spectrometry is most
readily achieved in those peptides in which protonation
occurs randomly at the backbone amide nitrogen atoms
(the “mobile proton” model), to give significant yields
of sequence-specific b-series and y-series ions. In cases
where the peptide contains highly basic residues, i.e.,
histidine, lysine, and especially arginine, (but not tryp-
tophan), the populations of the backbone-protonated
species are reduced, while populations having the pro-
tons localized on a basic side chain are enhanced to the
point at which a rearrangement leading to a prominent
(bn�1 � H2O) product ion by loss of the C-terminal
amino acid occurs. The fragmentation is not specific to

the residue position (except that it cannot be located at
the C-terminus). These observations should be useful in
assisting peptide sequence determinations, especially
when typical sequence information ions are of low
abundance.
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