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The covalent addition of nitric oxide (NO) to protein thiols, a posttranslational modification
termed S-nitrosation, is a ubiquitous event that modulates diverse cellular processes. The in
vivo addition of NO to protein amines (N-nitrosation) has also been described and may
similarly modify protein structure and function. While mass spectrometry has been employed
for identification of nitrosoproteins, little is known about how S- and N-nitrosopeptides
fragment. Such knowledge is important for its potential to inform on sites of protein
nitrosation. Here we used electrospray tandem mass spectrometry to elucidate collision-
induced dissociation (CID) features of S- and N-nitrosopeptide ions. We show that S- and
N-nitrosopeptide ions readily lose NO, giving rise to species that contain thiyl and aminyl
radicals, respectively. Fragmentation (MS3) of these radical peptide ions revealed an atypical
pattern, characterized by the cleavage of select �COC and NO�C bonds, rather than the more
usual cleavage of amide bonds that result in b- and y-ions. These unanticipated fragmentation
patterns are reconciled by radical-mediated abstraction of hydrogen from �-carbon followed
by �-fragmentation. For thiyl radical peptides, we also observed dominant loss of SH and
CH2SH from the Cys side-chain. Our findings provide new insights into the gas-phase
chemistry of NO-modified peptide ions and suggest an unusual fragmentation pattern that
may aid in future MS-based attempts to define the nitrosoproteome. (J Am Soc Mass
Spectrom 2006, 17, 1725–1730) © 2006 American Society for Mass Spectrometry

Nitric oxide (NO) is a gaseous signaling mole-
cule that plays pivotal roles in diverse phys-
iological processes, including vascular ho-

meostasis,� neurotransmission,� and� host� defense� [1].
Many actions of NO are mediated by the covalent
addition of NO to protein Cys thiols, a reaction
referred to as either S-nitrosation or S-nitrosylation
[�2�]�.�S-nitros(yl)ation�has�emerged�as�a�ubiquitous�post-
translational protein modification that modulates the
functions� of� a� wide� array� of� proteins� [2,� 3].� With� the
advent of mass spectrometry-based proteomic detection
methods, new S-nitrosoproteins are being recognized at
an�accelerating�rate�[4,�5].�More�recently,�N-nitrosation
of protein amines has also been reported to occur
endogenously and may contribute to NO bioactivities
[6,�7].�Like�S-nitrosation,�N-nitrosation�is�inferred�to�be
widely distributed, stimulus-evoked, and linked to cell
redox� state� [7].� Despite� potential� importance,� mass
spectrometry has not been applied for characterization
of N-nitrosoproteins and the identities of in vivo N-

nitrosoproteins remain unknown. Nonetheless, it has
been shown with model peptides that indole nitrogens
of tryptophan residues can readily undergo NO addi-
tion�[8�–10].

Identification of the site of NO addition on a S-
nitrosoprotein constitutes a crucial step in elucidating
how NO modification of a protein impacts its structure
and function. To date, MS-based identifications of S-
nitrosation sites have been either deduced from a mass
shift�of�29�Da�(NO�minus�hydrogen)�[11,�12]�or�via�an
indirect tagging approach that converts a S-nitrosothiol
into�a�biotinylated�thiol�[5].�It�is�notable�that�SONO�and
NONO bonds are labile in solution-phase, where UV
irradiation elicits homolytic cleavage, producing NO
and�thiyl�or�aminyl�radicals�[13,�14].�Disruption�of� the
SONO bond on S-nitrosopeptides occurs readily in the
gas phase of a mass spectrometer via in-source decay
[15].� Nevertheless,� prior� MS� studies� have� not� investi-
gated how the odd-electron radical peptide ions further
fragment. This knowledge could be useful for identifi-
cation of novel nitrosation sites if more favorable
SONO or NONO dissociation were to suppress the
formation of backbone cleavage products. Given the
lack of knowledge about the ion chemistry of nitros-
opeptide species, the present study seeks to elucidate
the fragmentation reactions of S- and N-nitrosopeptides
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in an ion trap mass spectrometer. Characteristic frag-
mentation behaviors revealed by this study provide a
guide for the interpretation of MS analyses that seek to
identify novel protein nitrosation sites.

Experimental

Materials

Human hemoglobin was purchased from Sigma Chem-
ical Co. (St. Louis, MO) and human �-melanocyte
stimulating hormone (MSH; Acetyl-Ser-Tyr-Ser-Met-
Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-amide) was pur-
chased from Peptides International (Louisville, KY). All
other chemicals and reagents were purchased from
Sigma.

Generation of S-Nitrosopeptide
and N-Nitrosopeptide

Human hemoglobin was dissolved in 20 mM Tris-HCl,
pH 7.6, 1 mM EDTA and 0.1 mM neocuproine to
achieve a final concentration of 2 mg/ml. To this
hemoglobin solution (90 �L), 1 mM GSNO was added
(10 �L) and samples were incubated at 37 °C for 30 min
in the dark. To isolate hemoglobin free of unreacted
GSNO, protein was precipitated with two volumes of
iced-acetone and pelleted by centrifugation at 2000 � g
for 5 min. Protein pellets were resuspended in 100 �L of
trypsinization buffer, comprising 5 mM NH4HCO3 and
10% acetonitrile (ACN). Sequencing-grade trypsin (Pro-
mega; 1 �g, Madison, WI) was added and proteolysis
was performed at 37 °C for 1 h in the dark. The digest
was diluted 500-fold with 0.1% trifluoroacetic acid
(TFA) solution and then subjected to LC-MS/MS anal-
ysis. For peptide N-nitrosation, �-melanocyte stimulat-
ing hormone (MSH) was dissolved in 0.1% TFA at a
concentration of 10 pmol/�L and sodium nitrite was
added to a final concentration of 1 mM. The reaction
mixture was incubated at 37 °C for 1 h in the dark and
then diluted 100-fold for analysis by LC-MS/MS. Iden-
tical quantities of untreated hemoglobin and MSH were
processed as above to serve as negative controls.

Instrumentation

Liquid chromatography-tandem mass spectrometry
analysis (LC-MS/MS) was performed using an 1100
series LC/MSD Ultra ion trap mass spectrometer (Agi-
lent Technologies, Palo Alto, CA). The system was
equipped with an Agilent Chip Cube interface and a
silicon wafer “chip-column” that integrates a C18 en-
richment column, C18 resolving column, and nanos-
pray emitter. Samples were loaded on the enrichment
column at a flow rate of 5 �L/min and then resolved at
a flow rate of 0.3 �l/min on 40 mm � 75 �M ZORBAX
300 C18 column (Agilent). The LC gradient was 10 to
40% Solvent B for 30 min, followed by 40 to 90% Solvent
B for 20 min. Solvent A contained 0.1% formic acid in

3% ACN and Solvent B contained 0.1% formic acid in
90% ACN. ESI conditions included a needle voltage of
2 kV, nitrogen gas flow rate of 4 L/min, and a capillary
temperature of 300 °C. MS spectra were acquired at a
scan speed of 8000 m/z/s and the four most intense
precursor ions were selected for MS/MS fragmentation.
MS3 was triggered on MS/MS product ions that met the
following two criteria: (1) the single most intense ion
among all observed product ions; (2) an m/z that is
equal to either 15 or 10 Da less than the parent ion (i.e.,
loss of NO from either the doubly- and triply-charged
peptide ion). The skimmer voltage was 20 V, and the
fragmentation amplitude was 1.3 V. The SmartFrag
function was activated for automatic ramping of the
fragmentation amplitude until the entire precursor ion
was dissociated.

Results and Discussion

Human hemoglobin was selected as a model pro-
tein to study S-nitrosation. Upon exposure to NO,
both in vitro and in vivo, hemoglobin undergoes S-
nitrosation� on� Cys-�93� [12].� Notably,� this� site� of� NO
addition has been the subject of intense investigation,
owing to its important role in facilitating oxygen deliv-
ery�to�hypoxic�tissues�[16].�Hemoglobin�was�incubated
with the NO donor, S-nitrosoglutathione (GSNO) to
induce S-nitrosothiol formation. After removal of unre-
acted GSNO, hemoglobin was trypsinized and the
resulting peptide mixture was resolved and analyzed
by LC-MS/MS. Only two S-nitrosopeptides ions could
be detected and each was reconciled to contain S-
nitroso Cys �-93—these are the doubly-charged peptide
ions arising from GFATLSELHCNODK (peptide S2),
and the triply-charged peptide ion with one missed tryptic
cleavage site, GTFATLSELHCNODKLHVDPENFR (pep-
tide S3).

Synthetic human �-melanocyte stimulating hor-
mone (MSH), following treatment with acidified ni-
trite, was studied as a model system for elucidation of
N-nitrosopeptide fragmentation. Since MSH is N-
blocked and contains lone Arg and Trp residues, it
possesses one each of primary and secondary amine
nitrogen atoms as possible sites for NO addition. Con-
sistent� with� an� earlier� finding� [10],� N-nitrosation� was
not observed following treatment of MSH with GSNO.
Nonetheless, upon exposure of MSH to acidified nitrite
as the NO-donor, a nitrosated MSH peptide acetyl-
SYSMEHFRWNOGKPV-amide was detected as both
doubly-charged (peptide N2) and triply-charged (pep-
tide N3) species. CID MS/MS spectra of nitroso-
peptides�S2,�S3,�N2,�and�N3�are�shown�in�Figure�1a�and
d,�and�Figure�2a�and�d,�respectively.�Note�that�in�each
case the spectra are dominated by a single ion species,
which can be reconciled by the loss of NO (�15 Da for
doubly-charged peptide ions and �10 Da for triply-
charged peptide ions). Significant NO loss was also
observed by in-source decay of the corresponding par-
ent ions (data not shown). These observations affirm the
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highly labile nature of Cys SONO and Trp NONO
bonds in cognate peptides.

Given the limited product ions observed in the
MS/MS spectra of SONO and NONO peptides, CID of
the neutral loss peak (i.e., MS3) was performed to
elucidate fragmentation products and deduce structural
features of parent ions. MS3 analyses were automati-
cally triggered by the NO loss event, as described in the
Experimental section. The dominant product ions aris-
ing from NO loss were reconciled to be odd-electron

species, possessing either Cys-thiyl or Trp-aminyl rad-
icals. The product spectra of these radical-peptides S2,
S3,� N2,� and� N3� are� shown� in� Figure� 1b� and� e,� and
Figure�2b�and�e,�respectively.�For�thiyl�radical�peptides
S2 and S3, loss of both SH and CH2S from the Cys side
chain was observed, whereas no significant side-chain
losses were detected for aminyl radical peptides N2 and
N3. Whereas SH and CH2S losses were previously
described for CID of a Cu(II)-generated thiyl radical
containing�tripeptide�(GCR)�[17],�our�findings�indicate

Figure 1. CID fragmentation spectra of S-nitrosopeptides from human hemoglobin tryptic digest. (a)
MS/MS spectrum of doubly charged S-nitrosopeptide GFATLSELHCNODK, (b) MS3 spectrum of
doubly charged thiyl radical-peptide GFATLSELHC·DK, (c) MS/MS spectrum of doubly charged,
native peptide GFATLSELHCDK, (d) MS/MS of triply charged S-nitrosopeptide GTFATLSELHC-
NODKLHVDPENFR, (e) MS3 spectrum of triply charged thiyl radical-peptide GTFATLSELHC·
DKLHVDPENFR.
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that S-nitrosation efficiently promotes thiyl radical for-
mation without the requirement of a transition-metal.

Doubly charged radical peptides S2 and N2 gener-
ated far fewer amide bond fragmentation products (i.e.,
b- and y-ions) than the corresponding native peptides
(Figures� 1c� and� 2c),� demonstrating� that� the� unpaired
electron can dramatically alter the fragmentation pro-
cess. Interestingly, apart from side-chain cleavages,
several �COC and NO�C dissociation products were

observed for radical peptides S2 and N2: x8 � 1 and z9
ions� in� Figure� 1b,� and� c8-1� and� z5� ions� dominate� in
Figure�2b.�These�ion�types�are�commonly�observed�with
electron� capture� dissociation� (ECD)� [18]� and� also� pro-
duced by CID of aminyl and carbon radical-precursor
species that have been introduced into peptides by
chemical� conjugation� [19,� 20].� The� proposed� fragmen-
tation pathway for the latter involves the radical ab-
straction of hydrogen from a �-carbon, followed by �

Figure 2. CID fragmentation spectra of N-nitrosopeptides derived from �-Melanocyte stimulating
hormone. (a) MS/MS spectrum of doubly charged N-nitroso-peptide acetyl-SYSMEHFRWNOGKPV-
amide, (b) MS3 spectrum of doubly charged aminyl radical-peptide acetyl-SYSMEHFRW·GKPV-
amide, (c) MS/MS of doubly charged, native peptide acetyl-SYSMEHFRWGKPV-amide, (d) MS/MS
of triply charged N-nitroso-peptide acetyl-SYSMEHFRWNOGKPV-amide, (e) MS3 of triply charged
aminyl radical-peptide acetyl-SYSMEHFRW·GKPV-amide.
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fragmentation on either side of �-C to generate a/x � 1
or�c-1/z�ions�[20].�This�general�mechanism�is�depicted
in Scheme 1 to rationalize the unusual fragmentation
pattern observed herein for nitrosopeptide-generated
thiyl- and aminyl-radical ions.

Formation of observed �COC and NO�C dissocia-
tion products are likely to be initiated by intramolecular
radical-triggered hydrogen abstraction in peptide ions
S2 and N2 and subsequent cleavage of the peptide
backbone. Findings suggest that the thiyl radical, pro-
duced by loss of NO from peptide S2, preferentially
abstracts hydrogen from a Thr side chain that is six
residues distant; loss of this hydrogen then promotes
peptide cleavage on either side of the Thr residue,
yielding�the�observed�x8���1�and�z9�ions�(Figure�1b).�In
contrast, Trp-aminyl radical formation by NO loss from
peptide ion N2 apparently results in the abstraction of a
local hydrogen and subsequent peptide cleavage on
N-terminal side of Trp, yielding c8-1 and z5 ions
(Figure� 2b).� The� difference� between� thiyl� and� aminyl
radical in terms of local versus remote hydrogen ab-
straction can be explained by the relative bond dissoci-
ation energies (BDE) of abstracted hydrogen atoms. The
BDE of SOH bond (81 kcal/mol) is significantly lower
than COH bond (99 kcal/mol), explaining why the
thiyl radical does not readily abstract H from carbon
atoms. Instead, a thiyl sulfur can abstract more loosely-
bound hydrogens from certain side chains. Notably, our
observation�of�cleavage�on�either�side�of�Thr�(Figure�1b)
is in accord with rate constant measurements revealing
that the most facile hydrogen abstraction by protein
thiyl�radicals� is�from�the��-carbon�of�Thr�and�Ser�[21].
On the other hand, the NOH bond has a BDE close to
COH (93 versus 99 kcal/mol) and therefore a Trp
aminyl-radical is capable of direct abstraction of hydro-
gen from its own �-carbon, explaining the prominent c8
��1�and�z5�ions�observed�in�Figure�2b.

The CID fragmentation patterns of radical peptides
derived from nitrosopeptide S3 and N3, both triply-
charged,�provide� further�mechanistic� insights� (Figures
1e�and�2e,� respectively).�Notably,�S3�produces� the�y21

ion, also observed with peptide S2 as y12 ion, as well as
intense y5 and b12 ions that are explained by the
well-recognized gas-phase instability of the AspOPro
bond. Additionally, a c7 � 1 ion was observed which
presumably arises from �-cleavage at a Glu residue
three residues away from Cys. The radical peptide N3
showed extensive amide bond cleavage, with a near-
complete� array� of� y-ions� observed� (Figure� 2e).� This
more complete amide bond cleavage of peptide N3 can
be attributed to the charge state; the additional proton
on N3 is mobile, rather than sequestered by Arg and
Lys, as in peptide N2 and. therefore. free to induce
amide bond cleavage. These findings suggest that the
radical-promoted fragmentation pathway competes ki-
netically with the charge-directed pathway, and the
extent of protonation is a major determinant of which
pathway predominates.

Conclusions

Collectively, we demonstrated that both S- and N-
nitrosopeptides undergo facile neutral loss of NO under
CID. Moreover, the radical site produced upon NO loss
can elicit �COC and NO�C bond cleavages at specific
residues that are most capable of hydrogen transfer,
yielding hallmark a/x and c/z types of ions. Addition-
ally, in the case of S-nitrosopeptides, side-chain loss
from Cys predominates with CID. A systematic study
of nitrosopeptides will be necessary to confirm that
these trends are generically applicable, and to more
completely define the influence of flanking residues on
radical peptide ion fragmentation. This knowledge could
prove valuable for improved MS analyses of an ever-
increasing number of physiologically-relevant NO-modi-
fied proteins.
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