
SHORT COMMUNICATION

Differentiation of 2=-O- and 3=-O-Methylated
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Recent studies revealed that the 3=-terminal nucleotides in plant microRNAs were methylated
on the ribose at the 2= or 3= hydroxyl groups. Here we examined the fragmentation of the
electrospray-produced [M � H]� and [M � H]� ions of 2=- and 3=-O-methylated ribonucleo-
sides. It turned out that the predominant fragmentation pathway for the [M � H]� ions of
ribose-methylated nucleosides was the neutral loss of the methylated ribose, which made it
impossible to distinguish 2=-O-methylation from 3=-O-methylation by positive-ion MS/MS.
However, characteristic fragment ions, resulting from the cleavage through the ribose rings,
were produced for the [M � H]� ions of each pair of ribose-methylated nucleosides. In this
respect, the neutral loss of a 90-Da fragment (C3H6O3) was observed for 2=-O-methylated
cytidine, guanosine and adenosine, but not for their 3=-O-methylated counterparts. On the
other hand, the neutral loss of a 60-Da fragment (C2H4O2) was found for 3=-O-methyluridine,
but not for 2=-O-methyluridine. (J Am Soc Mass Spectrom 2006, 17, 1096–1099) © 2006
American Society for Mass Spectrometry

MicroRNAs (miRNAs), a family of small non-
coding RNAs 20 to 24 nucleotides long,
have been identified in many plant and

animal� species� [1].� These� small� RNA� molecules� are
involved in various biological processes, including
cell proliferation and cell death during development,
stress�resistance,�and�fat�metabolism�[1].

Many cellular RNAs are susceptible to covalent
modifications such as methylation, deamination, and
thiolation, providing a means to expand the chemical
repertoire� of� the� four� nucleobases� [2,� 3].� Post-
transcriptional methylation on the nucleobase or ri-
bose is one of the most common and conserved types
of� RNA� modifications� [3,� 4].� Very� recently,� it� was
revealed that the last nucleotide in miRNAs could be
methylated by methyltransferase HEN1, which con-
tributes to the accumulation of endogenous miRNA
and the production of transgene siRNA involved in
post-transcriptional� gene� silencing� [5].� In� addition,
the ribose methylation was a crucial step in plant
miRNA�biogenesis� [6,�7].

Because the 3= terminal nucleotides of miRNAs have
free hydroxyl groups on both C2= and C3=, the methyl-
ation could potentially occur at either hydroxyl group.
In this context, the terminal nucleotides of small RNAs
in tobacco were suggested to be methylated on the
2=-hydroxyl� group� on� the� grounds� that� these� small
RNAs�were�competent�substrates�for�T4�RNA�ligase�[8],
which was suggested not to be able to ligate RNA

blocked� at� the� terminal� 3=� hydroxyl� group� [9�–11].� It,
however, has not been experimentally verified whether
the� terminal� 3=-O-methylation� would� prohibit� the� T4
RNA� ligase-mediated� ligation�via� the�2=-OH�group� [9,
11].�Thus,� there� is�a�need� for�a� rapid�and�unambiguous
method to determine the nature of ribose O-methylation
in small RNAs.

Mass spectrometry has long provided an important
means for the characterization of covalent modification
of nucleosides. Previous studies have shown that 2=-O-
methyl-ribonucleosides could be differentiated from
their� 3=-O-methylated� analogs� by� electron� impact� (EI)
mass�spectrometry�[12–14].�The�diagnostic�fragment�ion
for 2=-O-methylribonucleosides is the ion of m/z 146,
which corresponds to the methylated ribose moiety
minus� one� hydrogen� atom� [12–14].� In� addition,� 2=-O-
methyluridine and 2=-O-methylguanosine have been
examined by positive-ion fast-atom bombardment-
tandem� mass� spectrometry� (FAB-MS/MS)� [15]� and
negative-ion laser desorption/Fourier-transform mass
spectrometry�[16].

Due to the compatibility of electrospray ionization
(ESI)-MS to HPLC and the high sensitivity offered by
modern ESI-MS instrumentation, we decided to exam-
ine the fragmentation of the ESI-produced [M � H]�

and [M � H]� ions of 2=- and 3=-O-methylribonucleo-
sides, with the goal to establish a sensitive method for
the differentiation of the isomeric ribonucleosides.

Experimental

2=- and 3=-O-methyl-ribonucleosides were purchased
from RI Chemicals (Orange, CA). Electrospray ioniza-
tion (ESI) MS and MS/MS experiments were carried out
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on an LCQ Deca XP ion-trap mass spectrometer (Ther-
moFinnigan, San Jose, CA). An equal-volume solvent
mixture of acetonitrile and water was used for electro-
spray, and a 2 �L aliquot of 10 �M sample solution was
injected in each run. The spray voltage was 3.4 kV, and
the capillary temperature was maintained at 225 °C.
The mass width for the precursor ion selection in
MS/MS was 3 m/z units, and the normalized collision
energy was 30% with an activation time of 30 ms.
Experiments were also carried out at other normalized
collisional energies.

Results and Discussion

Our proposed approach for identifying the nature of
ribose methylation in miRNA involves digesting the
miRNA by nuclease P1 and alkaline phosphatase, sep-
arating the resulting nucleoside mixture by HPLC, and
monitoring the LC effluents by online MS/MS. Because
the 3= terminal nucleotide of mir173 is a cytidine, initial
investigation was carried out on the differentiation of
2=-O-methylcytidine and 3=-O-methylcytidine. To dis-
tinguish these two isomeric methylated nucleosides, we
first acquired the product-ion spectra of their [M � H]�

ions because of the relatively high sensitivity in
positive-ion mode. In sharp contrast to what were
observed in the EI spectra of those O-methylated
nucleosides�[12–14],�the�product-ion�spectra�for�the�[M
� H]� ions of the two isomeric nucleosides were
identical, and both of them showed the formation of a
dominant fragment ion of [B � H]� (m/z 112, spectra
not shown), which resulted from the cleavage of the
glycosidic bond and the subsequent neutral loss of the
methylated ribose moiety.

Next, we acquired the product-ion spectra of the
[M � H]� ions (m/z 256) of these two isomers and it
turned out that they were distinctive from each other
(Figure�1).�The�major�product�ion�of�m/z�213�for�both
2=-O-methylcytidine and 3=-O-methylcytidine was in-
duced from the loss of an HNCO moiety through the
retro Diels-Alder reaction as proposed for the frag-
mentation� of� uracil� [17].� The� characteristic� product
ions of m/z 123 and m/z 153 from 2=-O-methylcytidine
and 3=-O-methylcytidine, respectively, were formed
from different cleavages through the ribose ring. In
this regard, the fragment ion of m/z 123 was formed
from the losses of an HNCO and a 90-Da neutral
component (C3H6O3). The consecutive neutral losses
of an HNCO moiety and a C3H6O3 fragment has
been observed previously upon the collisional activa-
tion of the [M � H]� ion of 5-hydroxymethyl-
2�=�-deoxyuridine� [18].� In�addition,� the�neutral� loss�of
C3H6O3 has been observed for the fragmentations of
the� [M� �� H]�� ions� of� 2=�-�O�-methylguanosine� [16],
8-hydroxy-2=-deoxyguanosine, 8-hydroxy-2=-deoxy-
adenosine,� 2-hydroxy-2=�-deoxyadenosine� [19],� and
pyrimidine�glycols� [20].

Rather than losing a neutral C3H6O3 fragment, the
[M � H]� ion of 3=-O-methylcytidine underwent a

neutral loss of a 60-Da fragment (C2H4O2), which gave
rise� to� the� product� ion� of� m/z� 196� (Figure� 1b).� The
product ion emanating from the eliminations of both
C2H4O2 and HNCO was also found (m/z 153) in the
negative-ion�MS/MS�(Figure�1b).�Therefore,�the�nature
of the ribose methylation of cytidine can be readily
identified from the distinctive fragmentation patterns of
2=- and 3=-O-methylated nucleosides in the negative-ion
mode.

Since the 3= terminal nucleoside of miRNAs can
also be uridine, guanosine, or adenosine, we further
examined the fragmentation of these three pairs of
O-methylated nucleosides. The product-ion spectra of
the [M � H]� ions of the two isomeric nucleosides in
each pair were again indistinguishable, and the most
abundant product ions were the protonated ions of the
nucleobases ([B � H]�, spectra not shown).

The product-ion spectra of the [M � H]� ions of
these three pairs of O-methylated nucleosides are, how-
ever, distinctive. In this regard, the [M � H]� ion of
3=-O-methyluridine� (Figure� 2b)� underwent� similar
cleavages as that of the corresponding cytidine deriva-
tive�(Figure�1b).�In�particular,�we�observed�the�losses�of
HNCO (m/z 214), HNCO � H2O (m/z 196), and
C2H4O2�HNCO (m/z 154). In contrast to what was
found� for� 2=-O-methylcytidine,� the� product-ion� spec-
trum�of�the�[M��H]��ion�of�2=-O-methyluridine�(Figure
2a)�did�not�show�the�formation�of�a�product�ion�arising
from the loss of the 90-Da (C3H6O3) fragment. Instead,
the most abundant product ion for 2=-O-methyluridine
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Figure 1. Product-ion spectra of the [M � H]� ions of 2=-O-
methylcytidine (a) and 3=-O-methylcytidine (b).
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was the ion of m/z 214, which is ascribed to the loss of
an HNCO component. Although the cleavage within
the ribose moiety was not observed for 2=-O-

methyluridine, the diagnostic fragment ions of m/z 196
and 154 for 3=-O-methyluridine can be used to distin-
guish these two isomeric ribose-methylated nucleo-
sides. Moreover, we observed a product ion resulting
from the neutral loss of a methanol molecule for
2=-O-methyluridine (m/z 225), but not for 3=-O-
methyluridine.

The product-ion spectra of the [M � H]� ions of
the corresponding purine nucleosides showed that
the most abundant ions were the deprotonated ions
of the nucleobases (i.e., the ions of m/z 150 and 134,
Figure�3).�The�product�ions�allowing�for�differentiat-
ing 2=-O-methyladenosine and 2=-O-methylguanosine
from their corresponding 3=-O-methylated analogs
were the ions of m/z 190 and 206 for 2=-O-methyl-
adenosine and 2=-O-methylguanosine, respectively.
These two ions formed from the familiar cross-ring
cleavage of the ribose moiety (i.e., loss of a C3H6O3

fragment).
It is worth noting that the above differences in

product-ion spectra are observed for a wide range of
normalized collisional energies (20 – 40%) for all four
pairs of isomers except the isomeric O-methylated
adenosines. For the latter pair of isomers, the small
difference�observed� in�Figure�3a�and�b� is�only�obvi-
ous while the normalized collisional energy lies be-
tween 35 and 40%. It is also important to note that the
most abundant fragment ions resulting from the
collisional activation of the [M � H]� ions of the
unmodified uridine, cytidine, adenosine, and
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Figure 2. Product-ion spectra of the [M � H]� ions of 2=-O-
methyluridine (a) and 3=-O-methyluridine (b).
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Figure 3. Product-ion spectra of the [M � H]� ions of 2=-O-methyladenosine (a), 3=-O-methylad-
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guanosine are the deprotonated ions of the nucleo-
bases� [21,�22].

Conclusions

Here we showed that negative-ion ESI-MS/MS allows
for the differentiation of 2=-O-methylribonucleosides
from their 3=-O-methylated counterparts. Several char-
acteristics are common in the fragmentation chemistry
of ribose-methylated nucleosides. First, the two iso-
meric O-methylated nucleosides in each pair cannot be
distinguished by positive-ion ESI-MS/MS, where the
collisional activation of the [M � H]� ions of both
modified nucleosides leads to facile cleavage of the
glycosidic bond to give protonated nucleobase as the
dominant fragment ion. In negative-ion detection
mode, however, all four pairs of ribose-
methylated nucleosides can be differentiated from the
characteristic cleavages within the ribose rings. Second,
the neutral loss of a 90-Da fragment is observed for
2=-O-methylated cytidine, adenosine, and guanosine,
but not for the corresponding 3=-O-methylated nucleo-
sides. Third, both 2=- and 3=-O-methylated uridine and
cytidine undergo a common retro Diels-Alder type
dissociation in the pyrimidine moiety, resulting in the
neutral loss of an HNCO moiety (43 Da). Moreover, the
unique neutral loss of a 60-Da C2H4O2 fragment from
3=-O-methylated cytidine and uridine can facilitate their
differentiation from the 2=-O-methylated counterparts.
The tandem mass spectrometric method reported here
can be potentially applied for the determination of the
nature of ribose methylation in endogenous miRNAs as
well as small interference RNAs (siRNA), which could
improve our understanding of the functions of these
small but important RNAs.
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